xref: /netbsd-src/sys/dev/ic/nslm7x.c (revision 3b01aba77a7a698587faaae455bbfe740923c1f5)
1 /*	$NetBSD: nslm7x.c,v 1.11 2000/11/04 18:28:19 veego Exp $ */
2 
3 /*-
4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Bill Squier.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/proc.h>
43 #include <sys/device.h>
44 #include <sys/malloc.h>
45 #include <sys/errno.h>
46 #include <sys/queue.h>
47 #include <sys/lock.h>
48 #include <sys/ioctl.h>
49 #include <sys/conf.h>
50 #include <sys/time.h>
51 
52 #include <machine/bus.h>
53 
54 #include <dev/isa/isareg.h>
55 #include <dev/isa/isavar.h>
56 
57 #include <dev/sysmon/sysmonvar.h>
58 
59 #include <dev/ic/nslm7xvar.h>
60 
61 #include <machine/intr.h>
62 #include <machine/bus.h>
63 
64 #if defined(LMDEBUG)
65 #define DPRINTF(x)		do { printf x; } while (0)
66 #else
67 #define DPRINTF(x)
68 #endif
69 
70 const struct envsys_range lm_ranges[] = {	/* sc->sensors sub-intervals */
71 					/* for each unit type */
72 	{ 7, 7,    ENVSYS_STEMP   },
73 	{ 8, 10,   ENVSYS_SFANRPM },
74 	{ 1, 0,    ENVSYS_SVOLTS_AC },	/* None */
75 	{ 0, 6,    ENVSYS_SVOLTS_DC },
76 	{ 1, 0,    ENVSYS_SOHMS },	/* None */
77 	{ 1, 0,    ENVSYS_SWATTS },	/* None */
78 	{ 1, 0,    ENVSYS_SAMPS }	/* None */
79 };
80 
81 
82 u_int8_t lm_readreg __P((struct lm_softc *, int));
83 void lm_writereg __P((struct lm_softc *, int, int));
84 
85 static void setup_fan __P((struct lm_softc *, int, int));
86 static void setup_temp __P((struct lm_softc *, int, int));
87 static void wb_setup_volt __P((struct lm_softc *));
88 
89 int lm_match __P((struct lm_softc *));
90 int wb_match __P((struct lm_softc *));
91 int def_match __P((struct lm_softc *));
92 void lm_common_match __P((struct lm_softc *));
93 
94 static void generic_stemp __P((struct lm_softc *, struct envsys_tre_data *));
95 static void generic_svolt __P((struct lm_softc *, struct envsys_tre_data *,
96     struct envsys_basic_info *));
97 static void generic_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
98 
99 void lm_refresh_sensor_data __P((struct lm_softc *));
100 
101 static void wb_svolt __P((struct lm_softc *));
102 static void wb_stemp __P((struct lm_softc *, struct envsys_tre_data *, int));
103 static void wb_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
104 
105 void wb781_refresh_sensor_data __P((struct lm_softc *));
106 void wb782_refresh_sensor_data __P((struct lm_softc *));
107 void wb697_refresh_sensor_data __P((struct lm_softc *));
108 
109 int lm_gtredata __P((struct sysmon_envsys *, struct envsys_tre_data *));
110 
111 int generic_streinfo_fan __P((struct lm_softc *, struct envsys_basic_info *,
112            int, struct envsys_basic_info *));
113 int lm_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
114 int wb781_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
115 int wb782_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
116 
117 struct lm_chip {
118 	int (*chip_match) __P((struct lm_softc *));
119 };
120 
121 struct lm_chip lm_chips[] = {
122 	{ wb_match },
123 	{ lm_match },
124 	{ def_match } /* Must be last */
125 };
126 
127 
128 u_int8_t
129 lm_readreg(sc, reg)
130 	struct lm_softc *sc;
131 	int reg;
132 {
133 	bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_ADDR, reg);
134 	return (bus_space_read_1(sc->lm_iot, sc->lm_ioh, LMC_DATA));
135 }
136 
137 void
138 lm_writereg(sc, reg, val)
139 	struct lm_softc *sc;
140 	int reg;
141 	int val;
142 {
143 	bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_ADDR, reg);
144 	bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_DATA, val);
145 }
146 
147 
148 /*
149  * bus independent probe
150  */
151 int
152 lm_probe(iot, ioh)
153 	bus_space_tag_t iot;
154 	bus_space_handle_t ioh;
155 {
156 	u_int8_t cr;
157 	int rv;
158 
159 	/* Check for some power-on defaults */
160 	bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
161 
162 	/* Perform LM78 reset */
163 	bus_space_write_1(iot, ioh, LMC_DATA, 0x80);
164 
165 	/* XXX - Why do I have to reselect the register? */
166 	bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
167 	cr = bus_space_read_1(iot, ioh, LMC_DATA);
168 
169 	/* XXX - spec says *only* 0x08! */
170 	if ((cr == 0x08) || (cr == 0x01))
171 		rv = 1;
172 	else
173 		rv = 0;
174 
175 	DPRINTF(("lm: rv = %d, cr = %x\n", rv, cr));
176 
177 	return (rv);
178 }
179 
180 
181 /*
182  * pre:  lmsc contains valid busspace tag and handle
183  */
184 void
185 lm_attach(lmsc)
186 	struct lm_softc *lmsc;
187 {
188 	int i;
189 
190 	for (i = 0; i < sizeof(lm_chips) / sizeof(lm_chips[0]); i++)
191 		if (lm_chips[i].chip_match(lmsc))
192 			break;
193 
194 	/* Start the monitoring loop */
195 	lm_writereg(lmsc, LMD_CONFIG, 0x01);
196 
197 	/* Indicate we have never read the registers */
198 	timerclear(&lmsc->lastread);
199 
200 	/* Initialize sensors */
201 	for (i = 0; i < lmsc->numsensors; ++i) {
202 		lmsc->sensors[i].sensor = lmsc->info[i].sensor = i;
203 		lmsc->sensors[i].validflags = (ENVSYS_FVALID|ENVSYS_FCURVALID);
204 		lmsc->info[i].validflags = ENVSYS_FVALID;
205 		lmsc->sensors[i].warnflags = ENVSYS_WARN_OK;
206 	}
207 	/*
208 	 * Hook into the System Monitor.
209 	 */
210 	lmsc->sc_sysmon.sme_ranges = lm_ranges;
211 	lmsc->sc_sysmon.sme_sensor_info = lmsc->info;
212 	lmsc->sc_sysmon.sme_sensor_data = lmsc->sensors;
213 	lmsc->sc_sysmon.sme_cookie = lmsc;
214 
215 	lmsc->sc_sysmon.sme_gtredata = lm_gtredata;
216 	/* sme_streinfo set in chip-specific attach */
217 
218 	lmsc->sc_sysmon.sme_nsensors = lmsc->numsensors;
219 	lmsc->sc_sysmon.sme_envsys_version = 1000;
220 
221 	if (sysmon_envsys_register(&lmsc->sc_sysmon))
222 		printf("%s: unable to register with sysmon\n",
223 		    lmsc->sc_dev.dv_xname);
224 }
225 
226 int
227 lm_match(sc)
228 	struct lm_softc *sc;
229 {
230 	int i;
231 
232 	/* See if we have an LM78 or LM79 */
233 	i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
234 	switch(i) {
235 	case LM_ID_LM78:
236 		printf(": LM78\n");
237 		break;
238 	case LM_ID_LM78J:
239 		printf(": LM78J\n");
240 		break;
241 	case LM_ID_LM79:
242 		printf(": LM79\n");
243 		break;
244 	default:
245 		return 0;
246 	}
247 	lm_common_match(sc);
248 	return 1;
249 }
250 
251 int
252 def_match(sc)
253 	struct lm_softc *sc;
254 {
255 	int i;
256 
257 	i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
258 	printf(": Unknow chip (ID %d)\n", i);
259 	lm_common_match(sc);
260 	return 1;
261 }
262 
263 void
264 lm_common_match(sc)
265 	struct lm_softc *sc;
266 {
267 	int i;
268 	sc->numsensors = LM_NUM_SENSORS;
269 	sc->refresh_sensor_data = lm_refresh_sensor_data;
270 
271 	for (i = 0; i < 7; ++i) {
272 		sc->sensors[i].units = sc->info[i].units =
273 		    ENVSYS_SVOLTS_DC;
274 		sprintf(sc->info[i].desc, "IN %d", i);
275 	}
276 
277 	/* default correction factors for resistors on higher voltage inputs */
278 	sc->info[0].rfact = sc->info[1].rfact =
279 	    sc->info[2].rfact = 10000;
280 	sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
281 	sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
282 	sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
283 	sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
284 
285 	sc->sensors[7].units = ENVSYS_STEMP;
286 	strcpy(sc->info[7].desc, "Temp");
287 
288 	setup_fan(sc, 8, 3);
289 	sc->sc_sysmon.sme_streinfo = lm_streinfo;
290 }
291 
292 int
293 wb_match(sc)
294 	struct lm_softc *sc;
295 {
296 	int i, j;
297 
298 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_HBAC);
299 	j = lm_readreg(sc, WB_VENDID) << 8;
300 	lm_writereg(sc, WB_BANKSEL, 0);
301 	j |= lm_readreg(sc, WB_VENDID);
302 	DPRINTF(("winbond vend id 0x%x\n", j));
303 	if (j != WB_VENDID_WINBOND)
304 		return 0;
305 	/* read device ID */
306 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
307 	j = lm_readreg(sc, WB_BANK0_CHIPID);
308 	DPRINTF(("winbond chip id 0x%x\n", j));
309 	switch(j) {
310 	case WB_CHIPID_83781:
311 	case WB_CHIPID_83781_2:
312 		printf(": W83781D\n");
313 
314 		for (i = 0; i < 7; ++i) {
315 			sc->sensors[i].units = sc->info[i].units =
316 			    ENVSYS_SVOLTS_DC;
317 			sprintf(sc->info[i].desc, "IN %d", i);
318 		}
319 
320 		/* default correction factors for higher voltage inputs */
321 		sc->info[0].rfact = sc->info[1].rfact =
322 		    sc->info[2].rfact = 10000;
323 		sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
324 		sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
325 		sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
326 		sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
327 
328 		setup_temp(sc, 7, 3);
329 		setup_fan(sc, 10, 3);
330 
331 		sc->numsensors = WB83781_NUM_SENSORS;
332 		sc->refresh_sensor_data = wb781_refresh_sensor_data;
333 		sc->sc_sysmon.sme_streinfo = wb781_streinfo;
334 		return 1;
335 	case WB_CHIPID_83697:
336 		printf(": W83697HF\n");
337 		wb_setup_volt(sc);
338 		setup_temp(sc, 9, 2);
339 		setup_fan(sc, 11, 3);
340 		sc->numsensors = WB83697_NUM_SENSORS;
341 		sc->refresh_sensor_data = wb697_refresh_sensor_data;
342 		sc->sc_sysmon.sme_streinfo = wb782_streinfo;
343 	return 1;
344 		break;
345 	case WB_CHIPID_83782:
346 		printf(": W83782D\n");
347 		break;
348 	case WB_CHIPID_83627:
349 		printf(": W83627HF\n");
350 		break;
351 	default:
352 		printf(": unknow winbond chip ID 0x%x\n", j);
353 		/* handle as a standart lm7x */
354 		lm_common_match(sc);
355 		return 1;
356 	}
357 	/* common code for the W83782D and W83627HF */
358 	wb_setup_volt(sc);
359 	setup_temp(sc, 9, 3);
360 	setup_fan(sc, 12, 3);
361 	sc->numsensors = WB_NUM_SENSORS;
362 	sc->refresh_sensor_data = wb782_refresh_sensor_data;
363 	sc->sc_sysmon.sme_streinfo = wb782_streinfo;
364 	return 1;
365 }
366 
367 static void
368 wb_setup_volt(sc)
369 	struct lm_softc *sc;
370 {
371 	sc->sensors[0].units = sc->info[0].units = ENVSYS_SVOLTS_DC;
372 	sprintf(sc->info[0].desc, "VCORE A");
373 	sc->info[0].rfact = 10000;
374 	sc->sensors[1].units = sc->info[1].units = ENVSYS_SVOLTS_DC;
375 	sprintf(sc->info[1].desc, "VCORE B");
376 	sc->info[1].rfact = 10000;
377 	sc->sensors[2].units = sc->info[2].units = ENVSYS_SVOLTS_DC;
378 	sprintf(sc->info[2].desc, "+3.3V");
379 	sc->info[2].rfact = 10000;
380 	sc->sensors[3].units = sc->info[3].units = ENVSYS_SVOLTS_DC;
381 	sprintf(sc->info[3].desc, "+5V");
382 	sc->info[3].rfact = 16778;
383 	sc->sensors[4].units = sc->info[4].units = ENVSYS_SVOLTS_DC;
384 	sprintf(sc->info[4].desc, "+12V");
385 	sc->info[4].rfact = 38000;
386 	sc->sensors[5].units = sc->info[5].units = ENVSYS_SVOLTS_DC;
387 	sprintf(sc->info[5].desc, "-12V");
388 	sc->info[5].rfact = 10000;
389 	sc->sensors[6].units = sc->info[6].units = ENVSYS_SVOLTS_DC;
390 	sprintf(sc->info[6].desc, "-5V");
391 	sc->info[6].rfact = 10000;
392 	sc->sensors[7].units = sc->info[7].units = ENVSYS_SVOLTS_DC;
393 	sprintf(sc->info[7].desc, "+5VSB");
394 	sc->info[7].rfact = 15151;
395 	sc->sensors[8].units = sc->info[8].units = ENVSYS_SVOLTS_DC;
396 	sprintf(sc->info[8].desc, "VBAT");
397 	sc->info[8].rfact = 10000;
398 }
399 
400 static void
401 setup_temp(sc, start, n)
402 	struct lm_softc *sc;
403 	int start, n;
404 {
405 	int i;
406 
407 	for (i = 0; i < n; i++) {
408 		sc->sensors[start + i].units = ENVSYS_STEMP;
409 		sprintf(sc->info[start + i].desc, "Temp %d", i + 1);
410 	}
411 }
412 
413 
414 static void
415 setup_fan(sc, start, n)
416 	struct lm_softc *sc;
417 	int start, n;
418 {
419 	int i;
420 	for (i = 0; i < n; ++i) {
421 		sc->sensors[start + i].units = ENVSYS_SFANRPM;
422 		sc->info[start + i].units = ENVSYS_SFANRPM;
423 		sprintf(sc->info[start + i].desc, "Fan %d", i + 1);
424 	}
425 }
426 
427 int
428 lm_gtredata(sme, tred)
429 	 struct sysmon_envsys *sme;
430 	 struct envsys_tre_data *tred;
431 {
432 	 static const struct timeval onepointfive = { 1, 500000 };
433 	 struct timeval t;
434 	 struct lm_softc *sc = sme->sme_cookie;
435 	 int i, s;
436 
437 	 /* read new values at most once every 1.5 seconds */
438 	 timeradd(&sc->lastread, &onepointfive, &t);
439 	 s = splclock();
440 	 i = timercmp(&mono_time, &t, >);
441 	 if (i) {
442 		  sc->lastread.tv_sec  = mono_time.tv_sec;
443 		  sc->lastread.tv_usec = mono_time.tv_usec;
444 	 }
445 	 splx(s);
446 
447 	 if (i)
448 		  sc->refresh_sensor_data(sc);
449 
450 	 *tred = sc->sensors[tred->sensor];
451 
452 	 return (0);
453 }
454 
455 int
456 generic_streinfo_fan(sc, info, n, binfo)
457 	struct lm_softc *sc;
458 	struct envsys_basic_info *info;
459 	int n;
460 	struct envsys_basic_info *binfo;
461 {
462 	u_int8_t sdata;
463 	int divisor;
464 
465 	/* FAN1 and FAN2 can have divisors set, but not FAN3 */
466 	if ((sc->info[binfo->sensor].units == ENVSYS_SFANRPM)
467 	    && (binfo->sensor != 2)) {
468 		if (binfo->rpms == 0) {
469 			binfo->validflags = 0;
470 			return (0);
471 		}
472 
473 		/* 153 is the nominal FAN speed value */
474 		divisor = 1350000 / (binfo->rpms * 153);
475 
476 		/* ...but we need lg(divisor) */
477 		if (divisor <= 1)
478 		    divisor = 0;
479 		else if (divisor <= 2)
480 		    divisor = 1;
481 		else if (divisor <= 4)
482 		    divisor = 2;
483 		else
484 		    divisor = 3;
485 
486 		/*
487 		 * FAN1 div is in bits <5:4>, FAN2 div is
488 		 * in <7:6>
489 		 */
490 		sdata = lm_readreg(sc, LMD_VIDFAN);
491 		if ( binfo->sensor == 0 ) {  /* FAN1 */
492 		    divisor <<= 4;
493 		    sdata = (sdata & 0xCF) | divisor;
494 		} else { /* FAN2 */
495 		    divisor <<= 6;
496 		    sdata = (sdata & 0x3F) | divisor;
497 		}
498 
499 		lm_writereg(sc, LMD_VIDFAN, sdata);
500 	}
501 	return (0);
502 
503 }
504 
505 int
506 lm_streinfo(sme, binfo)
507 	 struct sysmon_envsys *sme;
508 	 struct envsys_basic_info *binfo;
509 {
510 	 struct lm_softc *sc = sme->sme_cookie;
511 
512 	 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
513 		  sc->info[binfo->sensor].rfact = binfo->rfact;
514 	 else {
515 		if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
516 			generic_streinfo_fan(sc, &sc->info[binfo->sensor],
517 			    binfo->sensor - 8, binfo);
518 		}
519 		memcpy(sc->info[binfo->sensor].desc, binfo->desc,
520 		    sizeof(sc->info[binfo->sensor].desc));
521 		sc->info[binfo->sensor].desc[
522 		    sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
523 
524 		binfo->validflags = ENVSYS_FVALID;
525 	 }
526 	 return (0);
527 }
528 
529 int
530 wb781_streinfo(sme, binfo)
531 	 struct sysmon_envsys *sme;
532 	 struct envsys_basic_info *binfo;
533 {
534 	 struct lm_softc *sc = sme->sme_cookie;
535 
536 	 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
537 		  sc->info[binfo->sensor].rfact = binfo->rfact;
538 	 else {
539 		if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
540 			generic_streinfo_fan(sc, &sc->info[binfo->sensor],
541 			    binfo->sensor - 10, binfo);
542 		}
543 		memcpy(sc->info[binfo->sensor].desc, binfo->desc,
544 		    sizeof(sc->info[binfo->sensor].desc));
545 		sc->info[binfo->sensor].desc[
546 		    sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
547 
548 		binfo->validflags = ENVSYS_FVALID;
549 	 }
550 	 return (0);
551 }
552 
553 int
554 wb782_streinfo(sme, binfo)
555 	 struct sysmon_envsys *sme;
556 	 struct envsys_basic_info *binfo;
557 {
558 	 struct lm_softc *sc = sme->sme_cookie;
559 	 int divisor;
560 	 u_int8_t sdata;
561 	 int i;
562 
563 	 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
564 		  sc->info[binfo->sensor].rfact = binfo->rfact;
565 	 else {
566 	 	if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
567 			if (binfo->rpms == 0) {
568 				binfo->validflags = 0;
569 				return (0);
570 			}
571 
572 			/* 153 is the nominal FAN speed value */
573 			divisor = 1350000 / (binfo->rpms * 153);
574 
575 			/* ...but we need lg(divisor) */
576 			for (i = 0; i < 7; i++) {
577 				if (divisor <= (1 << i))
578 				 	break;
579 			}
580 			divisor = i;
581 
582 			if (binfo->sensor == 12 || binfo->sensor == 13) {
583 				/*
584 				 * FAN1 div is in bits <5:4>, FAN2 div
585 				 * is in <7:6>
586 				 */
587 				sdata = lm_readreg(sc, LMD_VIDFAN);
588 				if ( binfo->sensor == 12 ) {  /* FAN1 */
589 					 sdata = (sdata & 0xCF) |
590 					     ((divisor & 0x3) << 4);
591 				} else { /* FAN2 */
592 					 sdata = (sdata & 0x3F) |
593 					     ((divisor & 0x3) << 6);
594 				}
595 				lm_writereg(sc, LMD_VIDFAN, sdata);
596 			} else {
597 				/* FAN3 is in WB_PIN <7:6> */
598 				sdata = lm_readreg(sc, WB_PIN);
599 				sdata = (sdata & 0x3F) |
600 				     ((divisor & 0x3) << 6);
601 				lm_writereg(sc, LMD_VIDFAN, sdata);
602 			}
603 			/* Bit 2 of divisor is in WB_BANK0_FANBAT */
604 			lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
605 			sdata = lm_readreg(sc, WB_BANK0_FANBAT);
606 			sdata &= ~(0x20 << (binfo->sensor - 12));
607 			sdata |= (divisor & 0x4) << (binfo->sensor - 9);
608 			lm_writereg(sc, WB_BANK0_FANBAT, sdata);
609 		}
610 
611 		memcpy(sc->info[binfo->sensor].desc, binfo->desc,
612 		    sizeof(sc->info[binfo->sensor].desc));
613 		sc->info[binfo->sensor].desc[
614 		    sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
615 
616 		binfo->validflags = ENVSYS_FVALID;
617 	}
618 	return (0);
619 }
620 
621 static void
622 generic_stemp(sc, sensor)
623 	struct lm_softc *sc;
624 	struct envsys_tre_data *sensor;
625 {
626 	int sdata = lm_readreg(sc, LMD_SENSORBASE + 7);
627 	DPRINTF(("sdata[temp] 0x%x\n", sdata));
628 	/* temp is given in deg. C, we convert to uK */
629 	sensor->cur.data_us = sdata * 1000000 + 273150000;
630 }
631 
632 static void
633 generic_svolt(sc, sensors, infos)
634 	struct lm_softc *sc;
635 	struct envsys_tre_data *sensors;
636 	struct envsys_basic_info *infos;
637 {
638 	int i, sdata;
639 
640 	for (i = 0; i < 7; i++) {
641 		sdata = lm_readreg(sc, LMD_SENSORBASE + i);
642 		DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
643 		/* voltage returned as (mV >> 4), we convert to uVDC */
644 		sensors[i].cur.data_s = (sdata << 4);
645 		/* rfact is (factor * 10^4) */
646 		sensors[i].cur.data_s *= infos[i].rfact;
647 		/* division by 10 gets us back to uVDC */
648 		sensors[i].cur.data_s /= 10;
649 
650 		/* these two are negative voltages */
651 		if ( (i == 5) || (i == 6) )
652 			sensors[i].cur.data_s *= -1;
653 	}
654 }
655 
656 static void
657 generic_fanrpm(sc, sensors)
658 	struct lm_softc *sc;
659 	struct envsys_tre_data *sensors;
660 {
661 	int i, sdata, divisor;
662 	for (i = 0; i < 3; i++) {
663 		sdata = lm_readreg(sc, LMD_SENSORBASE + 8 + i);
664 		DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
665 		if (i == 2)
666 			divisor = 2;	/* Fixed divisor for FAN3 */
667 		else if (i == 1)	/* Bits 7 & 6 of VID/FAN  */
668 			divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) & 0x3;
669 		else
670 			divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) & 0x3;
671 
672 		if (sdata == 0xff || sdata == 0x00) {
673 			sensors[i].cur.data_us = 0;
674 		} else {
675 			sensors[i].cur.data_us = 1350000 / (sdata << divisor);
676 		}
677 	}
678 }
679 
680 /*
681  * pre:  last read occured >= 1.5 seconds ago
682  * post: sensors[] current data are the latest from the chip
683  */
684 void
685 lm_refresh_sensor_data(sc)
686 	struct lm_softc *sc;
687 {
688 	/* Refresh our stored data for every sensor */
689 	generic_stemp(sc, &sc->sensors[7]);
690 	generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
691 	generic_fanrpm(sc, &sc->sensors[8]);
692 }
693 
694 static void
695 wb_svolt(sc)
696 	struct lm_softc *sc;
697 {
698 	int i, sdata;
699 	for (i = 0; i < 9; ++i) {
700 		if (i < 7) {
701 			sdata = lm_readreg(sc, LMD_SENSORBASE + i);
702 		} else {
703 			/* from bank5 */
704 			lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B5);
705 			sdata = lm_readreg(sc, (i == 7) ?
706 			    WB_BANK5_5VSB : WB_BANK5_VBAT);
707 		}
708 		DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
709 		/* voltage returned as (mV >> 4), we convert to uV */
710 		sdata =  sdata << 4;
711 		/* special case for negative voltages */
712 		if (i == 5) {
713 			/*
714 			 * -12Vdc, assume Winbond recommended values for
715 			 * resistors
716 			 */
717 			sdata = ((sdata * 1000) - (3600 * 805)) / 195;
718 		} else if (i == 6) {
719 			/*
720 			 * -5Vdc, assume Winbond recommended values for
721 			 * resistors
722 			 */
723 			sdata = ((sdata * 1000) - (3600 * 682)) / 318;
724 		}
725 		/* rfact is (factor * 10^4) */
726 		sc->sensors[i].cur.data_s = sdata * sc->info[i].rfact;
727 		/* division by 10 gets us back to uVDC */
728 		sc->sensors[i].cur.data_s /= 10;
729 	}
730 }
731 
732 static void
733 wb_stemp(sc, sensors, n)
734 	struct lm_softc *sc;
735 	struct  envsys_tre_data *sensors;
736 	int n;
737 {
738 	int sdata;
739 	/* temperatures. Given in dC, we convert to uK */
740 	sdata = lm_readreg(sc, LMD_SENSORBASE + 7);
741 	DPRINTF(("sdata[temp0] 0x%x\n", sdata));
742 	sensors[0].cur.data_us = sdata * 1000000 + 273150000;
743 	/* from bank1 */
744 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B1);
745 	sdata = lm_readreg(sc, WB_BANK1_T2H) << 1;
746 	sdata |=  (lm_readreg(sc, WB_BANK1_T2L) & 0x80) >> 7;
747 	DPRINTF(("sdata[temp1] 0x%x\n", sdata));
748 	sensors[1].cur.data_us = (sdata * 1000000) / 2 + 273150000;
749 	if (n < 3)
750 		return;
751 	/* from bank2 */
752 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B2);
753 	sdata = lm_readreg(sc, WB_BANK2_T3H) << 1;
754 	sdata |=  (lm_readreg(sc, WB_BANK2_T3L) & 0x80) >> 7;
755 	DPRINTF(("sdata[temp2] 0x%x\n", sdata));
756 	sensors[2].cur.data_us = (sdata * 1000000) / 2 + 273150000;
757 }
758 
759 static void
760 wb_fanrpm(sc, sensors)
761 	struct lm_softc *sc;
762 	struct envsys_tre_data *sensors;
763 {
764 	int i, divisor, sdata;
765 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
766 	for (i = 0; i < 3; i++) {
767 		sdata = lm_readreg(sc, LMD_SENSORBASE + i + 8);
768 		DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
769 		if (i == 0)
770 			divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) & 0x3;
771 		else if (i == 1)
772 			divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) & 0x3;
773 		else
774 			divisor = (lm_readreg(sc, WB_PIN) >> 6) & 0x3;
775 		divisor |= (lm_readreg(sc, WB_BANK0_FANBAT) >> (i + 3)) & 0x4;
776 
777 		DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
778 		if (sdata == 0xff || sdata == 0x00) {
779 			sensors[i].cur.data_us = 0;
780 		} else {
781 			sensors[i].cur.data_us = 1350000 /
782 			    (sdata << divisor);
783 		}
784 	}
785 }
786 
787 void
788 wb781_refresh_sensor_data(sc)
789 	struct lm_softc *sc;
790 {
791 	/* Refresh our stored data for every sensor */
792 	/* we need to reselect bank0 to access common registers */
793 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
794 	generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
795 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
796 	wb_stemp(sc, &sc->sensors[7], 3);
797 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
798 	generic_fanrpm(sc, &sc->sensors[10]);
799 }
800 
801 void
802 wb782_refresh_sensor_data(sc)
803 	struct lm_softc *sc;
804 {
805 	/* Refresh our stored data for every sensor */
806 	wb_svolt(sc);
807 	wb_stemp(sc, &sc->sensors[9], 3);
808 	wb_fanrpm(sc, &sc->sensors[12]);
809 }
810 
811 void
812 wb697_refresh_sensor_data(sc)
813 	struct lm_softc *sc;
814 {
815 	/* Refresh our stored data for every sensor */
816 	wb_svolt(sc);
817 	wb_stemp(sc, &sc->sensors[9], 2);
818 	wb_fanrpm(sc, &sc->sensors[11]);
819 }
820