1 /* $NetBSD: nslm7x.c,v 1.22 2005/04/29 02:02:52 xtraeme Exp $ */ 2 3 /*- 4 * Copyright (c) 2000 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Bill Squier. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 #include <sys/cdefs.h> 40 __KERNEL_RCSID(0, "$NetBSD: nslm7x.c,v 1.22 2005/04/29 02:02:52 xtraeme Exp $"); 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/proc.h> 46 #include <sys/device.h> 47 #include <sys/malloc.h> 48 #include <sys/errno.h> 49 #include <sys/queue.h> 50 #include <sys/lock.h> 51 #include <sys/ioctl.h> 52 #include <sys/conf.h> 53 #include <sys/time.h> 54 55 #include <machine/bus.h> 56 57 #include <dev/isa/isareg.h> 58 #include <dev/isa/isavar.h> 59 60 #include <dev/sysmon/sysmonvar.h> 61 62 #include <dev/ic/nslm7xvar.h> 63 64 #include <machine/intr.h> 65 #include <machine/bus.h> 66 67 #if defined(LMDEBUG) 68 #define DPRINTF(x) printf x 69 #else 70 #define DPRINTF(x) 71 #endif 72 73 const struct envsys_range lm_ranges[] = { /* sc->sensors sub-intervals */ 74 /* for each unit type */ 75 { 7, 7, ENVSYS_STEMP }, 76 { 8, 10, ENVSYS_SFANRPM }, 77 { 1, 0, ENVSYS_SVOLTS_AC }, /* None */ 78 { 0, 6, ENVSYS_SVOLTS_DC }, 79 { 1, 0, ENVSYS_SOHMS }, /* None */ 80 { 1, 0, ENVSYS_SWATTS }, /* None */ 81 { 1, 0, ENVSYS_SAMPS } /* None */ 82 }; 83 84 85 static void setup_fan(struct lm_softc *, int, int); 86 static void setup_temp(struct lm_softc *, int, int); 87 static void wb_setup_volt(struct lm_softc *); 88 89 int lm_match(struct lm_softc *); 90 int wb_match(struct lm_softc *); 91 int itec_match(struct lm_softc *); 92 int def_match(struct lm_softc *); 93 void lm_common_match(struct lm_softc *); 94 static int lm_generic_banksel(struct lm_softc *, int); 95 96 static void generic_stemp(struct lm_softc *, struct envsys_tre_data *); 97 static void generic_svolt(struct lm_softc *, struct envsys_tre_data *, 98 struct envsys_basic_info *); 99 static void generic_fanrpm(struct lm_softc *, struct envsys_tre_data *); 100 101 void lm_refresh_sensor_data(struct lm_softc *); 102 103 static void wb_svolt(struct lm_softc *); 104 static void wb_stemp(struct lm_softc *, struct envsys_tre_data *, int); 105 static void wb781_fanrpm(struct lm_softc *, struct envsys_tre_data *); 106 static void wb_fanrpm(struct lm_softc *, struct envsys_tre_data *); 107 108 void wb781_refresh_sensor_data(struct lm_softc *); 109 void wb782_refresh_sensor_data(struct lm_softc *); 110 void wb697_refresh_sensor_data(struct lm_softc *); 111 112 static void itec_svolt(struct lm_softc *, struct envsys_tre_data *, 113 struct envsys_basic_info *); 114 static void itec_stemp(struct lm_softc *, struct envsys_tre_data *); 115 static void itec_fanrpm(struct lm_softc *, struct envsys_tre_data *); 116 void itec_refresh_sensor_data(struct lm_softc *); 117 118 int lm_gtredata(struct sysmon_envsys *, struct envsys_tre_data *); 119 120 int generic_streinfo_fan(struct lm_softc *, struct envsys_basic_info *, 121 int, struct envsys_basic_info *); 122 int lm_streinfo(struct sysmon_envsys *, struct envsys_basic_info *); 123 int wb781_streinfo(struct sysmon_envsys *, struct envsys_basic_info *); 124 int wb782_streinfo(struct sysmon_envsys *, struct envsys_basic_info *); 125 int itec_streinfo(struct sysmon_envsys *, struct envsys_basic_info *); 126 127 struct lm_chip { 128 int (*chip_match)(struct lm_softc *); 129 }; 130 131 struct lm_chip lm_chips[] = { 132 { itec_match }, 133 { wb_match }, 134 { lm_match }, 135 { def_match } /* Must be last */ 136 }; 137 138 139 int 140 lm_generic_banksel(lmsc, bank) 141 struct lm_softc *lmsc; 142 int bank; 143 { 144 145 (*lmsc->lm_writereg)(lmsc, WB_BANKSEL, bank); 146 return 0; 147 } 148 149 150 /* 151 * bus independent probe 152 */ 153 int 154 lm_probe(iot, ioh) 155 bus_space_tag_t iot; 156 bus_space_handle_t ioh; 157 { 158 u_int8_t cr; 159 int rv; 160 161 /* 162 * Check for it8705f, before we do the chip reset. 163 * In case of an it8705f this might reset all the fan control 164 * parameters to defaults which would void all settings done by 165 * the BOOTROM/BIOS. 166 */ 167 bus_space_write_1(iot, ioh, LMC_ADDR, ITEC_RES48); 168 cr = bus_space_read_1(iot, ioh, LMC_DATA); 169 170 if (cr == ITEC_RES48_DEFAULT) { 171 bus_space_write_1(iot, ioh, LMC_ADDR, ITEC_RES52); 172 cr = bus_space_read_1(iot, ioh, LMC_DATA); 173 if (cr == ITEC_RES52_DEFAULT) 174 return 1; 175 } 176 177 /* Check for some power-on defaults */ 178 bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG); 179 180 /* Perform LM78 reset */ 181 bus_space_write_1(iot, ioh, LMC_DATA, 0x80); 182 183 /* XXX - Why do I have to reselect the register? */ 184 bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG); 185 cr = bus_space_read_1(iot, ioh, LMC_DATA); 186 187 /* XXX - spec says *only* 0x08! */ 188 if ((cr == 0x08) || (cr == 0x01)) 189 rv = 1; 190 else 191 rv = 0; 192 193 DPRINTF(("lm: rv = %d, cr = %x\n", rv, cr)); 194 195 return (rv); 196 } 197 198 199 /* 200 * pre: lmsc contains valid busspace tag and handle 201 */ 202 void 203 lm_attach(lmsc) 204 struct lm_softc *lmsc; 205 { 206 u_int i; 207 208 /* Install default bank selection routine, if none given. */ 209 if (lmsc->lm_banksel == NULL) 210 lmsc->lm_banksel = lm_generic_banksel; 211 212 for (i = 0; i < sizeof(lm_chips) / sizeof(lm_chips[0]); i++) 213 if (lm_chips[i].chip_match(lmsc)) 214 break; 215 216 /* Start the monitoring loop */ 217 (*lmsc->lm_writereg)(lmsc, LMD_CONFIG, 0x01); 218 219 /* Indicate we have never read the registers */ 220 timerclear(&lmsc->lastread); 221 222 /* Initialize sensors */ 223 for (i = 0; i < lmsc->numsensors; ++i) { 224 lmsc->sensors[i].sensor = lmsc->info[i].sensor = i; 225 lmsc->sensors[i].validflags = (ENVSYS_FVALID|ENVSYS_FCURVALID); 226 lmsc->info[i].validflags = ENVSYS_FVALID; 227 lmsc->sensors[i].warnflags = ENVSYS_WARN_OK; 228 } 229 /* 230 * Hook into the System Monitor. 231 */ 232 lmsc->sc_sysmon.sme_ranges = lm_ranges; 233 lmsc->sc_sysmon.sme_sensor_info = lmsc->info; 234 lmsc->sc_sysmon.sme_sensor_data = lmsc->sensors; 235 lmsc->sc_sysmon.sme_cookie = lmsc; 236 237 lmsc->sc_sysmon.sme_gtredata = lm_gtredata; 238 /* sme_streinfo set in chip-specific attach */ 239 240 lmsc->sc_sysmon.sme_nsensors = lmsc->numsensors; 241 lmsc->sc_sysmon.sme_envsys_version = 1000; 242 243 if (sysmon_envsys_register(&lmsc->sc_sysmon)) 244 printf("%s: unable to register with sysmon\n", 245 lmsc->sc_dev.dv_xname); 246 } 247 248 int 249 lm_match(sc) 250 struct lm_softc *sc; 251 { 252 int i; 253 254 /* See if we have an LM78 or LM79 */ 255 i = (*sc->lm_readreg)(sc, LMD_CHIPID) & LM_ID_MASK; 256 switch(i) { 257 case LM_ID_LM78: 258 printf(": LM78\n"); 259 break; 260 case LM_ID_LM78J: 261 printf(": LM78J\n"); 262 break; 263 case LM_ID_LM79: 264 printf(": LM79\n"); 265 break; 266 case LM_ID_LM81: 267 printf(": LM81\n"); 268 break; 269 default: 270 return 0; 271 } 272 lm_common_match(sc); 273 return 1; 274 } 275 276 int 277 def_match(sc) 278 struct lm_softc *sc; 279 { 280 int i; 281 282 i = (*sc->lm_readreg)(sc, LMD_CHIPID) & LM_ID_MASK; 283 printf(": Unknown chip (ID %d)\n", i); 284 lm_common_match(sc); 285 return 1; 286 } 287 288 void 289 lm_common_match(sc) 290 struct lm_softc *sc; 291 { 292 int i; 293 sc->numsensors = LM_NUM_SENSORS; 294 sc->refresh_sensor_data = lm_refresh_sensor_data; 295 296 for (i = 0; i < 7; ++i) { 297 sc->sensors[i].units = sc->info[i].units = 298 ENVSYS_SVOLTS_DC; 299 snprintf(sc->info[i].desc, sizeof(sc->info[i].desc), 300 "IN %d", i); 301 } 302 303 /* default correction factors for resistors on higher voltage inputs */ 304 sc->info[0].rfact = sc->info[1].rfact = 305 sc->info[2].rfact = 10000; 306 sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000); 307 sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000); 308 sc->info[5].rfact = (int)((210.0 / 60.4) * 10000); 309 sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000); 310 311 sc->sensors[7].units = ENVSYS_STEMP; 312 strcpy(sc->info[7].desc, "Temp"); 313 314 setup_fan(sc, 8, 3); 315 sc->sc_sysmon.sme_streinfo = lm_streinfo; 316 } 317 318 int 319 wb_match(sc) 320 struct lm_softc *sc; 321 { 322 int i, j; 323 324 (*sc->lm_writereg)(sc, WB_BANKSEL, WB_BANKSEL_HBAC); 325 j = (*sc->lm_readreg)(sc, WB_VENDID) << 8; 326 (*sc->lm_writereg)(sc, WB_BANKSEL, 0); 327 j |= (*sc->lm_readreg)(sc, WB_VENDID); 328 DPRINTF(("winbond vend id 0x%x\n", j)); 329 if (j != WB_VENDID_WINBOND) 330 return 0; 331 /* read device ID */ 332 (*sc->lm_banksel)(sc, 0); 333 j = (*sc->lm_readreg)(sc, WB_BANK0_CHIPID); 334 DPRINTF(("winbond chip id 0x%x\n", j)); 335 switch(j) { 336 case WB_CHIPID_83781: 337 case WB_CHIPID_83781_2: 338 printf(": W83781D\n"); 339 340 for (i = 0; i < 7; ++i) { 341 sc->sensors[i].units = sc->info[i].units = 342 ENVSYS_SVOLTS_DC; 343 snprintf(sc->info[i].desc, sizeof(sc->info[i].desc), 344 "IN %d", i); 345 } 346 347 /* default correction factors for higher voltage inputs */ 348 sc->info[0].rfact = sc->info[1].rfact = 349 sc->info[2].rfact = 10000; 350 sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000); 351 sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000); 352 sc->info[5].rfact = (int)((210.0 / 60.4) * 10000); 353 sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000); 354 355 setup_temp(sc, 7, 3); 356 setup_fan(sc, 10, 3); 357 358 sc->numsensors = WB83781_NUM_SENSORS; 359 sc->refresh_sensor_data = wb781_refresh_sensor_data; 360 sc->sc_sysmon.sme_streinfo = wb781_streinfo; 361 return 1; 362 case WB_CHIPID_83697: 363 printf(": W83697HF\n"); 364 wb_setup_volt(sc); 365 setup_temp(sc, 9, 2); 366 setup_fan(sc, 11, 3); 367 sc->numsensors = WB83697_NUM_SENSORS; 368 sc->refresh_sensor_data = wb697_refresh_sensor_data; 369 sc->sc_sysmon.sme_streinfo = wb782_streinfo; 370 return 1; 371 case WB_CHIPID_83782: 372 printf(": W83782D\n"); 373 break; 374 case WB_CHIPID_83627: 375 printf(": W83627HF\n"); 376 break; 377 default: 378 printf(": unknow winbond chip ID 0x%x\n", j); 379 /* handle as a standart lm7x */ 380 lm_common_match(sc); 381 return 1; 382 } 383 /* common code for the W83782D and W83627HF */ 384 wb_setup_volt(sc); 385 setup_temp(sc, 9, 3); 386 setup_fan(sc, 12, 3); 387 sc->numsensors = WB_NUM_SENSORS; 388 sc->refresh_sensor_data = wb782_refresh_sensor_data; 389 sc->sc_sysmon.sme_streinfo = wb782_streinfo; 390 return 1; 391 } 392 393 static void 394 wb_setup_volt(sc) 395 struct lm_softc *sc; 396 { 397 sc->sensors[0].units = sc->info[0].units = ENVSYS_SVOLTS_DC; 398 snprintf(sc->info[0].desc, sizeof(sc->info[0].desc), "VCORE A"); 399 sc->info[0].rfact = 10000; 400 sc->sensors[1].units = sc->info[1].units = ENVSYS_SVOLTS_DC; 401 snprintf(sc->info[1].desc, sizeof(sc->info[1].desc), "VCORE B"); 402 sc->info[1].rfact = 10000; 403 sc->sensors[2].units = sc->info[2].units = ENVSYS_SVOLTS_DC; 404 snprintf(sc->info[2].desc, sizeof(sc->info[2].desc), "+3.3V"); 405 sc->info[2].rfact = 10000; 406 sc->sensors[3].units = sc->info[3].units = ENVSYS_SVOLTS_DC; 407 snprintf(sc->info[3].desc, sizeof(sc->info[3].desc), "+5V"); 408 sc->info[3].rfact = 16778; 409 sc->sensors[4].units = sc->info[4].units = ENVSYS_SVOLTS_DC; 410 snprintf(sc->info[4].desc, sizeof(sc->info[4].desc), "+12V"); 411 sc->info[4].rfact = 38000; 412 sc->sensors[5].units = sc->info[5].units = ENVSYS_SVOLTS_DC; 413 snprintf(sc->info[5].desc, sizeof(sc->info[5].desc), "-12V"); 414 sc->info[5].rfact = 10000; 415 sc->sensors[6].units = sc->info[6].units = ENVSYS_SVOLTS_DC; 416 snprintf(sc->info[6].desc, sizeof(sc->info[6].desc), "-5V"); 417 sc->info[6].rfact = 10000; 418 sc->sensors[7].units = sc->info[7].units = ENVSYS_SVOLTS_DC; 419 snprintf(sc->info[7].desc, sizeof(sc->info[7].desc), "+5VSB"); 420 sc->info[7].rfact = 15151; 421 sc->sensors[8].units = sc->info[8].units = ENVSYS_SVOLTS_DC; 422 snprintf(sc->info[8].desc, sizeof(sc->info[8].desc), "VBAT"); 423 sc->info[8].rfact = 10000; 424 } 425 426 int 427 itec_match(sc) 428 struct lm_softc *sc; 429 { 430 int vendor, coreid; 431 432 /* do the same thing as in lm_probe() */ 433 if ((*sc->lm_readreg)(sc, ITEC_RES48) != ITEC_RES48_DEFAULT) 434 return 0; 435 436 if ((*sc->lm_readreg)(sc, ITEC_RES52) != ITEC_RES52_DEFAULT) 437 return 0; 438 439 /* We check for the core ID register (0x5B), which is available 440 * only in the 8712F, if that fails, we check the vendor ID 441 * register, available on 8705F and 8712F */ 442 443 coreid = (*sc->lm_readreg)(sc, ITEC_COREID); 444 445 if (coreid == ITEC_COREID_ITE) 446 printf(": ITE8712F\n"); 447 else { 448 vendor = (*sc->lm_readreg)(sc, ITEC_VENDID); 449 if (vendor == ITEC_VENDID_ITE) 450 printf(": ITE8705F\n"); 451 else 452 printf(": unknown ITE87%02x compatible\n", vendor); 453 } 454 455 /* 456 * XXX this is a litle bit lame... 457 * All VIN inputs work exactly the same way, it depends of the 458 * external wiring what voltages they monitor and which correction 459 * factors are needed. We assume a pretty standard setup here 460 */ 461 wb_setup_volt(sc); 462 strlcpy(sc->info[0].desc, "CPU", sizeof(sc->info[0].desc)); 463 strlcpy(sc->info[1].desc, "AGP", sizeof(sc->info[1].desc)); 464 strlcpy(sc->info[6].desc, "+2.5V", sizeof(sc->info[6].desc)); 465 sc->info[5].rfact = 51100; 466 sc->info[7].rfact = 16778; 467 468 setup_temp(sc, 9, 3); 469 setup_fan(sc, 12, 3); 470 sc->numsensors = ITEC_NUM_SENSORS; 471 sc->refresh_sensor_data = itec_refresh_sensor_data; 472 sc->sc_sysmon.sme_streinfo = itec_streinfo; 473 474 return 1; 475 } 476 477 478 static void 479 setup_temp(sc, start, n) 480 struct lm_softc *sc; 481 int start, n; 482 { 483 int i; 484 485 for (i = 0; i < n; i++) { 486 sc->sensors[start + i].units = ENVSYS_STEMP; 487 snprintf(sc->info[start + i].desc, 488 sizeof(sc->info[start + i].desc), "Temp %d", i + 1); 489 } 490 } 491 492 493 static void 494 setup_fan(sc, start, n) 495 struct lm_softc *sc; 496 int start, n; 497 { 498 int i; 499 for (i = 0; i < n; ++i) { 500 sc->sensors[start + i].units = ENVSYS_SFANRPM; 501 sc->info[start + i].units = ENVSYS_SFANRPM; 502 snprintf(sc->info[start + i].desc, 503 sizeof(sc->info[start + i].desc), "Fan %d", i + 1); 504 } 505 } 506 507 int 508 lm_gtredata(sme, tred) 509 struct sysmon_envsys *sme; 510 struct envsys_tre_data *tred; 511 { 512 static const struct timeval onepointfive = { 1, 500000 }; 513 struct timeval t; 514 struct lm_softc *sc = sme->sme_cookie; 515 int i, s; 516 517 /* read new values at most once every 1.5 seconds */ 518 timeradd(&sc->lastread, &onepointfive, &t); 519 s = splclock(); 520 i = timercmp(&mono_time, &t, >); 521 if (i) { 522 sc->lastread.tv_sec = mono_time.tv_sec; 523 sc->lastread.tv_usec = mono_time.tv_usec; 524 } 525 splx(s); 526 527 if (i) 528 sc->refresh_sensor_data(sc); 529 530 *tred = sc->sensors[tred->sensor]; 531 532 return 0; 533 } 534 535 int 536 generic_streinfo_fan(sc, info, n, binfo) 537 struct lm_softc *sc; 538 struct envsys_basic_info *info; 539 int n; 540 struct envsys_basic_info *binfo; 541 { 542 u_int8_t sdata; 543 int divisor; 544 545 /* FAN1 and FAN2 can have divisors set, but not FAN3 */ 546 if ((sc->info[binfo->sensor].units == ENVSYS_SFANRPM) 547 && (n < 2)) { 548 if (binfo->rpms == 0) { 549 binfo->validflags = 0; 550 return 0; 551 } 552 553 /* write back the nominal FAN speed */ 554 info->rpms = binfo->rpms; 555 556 /* 153 is the nominal FAN speed value */ 557 divisor = 1350000 / (binfo->rpms * 153); 558 559 /* ...but we need lg(divisor) */ 560 if (divisor <= 1) 561 divisor = 0; 562 else if (divisor <= 2) 563 divisor = 1; 564 else if (divisor <= 4) 565 divisor = 2; 566 else 567 divisor = 3; 568 569 /* 570 * FAN1 div is in bits <5:4>, FAN2 div is 571 * in <7:6> 572 */ 573 sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN); 574 if ( n == 0 ) { /* FAN1 */ 575 divisor <<= 4; 576 sdata = (sdata & 0xCF) | divisor; 577 } else { /* FAN2 */ 578 divisor <<= 6; 579 sdata = (sdata & 0x3F) | divisor; 580 } 581 582 (*sc->lm_writereg)(sc, LMD_VIDFAN, sdata); 583 } 584 return 0; 585 586 } 587 588 int 589 lm_streinfo(sme, binfo) 590 struct sysmon_envsys *sme; 591 struct envsys_basic_info *binfo; 592 { 593 struct lm_softc *sc = sme->sme_cookie; 594 595 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC) 596 sc->info[binfo->sensor].rfact = binfo->rfact; 597 else { 598 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) { 599 generic_streinfo_fan(sc, &sc->info[binfo->sensor], 600 binfo->sensor - 8, binfo); 601 } 602 strlcpy(sc->info[binfo->sensor].desc, binfo->desc, 603 sizeof(sc->info[binfo->sensor].desc)); 604 binfo->validflags = ENVSYS_FVALID; 605 } 606 return 0; 607 } 608 609 int 610 wb781_streinfo(sme, binfo) 611 struct sysmon_envsys *sme; 612 struct envsys_basic_info *binfo; 613 { 614 struct lm_softc *sc = sme->sme_cookie; 615 int divisor; 616 u_int8_t sdata; 617 int i; 618 619 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC) 620 sc->info[binfo->sensor].rfact = binfo->rfact; 621 else { 622 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) { 623 if (binfo->rpms == 0) { 624 binfo->validflags = 0; 625 return 0; 626 } 627 628 /* write back the nominal FAN speed */ 629 sc->info[binfo->sensor].rpms = binfo->rpms; 630 631 /* 153 is the nominal FAN speed value */ 632 divisor = 1350000 / (binfo->rpms * 153); 633 634 /* ...but we need lg(divisor) */ 635 for (i = 0; i < 7; i++) { 636 if (divisor <= (1 << i)) 637 break; 638 } 639 divisor = i; 640 641 if (binfo->sensor == 10 || binfo->sensor == 11) { 642 /* 643 * FAN1 div is in bits <5:4>, FAN2 div 644 * is in <7:6> 645 */ 646 sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN); 647 if ( binfo->sensor == 10 ) { /* FAN1 */ 648 sdata = (sdata & 0xCF) | 649 ((divisor & 0x3) << 4); 650 } else { /* FAN2 */ 651 sdata = (sdata & 0x3F) | 652 ((divisor & 0x3) << 6); 653 } 654 (*sc->lm_writereg)(sc, LMD_VIDFAN, sdata); 655 } else { 656 /* FAN3 is in WB_PIN <7:6> */ 657 sdata = (*sc->lm_readreg)(sc, WB_PIN); 658 sdata = (sdata & 0x3F) | 659 ((divisor & 0x3) << 6); 660 (*sc->lm_writereg)(sc, WB_PIN, sdata); 661 } 662 } 663 strlcpy(sc->info[binfo->sensor].desc, binfo->desc, 664 sizeof(sc->info[binfo->sensor].desc)); 665 binfo->validflags = ENVSYS_FVALID; 666 } 667 return 0; 668 } 669 670 int 671 wb782_streinfo(sme, binfo) 672 struct sysmon_envsys *sme; 673 struct envsys_basic_info *binfo; 674 { 675 struct lm_softc *sc = sme->sme_cookie; 676 int divisor; 677 u_int8_t sdata; 678 int i; 679 680 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC) 681 sc->info[binfo->sensor].rfact = binfo->rfact; 682 else { 683 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) { 684 if (binfo->rpms == 0) { 685 binfo->validflags = 0; 686 return 0; 687 } 688 689 /* write back the nominal FAN speed */ 690 sc->info[binfo->sensor].rpms = binfo->rpms; 691 692 /* 153 is the nominal FAN speed value */ 693 divisor = 1350000 / (binfo->rpms * 153); 694 695 /* ...but we need lg(divisor) */ 696 for (i = 0; i < 7; i++) { 697 if (divisor <= (1 << i)) 698 break; 699 } 700 divisor = i; 701 702 if (binfo->sensor == 12 || binfo->sensor == 13) { 703 /* 704 * FAN1 div is in bits <5:4>, FAN2 div 705 * is in <7:6> 706 */ 707 sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN); 708 if ( binfo->sensor == 12 ) { /* FAN1 */ 709 sdata = (sdata & 0xCF) | 710 ((divisor & 0x3) << 4); 711 } else { /* FAN2 */ 712 sdata = (sdata & 0x3F) | 713 ((divisor & 0x3) << 6); 714 } 715 (*sc->lm_writereg)(sc, LMD_VIDFAN, sdata); 716 } else { 717 /* FAN3 is in WB_PIN <7:6> */ 718 sdata = (*sc->lm_readreg)(sc, WB_PIN); 719 sdata = (sdata & 0x3F) | 720 ((divisor & 0x3) << 6); 721 (*sc->lm_writereg)(sc, WB_PIN, sdata); 722 } 723 /* Bit 2 of divisor is in WB_BANK0_FANBAT */ 724 (*sc->lm_banksel)(sc, 0); 725 sdata = (*sc->lm_readreg)(sc, WB_BANK0_FANBAT); 726 sdata &= ~(0x20 << (binfo->sensor - 12)); 727 sdata |= (divisor & 0x4) << (binfo->sensor - 9); 728 (*sc->lm_writereg)(sc, WB_BANK0_FANBAT, sdata); 729 } 730 731 strlcpy(sc->info[binfo->sensor].desc, binfo->desc, 732 sizeof(sc->info[binfo->sensor].desc)); 733 binfo->validflags = ENVSYS_FVALID; 734 } 735 return 0; 736 } 737 738 int 739 itec_streinfo(sme, binfo) 740 struct sysmon_envsys *sme; 741 struct envsys_basic_info *binfo; 742 { 743 struct lm_softc *sc = sme->sme_cookie; 744 int divisor; 745 u_int8_t sdata; 746 int i; 747 748 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC) 749 sc->info[binfo->sensor].rfact = binfo->rfact; 750 else { 751 if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) { 752 if (binfo->rpms == 0) { 753 binfo->validflags = 0; 754 return 0; 755 } 756 757 /* write back the nominal FAN speed */ 758 sc->info[binfo->sensor].rpms = binfo->rpms; 759 760 /* 153 is the nominal FAN speed value */ 761 divisor = 1350000 / (binfo->rpms * 153); 762 763 /* ...but we need lg(divisor) */ 764 for (i = 0; i < 7; i++) { 765 if (divisor <= (1 << i)) 766 break; 767 } 768 divisor = i; 769 770 sdata = (*sc->lm_readreg)(sc, ITEC_FANDIV); 771 /* 772 * FAN1 div is in bits <0:2>, FAN2 is in <3:5> 773 * FAN3 is in <6>, if set divisor is 8, else 2 774 */ 775 if ( binfo->sensor == 10 ) { /* FAN1 */ 776 sdata = (sdata & 0xf8) | divisor; 777 } else if ( binfo->sensor == 11 ) { /* FAN2 */ 778 sdata = (sdata & 0xc7) | divisor << 3; 779 } else { /* FAN3 */ 780 if (divisor>2) 781 sdata = sdata & 0xbf; 782 else 783 sdata = sdata | 0x40; 784 } 785 (*sc->lm_writereg)(sc, ITEC_FANDIV, sdata); 786 } 787 strlcpy(sc->info[binfo->sensor].desc, binfo->desc, 788 sizeof(sc->info[binfo->sensor].desc)); 789 binfo->validflags = ENVSYS_FVALID; 790 } 791 return 0; 792 } 793 794 static void 795 generic_stemp(sc, sensor) 796 struct lm_softc *sc; 797 struct envsys_tre_data *sensor; 798 { 799 int sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 7); 800 DPRINTF(("sdata[temp] 0x%x\n", sdata)); 801 /* temp is given in deg. C, we convert to uK */ 802 sensor->cur.data_us = sdata * 1000000 + 273150000; 803 } 804 805 static void 806 generic_svolt(sc, sensors, infos) 807 struct lm_softc *sc; 808 struct envsys_tre_data *sensors; 809 struct envsys_basic_info *infos; 810 { 811 int i, sdata; 812 813 for (i = 0; i < 7; i++) { 814 sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i); 815 DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata)); 816 /* voltage returned as (mV >> 4), we convert to uVDC */ 817 sensors[i].cur.data_s = (sdata << 4); 818 /* rfact is (factor * 10^4) */ 819 sensors[i].cur.data_s *= infos[i].rfact; 820 /* division by 10 gets us back to uVDC */ 821 sensors[i].cur.data_s /= 10; 822 823 /* these two are negative voltages */ 824 if ( (i == 5) || (i == 6) ) 825 sensors[i].cur.data_s *= -1; 826 } 827 } 828 829 static void 830 generic_fanrpm(sc, sensors) 831 struct lm_softc *sc; 832 struct envsys_tre_data *sensors; 833 { 834 int i, sdata, divisor; 835 for (i = 0; i < 3; i++) { 836 sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 8 + i); 837 DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata)); 838 if (i == 2) 839 divisor = 2; /* Fixed divisor for FAN3 */ 840 else if (i == 1) /* Bits 7 & 6 of VID/FAN */ 841 divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3; 842 else 843 divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3; 844 845 if (sdata == 0xff || sdata == 0x00) { 846 sensors[i].cur.data_us = 0; 847 } else { 848 sensors[i].cur.data_us = 1350000 / (sdata << divisor); 849 } 850 } 851 } 852 853 /* 854 * pre: last read occurred >= 1.5 seconds ago 855 * post: sensors[] current data are the latest from the chip 856 */ 857 void 858 lm_refresh_sensor_data(sc) 859 struct lm_softc *sc; 860 { 861 /* Refresh our stored data for every sensor */ 862 generic_stemp(sc, &sc->sensors[7]); 863 generic_svolt(sc, &sc->sensors[0], &sc->info[0]); 864 generic_fanrpm(sc, &sc->sensors[8]); 865 } 866 867 static void 868 wb_svolt(sc) 869 struct lm_softc *sc; 870 { 871 int i, sdata; 872 for (i = 0; i < 9; ++i) { 873 if (i < 7) { 874 sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i); 875 } else { 876 /* from bank5 */ 877 (*sc->lm_banksel)(sc, 5); 878 sdata = (*sc->lm_readreg)(sc, (i == 7) ? 879 WB_BANK5_5VSB : WB_BANK5_VBAT); 880 } 881 DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata)); 882 /* voltage returned as (mV >> 4), we convert to uV */ 883 sdata = sdata << 4; 884 /* special case for negative voltages */ 885 if (i == 5) { 886 /* 887 * -12Vdc, assume Winbond recommended values for 888 * resistors 889 */ 890 sdata = ((sdata * 1000) - (3600 * 805)) / 195; 891 } else if (i == 6) { 892 /* 893 * -5Vdc, assume Winbond recommended values for 894 * resistors 895 */ 896 sdata = ((sdata * 1000) - (3600 * 682)) / 318; 897 } 898 /* rfact is (factor * 10^4) */ 899 sc->sensors[i].cur.data_s = sdata * sc->info[i].rfact; 900 /* division by 10 gets us back to uVDC */ 901 sc->sensors[i].cur.data_s /= 10; 902 } 903 } 904 905 static void 906 wb_stemp(sc, sensors, n) 907 struct lm_softc *sc; 908 struct envsys_tre_data *sensors; 909 int n; 910 { 911 int sdata; 912 /* temperatures. Given in dC, we convert to uK */ 913 sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 7); 914 DPRINTF(("sdata[temp0] 0x%x\n", sdata)); 915 sensors[0].cur.data_us = sdata * 1000000 + 273150000; 916 /* from bank1 */ 917 if ((*sc->lm_banksel)(sc, 1)) 918 sensors[1].validflags &= ~ENVSYS_FCURVALID; 919 else { 920 sdata = (*sc->lm_readreg)(sc, WB_BANK1_T2H) << 1; 921 sdata |= ((*sc->lm_readreg)(sc, WB_BANK1_T2L) & 0x80) >> 7; 922 DPRINTF(("sdata[temp1] 0x%x\n", sdata)); 923 sensors[1].cur.data_us = (sdata * 1000000) / 2 + 273150000; 924 } 925 if (n < 3) 926 return; 927 /* from bank2 */ 928 if ((*sc->lm_banksel)(sc, 2)) 929 sensors[2].validflags &= ~ENVSYS_FCURVALID; 930 else { 931 sdata = (*sc->lm_readreg)(sc, WB_BANK2_T3H) << 1; 932 sdata |= ((*sc->lm_readreg)(sc, WB_BANK2_T3L) & 0x80) >> 7; 933 DPRINTF(("sdata[temp2] 0x%x\n", sdata)); 934 sensors[2].cur.data_us = (sdata * 1000000) / 2 + 273150000; 935 } 936 } 937 938 static void 939 wb781_fanrpm(sc, sensors) 940 struct lm_softc *sc; 941 struct envsys_tre_data *sensors; 942 { 943 int i, divisor, sdata; 944 (*sc->lm_banksel)(sc, 0); 945 for (i = 0; i < 3; i++) { 946 sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i + 8); 947 DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata)); 948 if (i == 0) 949 divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3; 950 else if (i == 1) 951 divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3; 952 else 953 divisor = ((*sc->lm_readreg)(sc, WB_PIN) >> 6) & 0x3; 954 955 DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor)); 956 if (sdata == 0xff || sdata == 0x00) { 957 sensors[i].cur.data_us = 0; 958 } else { 959 sensors[i].cur.data_us = 1350000 / 960 (sdata << divisor); 961 } 962 } 963 } 964 965 static void 966 wb_fanrpm(sc, sensors) 967 struct lm_softc *sc; 968 struct envsys_tre_data *sensors; 969 { 970 int i, divisor, sdata; 971 (*sc->lm_banksel)(sc, 0); 972 for (i = 0; i < 3; i++) { 973 sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i + 8); 974 DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata)); 975 if (i == 0) 976 divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3; 977 else if (i == 1) 978 divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3; 979 else 980 divisor = ((*sc->lm_readreg)(sc, WB_PIN) >> 6) & 0x3; 981 divisor |= ((*sc->lm_readreg)(sc, WB_BANK0_FANBAT) >> (i + 3)) & 0x4; 982 983 DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor)); 984 if (sdata == 0xff || sdata == 0x00) { 985 sensors[i].cur.data_us = 0; 986 } else { 987 sensors[i].cur.data_us = 1350000 / 988 (sdata << divisor); 989 } 990 } 991 } 992 993 void 994 wb781_refresh_sensor_data(sc) 995 struct lm_softc *sc; 996 { 997 /* Refresh our stored data for every sensor */ 998 /* we need to reselect bank0 to access common registers */ 999 (*sc->lm_banksel)(sc, 0); 1000 generic_svolt(sc, &sc->sensors[0], &sc->info[0]); 1001 (*sc->lm_banksel)(sc, 0); 1002 wb_stemp(sc, &sc->sensors[7], 3); 1003 (*sc->lm_banksel)(sc, 0); 1004 wb781_fanrpm(sc, &sc->sensors[10]); 1005 } 1006 1007 void 1008 wb782_refresh_sensor_data(sc) 1009 struct lm_softc *sc; 1010 { 1011 /* Refresh our stored data for every sensor */ 1012 wb_svolt(sc); 1013 wb_stemp(sc, &sc->sensors[9], 3); 1014 wb_fanrpm(sc, &sc->sensors[12]); 1015 } 1016 1017 void 1018 wb697_refresh_sensor_data(sc) 1019 struct lm_softc *sc; 1020 { 1021 /* Refresh our stored data for every sensor */ 1022 wb_svolt(sc); 1023 wb_stemp(sc, &sc->sensors[9], 2); 1024 wb_fanrpm(sc, &sc->sensors[11]); 1025 } 1026 1027 static void 1028 itec_svolt(sc, sensors, infos) 1029 struct lm_softc *sc; 1030 struct envsys_tre_data *sensors; 1031 struct envsys_basic_info *infos; 1032 { 1033 int i, sdata; 1034 1035 for (i = 0; i < 9; i++) { 1036 sdata = (*sc->lm_readreg)(sc, ITEC_VIN0 + i); 1037 DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata)); 1038 /* voltage returned as (mV >> 4), we convert to uVDC */ 1039 sensors[i].cur.data_s = ( sdata << 4 ); 1040 /* rfact is (factor * 10^4) */ 1041 1042 sensors[i].cur.data_s *= infos[i].rfact; 1043 /* 1044 * XXX We assume input 5 is wired the way iTE suggests to 1045 * monitor a negative voltage. I'd prefer using negative rfacts 1046 * for detecting those cases but since rfact is an u_int this 1047 * isn't possible. 1048 */ 1049 if (i == 5) 1050 sensors[i].cur.data_s -= 1051 (infos[i].rfact - 10000) * ITEC_VREF; 1052 /* division by 10 gets us back to uVDC */ 1053 sensors[i].cur.data_s /= 10; 1054 } 1055 } 1056 1057 static void 1058 itec_stemp(sc, sensors) 1059 struct lm_softc *sc; 1060 struct envsys_tre_data *sensors; 1061 { 1062 int i, sdata; 1063 1064 /* temperatures. Given in dC, we convert to uK */ 1065 for (i = 0; i < 3; i++) { 1066 sdata = (*sc->lm_readreg)(sc, ITEC_TEMP1 + i); 1067 DPRINTF(("sdata[temp%d] 0x%x\n",i, sdata)); 1068 sensors[i].cur.data_us = sdata * 1000000 + 273150000; 1069 } 1070 } 1071 1072 static void 1073 itec_fanrpm(sc, sensors) 1074 struct lm_softc *sc; 1075 struct envsys_tre_data *sensors; 1076 { 1077 int i, fandiv, divisor, sdata; 1078 (*sc->lm_banksel)(sc, 0); 1079 fandiv = ((*sc->lm_readreg)(sc, ITEC_FANDIV)); 1080 1081 for (i = 0; i < 3; i++) { 1082 sdata = (*sc->lm_readreg)(sc, ITEC_FAN1 + i); 1083 DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata)); 1084 switch (i) { 1085 case 0: 1086 divisor = fandiv & 0x7; 1087 break; 1088 case 1: 1089 divisor = (fandiv >> 3) & 0x7; 1090 break; 1091 case 2: 1092 default: /* XXX */ 1093 divisor = (fandiv & 0x40) ? 3 : 1; 1094 break; 1095 } 1096 DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor)); 1097 if (sdata == 0xff || sdata == 0x00) { 1098 sensors[i].cur.data_us = 0; 1099 } else { 1100 sensors[i].cur.data_us = 1350000 / 1101 (sdata << divisor); 1102 } 1103 } 1104 1105 } 1106 1107 void 1108 itec_refresh_sensor_data(sc) 1109 struct lm_softc *sc; 1110 { 1111 itec_svolt(sc, &sc->sensors[0], &sc->info[0]); 1112 itec_stemp(sc, &sc->sensors[9]); 1113 itec_fanrpm(sc, &sc->sensors[12]); 1114 } 1115