xref: /netbsd-src/sys/dev/ic/nslm7x.c (revision 4b896b232495b7a9b8b94a1cf1e21873296d53b8)
1 /*	$NetBSD: nslm7x.c,v 1.18 2004/04/22 00:17:11 itojun Exp $ */
2 
3 /*-
4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Bill Squier.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: nslm7x.c,v 1.18 2004/04/22 00:17:11 itojun Exp $");
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/device.h>
47 #include <sys/malloc.h>
48 #include <sys/errno.h>
49 #include <sys/queue.h>
50 #include <sys/lock.h>
51 #include <sys/ioctl.h>
52 #include <sys/conf.h>
53 #include <sys/time.h>
54 
55 #include <machine/bus.h>
56 
57 #include <dev/isa/isareg.h>
58 #include <dev/isa/isavar.h>
59 
60 #include <dev/sysmon/sysmonvar.h>
61 
62 #include <dev/ic/nslm7xvar.h>
63 
64 #include <machine/intr.h>
65 #include <machine/bus.h>
66 
67 #if defined(LMDEBUG)
68 #define DPRINTF(x)		do { printf x; } while (0)
69 #else
70 #define DPRINTF(x)
71 #endif
72 
73 const struct envsys_range lm_ranges[] = {	/* sc->sensors sub-intervals */
74 					/* for each unit type */
75 	{ 7, 7,    ENVSYS_STEMP   },
76 	{ 8, 10,   ENVSYS_SFANRPM },
77 	{ 1, 0,    ENVSYS_SVOLTS_AC },	/* None */
78 	{ 0, 6,    ENVSYS_SVOLTS_DC },
79 	{ 1, 0,    ENVSYS_SOHMS },	/* None */
80 	{ 1, 0,    ENVSYS_SWATTS },	/* None */
81 	{ 1, 0,    ENVSYS_SAMPS }	/* None */
82 };
83 
84 
85 static void setup_fan __P((struct lm_softc *, int, int));
86 static void setup_temp __P((struct lm_softc *, int, int));
87 static void wb_setup_volt __P((struct lm_softc *));
88 
89 int lm_match __P((struct lm_softc *));
90 int wb_match __P((struct lm_softc *));
91 int def_match __P((struct lm_softc *));
92 void lm_common_match __P((struct lm_softc *));
93 static int lm_generic_banksel __P((struct lm_softc *, int));
94 
95 static void generic_stemp __P((struct lm_softc *, struct envsys_tre_data *));
96 static void generic_svolt __P((struct lm_softc *, struct envsys_tre_data *,
97     struct envsys_basic_info *));
98 static void generic_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
99 
100 void lm_refresh_sensor_data __P((struct lm_softc *));
101 
102 static void wb_svolt __P((struct lm_softc *));
103 static void wb_stemp __P((struct lm_softc *, struct envsys_tre_data *, int));
104 static void wb781_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
105 static void wb_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
106 
107 void wb781_refresh_sensor_data __P((struct lm_softc *));
108 void wb782_refresh_sensor_data __P((struct lm_softc *));
109 void wb697_refresh_sensor_data __P((struct lm_softc *));
110 
111 int lm_gtredata __P((struct sysmon_envsys *, struct envsys_tre_data *));
112 
113 int generic_streinfo_fan __P((struct lm_softc *, struct envsys_basic_info *,
114            int, struct envsys_basic_info *));
115 int lm_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
116 int wb781_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
117 int wb782_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
118 
119 struct lm_chip {
120 	int (*chip_match) __P((struct lm_softc *));
121 };
122 
123 struct lm_chip lm_chips[] = {
124 	{ wb_match },
125 	{ lm_match },
126 	{ def_match } /* Must be last */
127 };
128 
129 
130 int
131 lm_generic_banksel(lmsc, bank)
132 	struct lm_softc *lmsc;
133 	int bank;
134 {
135 
136 	(*lmsc->lm_writereg)(lmsc, WB_BANKSEL, bank);
137 	return (0);
138 }
139 
140 
141 /*
142  * bus independent probe
143  */
144 int
145 lm_probe(iot, ioh)
146 	bus_space_tag_t iot;
147 	bus_space_handle_t ioh;
148 {
149 	u_int8_t cr;
150 	int rv;
151 
152 	/* Check for some power-on defaults */
153 	bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
154 
155 	/* Perform LM78 reset */
156 	bus_space_write_1(iot, ioh, LMC_DATA, 0x80);
157 
158 	/* XXX - Why do I have to reselect the register? */
159 	bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
160 	cr = bus_space_read_1(iot, ioh, LMC_DATA);
161 
162 	/* XXX - spec says *only* 0x08! */
163 	if ((cr == 0x08) || (cr == 0x01))
164 		rv = 1;
165 	else
166 		rv = 0;
167 
168 	DPRINTF(("lm: rv = %d, cr = %x\n", rv, cr));
169 
170 	return (rv);
171 }
172 
173 
174 /*
175  * pre:  lmsc contains valid busspace tag and handle
176  */
177 void
178 lm_attach(lmsc)
179 	struct lm_softc *lmsc;
180 {
181 	u_int i;
182 
183 	/* Install default bank selection routine, if none given. */
184 	if (lmsc->lm_banksel == NULL)
185 		lmsc->lm_banksel = lm_generic_banksel;
186 
187 	for (i = 0; i < sizeof(lm_chips) / sizeof(lm_chips[0]); i++)
188 		if (lm_chips[i].chip_match(lmsc))
189 			break;
190 
191 	/* Start the monitoring loop */
192 	(*lmsc->lm_writereg)(lmsc, LMD_CONFIG, 0x01);
193 
194 	/* Indicate we have never read the registers */
195 	timerclear(&lmsc->lastread);
196 
197 	/* Initialize sensors */
198 	for (i = 0; i < lmsc->numsensors; ++i) {
199 		lmsc->sensors[i].sensor = lmsc->info[i].sensor = i;
200 		lmsc->sensors[i].validflags = (ENVSYS_FVALID|ENVSYS_FCURVALID);
201 		lmsc->info[i].validflags = ENVSYS_FVALID;
202 		lmsc->sensors[i].warnflags = ENVSYS_WARN_OK;
203 	}
204 	/*
205 	 * Hook into the System Monitor.
206 	 */
207 	lmsc->sc_sysmon.sme_ranges = lm_ranges;
208 	lmsc->sc_sysmon.sme_sensor_info = lmsc->info;
209 	lmsc->sc_sysmon.sme_sensor_data = lmsc->sensors;
210 	lmsc->sc_sysmon.sme_cookie = lmsc;
211 
212 	lmsc->sc_sysmon.sme_gtredata = lm_gtredata;
213 	/* sme_streinfo set in chip-specific attach */
214 
215 	lmsc->sc_sysmon.sme_nsensors = lmsc->numsensors;
216 	lmsc->sc_sysmon.sme_envsys_version = 1000;
217 
218 	if (sysmon_envsys_register(&lmsc->sc_sysmon))
219 		printf("%s: unable to register with sysmon\n",
220 		    lmsc->sc_dev.dv_xname);
221 }
222 
223 int
224 lm_match(sc)
225 	struct lm_softc *sc;
226 {
227 	int i;
228 
229 	/* See if we have an LM78 or LM79 */
230 	i = (*sc->lm_readreg)(sc, LMD_CHIPID) & LM_ID_MASK;
231 	switch(i) {
232 	case LM_ID_LM78:
233 		printf(": LM78\n");
234 		break;
235 	case LM_ID_LM78J:
236 		printf(": LM78J\n");
237 		break;
238 	case LM_ID_LM79:
239 		printf(": LM79\n");
240 		break;
241 	case LM_ID_LM81:
242 		printf(": LM81\n");
243 		break;
244 	default:
245 		return 0;
246 	}
247 	lm_common_match(sc);
248 	return 1;
249 }
250 
251 int
252 def_match(sc)
253 	struct lm_softc *sc;
254 {
255 	int i;
256 
257 	i = (*sc->lm_readreg)(sc, LMD_CHIPID) & LM_ID_MASK;
258 	printf(": Unknown chip (ID %d)\n", i);
259 	lm_common_match(sc);
260 	return 1;
261 }
262 
263 void
264 lm_common_match(sc)
265 	struct lm_softc *sc;
266 {
267 	int i;
268 	sc->numsensors = LM_NUM_SENSORS;
269 	sc->refresh_sensor_data = lm_refresh_sensor_data;
270 
271 	for (i = 0; i < 7; ++i) {
272 		sc->sensors[i].units = sc->info[i].units =
273 		    ENVSYS_SVOLTS_DC;
274 		snprintf(sc->info[i].desc, sizeof(sc->info[i].desc),
275 		    "IN %d", i);
276 	}
277 
278 	/* default correction factors for resistors on higher voltage inputs */
279 	sc->info[0].rfact = sc->info[1].rfact =
280 	    sc->info[2].rfact = 10000;
281 	sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
282 	sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
283 	sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
284 	sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
285 
286 	sc->sensors[7].units = ENVSYS_STEMP;
287 	strcpy(sc->info[7].desc, "Temp");
288 
289 	setup_fan(sc, 8, 3);
290 	sc->sc_sysmon.sme_streinfo = lm_streinfo;
291 }
292 
293 int
294 wb_match(sc)
295 	struct lm_softc *sc;
296 {
297 	int i, j;
298 
299 	(*sc->lm_writereg)(sc, WB_BANKSEL, WB_BANKSEL_HBAC);
300 	j = (*sc->lm_readreg)(sc, WB_VENDID) << 8;
301 	(*sc->lm_writereg)(sc, WB_BANKSEL, 0);
302 	j |= (*sc->lm_readreg)(sc, WB_VENDID);
303 	DPRINTF(("winbond vend id 0x%x\n", j));
304 	if (j != WB_VENDID_WINBOND)
305 		return 0;
306 	/* read device ID */
307 	(*sc->lm_banksel)(sc, 0);
308 	j = (*sc->lm_readreg)(sc, WB_BANK0_CHIPID);
309 	DPRINTF(("winbond chip id 0x%x\n", j));
310 	switch(j) {
311 	case WB_CHIPID_83781:
312 	case WB_CHIPID_83781_2:
313 		printf(": W83781D\n");
314 
315 		for (i = 0; i < 7; ++i) {
316 			sc->sensors[i].units = sc->info[i].units =
317 			    ENVSYS_SVOLTS_DC;
318 			snprintf(sc->info[i].desc, sizeof(sc->info[i].desc),
319 			    "IN %d", i);
320 		}
321 
322 		/* default correction factors for higher voltage inputs */
323 		sc->info[0].rfact = sc->info[1].rfact =
324 		    sc->info[2].rfact = 10000;
325 		sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
326 		sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
327 		sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
328 		sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
329 
330 		setup_temp(sc, 7, 3);
331 		setup_fan(sc, 10, 3);
332 
333 		sc->numsensors = WB83781_NUM_SENSORS;
334 		sc->refresh_sensor_data = wb781_refresh_sensor_data;
335 		sc->sc_sysmon.sme_streinfo = wb781_streinfo;
336 		return 1;
337 	case WB_CHIPID_83697:
338 		printf(": W83697HF\n");
339 		wb_setup_volt(sc);
340 		setup_temp(sc, 9, 2);
341 		setup_fan(sc, 11, 3);
342 		sc->numsensors = WB83697_NUM_SENSORS;
343 		sc->refresh_sensor_data = wb697_refresh_sensor_data;
344 		sc->sc_sysmon.sme_streinfo = wb782_streinfo;
345 		return 1;
346 	case WB_CHIPID_83782:
347 		printf(": W83782D\n");
348 		break;
349 	case WB_CHIPID_83627:
350 		printf(": W83627HF\n");
351 		break;
352 	default:
353 		printf(": unknow winbond chip ID 0x%x\n", j);
354 		/* handle as a standart lm7x */
355 		lm_common_match(sc);
356 		return 1;
357 	}
358 	/* common code for the W83782D and W83627HF */
359 	wb_setup_volt(sc);
360 	setup_temp(sc, 9, 3);
361 	setup_fan(sc, 12, 3);
362 	sc->numsensors = WB_NUM_SENSORS;
363 	sc->refresh_sensor_data = wb782_refresh_sensor_data;
364 	sc->sc_sysmon.sme_streinfo = wb782_streinfo;
365 	return 1;
366 }
367 
368 static void
369 wb_setup_volt(sc)
370 	struct lm_softc *sc;
371 {
372 	sc->sensors[0].units = sc->info[0].units = ENVSYS_SVOLTS_DC;
373 	snprintf(sc->info[0].desc, sizeof(sc->info[0].desc), "VCORE A");
374 	sc->info[0].rfact = 10000;
375 	sc->sensors[1].units = sc->info[1].units = ENVSYS_SVOLTS_DC;
376 	snprintf(sc->info[1].desc, sizeof(sc->info[1].desc), "VCORE B");
377 	sc->info[1].rfact = 10000;
378 	sc->sensors[2].units = sc->info[2].units = ENVSYS_SVOLTS_DC;
379 	snprintf(sc->info[2].desc, sizeof(sc->info[2].desc), "+3.3V");
380 	sc->info[2].rfact = 10000;
381 	sc->sensors[3].units = sc->info[3].units = ENVSYS_SVOLTS_DC;
382 	snprintf(sc->info[3].desc, sizeof(sc->info[3].desc), "+5V");
383 	sc->info[3].rfact = 16778;
384 	sc->sensors[4].units = sc->info[4].units = ENVSYS_SVOLTS_DC;
385 	snprintf(sc->info[4].desc, sizeof(sc->info[4].desc), "+12V");
386 	sc->info[4].rfact = 38000;
387 	sc->sensors[5].units = sc->info[5].units = ENVSYS_SVOLTS_DC;
388 	snprintf(sc->info[5].desc, sizeof(sc->info[5].desc), "-12V");
389 	sc->info[5].rfact = 10000;
390 	sc->sensors[6].units = sc->info[6].units = ENVSYS_SVOLTS_DC;
391 	snprintf(sc->info[6].desc, sizeof(sc->info[6].desc), "-5V");
392 	sc->info[6].rfact = 10000;
393 	sc->sensors[7].units = sc->info[7].units = ENVSYS_SVOLTS_DC;
394 	snprintf(sc->info[7].desc, sizeof(sc->info[7].desc), "+5VSB");
395 	sc->info[7].rfact = 15151;
396 	sc->sensors[8].units = sc->info[8].units = ENVSYS_SVOLTS_DC;
397 	snprintf(sc->info[8].desc, sizeof(sc->info[8].desc), "VBAT");
398 	sc->info[8].rfact = 10000;
399 }
400 
401 static void
402 setup_temp(sc, start, n)
403 	struct lm_softc *sc;
404 	int start, n;
405 {
406 	int i;
407 
408 	for (i = 0; i < n; i++) {
409 		sc->sensors[start + i].units = ENVSYS_STEMP;
410 		snprintf(sc->info[start + i].desc,
411 		    sizeof(sc->info[start + i].desc), "Temp %d", i + 1);
412 	}
413 }
414 
415 
416 static void
417 setup_fan(sc, start, n)
418 	struct lm_softc *sc;
419 	int start, n;
420 {
421 	int i;
422 	for (i = 0; i < n; ++i) {
423 		sc->sensors[start + i].units = ENVSYS_SFANRPM;
424 		sc->info[start + i].units = ENVSYS_SFANRPM;
425 		snprintf(sc->info[start + i].desc,
426 		    sizeof(sc->info[start + i].desc), "Fan %d", i + 1);
427 	}
428 }
429 
430 int
431 lm_gtredata(sme, tred)
432 	 struct sysmon_envsys *sme;
433 	 struct envsys_tre_data *tred;
434 {
435 	 static const struct timeval onepointfive = { 1, 500000 };
436 	 struct timeval t;
437 	 struct lm_softc *sc = sme->sme_cookie;
438 	 int i, s;
439 
440 	 /* read new values at most once every 1.5 seconds */
441 	 timeradd(&sc->lastread, &onepointfive, &t);
442 	 s = splclock();
443 	 i = timercmp(&mono_time, &t, >);
444 	 if (i) {
445 		  sc->lastread.tv_sec  = mono_time.tv_sec;
446 		  sc->lastread.tv_usec = mono_time.tv_usec;
447 	 }
448 	 splx(s);
449 
450 	 if (i)
451 		  sc->refresh_sensor_data(sc);
452 
453 	 *tred = sc->sensors[tred->sensor];
454 
455 	 return (0);
456 }
457 
458 int
459 generic_streinfo_fan(sc, info, n, binfo)
460 	struct lm_softc *sc;
461 	struct envsys_basic_info *info;
462 	int n;
463 	struct envsys_basic_info *binfo;
464 {
465 	u_int8_t sdata;
466 	int divisor;
467 
468 	/* FAN1 and FAN2 can have divisors set, but not FAN3 */
469 	if ((sc->info[binfo->sensor].units == ENVSYS_SFANRPM)
470 	    && (n < 2)) {
471 		if (binfo->rpms == 0) {
472 			binfo->validflags = 0;
473 			return (0);
474 		}
475 
476 		/* write back the nominal FAN speed  */
477 		info->rpms = binfo->rpms;
478 
479 		/* 153 is the nominal FAN speed value */
480 		divisor = 1350000 / (binfo->rpms * 153);
481 
482 		/* ...but we need lg(divisor) */
483 		if (divisor <= 1)
484 		    divisor = 0;
485 		else if (divisor <= 2)
486 		    divisor = 1;
487 		else if (divisor <= 4)
488 		    divisor = 2;
489 		else
490 		    divisor = 3;
491 
492 		/*
493 		 * FAN1 div is in bits <5:4>, FAN2 div is
494 		 * in <7:6>
495 		 */
496 		sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
497 		if ( n == 0 ) {  /* FAN1 */
498 		    divisor <<= 4;
499 		    sdata = (sdata & 0xCF) | divisor;
500 		} else { /* FAN2 */
501 		    divisor <<= 6;
502 		    sdata = (sdata & 0x3F) | divisor;
503 		}
504 
505 		(*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
506 	}
507 	return (0);
508 
509 }
510 
511 int
512 lm_streinfo(sme, binfo)
513 	 struct sysmon_envsys *sme;
514 	 struct envsys_basic_info *binfo;
515 {
516 	 struct lm_softc *sc = sme->sme_cookie;
517 
518 	 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
519 		  sc->info[binfo->sensor].rfact = binfo->rfact;
520 	 else {
521 		if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
522 			generic_streinfo_fan(sc, &sc->info[binfo->sensor],
523 			    binfo->sensor - 8, binfo);
524 		}
525 		memcpy(sc->info[binfo->sensor].desc, binfo->desc,
526 		    sizeof(sc->info[binfo->sensor].desc));
527 		sc->info[binfo->sensor].desc[
528 		    sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
529 
530 		binfo->validflags = ENVSYS_FVALID;
531 	 }
532 	 return (0);
533 }
534 
535 int
536 wb781_streinfo(sme, binfo)
537 	 struct sysmon_envsys *sme;
538 	 struct envsys_basic_info *binfo;
539 {
540 	 struct lm_softc *sc = sme->sme_cookie;
541 	 int divisor;
542 	 u_int8_t sdata;
543 	 int i;
544 
545 	 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
546 		  sc->info[binfo->sensor].rfact = binfo->rfact;
547 	 else {
548 		if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
549 			if (binfo->rpms == 0) {
550 				binfo->validflags = 0;
551 				return (0);
552 			}
553 
554 			/* write back the nominal FAN speed  */
555 			sc->info[binfo->sensor].rpms = binfo->rpms;
556 
557 			/* 153 is the nominal FAN speed value */
558 			divisor = 1350000 / (binfo->rpms * 153);
559 
560 			/* ...but we need lg(divisor) */
561 			for (i = 0; i < 7; i++) {
562 				if (divisor <= (1 << i))
563 				 	break;
564 			}
565 			divisor = i;
566 
567 			if (binfo->sensor == 10 || binfo->sensor == 11) {
568 				/*
569 				 * FAN1 div is in bits <5:4>, FAN2 div
570 				 * is in <7:6>
571 				 */
572 				sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
573 				if ( binfo->sensor == 10 ) {  /* FAN1 */
574 					 sdata = (sdata & 0xCF) |
575 					     ((divisor & 0x3) << 4);
576 				} else { /* FAN2 */
577 					 sdata = (sdata & 0x3F) |
578 					     ((divisor & 0x3) << 6);
579 				}
580 				(*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
581 			} else {
582 				/* FAN3 is in WB_PIN <7:6> */
583 				sdata = (*sc->lm_readreg)(sc, WB_PIN);
584 				sdata = (sdata & 0x3F) |
585 				     ((divisor & 0x3) << 6);
586 				(*sc->lm_writereg)(sc, WB_PIN, sdata);
587 			}
588 		}
589 		memcpy(sc->info[binfo->sensor].desc, binfo->desc,
590 		    sizeof(sc->info[binfo->sensor].desc));
591 		sc->info[binfo->sensor].desc[
592 		    sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
593 
594 		binfo->validflags = ENVSYS_FVALID;
595 	 }
596 	 return (0);
597 }
598 
599 int
600 wb782_streinfo(sme, binfo)
601 	 struct sysmon_envsys *sme;
602 	 struct envsys_basic_info *binfo;
603 {
604 	 struct lm_softc *sc = sme->sme_cookie;
605 	 int divisor;
606 	 u_int8_t sdata;
607 	 int i;
608 
609 	 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
610 		  sc->info[binfo->sensor].rfact = binfo->rfact;
611 	 else {
612 	 	if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
613 			if (binfo->rpms == 0) {
614 				binfo->validflags = 0;
615 				return (0);
616 			}
617 
618 			/* write back the nominal FAN speed  */
619 			sc->info[binfo->sensor].rpms = binfo->rpms;
620 
621 			/* 153 is the nominal FAN speed value */
622 			divisor = 1350000 / (binfo->rpms * 153);
623 
624 			/* ...but we need lg(divisor) */
625 			for (i = 0; i < 7; i++) {
626 				if (divisor <= (1 << i))
627 				 	break;
628 			}
629 			divisor = i;
630 
631 			if (binfo->sensor == 12 || binfo->sensor == 13) {
632 				/*
633 				 * FAN1 div is in bits <5:4>, FAN2 div
634 				 * is in <7:6>
635 				 */
636 				sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
637 				if ( binfo->sensor == 12 ) {  /* FAN1 */
638 					 sdata = (sdata & 0xCF) |
639 					     ((divisor & 0x3) << 4);
640 				} else { /* FAN2 */
641 					 sdata = (sdata & 0x3F) |
642 					     ((divisor & 0x3) << 6);
643 				}
644 				(*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
645 			} else {
646 				/* FAN3 is in WB_PIN <7:6> */
647 				sdata = (*sc->lm_readreg)(sc, WB_PIN);
648 				sdata = (sdata & 0x3F) |
649 				     ((divisor & 0x3) << 6);
650 				(*sc->lm_writereg)(sc, WB_PIN, sdata);
651 			}
652 			/* Bit 2 of divisor is in WB_BANK0_FANBAT */
653 			(*sc->lm_banksel)(sc, 0);
654 			sdata = (*sc->lm_readreg)(sc, WB_BANK0_FANBAT);
655 			sdata &= ~(0x20 << (binfo->sensor - 12));
656 			sdata |= (divisor & 0x4) << (binfo->sensor - 9);
657 			(*sc->lm_writereg)(sc, WB_BANK0_FANBAT, sdata);
658 		}
659 
660 		memcpy(sc->info[binfo->sensor].desc, binfo->desc,
661 		    sizeof(sc->info[binfo->sensor].desc));
662 		sc->info[binfo->sensor].desc[
663 		    sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
664 
665 		binfo->validflags = ENVSYS_FVALID;
666 	}
667 	return (0);
668 }
669 
670 static void
671 generic_stemp(sc, sensor)
672 	struct lm_softc *sc;
673 	struct envsys_tre_data *sensor;
674 {
675 	int sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 7);
676 	DPRINTF(("sdata[temp] 0x%x\n", sdata));
677 	/* temp is given in deg. C, we convert to uK */
678 	sensor->cur.data_us = sdata * 1000000 + 273150000;
679 }
680 
681 static void
682 generic_svolt(sc, sensors, infos)
683 	struct lm_softc *sc;
684 	struct envsys_tre_data *sensors;
685 	struct envsys_basic_info *infos;
686 {
687 	int i, sdata;
688 
689 	for (i = 0; i < 7; i++) {
690 		sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i);
691 		DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
692 		/* voltage returned as (mV >> 4), we convert to uVDC */
693 		sensors[i].cur.data_s = (sdata << 4);
694 		/* rfact is (factor * 10^4) */
695 		sensors[i].cur.data_s *= infos[i].rfact;
696 		/* division by 10 gets us back to uVDC */
697 		sensors[i].cur.data_s /= 10;
698 
699 		/* these two are negative voltages */
700 		if ( (i == 5) || (i == 6) )
701 			sensors[i].cur.data_s *= -1;
702 	}
703 }
704 
705 static void
706 generic_fanrpm(sc, sensors)
707 	struct lm_softc *sc;
708 	struct envsys_tre_data *sensors;
709 {
710 	int i, sdata, divisor;
711 	for (i = 0; i < 3; i++) {
712 		sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 8 + i);
713 		DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
714 		if (i == 2)
715 			divisor = 2;	/* Fixed divisor for FAN3 */
716 		else if (i == 1)	/* Bits 7 & 6 of VID/FAN  */
717 			divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3;
718 		else
719 			divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3;
720 
721 		if (sdata == 0xff || sdata == 0x00) {
722 			sensors[i].cur.data_us = 0;
723 		} else {
724 			sensors[i].cur.data_us = 1350000 / (sdata << divisor);
725 		}
726 	}
727 }
728 
729 /*
730  * pre:  last read occurred >= 1.5 seconds ago
731  * post: sensors[] current data are the latest from the chip
732  */
733 void
734 lm_refresh_sensor_data(sc)
735 	struct lm_softc *sc;
736 {
737 	/* Refresh our stored data for every sensor */
738 	generic_stemp(sc, &sc->sensors[7]);
739 	generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
740 	generic_fanrpm(sc, &sc->sensors[8]);
741 }
742 
743 static void
744 wb_svolt(sc)
745 	struct lm_softc *sc;
746 {
747 	int i, sdata;
748 	for (i = 0; i < 9; ++i) {
749 		if (i < 7) {
750 			sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i);
751 		} else {
752 			/* from bank5 */
753 			(*sc->lm_banksel)(sc, 5);
754 			sdata = (*sc->lm_readreg)(sc, (i == 7) ?
755 			    WB_BANK5_5VSB : WB_BANK5_VBAT);
756 		}
757 		DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
758 		/* voltage returned as (mV >> 4), we convert to uV */
759 		sdata =  sdata << 4;
760 		/* special case for negative voltages */
761 		if (i == 5) {
762 			/*
763 			 * -12Vdc, assume Winbond recommended values for
764 			 * resistors
765 			 */
766 			sdata = ((sdata * 1000) - (3600 * 805)) / 195;
767 		} else if (i == 6) {
768 			/*
769 			 * -5Vdc, assume Winbond recommended values for
770 			 * resistors
771 			 */
772 			sdata = ((sdata * 1000) - (3600 * 682)) / 318;
773 		}
774 		/* rfact is (factor * 10^4) */
775 		sc->sensors[i].cur.data_s = sdata * sc->info[i].rfact;
776 		/* division by 10 gets us back to uVDC */
777 		sc->sensors[i].cur.data_s /= 10;
778 	}
779 }
780 
781 static void
782 wb_stemp(sc, sensors, n)
783 	struct lm_softc *sc;
784 	struct  envsys_tre_data *sensors;
785 	int n;
786 {
787 	int sdata;
788 	/* temperatures. Given in dC, we convert to uK */
789 	sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 7);
790 	DPRINTF(("sdata[temp0] 0x%x\n", sdata));
791 	sensors[0].cur.data_us = sdata * 1000000 + 273150000;
792 	/* from bank1 */
793 	if ((*sc->lm_banksel)(sc, 1))
794 		sensors[1].validflags &= ~ENVSYS_FCURVALID;
795 	else {
796 		sdata = (*sc->lm_readreg)(sc, WB_BANK1_T2H) << 1;
797 		sdata |=  ((*sc->lm_readreg)(sc, WB_BANK1_T2L) & 0x80) >> 7;
798 		DPRINTF(("sdata[temp1] 0x%x\n", sdata));
799 		sensors[1].cur.data_us = (sdata * 1000000) / 2 + 273150000;
800 	}
801 	if (n < 3)
802 		return;
803 	/* from bank2 */
804 	if ((*sc->lm_banksel)(sc, 2))
805 		sensors[2].validflags &= ~ENVSYS_FCURVALID;
806 	else {
807 		sdata = (*sc->lm_readreg)(sc, WB_BANK2_T3H) << 1;
808 		sdata |=  ((*sc->lm_readreg)(sc, WB_BANK2_T3L) & 0x80) >> 7;
809 		DPRINTF(("sdata[temp2] 0x%x\n", sdata));
810 		sensors[2].cur.data_us = (sdata * 1000000) / 2 + 273150000;
811 	}
812 }
813 
814 static void
815 wb781_fanrpm(sc, sensors)
816 	struct lm_softc *sc;
817 	struct envsys_tre_data *sensors;
818 {
819 	int i, divisor, sdata;
820 	(*sc->lm_banksel)(sc, 0);
821 	for (i = 0; i < 3; i++) {
822 		sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i + 8);
823 		DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
824 		if (i == 0)
825 			divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3;
826 		else if (i == 1)
827 			divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3;
828 		else
829 			divisor = ((*sc->lm_readreg)(sc, WB_PIN) >> 6) & 0x3;
830 
831 		DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
832 		if (sdata == 0xff || sdata == 0x00) {
833 			sensors[i].cur.data_us = 0;
834 		} else {
835 			sensors[i].cur.data_us = 1350000 /
836 			    (sdata << divisor);
837 		}
838 	}
839 }
840 
841 static void
842 wb_fanrpm(sc, sensors)
843 	struct lm_softc *sc;
844 	struct envsys_tre_data *sensors;
845 {
846 	int i, divisor, sdata;
847 	(*sc->lm_banksel)(sc, 0);
848 	for (i = 0; i < 3; i++) {
849 		sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i + 8);
850 		DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
851 		if (i == 0)
852 			divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3;
853 		else if (i == 1)
854 			divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3;
855 		else
856 			divisor = ((*sc->lm_readreg)(sc, WB_PIN) >> 6) & 0x3;
857 		divisor |= ((*sc->lm_readreg)(sc, WB_BANK0_FANBAT) >> (i + 3)) & 0x4;
858 
859 		DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
860 		if (sdata == 0xff || sdata == 0x00) {
861 			sensors[i].cur.data_us = 0;
862 		} else {
863 			sensors[i].cur.data_us = 1350000 /
864 			    (sdata << divisor);
865 		}
866 	}
867 }
868 
869 void
870 wb781_refresh_sensor_data(sc)
871 	struct lm_softc *sc;
872 {
873 	/* Refresh our stored data for every sensor */
874 	/* we need to reselect bank0 to access common registers */
875 	(*sc->lm_banksel)(sc, 0);
876 	generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
877 	(*sc->lm_banksel)(sc, 0);
878 	wb_stemp(sc, &sc->sensors[7], 3);
879 	(*sc->lm_banksel)(sc, 0);
880 	wb781_fanrpm(sc, &sc->sensors[10]);
881 }
882 
883 void
884 wb782_refresh_sensor_data(sc)
885 	struct lm_softc *sc;
886 {
887 	/* Refresh our stored data for every sensor */
888 	wb_svolt(sc);
889 	wb_stemp(sc, &sc->sensors[9], 3);
890 	wb_fanrpm(sc, &sc->sensors[12]);
891 }
892 
893 void
894 wb697_refresh_sensor_data(sc)
895 	struct lm_softc *sc;
896 {
897 	/* Refresh our stored data for every sensor */
898 	wb_svolt(sc);
899 	wb_stemp(sc, &sc->sensors[9], 2);
900 	wb_fanrpm(sc, &sc->sensors[11]);
901 }
902