1 /* $NetBSD: nslm7x.c,v 1.21 2005/02/27 00:27:02 perry Exp $ */ 2 3 /*- 4 * Copyright (c) 2000 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Bill Squier. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 #include <sys/cdefs.h> 40 __KERNEL_RCSID(0, "$NetBSD: nslm7x.c,v 1.21 2005/02/27 00:27:02 perry Exp $"); 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/proc.h> 46 #include <sys/device.h> 47 #include <sys/malloc.h> 48 #include <sys/errno.h> 49 #include <sys/queue.h> 50 #include <sys/lock.h> 51 #include <sys/ioctl.h> 52 #include <sys/conf.h> 53 #include <sys/time.h> 54 55 #include <machine/bus.h> 56 57 #include <dev/isa/isareg.h> 58 #include <dev/isa/isavar.h> 59 60 #include <dev/sysmon/sysmonvar.h> 61 62 #include <dev/ic/nslm7xvar.h> 63 64 #include <machine/intr.h> 65 #include <machine/bus.h> 66 67 #if defined(LMDEBUG) 68 #define DPRINTF(x) printf x 69 #else 70 #define DPRINTF(x) 71 #endif 72 73 const struct envsys_range lm_ranges[] = { /* sc->sensors sub-intervals */ 74 /* for each unit type */ 75 { 7, 7, ENVSYS_STEMP }, 76 { 8, 10, ENVSYS_SFANRPM }, 77 { 1, 0, ENVSYS_SVOLTS_AC }, /* None */ 78 { 0, 6, ENVSYS_SVOLTS_DC }, 79 { 1, 0, ENVSYS_SOHMS }, /* None */ 80 { 1, 0, ENVSYS_SWATTS }, /* None */ 81 { 1, 0, ENVSYS_SAMPS } /* None */ 82 }; 83 84 85 static void setup_fan(struct lm_softc *, int, int); 86 static void setup_temp(struct lm_softc *, int, int); 87 static void wb_setup_volt(struct lm_softc *); 88 89 int lm_match(struct lm_softc *); 90 int wb_match(struct lm_softc *); 91 int itec_match(struct lm_softc *); 92 int def_match(struct lm_softc *); 93 void lm_common_match(struct lm_softc *); 94 static int lm_generic_banksel(struct lm_softc *, int); 95 96 static void generic_stemp(struct lm_softc *, struct envsys_tre_data *); 97 static void generic_svolt(struct lm_softc *, struct envsys_tre_data *, 98 struct envsys_basic_info *); 99 static void generic_fanrpm(struct lm_softc *, struct envsys_tre_data *); 100 101 void lm_refresh_sensor_data(struct lm_softc *); 102 103 static void wb_svolt(struct lm_softc *); 104 static void wb_stemp(struct lm_softc *, struct envsys_tre_data *, int); 105 static void wb781_fanrpm(struct lm_softc *, struct envsys_tre_data *); 106 static void wb_fanrpm(struct lm_softc *, struct envsys_tre_data *); 107 108 void wb781_refresh_sensor_data(struct lm_softc *); 109 void wb782_refresh_sensor_data(struct lm_softc *); 110 void wb697_refresh_sensor_data(struct lm_softc *); 111 112 static void itec_svolt(struct lm_softc *, struct envsys_tre_data *, 113 struct envsys_basic_info *); 114 static void itec_stemp(struct lm_softc *, struct envsys_tre_data *); 115 static void itec_fanrpm(struct lm_softc *, struct envsys_tre_data *); 116 void itec_refresh_sensor_data(struct lm_softc *); 117 118 int lm_gtredata(struct sysmon_envsys *, struct envsys_tre_data *); 119 120 int generic_streinfo_fan(struct lm_softc *, struct envsys_basic_info *, 121 int, struct envsys_basic_info *); 122 int lm_streinfo(struct sysmon_envsys *, struct envsys_basic_info *); 123 int wb781_streinfo(struct sysmon_envsys *, struct envsys_basic_info *); 124 int wb782_streinfo(struct sysmon_envsys *, struct envsys_basic_info *); 125 int itec_streinfo(struct sysmon_envsys *, struct envsys_basic_info *); 126 127 struct lm_chip { 128 int (*chip_match)(struct lm_softc *); 129 }; 130 131 struct lm_chip lm_chips[] = { 132 { itec_match }, 133 { wb_match }, 134 { lm_match }, 135 { def_match } /* Must be last */ 136 }; 137 138 139 int 140 lm_generic_banksel(lmsc, bank) 141 struct lm_softc *lmsc; 142 int bank; 143 { 144 145 (*lmsc->lm_writereg)(lmsc, WB_BANKSEL, bank); 146 return 0; 147 } 148 149 150 /* 151 * bus independent probe 152 */ 153 int 154 lm_probe(iot, ioh) 155 bus_space_tag_t iot; 156 bus_space_handle_t ioh; 157 { 158 u_int8_t cr; 159 int rv; 160 161 /* 162 * Check for it8705f, before we do the chip reset. 163 * In case of an it8705f this might reset all the fan control 164 * parameters to defaults which would void all settings done by 165 * the BOOTROM/BIOS. 166 */ 167 bus_space_write_1(iot, ioh, LMC_ADDR, ITEC_RES48); 168 cr = bus_space_read_1(iot, ioh, LMC_DATA); 169 170 if (cr == ITEC_RES48_DEFAULT) { 171 bus_space_write_1(iot, ioh, LMC_ADDR, ITEC_RES52); 172 cr = bus_space_read_1(iot, ioh, LMC_DATA); 173 if (cr == ITEC_RES52_DEFAULT) 174 return 1; 175 } 176 177 /* Check for some power-on defaults */ 178 bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG); 179 180 /* Perform LM78 reset */ 181 bus_space_write_1(iot, ioh, LMC_DATA, 0x80); 182 183 /* XXX - Why do I have to reselect the register? */ 184 bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG); 185 cr = bus_space_read_1(iot, ioh, LMC_DATA); 186 187 /* XXX - spec says *only* 0x08! */ 188 if ((cr == 0x08) || (cr == 0x01)) 189 rv = 1; 190 else 191 rv = 0; 192 193 DPRINTF(("lm: rv = %d, cr = %x\n", rv, cr)); 194 195 return (rv); 196 } 197 198 199 /* 200 * pre: lmsc contains valid busspace tag and handle 201 */ 202 void 203 lm_attach(lmsc) 204 struct lm_softc *lmsc; 205 { 206 u_int i; 207 208 /* Install default bank selection routine, if none given. */ 209 if (lmsc->lm_banksel == NULL) 210 lmsc->lm_banksel = lm_generic_banksel; 211 212 for (i = 0; i < sizeof(lm_chips) / sizeof(lm_chips[0]); i++) 213 if (lm_chips[i].chip_match(lmsc)) 214 break; 215 216 /* Start the monitoring loop */ 217 (*lmsc->lm_writereg)(lmsc, LMD_CONFIG, 0x01); 218 219 /* Indicate we have never read the registers */ 220 timerclear(&lmsc->lastread); 221 222 /* Initialize sensors */ 223 for (i = 0; i < lmsc->numsensors; ++i) { 224 lmsc->sensors[i].sensor = lmsc->info[i].sensor = i; 225 lmsc->sensors[i].validflags = (ENVSYS_FVALID|ENVSYS_FCURVALID); 226 lmsc->info[i].validflags = ENVSYS_FVALID; 227 lmsc->sensors[i].warnflags = ENVSYS_WARN_OK; 228 } 229 /* 230 * Hook into the System Monitor. 231 */ 232 lmsc->sc_sysmon.sme_ranges = lm_ranges; 233 lmsc->sc_sysmon.sme_sensor_info = lmsc->info; 234 lmsc->sc_sysmon.sme_sensor_data = lmsc->sensors; 235 lmsc->sc_sysmon.sme_cookie = lmsc; 236 237 lmsc->sc_sysmon.sme_gtredata = lm_gtredata; 238 /* sme_streinfo set in chip-specific attach */ 239 240 lmsc->sc_sysmon.sme_nsensors = lmsc->numsensors; 241 lmsc->sc_sysmon.sme_envsys_version = 1000; 242 243 if (sysmon_envsys_register(&lmsc->sc_sysmon)) 244 printf("%s: unable to register with sysmon\n", 245 lmsc->sc_dev.dv_xname); 246 } 247 248 int 249 lm_match(sc) 250 struct lm_softc *sc; 251 { 252 int i; 253 254 /* See if we have an LM78 or LM79 */ 255 i = (*sc->lm_readreg)(sc, LMD_CHIPID) & LM_ID_MASK; 256 switch(i) { 257 case LM_ID_LM78: 258 printf(": LM78\n"); 259 break; 260 case LM_ID_LM78J: 261 printf(": LM78J\n"); 262 break; 263 case LM_ID_LM79: 264 printf(": LM79\n"); 265 break; 266 case LM_ID_LM81: 267 printf(": LM81\n"); 268 break; 269 default: 270 return 0; 271 } 272 lm_common_match(sc); 273 return 1; 274 } 275 276 int 277 def_match(sc) 278 struct lm_softc *sc; 279 { 280 int i; 281 282 i = (*sc->lm_readreg)(sc, LMD_CHIPID) & LM_ID_MASK; 283 printf(": Unknown chip (ID %d)\n", i); 284 lm_common_match(sc); 285 return 1; 286 } 287 288 void 289 lm_common_match(sc) 290 struct lm_softc *sc; 291 { 292 int i; 293 sc->numsensors = LM_NUM_SENSORS; 294 sc->refresh_sensor_data = lm_refresh_sensor_data; 295 296 for (i = 0; i < 7; ++i) { 297 sc->sensors[i].units = sc->info[i].units = 298 ENVSYS_SVOLTS_DC; 299 snprintf(sc->info[i].desc, sizeof(sc->info[i].desc), 300 "IN %d", i); 301 } 302 303 /* default correction factors for resistors on higher voltage inputs */ 304 sc->info[0].rfact = sc->info[1].rfact = 305 sc->info[2].rfact = 10000; 306 sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000); 307 sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000); 308 sc->info[5].rfact = (int)((210.0 / 60.4) * 10000); 309 sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000); 310 311 sc->sensors[7].units = ENVSYS_STEMP; 312 strcpy(sc->info[7].desc, "Temp"); 313 314 setup_fan(sc, 8, 3); 315 sc->sc_sysmon.sme_streinfo = lm_streinfo; 316 } 317 318 int 319 wb_match(sc) 320 struct lm_softc *sc; 321 { 322 int i, j; 323 324 (*sc->lm_writereg)(sc, WB_BANKSEL, WB_BANKSEL_HBAC); 325 j = (*sc->lm_readreg)(sc, WB_VENDID) << 8; 326 (*sc->lm_writereg)(sc, WB_BANKSEL, 0); 327 j |= (*sc->lm_readreg)(sc, WB_VENDID); 328 DPRINTF(("winbond vend id 0x%x\n", j)); 329 if (j != WB_VENDID_WINBOND) 330 return 0; 331 /* read device ID */ 332 (*sc->lm_banksel)(sc, 0); 333 j = (*sc->lm_readreg)(sc, WB_BANK0_CHIPID); 334 DPRINTF(("winbond chip id 0x%x\n", j)); 335 switch(j) { 336 case WB_CHIPID_83781: 337 case WB_CHIPID_83781_2: 338 printf(": W83781D\n"); 339 340 for (i = 0; i < 7; ++i) { 341 sc->sensors[i].units = sc->info[i].units = 342 ENVSYS_SVOLTS_DC; 343 snprintf(sc->info[i].desc, sizeof(sc->info[i].desc), 344 "IN %d", i); 345 } 346 347 /* default correction factors for higher voltage inputs */ 348 sc->info[0].rfact = sc->info[1].rfact = 349 sc->info[2].rfact = 10000; 350 sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000); 351 sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000); 352 sc->info[5].rfact = (int)((210.0 / 60.4) * 10000); 353 sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000); 354 355 setup_temp(sc, 7, 3); 356 setup_fan(sc, 10, 3); 357 358 sc->numsensors = WB83781_NUM_SENSORS; 359 sc->refresh_sensor_data = wb781_refresh_sensor_data; 360 sc->sc_sysmon.sme_streinfo = wb781_streinfo; 361 return 1; 362 case WB_CHIPID_83697: 363 printf(": W83697HF\n"); 364 wb_setup_volt(sc); 365 setup_temp(sc, 9, 2); 366 setup_fan(sc, 11, 3); 367 sc->numsensors = WB83697_NUM_SENSORS; 368 sc->refresh_sensor_data = wb697_refresh_sensor_data; 369 sc->sc_sysmon.sme_streinfo = wb782_streinfo; 370 return 1; 371 case WB_CHIPID_83782: 372 printf(": W83782D\n"); 373 break; 374 case WB_CHIPID_83627: 375 printf(": W83627HF\n"); 376 break; 377 default: 378 printf(": unknow winbond chip ID 0x%x\n", j); 379 /* handle as a standart lm7x */ 380 lm_common_match(sc); 381 return 1; 382 } 383 /* common code for the W83782D and W83627HF */ 384 wb_setup_volt(sc); 385 setup_temp(sc, 9, 3); 386 setup_fan(sc, 12, 3); 387 sc->numsensors = WB_NUM_SENSORS; 388 sc->refresh_sensor_data = wb782_refresh_sensor_data; 389 sc->sc_sysmon.sme_streinfo = wb782_streinfo; 390 return 1; 391 } 392 393 static void 394 wb_setup_volt(sc) 395 struct lm_softc *sc; 396 { 397 sc->sensors[0].units = sc->info[0].units = ENVSYS_SVOLTS_DC; 398 snprintf(sc->info[0].desc, sizeof(sc->info[0].desc), "VCORE A"); 399 sc->info[0].rfact = 10000; 400 sc->sensors[1].units = sc->info[1].units = ENVSYS_SVOLTS_DC; 401 snprintf(sc->info[1].desc, sizeof(sc->info[1].desc), "VCORE B"); 402 sc->info[1].rfact = 10000; 403 sc->sensors[2].units = sc->info[2].units = ENVSYS_SVOLTS_DC; 404 snprintf(sc->info[2].desc, sizeof(sc->info[2].desc), "+3.3V"); 405 sc->info[2].rfact = 10000; 406 sc->sensors[3].units = sc->info[3].units = ENVSYS_SVOLTS_DC; 407 snprintf(sc->info[3].desc, sizeof(sc->info[3].desc), "+5V"); 408 sc->info[3].rfact = 16778; 409 sc->sensors[4].units = sc->info[4].units = ENVSYS_SVOLTS_DC; 410 snprintf(sc->info[4].desc, sizeof(sc->info[4].desc), "+12V"); 411 sc->info[4].rfact = 38000; 412 sc->sensors[5].units = sc->info[5].units = ENVSYS_SVOLTS_DC; 413 snprintf(sc->info[5].desc, sizeof(sc->info[5].desc), "-12V"); 414 sc->info[5].rfact = 10000; 415 sc->sensors[6].units = sc->info[6].units = ENVSYS_SVOLTS_DC; 416 snprintf(sc->info[6].desc, sizeof(sc->info[6].desc), "-5V"); 417 sc->info[6].rfact = 10000; 418 sc->sensors[7].units = sc->info[7].units = ENVSYS_SVOLTS_DC; 419 snprintf(sc->info[7].desc, sizeof(sc->info[7].desc), "+5VSB"); 420 sc->info[7].rfact = 15151; 421 sc->sensors[8].units = sc->info[8].units = ENVSYS_SVOLTS_DC; 422 snprintf(sc->info[8].desc, sizeof(sc->info[8].desc), "VBAT"); 423 sc->info[8].rfact = 10000; 424 } 425 426 int 427 itec_match(sc) 428 struct lm_softc *sc; 429 { 430 int vendor; 431 /* do the same thing as in lm_probe() */ 432 if ((*sc->lm_readreg)(sc, ITEC_RES48) != ITEC_RES48_DEFAULT) 433 return 0; 434 435 if ((*sc->lm_readreg)(sc, ITEC_RES52) != ITEC_RES52_DEFAULT) 436 return 0; 437 438 vendor=(*sc->lm_readreg)(sc, ITEC_VENDID); 439 440 if (vendor == ITEC_VENDID_ITE) 441 printf(": iTE IT8705f\n"); 442 else 443 printf(": unknown IT8705f compatible, vendorid 0x%02x\n", 444 vendor); 445 446 /* 447 * XXX this is a litle bit lame... 448 * All VIN inputs work exactly the same way, it depends of the 449 * external wiring what voltages they monitor and which correction 450 * factors are needed. We assume a pretty standard setup here 451 */ 452 wb_setup_volt(sc); 453 strlcpy(sc->info[0].desc, "CPU", sizeof(sc->info[0].desc)); 454 strlcpy(sc->info[1].desc, "AGP", sizeof(sc->info[1].desc)); 455 strlcpy(sc->info[6].desc, "+2.5V", sizeof(sc->info[6].desc)); 456 sc->info[5].rfact = 51100; 457 sc->info[7].rfact = 16778; 458 459 setup_temp(sc, 9, 3); 460 setup_fan(sc, 12, 3); 461 sc->numsensors = ITEC_NUM_SENSORS; 462 sc->refresh_sensor_data = itec_refresh_sensor_data; 463 sc->sc_sysmon.sme_streinfo = itec_streinfo; 464 465 return 1; 466 } 467 468 469 static void 470 setup_temp(sc, start, n) 471 struct lm_softc *sc; 472 int start, n; 473 { 474 int i; 475 476 for (i = 0; i < n; i++) { 477 sc->sensors[start + i].units = ENVSYS_STEMP; 478 snprintf(sc->info[start + i].desc, 479 sizeof(sc->info[start + i].desc), "Temp %d", i + 1); 480 } 481 } 482 483 484 static void 485 setup_fan(sc, start, n) 486 struct lm_softc *sc; 487 int start, n; 488 { 489 int i; 490 for (i = 0; i < n; ++i) { 491 sc->sensors[start + i].units = ENVSYS_SFANRPM; 492 sc->info[start + i].units = ENVSYS_SFANRPM; 493 snprintf(sc->info[start + i].desc, 494 sizeof(sc->info[start + i].desc), "Fan %d", i + 1); 495 } 496 } 497 498 int 499 lm_gtredata(sme, tred) 500 struct sysmon_envsys *sme; 501 struct envsys_tre_data *tred; 502 { 503 static const struct timeval onepointfive = { 1, 500000 }; 504 struct timeval t; 505 struct lm_softc *sc = sme->sme_cookie; 506 int i, s; 507 508 /* read new values at most once every 1.5 seconds */ 509 timeradd(&sc->lastread, &onepointfive, &t); 510 s = splclock(); 511 i = timercmp(&mono_time, &t, >); 512 if (i) { 513 sc->lastread.tv_sec = mono_time.tv_sec; 514 sc->lastread.tv_usec = mono_time.tv_usec; 515 } 516 splx(s); 517 518 if (i) 519 sc->refresh_sensor_data(sc); 520 521 *tred = sc->sensors[tred->sensor]; 522 523 return 0; 524 } 525 526 int 527 generic_streinfo_fan(sc, info, n, binfo) 528 struct lm_softc *sc; 529 struct envsys_basic_info *info; 530 int n; 531 struct envsys_basic_info *binfo; 532 { 533 u_int8_t sdata; 534 int divisor; 535 536 /* FAN1 and FAN2 can have divisors set, but not FAN3 */ 537 if ((sc->info[binfo->sensor].units == ENVSYS_SFANRPM) 538 && (n < 2)) { 539 if (binfo->rpms == 0) { 540 binfo->validflags = 0; 541 return 0; 542 } 543 544 /* write back the nominal FAN speed */ 545 info->rpms = binfo->rpms; 546 547 /* 153 is the nominal FAN speed value */ 548 divisor = 1350000 / (binfo->rpms * 153); 549 550 /* ...but we need lg(divisor) */ 551 if (divisor <= 1) 552 divisor = 0; 553 else if (divisor <= 2) 554 divisor = 1; 555 else if (divisor <= 4) 556 divisor = 2; 557 else 558 divisor = 3; 559 560 /* 561 * FAN1 div is in bits <5:4>, FAN2 div is 562 * in <7:6> 563 */ 564 sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN); 565 if ( n == 0 ) { /* FAN1 */ 566 divisor <<= 4; 567 sdata = (sdata & 0xCF) | divisor; 568 } else { /* FAN2 */ 569 divisor <<= 6; 570 sdata = (sdata & 0x3F) | divisor; 571 } 572 573 (*sc->lm_writereg)(sc, LMD_VIDFAN, sdata); 574 } 575 return 0; 576 577 } 578 579 int 580 lm_streinfo(sme, binfo) 581 struct sysmon_envsys *sme; 582 struct envsys_basic_info *binfo; 583 { 584 struct lm_softc *sc = sme->sme_cookie; 585 586 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC) 587 sc->info[binfo->sensor].rfact = binfo->rfact; 588 else { 589 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) { 590 generic_streinfo_fan(sc, &sc->info[binfo->sensor], 591 binfo->sensor - 8, binfo); 592 } 593 strlcpy(sc->info[binfo->sensor].desc, binfo->desc, 594 sizeof(sc->info[binfo->sensor].desc)); 595 binfo->validflags = ENVSYS_FVALID; 596 } 597 return 0; 598 } 599 600 int 601 wb781_streinfo(sme, binfo) 602 struct sysmon_envsys *sme; 603 struct envsys_basic_info *binfo; 604 { 605 struct lm_softc *sc = sme->sme_cookie; 606 int divisor; 607 u_int8_t sdata; 608 int i; 609 610 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC) 611 sc->info[binfo->sensor].rfact = binfo->rfact; 612 else { 613 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) { 614 if (binfo->rpms == 0) { 615 binfo->validflags = 0; 616 return 0; 617 } 618 619 /* write back the nominal FAN speed */ 620 sc->info[binfo->sensor].rpms = binfo->rpms; 621 622 /* 153 is the nominal FAN speed value */ 623 divisor = 1350000 / (binfo->rpms * 153); 624 625 /* ...but we need lg(divisor) */ 626 for (i = 0; i < 7; i++) { 627 if (divisor <= (1 << i)) 628 break; 629 } 630 divisor = i; 631 632 if (binfo->sensor == 10 || binfo->sensor == 11) { 633 /* 634 * FAN1 div is in bits <5:4>, FAN2 div 635 * is in <7:6> 636 */ 637 sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN); 638 if ( binfo->sensor == 10 ) { /* FAN1 */ 639 sdata = (sdata & 0xCF) | 640 ((divisor & 0x3) << 4); 641 } else { /* FAN2 */ 642 sdata = (sdata & 0x3F) | 643 ((divisor & 0x3) << 6); 644 } 645 (*sc->lm_writereg)(sc, LMD_VIDFAN, sdata); 646 } else { 647 /* FAN3 is in WB_PIN <7:6> */ 648 sdata = (*sc->lm_readreg)(sc, WB_PIN); 649 sdata = (sdata & 0x3F) | 650 ((divisor & 0x3) << 6); 651 (*sc->lm_writereg)(sc, WB_PIN, sdata); 652 } 653 } 654 strlcpy(sc->info[binfo->sensor].desc, binfo->desc, 655 sizeof(sc->info[binfo->sensor].desc)); 656 binfo->validflags = ENVSYS_FVALID; 657 } 658 return 0; 659 } 660 661 int 662 wb782_streinfo(sme, binfo) 663 struct sysmon_envsys *sme; 664 struct envsys_basic_info *binfo; 665 { 666 struct lm_softc *sc = sme->sme_cookie; 667 int divisor; 668 u_int8_t sdata; 669 int i; 670 671 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC) 672 sc->info[binfo->sensor].rfact = binfo->rfact; 673 else { 674 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) { 675 if (binfo->rpms == 0) { 676 binfo->validflags = 0; 677 return 0; 678 } 679 680 /* write back the nominal FAN speed */ 681 sc->info[binfo->sensor].rpms = binfo->rpms; 682 683 /* 153 is the nominal FAN speed value */ 684 divisor = 1350000 / (binfo->rpms * 153); 685 686 /* ...but we need lg(divisor) */ 687 for (i = 0; i < 7; i++) { 688 if (divisor <= (1 << i)) 689 break; 690 } 691 divisor = i; 692 693 if (binfo->sensor == 12 || binfo->sensor == 13) { 694 /* 695 * FAN1 div is in bits <5:4>, FAN2 div 696 * is in <7:6> 697 */ 698 sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN); 699 if ( binfo->sensor == 12 ) { /* FAN1 */ 700 sdata = (sdata & 0xCF) | 701 ((divisor & 0x3) << 4); 702 } else { /* FAN2 */ 703 sdata = (sdata & 0x3F) | 704 ((divisor & 0x3) << 6); 705 } 706 (*sc->lm_writereg)(sc, LMD_VIDFAN, sdata); 707 } else { 708 /* FAN3 is in WB_PIN <7:6> */ 709 sdata = (*sc->lm_readreg)(sc, WB_PIN); 710 sdata = (sdata & 0x3F) | 711 ((divisor & 0x3) << 6); 712 (*sc->lm_writereg)(sc, WB_PIN, sdata); 713 } 714 /* Bit 2 of divisor is in WB_BANK0_FANBAT */ 715 (*sc->lm_banksel)(sc, 0); 716 sdata = (*sc->lm_readreg)(sc, WB_BANK0_FANBAT); 717 sdata &= ~(0x20 << (binfo->sensor - 12)); 718 sdata |= (divisor & 0x4) << (binfo->sensor - 9); 719 (*sc->lm_writereg)(sc, WB_BANK0_FANBAT, sdata); 720 } 721 722 strlcpy(sc->info[binfo->sensor].desc, binfo->desc, 723 sizeof(sc->info[binfo->sensor].desc)); 724 binfo->validflags = ENVSYS_FVALID; 725 } 726 return 0; 727 } 728 729 int 730 itec_streinfo(sme, binfo) 731 struct sysmon_envsys *sme; 732 struct envsys_basic_info *binfo; 733 { 734 struct lm_softc *sc = sme->sme_cookie; 735 int divisor; 736 u_int8_t sdata; 737 int i; 738 739 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC) 740 sc->info[binfo->sensor].rfact = binfo->rfact; 741 else { 742 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) { 743 if (binfo->rpms == 0) { 744 binfo->validflags = 0; 745 return 0; 746 } 747 748 /* write back the nominal FAN speed */ 749 sc->info[binfo->sensor].rpms = binfo->rpms; 750 751 /* 153 is the nominal FAN speed value */ 752 divisor = 1350000 / (binfo->rpms * 153); 753 754 /* ...but we need lg(divisor) */ 755 for (i = 0; i < 7; i++) { 756 if (divisor <= (1 << i)) 757 break; 758 } 759 divisor = i; 760 761 sdata = (*sc->lm_readreg)(sc, ITEC_FANDIV); 762 /* 763 * FAN1 div is in bits <0:2>, FAN2 is in <3:5> 764 * FAN3 is in <6>, if set divisor is 8, else 2 765 */ 766 if ( binfo->sensor == 10 ) { /* FAN1 */ 767 sdata = (sdata & 0xf8) | divisor; 768 } else if ( binfo->sensor == 11 ) { /* FAN2 */ 769 sdata = (sdata & 0xc7) | divisor << 3; 770 } else { /* FAN3 */ 771 if (divisor>2) 772 sdata = sdata & 0xbf; 773 else 774 sdata = sdata | 0x40; 775 } 776 (*sc->lm_writereg)(sc, ITEC_FANDIV, sdata); 777 } 778 strlcpy(sc->info[binfo->sensor].desc, binfo->desc, 779 sizeof(sc->info[binfo->sensor].desc)); 780 binfo->validflags = ENVSYS_FVALID; 781 } 782 return 0; 783 } 784 785 static void 786 generic_stemp(sc, sensor) 787 struct lm_softc *sc; 788 struct envsys_tre_data *sensor; 789 { 790 int sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 7); 791 DPRINTF(("sdata[temp] 0x%x\n", sdata)); 792 /* temp is given in deg. C, we convert to uK */ 793 sensor->cur.data_us = sdata * 1000000 + 273150000; 794 } 795 796 static void 797 generic_svolt(sc, sensors, infos) 798 struct lm_softc *sc; 799 struct envsys_tre_data *sensors; 800 struct envsys_basic_info *infos; 801 { 802 int i, sdata; 803 804 for (i = 0; i < 7; i++) { 805 sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i); 806 DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata)); 807 /* voltage returned as (mV >> 4), we convert to uVDC */ 808 sensors[i].cur.data_s = (sdata << 4); 809 /* rfact is (factor * 10^4) */ 810 sensors[i].cur.data_s *= infos[i].rfact; 811 /* division by 10 gets us back to uVDC */ 812 sensors[i].cur.data_s /= 10; 813 814 /* these two are negative voltages */ 815 if ( (i == 5) || (i == 6) ) 816 sensors[i].cur.data_s *= -1; 817 } 818 } 819 820 static void 821 generic_fanrpm(sc, sensors) 822 struct lm_softc *sc; 823 struct envsys_tre_data *sensors; 824 { 825 int i, sdata, divisor; 826 for (i = 0; i < 3; i++) { 827 sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 8 + i); 828 DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata)); 829 if (i == 2) 830 divisor = 2; /* Fixed divisor for FAN3 */ 831 else if (i == 1) /* Bits 7 & 6 of VID/FAN */ 832 divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3; 833 else 834 divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3; 835 836 if (sdata == 0xff || sdata == 0x00) { 837 sensors[i].cur.data_us = 0; 838 } else { 839 sensors[i].cur.data_us = 1350000 / (sdata << divisor); 840 } 841 } 842 } 843 844 /* 845 * pre: last read occurred >= 1.5 seconds ago 846 * post: sensors[] current data are the latest from the chip 847 */ 848 void 849 lm_refresh_sensor_data(sc) 850 struct lm_softc *sc; 851 { 852 /* Refresh our stored data for every sensor */ 853 generic_stemp(sc, &sc->sensors[7]); 854 generic_svolt(sc, &sc->sensors[0], &sc->info[0]); 855 generic_fanrpm(sc, &sc->sensors[8]); 856 } 857 858 static void 859 wb_svolt(sc) 860 struct lm_softc *sc; 861 { 862 int i, sdata; 863 for (i = 0; i < 9; ++i) { 864 if (i < 7) { 865 sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i); 866 } else { 867 /* from bank5 */ 868 (*sc->lm_banksel)(sc, 5); 869 sdata = (*sc->lm_readreg)(sc, (i == 7) ? 870 WB_BANK5_5VSB : WB_BANK5_VBAT); 871 } 872 DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata)); 873 /* voltage returned as (mV >> 4), we convert to uV */ 874 sdata = sdata << 4; 875 /* special case for negative voltages */ 876 if (i == 5) { 877 /* 878 * -12Vdc, assume Winbond recommended values for 879 * resistors 880 */ 881 sdata = ((sdata * 1000) - (3600 * 805)) / 195; 882 } else if (i == 6) { 883 /* 884 * -5Vdc, assume Winbond recommended values for 885 * resistors 886 */ 887 sdata = ((sdata * 1000) - (3600 * 682)) / 318; 888 } 889 /* rfact is (factor * 10^4) */ 890 sc->sensors[i].cur.data_s = sdata * sc->info[i].rfact; 891 /* division by 10 gets us back to uVDC */ 892 sc->sensors[i].cur.data_s /= 10; 893 } 894 } 895 896 static void 897 wb_stemp(sc, sensors, n) 898 struct lm_softc *sc; 899 struct envsys_tre_data *sensors; 900 int n; 901 { 902 int sdata; 903 /* temperatures. Given in dC, we convert to uK */ 904 sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 7); 905 DPRINTF(("sdata[temp0] 0x%x\n", sdata)); 906 sensors[0].cur.data_us = sdata * 1000000 + 273150000; 907 /* from bank1 */ 908 if ((*sc->lm_banksel)(sc, 1)) 909 sensors[1].validflags &= ~ENVSYS_FCURVALID; 910 else { 911 sdata = (*sc->lm_readreg)(sc, WB_BANK1_T2H) << 1; 912 sdata |= ((*sc->lm_readreg)(sc, WB_BANK1_T2L) & 0x80) >> 7; 913 DPRINTF(("sdata[temp1] 0x%x\n", sdata)); 914 sensors[1].cur.data_us = (sdata * 1000000) / 2 + 273150000; 915 } 916 if (n < 3) 917 return; 918 /* from bank2 */ 919 if ((*sc->lm_banksel)(sc, 2)) 920 sensors[2].validflags &= ~ENVSYS_FCURVALID; 921 else { 922 sdata = (*sc->lm_readreg)(sc, WB_BANK2_T3H) << 1; 923 sdata |= ((*sc->lm_readreg)(sc, WB_BANK2_T3L) & 0x80) >> 7; 924 DPRINTF(("sdata[temp2] 0x%x\n", sdata)); 925 sensors[2].cur.data_us = (sdata * 1000000) / 2 + 273150000; 926 } 927 } 928 929 static void 930 wb781_fanrpm(sc, sensors) 931 struct lm_softc *sc; 932 struct envsys_tre_data *sensors; 933 { 934 int i, divisor, sdata; 935 (*sc->lm_banksel)(sc, 0); 936 for (i = 0; i < 3; i++) { 937 sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i + 8); 938 DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata)); 939 if (i == 0) 940 divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3; 941 else if (i == 1) 942 divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3; 943 else 944 divisor = ((*sc->lm_readreg)(sc, WB_PIN) >> 6) & 0x3; 945 946 DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor)); 947 if (sdata == 0xff || sdata == 0x00) { 948 sensors[i].cur.data_us = 0; 949 } else { 950 sensors[i].cur.data_us = 1350000 / 951 (sdata << divisor); 952 } 953 } 954 } 955 956 static void 957 wb_fanrpm(sc, sensors) 958 struct lm_softc *sc; 959 struct envsys_tre_data *sensors; 960 { 961 int i, divisor, sdata; 962 (*sc->lm_banksel)(sc, 0); 963 for (i = 0; i < 3; i++) { 964 sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i + 8); 965 DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata)); 966 if (i == 0) 967 divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3; 968 else if (i == 1) 969 divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3; 970 else 971 divisor = ((*sc->lm_readreg)(sc, WB_PIN) >> 6) & 0x3; 972 divisor |= ((*sc->lm_readreg)(sc, WB_BANK0_FANBAT) >> (i + 3)) & 0x4; 973 974 DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor)); 975 if (sdata == 0xff || sdata == 0x00) { 976 sensors[i].cur.data_us = 0; 977 } else { 978 sensors[i].cur.data_us = 1350000 / 979 (sdata << divisor); 980 } 981 } 982 } 983 984 void 985 wb781_refresh_sensor_data(sc) 986 struct lm_softc *sc; 987 { 988 /* Refresh our stored data for every sensor */ 989 /* we need to reselect bank0 to access common registers */ 990 (*sc->lm_banksel)(sc, 0); 991 generic_svolt(sc, &sc->sensors[0], &sc->info[0]); 992 (*sc->lm_banksel)(sc, 0); 993 wb_stemp(sc, &sc->sensors[7], 3); 994 (*sc->lm_banksel)(sc, 0); 995 wb781_fanrpm(sc, &sc->sensors[10]); 996 } 997 998 void 999 wb782_refresh_sensor_data(sc) 1000 struct lm_softc *sc; 1001 { 1002 /* Refresh our stored data for every sensor */ 1003 wb_svolt(sc); 1004 wb_stemp(sc, &sc->sensors[9], 3); 1005 wb_fanrpm(sc, &sc->sensors[12]); 1006 } 1007 1008 void 1009 wb697_refresh_sensor_data(sc) 1010 struct lm_softc *sc; 1011 { 1012 /* Refresh our stored data for every sensor */ 1013 wb_svolt(sc); 1014 wb_stemp(sc, &sc->sensors[9], 2); 1015 wb_fanrpm(sc, &sc->sensors[11]); 1016 } 1017 1018 static void 1019 itec_svolt(sc, sensors, infos) 1020 struct lm_softc *sc; 1021 struct envsys_tre_data *sensors; 1022 struct envsys_basic_info *infos; 1023 { 1024 int i, sdata; 1025 1026 for (i = 0; i < 9; i++) { 1027 sdata = (*sc->lm_readreg)(sc, ITEC_VIN0 + i); 1028 DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata)); 1029 /* voltage returned as (mV >> 4), we convert to uVDC */ 1030 sensors[i].cur.data_s = ( sdata << 4 ); 1031 /* rfact is (factor * 10^4) */ 1032 1033 sensors[i].cur.data_s *= infos[i].rfact; 1034 /* 1035 * XXX We assume input 5 is wired the way iTE suggests to 1036 * monitor a negative voltage. I'd prefer using negative rfacts 1037 * for detecting those cases but since rfact is an u_int this 1038 * isn't possible. 1039 */ 1040 if (i == 5) 1041 sensors[i].cur.data_s -= 1042 (infos[i].rfact - 10000) * ITEC_VREF; 1043 /* division by 10 gets us back to uVDC */ 1044 sensors[i].cur.data_s /= 10; 1045 } 1046 } 1047 1048 static void 1049 itec_stemp(sc, sensors) 1050 struct lm_softc *sc; 1051 struct envsys_tre_data *sensors; 1052 { 1053 int i, sdata; 1054 1055 /* temperatures. Given in dC, we convert to uK */ 1056 for (i = 0; i < 3; i++) { 1057 sdata = (*sc->lm_readreg)(sc, ITEC_TEMP1 + i); 1058 DPRINTF(("sdata[temp%d] 0x%x\n",i, sdata)); 1059 sensors[i].cur.data_us = sdata * 1000000 + 273150000; 1060 } 1061 } 1062 1063 static void 1064 itec_fanrpm(sc, sensors) 1065 struct lm_softc *sc; 1066 struct envsys_tre_data *sensors; 1067 { 1068 int i, fandiv, divisor, sdata; 1069 (*sc->lm_banksel)(sc, 0); 1070 fandiv = ((*sc->lm_readreg)(sc, ITEC_FANDIV)); 1071 1072 for (i = 0; i < 3; i++) { 1073 sdata = (*sc->lm_readreg)(sc, ITEC_FAN1 + i); 1074 DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata)); 1075 switch (i) { 1076 case 0: 1077 divisor = fandiv & 0x7; 1078 break; 1079 case 1: 1080 divisor = (fandiv >> 3) & 0x7; 1081 break; 1082 case 2: 1083 default: /* XXX */ 1084 divisor = (fandiv & 0x40) ? 3 : 1; 1085 break; 1086 } 1087 DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor)); 1088 if (sdata == 0xff || sdata == 0x00) { 1089 sensors[i].cur.data_us = 0; 1090 } else { 1091 sensors[i].cur.data_us = 1350000 / 1092 (sdata << divisor); 1093 } 1094 } 1095 1096 } 1097 1098 void 1099 itec_refresh_sensor_data(sc) 1100 struct lm_softc *sc; 1101 { 1102 itec_svolt(sc, &sc->sensors[0], &sc->info[0]); 1103 itec_stemp(sc, &sc->sensors[9]); 1104 itec_fanrpm(sc, &sc->sensors[12]); 1105 } 1106