xref: /netbsd-src/sys/dev/ic/mfi.c (revision e89934bbf778a6d6d6894877c4da59d0c7835b0f)
1 /* $NetBSD: mfi.c,v 1.57 2015/04/04 15:10:47 christos Exp $ */
2 /* $OpenBSD: mfi.c,v 1.66 2006/11/28 23:59:45 dlg Exp $ */
3 
4 /*
5  * Copyright (c) 2012 Manuel Bouyer.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 /*
29  * Copyright (c) 2006 Marco Peereboom <marco@peereboom.us>
30  *
31  * Permission to use, copy, modify, and distribute this software for any
32  * purpose with or without fee is hereby granted, provided that the above
33  * copyright notice and this permission notice appear in all copies.
34  *
35  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
36  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
37  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
38  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
39  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
40  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
41  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
42  */
43 
44  /*-
45  * Redistribution and use in source and binary forms, with or without
46  * modification, are permitted provided that the following conditions
47  * are met:
48  *
49  *            Copyright 1994-2009 The FreeBSD Project.
50  *            All rights reserved.
51  *
52  * 1. Redistributions of source code must retain the above copyright
53  *    notice, this list of conditions and the following disclaimer.
54  * 2. Redistributions in binary form must reproduce the above copyright
55  *    notice, this list of conditions and the following disclaimer in the
56  *    documentation and/or other materials provided with the distribution.
57  *
58  *    THIS SOFTWARE IS PROVIDED BY THE FREEBSD PROJECT``AS IS'' AND
59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
60  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
61  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FREEBSD PROJECT OR
62  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
63  * EXEMPLARY,OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
64  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
65  * PROFITS; OR BUSINESS INTERRUPTION)HOWEVER CAUSED AND ON ANY THEORY
66  * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
67  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
68  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
69  *
70  * The views and conclusions contained in the software and documentation
71  * are those of the authors and should not be interpreted as representing
72  * official policies,either expressed or implied, of the FreeBSD Project.
73  */
74 
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: mfi.c,v 1.57 2015/04/04 15:10:47 christos Exp $");
77 
78 #include "bio.h"
79 
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/buf.h>
83 #include <sys/ioctl.h>
84 #include <sys/device.h>
85 #include <sys/kernel.h>
86 #include <sys/malloc.h>
87 #include <sys/proc.h>
88 #include <sys/cpu.h>
89 #include <sys/conf.h>
90 #include <sys/kauth.h>
91 
92 #include <uvm/uvm_param.h>
93 
94 #include <sys/bus.h>
95 
96 #include <dev/scsipi/scsipi_all.h>
97 #include <dev/scsipi/scsi_all.h>
98 #include <dev/scsipi/scsi_spc.h>
99 #include <dev/scsipi/scsipi_disk.h>
100 #include <dev/scsipi/scsi_disk.h>
101 #include <dev/scsipi/scsiconf.h>
102 
103 #include <dev/ic/mfireg.h>
104 #include <dev/ic/mfivar.h>
105 #include <dev/ic/mfiio.h>
106 
107 #if NBIO > 0
108 #include <dev/biovar.h>
109 #endif /* NBIO > 0 */
110 
111 #ifdef MFI_DEBUG
112 uint32_t	mfi_debug = 0
113 /*		    | MFI_D_CMD  */
114 /*		    | MFI_D_INTR */
115 /*		    | MFI_D_MISC */
116 /*		    | MFI_D_DMA */
117 /*		    | MFI_D_IOCTL */
118 /*		    | MFI_D_RW */
119 /*		    | MFI_D_MEM */
120 /*		    | MFI_D_CCB */
121 /*		    | MFI_D_SYNC */
122 		;
123 #endif
124 
125 static void		mfi_scsipi_request(struct scsipi_channel *,
126 				scsipi_adapter_req_t, void *);
127 static void		mfiminphys(struct buf *bp);
128 
129 static struct mfi_ccb	*mfi_get_ccb(struct mfi_softc *);
130 static void		mfi_put_ccb(struct mfi_ccb *);
131 static int		mfi_init_ccb(struct mfi_softc *);
132 
133 static struct mfi_mem	*mfi_allocmem(struct mfi_softc *, size_t);
134 static void		mfi_freemem(struct mfi_softc *, struct mfi_mem **);
135 
136 static int		mfi_transition_firmware(struct mfi_softc *);
137 static int		mfi_initialize_firmware(struct mfi_softc *);
138 static int		mfi_get_info(struct mfi_softc *);
139 static int		mfi_get_bbu(struct mfi_softc *,
140 			    struct mfi_bbu_status *);
141 /* return codes for mfi_get_bbu */
142 #define MFI_BBU_GOOD	0
143 #define MFI_BBU_BAD	1
144 #define MFI_BBU_UNKNOWN	2
145 static uint32_t		mfi_read(struct mfi_softc *, bus_size_t);
146 static void		mfi_write(struct mfi_softc *, bus_size_t, uint32_t);
147 static int		mfi_poll(struct mfi_ccb *);
148 static int		mfi_create_sgl(struct mfi_ccb *, int);
149 
150 /* commands */
151 static int		mfi_scsi_ld(struct mfi_ccb *, struct scsipi_xfer *);
152 static int		mfi_scsi_ld_io(struct mfi_ccb *, struct scsipi_xfer *,
153 				uint64_t, uint32_t);
154 static void		mfi_scsi_ld_done(struct mfi_ccb *);
155 static void		mfi_scsi_xs_done(struct mfi_ccb *, int, int);
156 static int		mfi_mgmt_internal(struct mfi_softc *, uint32_t,
157 			    uint32_t, uint32_t, void *, uint8_t *, bool);
158 static int		mfi_mgmt(struct mfi_ccb *,struct scsipi_xfer *,
159 			    uint32_t, uint32_t, uint32_t, void *, uint8_t *);
160 static void		mfi_mgmt_done(struct mfi_ccb *);
161 
162 #if NBIO > 0
163 static int		mfi_ioctl(device_t, u_long, void *);
164 static int		mfi_ioctl_inq(struct mfi_softc *, struct bioc_inq *);
165 static int		mfi_ioctl_vol(struct mfi_softc *, struct bioc_vol *);
166 static int		mfi_ioctl_disk(struct mfi_softc *, struct bioc_disk *);
167 static int		mfi_ioctl_alarm(struct mfi_softc *,
168 				struct bioc_alarm *);
169 static int		mfi_ioctl_blink(struct mfi_softc *sc,
170 				struct bioc_blink *);
171 static int		mfi_ioctl_setstate(struct mfi_softc *,
172 				struct bioc_setstate *);
173 static int		mfi_bio_hs(struct mfi_softc *, int, int, void *);
174 static int		mfi_create_sensors(struct mfi_softc *);
175 static int		mfi_destroy_sensors(struct mfi_softc *);
176 static void		mfi_sensor_refresh(struct sysmon_envsys *,
177 				envsys_data_t *);
178 #endif /* NBIO > 0 */
179 static bool		mfi_shutdown(device_t, int);
180 static bool		mfi_suspend(device_t, const pmf_qual_t *);
181 static bool		mfi_resume(device_t, const pmf_qual_t *);
182 
183 static dev_type_open(mfifopen);
184 static dev_type_close(mfifclose);
185 static dev_type_ioctl(mfifioctl);
186 const struct cdevsw mfi_cdevsw = {
187 	.d_open = mfifopen,
188 	.d_close = mfifclose,
189 	.d_read = noread,
190 	.d_write = nowrite,
191 	.d_ioctl = mfifioctl,
192 	.d_stop = nostop,
193 	.d_tty = notty,
194 	.d_poll = nopoll,
195 	.d_mmap = nommap,
196 	.d_kqfilter = nokqfilter,
197 	.d_discard = nodiscard,
198 	.d_flag = D_OTHER
199 };
200 
201 extern struct cfdriver mfi_cd;
202 
203 static uint32_t 	mfi_xscale_fw_state(struct mfi_softc *sc);
204 static void 		mfi_xscale_intr_ena(struct mfi_softc *sc);
205 static void 		mfi_xscale_intr_dis(struct mfi_softc *sc);
206 static int 		mfi_xscale_intr(struct mfi_softc *sc);
207 static void 		mfi_xscale_post(struct mfi_softc *sc, struct mfi_ccb *ccb);
208 
209 static const struct mfi_iop_ops mfi_iop_xscale = {
210 	mfi_xscale_fw_state,
211 	mfi_xscale_intr_dis,
212 	mfi_xscale_intr_ena,
213 	mfi_xscale_intr,
214 	mfi_xscale_post,
215 	mfi_scsi_ld_io,
216 };
217 
218 static uint32_t 	mfi_ppc_fw_state(struct mfi_softc *sc);
219 static void 		mfi_ppc_intr_ena(struct mfi_softc *sc);
220 static void 		mfi_ppc_intr_dis(struct mfi_softc *sc);
221 static int 		mfi_ppc_intr(struct mfi_softc *sc);
222 static void 		mfi_ppc_post(struct mfi_softc *sc, struct mfi_ccb *ccb);
223 
224 static const struct mfi_iop_ops mfi_iop_ppc = {
225 	mfi_ppc_fw_state,
226 	mfi_ppc_intr_dis,
227 	mfi_ppc_intr_ena,
228 	mfi_ppc_intr,
229 	mfi_ppc_post,
230 	mfi_scsi_ld_io,
231 };
232 
233 uint32_t	mfi_gen2_fw_state(struct mfi_softc *sc);
234 void		mfi_gen2_intr_ena(struct mfi_softc *sc);
235 void		mfi_gen2_intr_dis(struct mfi_softc *sc);
236 int		mfi_gen2_intr(struct mfi_softc *sc);
237 void		mfi_gen2_post(struct mfi_softc *sc, struct mfi_ccb *ccb);
238 
239 static const struct mfi_iop_ops mfi_iop_gen2 = {
240 	mfi_gen2_fw_state,
241 	mfi_gen2_intr_dis,
242 	mfi_gen2_intr_ena,
243 	mfi_gen2_intr,
244 	mfi_gen2_post,
245 	mfi_scsi_ld_io,
246 };
247 
248 u_int32_t	mfi_skinny_fw_state(struct mfi_softc *);
249 void		mfi_skinny_intr_dis(struct mfi_softc *);
250 void		mfi_skinny_intr_ena(struct mfi_softc *);
251 int		mfi_skinny_intr(struct mfi_softc *);
252 void		mfi_skinny_post(struct mfi_softc *, struct mfi_ccb *);
253 
254 static const struct mfi_iop_ops mfi_iop_skinny = {
255 	mfi_skinny_fw_state,
256 	mfi_skinny_intr_dis,
257 	mfi_skinny_intr_ena,
258 	mfi_skinny_intr,
259 	mfi_skinny_post,
260 	mfi_scsi_ld_io,
261 };
262 
263 static int	mfi_tbolt_init_desc_pool(struct mfi_softc *);
264 static int	mfi_tbolt_init_MFI_queue(struct mfi_softc *);
265 static void	mfi_tbolt_build_mpt_ccb(struct mfi_ccb *);
266 int		mfi_tbolt_scsi_ld_io(struct mfi_ccb *, struct scsipi_xfer *,
267 		    uint64_t, uint32_t);
268 static void	mfi_tbolt_scsi_ld_done(struct mfi_ccb *);
269 static int	mfi_tbolt_create_sgl(struct mfi_ccb *, int);
270 void		mfi_tbolt_sync_map_info(struct work *, void *);
271 static void	mfi_sync_map_complete(struct mfi_ccb *);
272 
273 u_int32_t	mfi_tbolt_fw_state(struct mfi_softc *);
274 void		mfi_tbolt_intr_dis(struct mfi_softc *);
275 void		mfi_tbolt_intr_ena(struct mfi_softc *);
276 int		mfi_tbolt_intr(struct mfi_softc *sc);
277 void		mfi_tbolt_post(struct mfi_softc *, struct mfi_ccb *);
278 
279 static const struct mfi_iop_ops mfi_iop_tbolt = {
280 	mfi_tbolt_fw_state,
281 	mfi_tbolt_intr_dis,
282 	mfi_tbolt_intr_ena,
283 	mfi_tbolt_intr,
284 	mfi_tbolt_post,
285 	mfi_tbolt_scsi_ld_io,
286 };
287 
288 #define mfi_fw_state(_s) 	((_s)->sc_iop->mio_fw_state(_s))
289 #define mfi_intr_enable(_s) 	((_s)->sc_iop->mio_intr_ena(_s))
290 #define mfi_intr_disable(_s) 	((_s)->sc_iop->mio_intr_dis(_s))
291 #define mfi_my_intr(_s) 	((_s)->sc_iop->mio_intr(_s))
292 #define mfi_post(_s, _c) 	((_s)->sc_iop->mio_post((_s), (_c)))
293 
294 static struct mfi_ccb *
295 mfi_get_ccb(struct mfi_softc *sc)
296 {
297 	struct mfi_ccb		*ccb;
298 	int			s;
299 
300 	s = splbio();
301 	ccb = TAILQ_FIRST(&sc->sc_ccb_freeq);
302 	if (ccb) {
303 		TAILQ_REMOVE(&sc->sc_ccb_freeq, ccb, ccb_link);
304 		ccb->ccb_state = MFI_CCB_READY;
305 	}
306 	splx(s);
307 
308 	DNPRINTF(MFI_D_CCB, "%s: mfi_get_ccb: %p\n", DEVNAME(sc), ccb);
309 	if (__predict_false(ccb == NULL && sc->sc_running))
310 		aprint_error_dev(sc->sc_dev, "out of ccb\n");
311 
312 	return ccb;
313 }
314 
315 static void
316 mfi_put_ccb(struct mfi_ccb *ccb)
317 {
318 	struct mfi_softc	*sc = ccb->ccb_sc;
319 	struct mfi_frame_header	*hdr = &ccb->ccb_frame->mfr_header;
320 	int			s;
321 
322 	DNPRINTF(MFI_D_CCB, "%s: mfi_put_ccb: %p\n", DEVNAME(sc), ccb);
323 
324 	hdr->mfh_cmd_status = 0x0;
325 	hdr->mfh_flags = 0x0;
326 	ccb->ccb_state = MFI_CCB_FREE;
327 	ccb->ccb_xs = NULL;
328 	ccb->ccb_flags = 0;
329 	ccb->ccb_done = NULL;
330 	ccb->ccb_direction = 0;
331 	ccb->ccb_frame_size = 0;
332 	ccb->ccb_extra_frames = 0;
333 	ccb->ccb_sgl = NULL;
334 	ccb->ccb_data = NULL;
335 	ccb->ccb_len = 0;
336 	if (sc->sc_ioptype == MFI_IOP_TBOLT) {
337 		/* erase tb_request_desc but preserve SMID */
338 		int index = ccb->ccb_tb_request_desc.header.SMID;
339 		ccb->ccb_tb_request_desc.words = 0;
340 		ccb->ccb_tb_request_desc.header.SMID = index;
341 	}
342 	s = splbio();
343 	TAILQ_INSERT_TAIL(&sc->sc_ccb_freeq, ccb, ccb_link);
344 	splx(s);
345 }
346 
347 static int
348 mfi_destroy_ccb(struct mfi_softc *sc)
349 {
350 	struct mfi_ccb		*ccb;
351 	uint32_t		i;
352 
353 	DNPRINTF(MFI_D_CCB, "%s: mfi_destroy_ccb\n", DEVNAME(sc));
354 
355 
356 	for (i = 0; (ccb = mfi_get_ccb(sc)) != NULL; i++) {
357 		/* create a dma map for transfer */
358 		bus_dmamap_destroy(sc->sc_datadmat, ccb->ccb_dmamap);
359 	}
360 
361 	if (i < sc->sc_max_cmds)
362 		return EBUSY;
363 
364 	free(sc->sc_ccb, M_DEVBUF);
365 
366 	return 0;
367 }
368 
369 static int
370 mfi_init_ccb(struct mfi_softc *sc)
371 {
372 	struct mfi_ccb		*ccb;
373 	uint32_t		i;
374 	int			error;
375 	bus_addr_t		io_req_base_phys;
376 	uint8_t			*io_req_base;
377 	int offset;
378 
379 	DNPRINTF(MFI_D_CCB, "%s: mfi_init_ccb\n", DEVNAME(sc));
380 
381 	sc->sc_ccb = malloc(sizeof(struct mfi_ccb) * sc->sc_max_cmds,
382 	    M_DEVBUF, M_WAITOK|M_ZERO);
383 	if (sc->sc_ioptype == MFI_IOP_TBOLT) {
384 		/*
385 		 * The first 256 bytes (SMID 0) is not used.
386 		 * Don't add to the cmd list.
387 		 */
388 		io_req_base = (uint8_t *)MFIMEM_KVA(sc->sc_tbolt_reqmsgpool) +
389 		    MEGASAS_THUNDERBOLT_NEW_MSG_SIZE;
390 		io_req_base_phys = MFIMEM_DVA(sc->sc_tbolt_reqmsgpool) +
391 		    MEGASAS_THUNDERBOLT_NEW_MSG_SIZE;
392 	} else {
393 		io_req_base = NULL;	/* XXX: gcc */
394 		io_req_base_phys = 0;	/* XXX: gcc */
395 	}
396 
397 	for (i = 0; i < sc->sc_max_cmds; i++) {
398 		ccb = &sc->sc_ccb[i];
399 
400 		ccb->ccb_sc = sc;
401 
402 		/* select i'th frame */
403 		ccb->ccb_frame = (union mfi_frame *)
404 		    ((char*)MFIMEM_KVA(sc->sc_frames) + sc->sc_frames_size * i);
405 		ccb->ccb_pframe =
406 		    MFIMEM_DVA(sc->sc_frames) + sc->sc_frames_size * i;
407 		ccb->ccb_frame->mfr_header.mfh_context = i;
408 
409 		/* select i'th sense */
410 		ccb->ccb_sense = (struct mfi_sense *)
411 		    ((char*)MFIMEM_KVA(sc->sc_sense) + MFI_SENSE_SIZE * i);
412 		ccb->ccb_psense =
413 		    (MFIMEM_DVA(sc->sc_sense) + MFI_SENSE_SIZE * i);
414 
415 		/* create a dma map for transfer */
416 		error = bus_dmamap_create(sc->sc_datadmat,
417 		    MAXPHYS, sc->sc_max_sgl, MAXPHYS, 0,
418 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ccb->ccb_dmamap);
419 		if (error) {
420 			aprint_error_dev(sc->sc_dev,
421 			    "cannot create ccb dmamap (%d)\n", error);
422 			goto destroy;
423 		}
424 		if (sc->sc_ioptype == MFI_IOP_TBOLT) {
425 			offset = MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * i;
426 			ccb->ccb_tb_io_request =
427 			    (struct mfi_mpi2_request_raid_scsi_io *)
428 			    (io_req_base + offset);
429 			ccb->ccb_tb_pio_request =
430 			    io_req_base_phys + offset;
431 			offset = MEGASAS_MAX_SZ_CHAIN_FRAME * i;
432 			ccb->ccb_tb_sg_frame =
433 			    (mpi2_sge_io_union *)(sc->sc_reply_pool_limit +
434 			    offset);
435 			ccb->ccb_tb_psg_frame = sc->sc_sg_frame_busaddr +
436 			    offset;
437 			/* SMID 0 is reserved. Set SMID/index from 1 */
438 			ccb->ccb_tb_request_desc.header.SMID = i + 1;
439 		}
440 
441 		DNPRINTF(MFI_D_CCB,
442 		    "ccb(%d): %p frame: %#lx (%#lx) sense: %#lx (%#lx) map: %#lx\n",
443 		    ccb->ccb_frame->mfr_header.mfh_context, ccb,
444 		    (u_long)ccb->ccb_frame, (u_long)ccb->ccb_pframe,
445 		    (u_long)ccb->ccb_sense, (u_long)ccb->ccb_psense,
446 		    (u_long)ccb->ccb_dmamap);
447 
448 		/* add ccb to queue */
449 		mfi_put_ccb(ccb);
450 	}
451 
452 	return 0;
453 destroy:
454 	/* free dma maps and ccb memory */
455 	while (i) {
456 		i--;
457 		ccb = &sc->sc_ccb[i];
458 		bus_dmamap_destroy(sc->sc_datadmat, ccb->ccb_dmamap);
459 	}
460 
461 	free(sc->sc_ccb, M_DEVBUF);
462 
463 	return 1;
464 }
465 
466 static uint32_t
467 mfi_read(struct mfi_softc *sc, bus_size_t r)
468 {
469 	uint32_t rv;
470 
471 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4,
472 	    BUS_SPACE_BARRIER_READ);
473 	rv = bus_space_read_4(sc->sc_iot, sc->sc_ioh, r);
474 
475 	DNPRINTF(MFI_D_RW, "%s: mr 0x%lx 0x08%x ", DEVNAME(sc), (u_long)r, rv);
476 	return rv;
477 }
478 
479 static void
480 mfi_write(struct mfi_softc *sc, bus_size_t r, uint32_t v)
481 {
482 	DNPRINTF(MFI_D_RW, "%s: mw 0x%lx 0x%08x", DEVNAME(sc), (u_long)r, v);
483 
484 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, r, v);
485 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4,
486 	    BUS_SPACE_BARRIER_WRITE);
487 }
488 
489 static struct mfi_mem *
490 mfi_allocmem(struct mfi_softc *sc, size_t size)
491 {
492 	struct mfi_mem		*mm;
493 	int			nsegs;
494 
495 	DNPRINTF(MFI_D_MEM, "%s: mfi_allocmem: %ld\n", DEVNAME(sc),
496 	    (long)size);
497 
498 	mm = malloc(sizeof(struct mfi_mem), M_DEVBUF, M_NOWAIT|M_ZERO);
499 	if (mm == NULL)
500 		return NULL;
501 
502 	mm->am_size = size;
503 
504 	if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
505 	    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &mm->am_map) != 0)
506 		goto amfree;
507 
508 	if (bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &mm->am_seg, 1,
509 	    &nsegs, BUS_DMA_NOWAIT) != 0)
510 		goto destroy;
511 
512 	if (bus_dmamem_map(sc->sc_dmat, &mm->am_seg, nsegs, size, &mm->am_kva,
513 	    BUS_DMA_NOWAIT) != 0)
514 		goto free;
515 
516 	if (bus_dmamap_load(sc->sc_dmat, mm->am_map, mm->am_kva, size, NULL,
517 	    BUS_DMA_NOWAIT) != 0)
518 		goto unmap;
519 
520 	DNPRINTF(MFI_D_MEM, "  kva: %p  dva: %p  map: %p\n",
521 	    mm->am_kva, (void *)mm->am_map->dm_segs[0].ds_addr, mm->am_map);
522 
523 	memset(mm->am_kva, 0, size);
524 	return mm;
525 
526 unmap:
527 	bus_dmamem_unmap(sc->sc_dmat, mm->am_kva, size);
528 free:
529 	bus_dmamem_free(sc->sc_dmat, &mm->am_seg, 1);
530 destroy:
531 	bus_dmamap_destroy(sc->sc_dmat, mm->am_map);
532 amfree:
533 	free(mm, M_DEVBUF);
534 
535 	return NULL;
536 }
537 
538 static void
539 mfi_freemem(struct mfi_softc *sc, struct mfi_mem **mmp)
540 {
541 	struct mfi_mem *mm = *mmp;
542 
543 	if (mm == NULL)
544 		return;
545 
546 	*mmp = NULL;
547 
548 	DNPRINTF(MFI_D_MEM, "%s: mfi_freemem: %p\n", DEVNAME(sc), mm);
549 
550 	bus_dmamap_unload(sc->sc_dmat, mm->am_map);
551 	bus_dmamem_unmap(sc->sc_dmat, mm->am_kva, mm->am_size);
552 	bus_dmamem_free(sc->sc_dmat, &mm->am_seg, 1);
553 	bus_dmamap_destroy(sc->sc_dmat, mm->am_map);
554 	free(mm, M_DEVBUF);
555 }
556 
557 static int
558 mfi_transition_firmware(struct mfi_softc *sc)
559 {
560 	uint32_t		fw_state, cur_state;
561 	int			max_wait, i;
562 
563 	fw_state = mfi_fw_state(sc) & MFI_STATE_MASK;
564 
565 	DNPRINTF(MFI_D_CMD, "%s: mfi_transition_firmware: %#x\n", DEVNAME(sc),
566 	    fw_state);
567 
568 	while (fw_state != MFI_STATE_READY) {
569 		DNPRINTF(MFI_D_MISC,
570 		    "%s: waiting for firmware to become ready\n",
571 		    DEVNAME(sc));
572 		cur_state = fw_state;
573 		switch (fw_state) {
574 		case MFI_STATE_FAULT:
575 			aprint_error_dev(sc->sc_dev, "firmware fault\n");
576 			return 1;
577 		case MFI_STATE_WAIT_HANDSHAKE:
578 			if (sc->sc_ioptype == MFI_IOP_SKINNY ||
579 			    sc->sc_ioptype == MFI_IOP_TBOLT)
580 				mfi_write(sc, MFI_SKINNY_IDB, MFI_INIT_CLEAR_HANDSHAKE);
581 			else
582 				mfi_write(sc, MFI_IDB, MFI_INIT_CLEAR_HANDSHAKE);
583 			max_wait = 2;
584 			break;
585 		case MFI_STATE_OPERATIONAL:
586 			if (sc->sc_ioptype == MFI_IOP_SKINNY ||
587 			    sc->sc_ioptype == MFI_IOP_TBOLT)
588 				mfi_write(sc, MFI_SKINNY_IDB, MFI_INIT_READY);
589 			else
590 				mfi_write(sc, MFI_IDB, MFI_INIT_READY);
591 			max_wait = 10;
592 			break;
593 		case MFI_STATE_UNDEFINED:
594 		case MFI_STATE_BB_INIT:
595 			max_wait = 2;
596 			break;
597 		case MFI_STATE_FW_INIT:
598 		case MFI_STATE_DEVICE_SCAN:
599 		case MFI_STATE_FLUSH_CACHE:
600 			max_wait = 20;
601 			break;
602 		case MFI_STATE_BOOT_MESSAGE_PENDING:
603 			if (sc->sc_ioptype == MFI_IOP_SKINNY ||
604 			    sc->sc_ioptype == MFI_IOP_TBOLT) {
605 				mfi_write(sc, MFI_SKINNY_IDB, MFI_INIT_HOTPLUG);
606 			} else {
607 				mfi_write(sc, MFI_IDB, MFI_INIT_HOTPLUG);
608 			}
609 			max_wait = 180;
610 			break;
611 		default:
612 			aprint_error_dev(sc->sc_dev,
613 			    "unknown firmware state %d\n", fw_state);
614 			return 1;
615 		}
616 		for (i = 0; i < (max_wait * 10); i++) {
617 			fw_state = mfi_fw_state(sc) & MFI_STATE_MASK;
618 			if (fw_state == cur_state)
619 				DELAY(100000);
620 			else
621 				break;
622 		}
623 		if (fw_state == cur_state) {
624 			aprint_error_dev(sc->sc_dev,
625 			    "firmware stuck in state %#x\n", fw_state);
626 			return 1;
627 		}
628 	}
629 
630 	return 0;
631 }
632 
633 static int
634 mfi_initialize_firmware(struct mfi_softc *sc)
635 {
636 	struct mfi_ccb		*ccb;
637 	struct mfi_init_frame	*init;
638 	struct mfi_init_qinfo	*qinfo;
639 
640 	DNPRINTF(MFI_D_MISC, "%s: mfi_initialize_firmware\n", DEVNAME(sc));
641 
642 	if ((ccb = mfi_get_ccb(sc)) == NULL)
643 		return 1;
644 
645 	init = &ccb->ccb_frame->mfr_init;
646 	qinfo = (struct mfi_init_qinfo *)((uint8_t *)init + MFI_FRAME_SIZE);
647 
648 	memset(qinfo, 0, sizeof *qinfo);
649 	qinfo->miq_rq_entries = sc->sc_max_cmds + 1;
650 	qinfo->miq_rq_addr_lo = htole32(MFIMEM_DVA(sc->sc_pcq) +
651 	    offsetof(struct mfi_prod_cons, mpc_reply_q));
652 	qinfo->miq_pi_addr_lo = htole32(MFIMEM_DVA(sc->sc_pcq) +
653 	    offsetof(struct mfi_prod_cons, mpc_producer));
654 	qinfo->miq_ci_addr_lo = htole32(MFIMEM_DVA(sc->sc_pcq) +
655 	    offsetof(struct mfi_prod_cons, mpc_consumer));
656 
657 	init->mif_header.mfh_cmd = MFI_CMD_INIT;
658 	init->mif_header.mfh_data_len = sizeof *qinfo;
659 	init->mif_qinfo_new_addr_lo = htole32(ccb->ccb_pframe + MFI_FRAME_SIZE);
660 
661 	DNPRINTF(MFI_D_MISC, "%s: entries: %#x rq: %#x pi: %#x ci: %#x\n",
662 	    DEVNAME(sc),
663 	    qinfo->miq_rq_entries, qinfo->miq_rq_addr_lo,
664 	    qinfo->miq_pi_addr_lo, qinfo->miq_ci_addr_lo);
665 
666 	if (mfi_poll(ccb)) {
667 		aprint_error_dev(sc->sc_dev,
668 		    "mfi_initialize_firmware failed\n");
669 		return 1;
670 	}
671 
672 	mfi_put_ccb(ccb);
673 
674 	return 0;
675 }
676 
677 static int
678 mfi_get_info(struct mfi_softc *sc)
679 {
680 #ifdef MFI_DEBUG
681 	int i;
682 #endif
683 	DNPRINTF(MFI_D_MISC, "%s: mfi_get_info\n", DEVNAME(sc));
684 
685 	if (mfi_mgmt_internal(sc, MR_DCMD_CTRL_GET_INFO, MFI_DATA_IN,
686 	    sizeof(sc->sc_info), &sc->sc_info, NULL, cold ? true : false))
687 		return 1;
688 
689 #ifdef MFI_DEBUG
690 
691 	for (i = 0; i < sc->sc_info.mci_image_component_count; i++) {
692 		printf("%s: active FW %s Version %s date %s time %s\n",
693 		    DEVNAME(sc),
694 		    sc->sc_info.mci_image_component[i].mic_name,
695 		    sc->sc_info.mci_image_component[i].mic_version,
696 		    sc->sc_info.mci_image_component[i].mic_build_date,
697 		    sc->sc_info.mci_image_component[i].mic_build_time);
698 	}
699 
700 	for (i = 0; i < sc->sc_info.mci_pending_image_component_count; i++) {
701 		printf("%s: pending FW %s Version %s date %s time %s\n",
702 		    DEVNAME(sc),
703 		    sc->sc_info.mci_pending_image_component[i].mic_name,
704 		    sc->sc_info.mci_pending_image_component[i].mic_version,
705 		    sc->sc_info.mci_pending_image_component[i].mic_build_date,
706 		    sc->sc_info.mci_pending_image_component[i].mic_build_time);
707 	}
708 
709 	printf("%s: max_arms %d max_spans %d max_arrs %d max_lds %d name %s\n",
710 	    DEVNAME(sc),
711 	    sc->sc_info.mci_max_arms,
712 	    sc->sc_info.mci_max_spans,
713 	    sc->sc_info.mci_max_arrays,
714 	    sc->sc_info.mci_max_lds,
715 	    sc->sc_info.mci_product_name);
716 
717 	printf("%s: serial %s present %#x fw time %d max_cmds %d max_sg %d\n",
718 	    DEVNAME(sc),
719 	    sc->sc_info.mci_serial_number,
720 	    sc->sc_info.mci_hw_present,
721 	    sc->sc_info.mci_current_fw_time,
722 	    sc->sc_info.mci_max_cmds,
723 	    sc->sc_info.mci_max_sg_elements);
724 
725 	printf("%s: max_rq %d lds_pres %d lds_deg %d lds_off %d pd_pres %d\n",
726 	    DEVNAME(sc),
727 	    sc->sc_info.mci_max_request_size,
728 	    sc->sc_info.mci_lds_present,
729 	    sc->sc_info.mci_lds_degraded,
730 	    sc->sc_info.mci_lds_offline,
731 	    sc->sc_info.mci_pd_present);
732 
733 	printf("%s: pd_dsk_prs %d pd_dsk_pred_fail %d pd_dsk_fail %d\n",
734 	    DEVNAME(sc),
735 	    sc->sc_info.mci_pd_disks_present,
736 	    sc->sc_info.mci_pd_disks_pred_failure,
737 	    sc->sc_info.mci_pd_disks_failed);
738 
739 	printf("%s: nvram %d mem %d flash %d\n",
740 	    DEVNAME(sc),
741 	    sc->sc_info.mci_nvram_size,
742 	    sc->sc_info.mci_memory_size,
743 	    sc->sc_info.mci_flash_size);
744 
745 	printf("%s: ram_cor %d ram_uncor %d clus_all %d clus_act %d\n",
746 	    DEVNAME(sc),
747 	    sc->sc_info.mci_ram_correctable_errors,
748 	    sc->sc_info.mci_ram_uncorrectable_errors,
749 	    sc->sc_info.mci_cluster_allowed,
750 	    sc->sc_info.mci_cluster_active);
751 
752 	printf("%s: max_strps_io %d raid_lvl %#x adapt_ops %#x ld_ops %#x\n",
753 	    DEVNAME(sc),
754 	    sc->sc_info.mci_max_strips_per_io,
755 	    sc->sc_info.mci_raid_levels,
756 	    sc->sc_info.mci_adapter_ops,
757 	    sc->sc_info.mci_ld_ops);
758 
759 	printf("%s: strp_sz_min %d strp_sz_max %d pd_ops %#x pd_mix %#x\n",
760 	    DEVNAME(sc),
761 	    sc->sc_info.mci_stripe_sz_ops.min,
762 	    sc->sc_info.mci_stripe_sz_ops.max,
763 	    sc->sc_info.mci_pd_ops,
764 	    sc->sc_info.mci_pd_mix_support);
765 
766 	printf("%s: ecc_bucket %d pckg_prop %s\n",
767 	    DEVNAME(sc),
768 	    sc->sc_info.mci_ecc_bucket_count,
769 	    sc->sc_info.mci_package_version);
770 
771 	printf("%s: sq_nm %d prd_fail_poll %d intr_thrtl %d intr_thrtl_to %d\n",
772 	    DEVNAME(sc),
773 	    sc->sc_info.mci_properties.mcp_seq_num,
774 	    sc->sc_info.mci_properties.mcp_pred_fail_poll_interval,
775 	    sc->sc_info.mci_properties.mcp_intr_throttle_cnt,
776 	    sc->sc_info.mci_properties.mcp_intr_throttle_timeout);
777 
778 	printf("%s: rbld_rate %d patr_rd_rate %d bgi_rate %d cc_rate %d\n",
779 	    DEVNAME(sc),
780 	    sc->sc_info.mci_properties.mcp_rebuild_rate,
781 	    sc->sc_info.mci_properties.mcp_patrol_read_rate,
782 	    sc->sc_info.mci_properties.mcp_bgi_rate,
783 	    sc->sc_info.mci_properties.mcp_cc_rate);
784 
785 	printf("%s: rc_rate %d ch_flsh %d spin_cnt %d spin_dly %d clus_en %d\n",
786 	    DEVNAME(sc),
787 	    sc->sc_info.mci_properties.mcp_recon_rate,
788 	    sc->sc_info.mci_properties.mcp_cache_flush_interval,
789 	    sc->sc_info.mci_properties.mcp_spinup_drv_cnt,
790 	    sc->sc_info.mci_properties.mcp_spinup_delay,
791 	    sc->sc_info.mci_properties.mcp_cluster_enable);
792 
793 	printf("%s: coerc %d alarm %d dis_auto_rbld %d dis_bat_wrn %d ecc %d\n",
794 	    DEVNAME(sc),
795 	    sc->sc_info.mci_properties.mcp_coercion_mode,
796 	    sc->sc_info.mci_properties.mcp_alarm_enable,
797 	    sc->sc_info.mci_properties.mcp_disable_auto_rebuild,
798 	    sc->sc_info.mci_properties.mcp_disable_battery_warn,
799 	    sc->sc_info.mci_properties.mcp_ecc_bucket_size);
800 
801 	printf("%s: ecc_leak %d rest_hs %d exp_encl_dev %d\n",
802 	    DEVNAME(sc),
803 	    sc->sc_info.mci_properties.mcp_ecc_bucket_leak_rate,
804 	    sc->sc_info.mci_properties.mcp_restore_hotspare_on_insertion,
805 	    sc->sc_info.mci_properties.mcp_expose_encl_devices);
806 
807 	printf("%s: vendor %#x device %#x subvendor %#x subdevice %#x\n",
808 	    DEVNAME(sc),
809 	    sc->sc_info.mci_pci.mip_vendor,
810 	    sc->sc_info.mci_pci.mip_device,
811 	    sc->sc_info.mci_pci.mip_subvendor,
812 	    sc->sc_info.mci_pci.mip_subdevice);
813 
814 	printf("%s: type %#x port_count %d port_addr ",
815 	    DEVNAME(sc),
816 	    sc->sc_info.mci_host.mih_type,
817 	    sc->sc_info.mci_host.mih_port_count);
818 
819 	for (i = 0; i < 8; i++)
820 		printf("%.0" PRIx64 " ", sc->sc_info.mci_host.mih_port_addr[i]);
821 	printf("\n");
822 
823 	printf("%s: type %.x port_count %d port_addr ",
824 	    DEVNAME(sc),
825 	    sc->sc_info.mci_device.mid_type,
826 	    sc->sc_info.mci_device.mid_port_count);
827 
828 	for (i = 0; i < 8; i++) {
829 		printf("%.0" PRIx64 " ",
830 		    sc->sc_info.mci_device.mid_port_addr[i]);
831 	}
832 	printf("\n");
833 #endif /* MFI_DEBUG */
834 
835 	return 0;
836 }
837 
838 static int
839 mfi_get_bbu(struct mfi_softc *sc, struct mfi_bbu_status *stat)
840 {
841 	DNPRINTF(MFI_D_MISC, "%s: mfi_get_bbu\n", DEVNAME(sc));
842 
843 	if (mfi_mgmt_internal(sc, MR_DCMD_BBU_GET_STATUS, MFI_DATA_IN,
844 	    sizeof(*stat), stat, NULL, cold ? true : false))
845 		return MFI_BBU_UNKNOWN;
846 #ifdef MFI_DEBUG
847 	printf("bbu type %d, voltage %d, current %d, temperature %d, "
848 	    "status 0x%x\n", stat->battery_type, stat->voltage, stat->current,
849 	    stat->temperature, stat->fw_status);
850 	printf("details: ");
851 	switch(stat->battery_type) {
852 	case MFI_BBU_TYPE_IBBU:
853 		printf("guage %d relative charge %d charger state %d "
854 		    "charger ctrl %d\n", stat->detail.ibbu.gas_guage_status,
855 		    stat->detail.ibbu.relative_charge ,
856 		    stat->detail.ibbu.charger_system_state ,
857 		    stat->detail.ibbu.charger_system_ctrl);
858 		printf("\tcurrent %d abs charge %d max error %d\n",
859 		    stat->detail.ibbu.charging_current ,
860 		    stat->detail.ibbu.absolute_charge ,
861 		    stat->detail.ibbu.max_error);
862 		break;
863 	case MFI_BBU_TYPE_BBU:
864 		printf("guage %d relative charge %d charger state %d\n",
865 		    stat->detail.ibbu.gas_guage_status,
866 		    stat->detail.bbu.relative_charge ,
867 		    stat->detail.bbu.charger_status );
868 		printf("\trem capacity %d fyll capacity %d SOH %d\n",
869 		    stat->detail.bbu.remaining_capacity ,
870 		    stat->detail.bbu.full_charge_capacity ,
871 		    stat->detail.bbu.is_SOH_good);
872 	default:
873 		printf("\n");
874 	}
875 #endif
876 	switch(stat->battery_type) {
877 	case MFI_BBU_TYPE_BBU:
878 		return (stat->detail.bbu.is_SOH_good ?
879 		    MFI_BBU_GOOD : MFI_BBU_BAD);
880 	case MFI_BBU_TYPE_NONE:
881 		return MFI_BBU_UNKNOWN;
882 	default:
883 		if (stat->fw_status &
884 		    (MFI_BBU_STATE_PACK_MISSING |
885 		     MFI_BBU_STATE_VOLTAGE_LOW |
886 		     MFI_BBU_STATE_TEMPERATURE_HIGH |
887 		     MFI_BBU_STATE_LEARN_CYC_FAIL |
888 		     MFI_BBU_STATE_LEARN_CYC_TIMEOUT |
889 		     MFI_BBU_STATE_I2C_ERR_DETECT))
890 			return MFI_BBU_BAD;
891 		return MFI_BBU_GOOD;
892 	}
893 }
894 
895 static void
896 mfiminphys(struct buf *bp)
897 {
898 	DNPRINTF(MFI_D_MISC, "mfiminphys: %d\n", bp->b_bcount);
899 
900 	/* XXX currently using MFI_MAXFER = MAXPHYS */
901 	if (bp->b_bcount > MFI_MAXFER)
902 		bp->b_bcount = MFI_MAXFER;
903 	minphys(bp);
904 }
905 
906 int
907 mfi_rescan(device_t self, const char *ifattr, const int *locators)
908 {
909 	struct mfi_softc *sc = device_private(self);
910 
911 	if (sc->sc_child != NULL)
912 		return 0;
913 
914 	sc->sc_child = config_found_sm_loc(self, ifattr, locators, &sc->sc_chan,
915 	    scsiprint, NULL);
916 
917 	return 0;
918 }
919 
920 void
921 mfi_childdetached(device_t self, device_t child)
922 {
923 	struct mfi_softc *sc = device_private(self);
924 
925 	KASSERT(self == sc->sc_dev);
926 	KASSERT(child == sc->sc_child);
927 
928 	if (child == sc->sc_child)
929 		sc->sc_child = NULL;
930 }
931 
932 int
933 mfi_detach(struct mfi_softc *sc, int flags)
934 {
935 	int			error;
936 
937 	DNPRINTF(MFI_D_MISC, "%s: mfi_detach\n", DEVNAME(sc));
938 
939 	if ((error = config_detach_children(sc->sc_dev, flags)) != 0)
940 		return error;
941 
942 #if NBIO > 0
943 	mfi_destroy_sensors(sc);
944 	bio_unregister(sc->sc_dev);
945 #endif /* NBIO > 0 */
946 
947 	mfi_intr_disable(sc);
948 	mfi_shutdown(sc->sc_dev, 0);
949 
950 	if (sc->sc_ioptype == MFI_IOP_TBOLT) {
951 		workqueue_destroy(sc->sc_ldsync_wq);
952 		mfi_put_ccb(sc->sc_ldsync_ccb);
953 		mfi_freemem(sc, &sc->sc_tbolt_reqmsgpool);
954 		mfi_freemem(sc, &sc->sc_tbolt_ioc_init);
955 		mfi_freemem(sc, &sc->sc_tbolt_verbuf);
956 	}
957 
958 	if ((error = mfi_destroy_ccb(sc)) != 0)
959 		return error;
960 
961 	mfi_freemem(sc, &sc->sc_sense);
962 
963 	mfi_freemem(sc, &sc->sc_frames);
964 
965 	mfi_freemem(sc, &sc->sc_pcq);
966 
967 	return 0;
968 }
969 
970 static bool
971 mfi_shutdown(device_t dev, int how)
972 {
973 	struct mfi_softc	*sc = device_private(dev);
974 	uint8_t			mbox[MFI_MBOX_SIZE];
975 	int s = splbio();
976 	DNPRINTF(MFI_D_MISC, "%s: mfi_shutdown\n", DEVNAME(sc));
977 	if (sc->sc_running) {
978 		mbox[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
979 		if (mfi_mgmt_internal(sc, MR_DCMD_CTRL_CACHE_FLUSH,
980 		    MFI_DATA_NONE, 0, NULL, mbox, true)) {
981 			aprint_error_dev(dev, "shutdown: cache flush failed\n");
982 			goto fail;
983 		}
984 
985 		mbox[0] = 0;
986 		if (mfi_mgmt_internal(sc, MR_DCMD_CTRL_SHUTDOWN,
987 		    MFI_DATA_NONE, 0, NULL, mbox, true)) {
988 			aprint_error_dev(dev, "shutdown: "
989 			    "firmware shutdown failed\n");
990 			goto fail;
991 		}
992 		sc->sc_running = false;
993 	}
994 	splx(s);
995 	return true;
996 fail:
997 	splx(s);
998 	return false;
999 }
1000 
1001 static bool
1002 mfi_suspend(device_t dev, const pmf_qual_t *q)
1003 {
1004 	/* XXX to be implemented */
1005 	return false;
1006 }
1007 
1008 static bool
1009 mfi_resume(device_t dev, const pmf_qual_t *q)
1010 {
1011 	/* XXX to be implemented */
1012 	return false;
1013 }
1014 
1015 int
1016 mfi_attach(struct mfi_softc *sc, enum mfi_iop iop)
1017 {
1018 	struct scsipi_adapter *adapt = &sc->sc_adapt;
1019 	struct scsipi_channel *chan = &sc->sc_chan;
1020 	uint32_t		status, frames, max_sgl;
1021 	int			i;
1022 
1023 	DNPRINTF(MFI_D_MISC, "%s: mfi_attach\n", DEVNAME(sc));
1024 
1025 	sc->sc_ioptype = iop;
1026 
1027 	switch (iop) {
1028 	case MFI_IOP_XSCALE:
1029 		sc->sc_iop = &mfi_iop_xscale;
1030 		break;
1031 	case MFI_IOP_PPC:
1032 		sc->sc_iop = &mfi_iop_ppc;
1033 		break;
1034 	case MFI_IOP_GEN2:
1035 		sc->sc_iop = &mfi_iop_gen2;
1036 		break;
1037 	case MFI_IOP_SKINNY:
1038 		sc->sc_iop = &mfi_iop_skinny;
1039 		break;
1040 	case MFI_IOP_TBOLT:
1041 		sc->sc_iop = &mfi_iop_tbolt;
1042 		break;
1043 	default:
1044 		 panic("%s: unknown iop %d", DEVNAME(sc), iop);
1045 	}
1046 
1047 	if (mfi_transition_firmware(sc))
1048 		return 1;
1049 
1050 	TAILQ_INIT(&sc->sc_ccb_freeq);
1051 
1052 	status = mfi_fw_state(sc);
1053 	sc->sc_max_cmds = status & MFI_STATE_MAXCMD_MASK;
1054 	max_sgl = (status & MFI_STATE_MAXSGL_MASK) >> 16;
1055 	if (sc->sc_ioptype == MFI_IOP_TBOLT) {
1056 		sc->sc_max_sgl = min(max_sgl, (128 * 1024) / PAGE_SIZE + 1);
1057 		sc->sc_sgl_size = sizeof(struct mfi_sg_ieee);
1058 	} else if (sc->sc_64bit_dma) {
1059 		sc->sc_max_sgl = min(max_sgl, (128 * 1024) / PAGE_SIZE + 1);
1060 		sc->sc_sgl_size = sizeof(struct mfi_sg64);
1061 	} else {
1062 		sc->sc_max_sgl = max_sgl;
1063 		sc->sc_sgl_size = sizeof(struct mfi_sg32);
1064 	}
1065 	DNPRINTF(MFI_D_MISC, "%s: max commands: %u, max sgl: %u\n",
1066 	    DEVNAME(sc), sc->sc_max_cmds, sc->sc_max_sgl);
1067 
1068 	if (sc->sc_ioptype == MFI_IOP_TBOLT) {
1069 		uint32_t tb_mem_size;
1070 		/* for Alignment */
1071 		tb_mem_size = MEGASAS_THUNDERBOLT_MSG_ALLIGNMENT;
1072 
1073 		tb_mem_size +=
1074 		    MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1);
1075 		sc->sc_reply_pool_size =
1076 		    ((sc->sc_max_cmds + 1 + 15) / 16) * 16;
1077 		tb_mem_size +=
1078 		    MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size;
1079 
1080 		/* this is for SGL's */
1081 		tb_mem_size += MEGASAS_MAX_SZ_CHAIN_FRAME * sc->sc_max_cmds;
1082 		sc->sc_tbolt_reqmsgpool = mfi_allocmem(sc, tb_mem_size);
1083 		if (sc->sc_tbolt_reqmsgpool == NULL) {
1084 			aprint_error_dev(sc->sc_dev,
1085 			    "unable to allocate thunderbolt "
1086 			    "request message pool\n");
1087 			goto nopcq;
1088 		}
1089 		if (mfi_tbolt_init_desc_pool(sc)) {
1090 			aprint_error_dev(sc->sc_dev,
1091 			    "Thunderbolt pool preparation error\n");
1092 			goto nopcq;
1093 		}
1094 
1095 		/*
1096 		 * Allocate DMA memory mapping for MPI2 IOC Init descriptor,
1097 		 * we are taking it diffrent from what we have allocated for
1098 		 * Request and reply descriptors to avoid confusion later
1099 		 */
1100 		sc->sc_tbolt_ioc_init = mfi_allocmem(sc,
1101 		    sizeof(struct mpi2_ioc_init_request));
1102 		if (sc->sc_tbolt_ioc_init == NULL) {
1103 			aprint_error_dev(sc->sc_dev,
1104 			    "unable to allocate thunderbolt IOC init memory");
1105 			goto nopcq;
1106 		}
1107 
1108 		sc->sc_tbolt_verbuf = mfi_allocmem(sc,
1109 		    MEGASAS_MAX_NAME*sizeof(bus_addr_t));
1110 		if (sc->sc_tbolt_verbuf == NULL) {
1111 			aprint_error_dev(sc->sc_dev,
1112 			    "unable to allocate thunderbolt version buffer\n");
1113 			goto nopcq;
1114 		}
1115 
1116 	}
1117 	/* consumer/producer and reply queue memory */
1118 	sc->sc_pcq = mfi_allocmem(sc, (sizeof(uint32_t) * sc->sc_max_cmds) +
1119 	    sizeof(struct mfi_prod_cons));
1120 	if (sc->sc_pcq == NULL) {
1121 		aprint_error_dev(sc->sc_dev,
1122 		    "unable to allocate reply queue memory\n");
1123 		goto nopcq;
1124 	}
1125 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_pcq), 0,
1126 	    sizeof(uint32_t) * sc->sc_max_cmds + sizeof(struct mfi_prod_cons),
1127 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1128 
1129 	/* frame memory */
1130 	frames = (sc->sc_sgl_size * sc->sc_max_sgl + MFI_FRAME_SIZE - 1) /
1131 	    MFI_FRAME_SIZE + 1;
1132 	sc->sc_frames_size = frames * MFI_FRAME_SIZE;
1133 	sc->sc_frames = mfi_allocmem(sc, sc->sc_frames_size * sc->sc_max_cmds);
1134 	if (sc->sc_frames == NULL) {
1135 		aprint_error_dev(sc->sc_dev,
1136 		    "unable to allocate frame memory\n");
1137 		goto noframe;
1138 	}
1139 	/* XXX hack, fix this */
1140 	if (MFIMEM_DVA(sc->sc_frames) & 0x3f) {
1141 		aprint_error_dev(sc->sc_dev,
1142 		    "improper frame alignment (%#llx) FIXME\n",
1143 		    (long long int)MFIMEM_DVA(sc->sc_frames));
1144 		goto noframe;
1145 	}
1146 
1147 	/* sense memory */
1148 	sc->sc_sense = mfi_allocmem(sc, sc->sc_max_cmds * MFI_SENSE_SIZE);
1149 	if (sc->sc_sense == NULL) {
1150 		aprint_error_dev(sc->sc_dev,
1151 		    "unable to allocate sense memory\n");
1152 		goto nosense;
1153 	}
1154 
1155 	/* now that we have all memory bits go initialize ccbs */
1156 	if (mfi_init_ccb(sc)) {
1157 		aprint_error_dev(sc->sc_dev, "could not init ccb list\n");
1158 		goto noinit;
1159 	}
1160 
1161 	/* kickstart firmware with all addresses and pointers */
1162 	if (sc->sc_ioptype == MFI_IOP_TBOLT) {
1163 		if (mfi_tbolt_init_MFI_queue(sc)) {
1164 			aprint_error_dev(sc->sc_dev,
1165 			    "could not initialize firmware\n");
1166 			goto noinit;
1167 		}
1168 	} else {
1169 		if (mfi_initialize_firmware(sc)) {
1170 			aprint_error_dev(sc->sc_dev,
1171 			    "could not initialize firmware\n");
1172 			goto noinit;
1173 		}
1174 	}
1175 	sc->sc_running = true;
1176 
1177 	if (mfi_get_info(sc)) {
1178 		aprint_error_dev(sc->sc_dev,
1179 		    "could not retrieve controller information\n");
1180 		goto noinit;
1181 	}
1182 	aprint_normal_dev(sc->sc_dev,
1183 	    "%s version %s\n",
1184 	    sc->sc_info.mci_product_name,
1185 	    sc->sc_info.mci_package_version);
1186 
1187 
1188 	aprint_normal_dev(sc->sc_dev, "logical drives %d, %dMB RAM, ",
1189 	    sc->sc_info.mci_lds_present,
1190 	    sc->sc_info.mci_memory_size);
1191 	sc->sc_bbuok = false;
1192 	if (sc->sc_info.mci_hw_present & MFI_INFO_HW_BBU) {
1193 		struct mfi_bbu_status	bbu_stat;
1194 		int mfi_bbu_status = mfi_get_bbu(sc, &bbu_stat);
1195 		aprint_normal("BBU type ");
1196 		switch (bbu_stat.battery_type) {
1197 		case MFI_BBU_TYPE_BBU:
1198 			aprint_normal("BBU");
1199 			break;
1200 		case MFI_BBU_TYPE_IBBU:
1201 			aprint_normal("IBBU");
1202 			break;
1203 		default:
1204 			aprint_normal("unknown type %d", bbu_stat.battery_type);
1205 		}
1206 		aprint_normal(", status ");
1207 		switch(mfi_bbu_status) {
1208 		case MFI_BBU_GOOD:
1209 			aprint_normal("good\n");
1210 			sc->sc_bbuok = true;
1211 			break;
1212 		case MFI_BBU_BAD:
1213 			aprint_normal("bad\n");
1214 			break;
1215 		case MFI_BBU_UNKNOWN:
1216 			aprint_normal("unknown\n");
1217 			break;
1218 		default:
1219 			panic("mfi_bbu_status");
1220 		}
1221 	} else {
1222 		aprint_normal("BBU not present\n");
1223 	}
1224 
1225 	sc->sc_ld_cnt = sc->sc_info.mci_lds_present;
1226 	sc->sc_max_ld = sc->sc_ld_cnt;
1227 	for (i = 0; i < sc->sc_ld_cnt; i++)
1228 		sc->sc_ld[i].ld_present = 1;
1229 
1230 	memset(adapt, 0, sizeof(*adapt));
1231 	adapt->adapt_dev = sc->sc_dev;
1232 	adapt->adapt_nchannels = 1;
1233 	/* keep a few commands for management */
1234 	if (sc->sc_max_cmds > 4)
1235 		adapt->adapt_openings = sc->sc_max_cmds - 4;
1236 	else
1237 		adapt->adapt_openings = sc->sc_max_cmds;
1238 	adapt->adapt_max_periph = adapt->adapt_openings;
1239 	adapt->adapt_request = mfi_scsipi_request;
1240 	adapt->adapt_minphys = mfiminphys;
1241 
1242 	memset(chan, 0, sizeof(*chan));
1243 	chan->chan_adapter = adapt;
1244 	chan->chan_bustype = &scsi_sas_bustype;
1245 	chan->chan_channel = 0;
1246 	chan->chan_flags = 0;
1247 	chan->chan_nluns = 8;
1248 	chan->chan_ntargets = MFI_MAX_LD;
1249 	chan->chan_id = MFI_MAX_LD;
1250 
1251 	mfi_rescan(sc->sc_dev, "scsi", NULL);
1252 
1253 	/* enable interrupts */
1254 	mfi_intr_enable(sc);
1255 
1256 #if NBIO > 0
1257 	if (bio_register(sc->sc_dev, mfi_ioctl) != 0)
1258 		panic("%s: controller registration failed", DEVNAME(sc));
1259 	if (mfi_create_sensors(sc) != 0)
1260 		aprint_error_dev(sc->sc_dev, "unable to create sensors\n");
1261 #endif /* NBIO > 0 */
1262 	if (!pmf_device_register1(sc->sc_dev, mfi_suspend, mfi_resume,
1263 	    mfi_shutdown)) {
1264 		aprint_error_dev(sc->sc_dev,
1265 		    "couldn't establish power handler\n");
1266 	}
1267 
1268 	return 0;
1269 noinit:
1270 	mfi_freemem(sc, &sc->sc_sense);
1271 nosense:
1272 	mfi_freemem(sc, &sc->sc_frames);
1273 noframe:
1274 	mfi_freemem(sc, &sc->sc_pcq);
1275 nopcq:
1276 	if (sc->sc_ioptype == MFI_IOP_TBOLT) {
1277 		if (sc->sc_tbolt_reqmsgpool)
1278 			mfi_freemem(sc, &sc->sc_tbolt_reqmsgpool);
1279 		if (sc->sc_tbolt_verbuf)
1280 			mfi_freemem(sc, &sc->sc_tbolt_verbuf);
1281 	}
1282 	return 1;
1283 }
1284 
1285 static int
1286 mfi_poll(struct mfi_ccb *ccb)
1287 {
1288 	struct mfi_softc *sc = ccb->ccb_sc;
1289 	struct mfi_frame_header	*hdr;
1290 	int			to = 0;
1291 	int			rv = 0;
1292 
1293 	DNPRINTF(MFI_D_CMD, "%s: mfi_poll\n", DEVNAME(sc));
1294 
1295 	hdr = &ccb->ccb_frame->mfr_header;
1296 	hdr->mfh_cmd_status = 0xff;
1297 	if (!sc->sc_MFA_enabled)
1298 		hdr->mfh_flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
1299 
1300 	/* no callback, caller is supposed to do the cleanup */
1301 	ccb->ccb_done = NULL;
1302 
1303 	mfi_post(sc, ccb);
1304 	if (sc->sc_MFA_enabled) {
1305 		/*
1306 		 * depending on the command type, result may be posted
1307 		 * to *hdr, or not. In addition it seems there's
1308 		 * no way to avoid posting the SMID to the reply queue.
1309 		 * So pool using the interrupt routine.
1310 		 */
1311 		 while (ccb->ccb_state != MFI_CCB_DONE) {
1312 			delay(1000);
1313 			if (to++ > 5000) { /* XXX 5 seconds busywait sucks */
1314 				rv = 1;
1315 				break;
1316 			}
1317 			mfi_tbolt_intrh(sc);
1318 		 }
1319 	} else {
1320 		bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
1321 		    ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
1322 		    sc->sc_frames_size, BUS_DMASYNC_POSTREAD);
1323 
1324 		while (hdr->mfh_cmd_status == 0xff) {
1325 			delay(1000);
1326 			if (to++ > 5000) { /* XXX 5 seconds busywait sucks */
1327 				rv = 1;
1328 				break;
1329 			}
1330 			bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
1331 			    ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
1332 			    sc->sc_frames_size, BUS_DMASYNC_POSTREAD);
1333 		}
1334 	}
1335 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
1336 	    ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
1337 	    sc->sc_frames_size, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1338 
1339 	if (ccb->ccb_data != NULL) {
1340 		DNPRINTF(MFI_D_INTR, "%s: mfi_mgmt_done sync\n",
1341 		    DEVNAME(sc));
1342 		bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
1343 		    ccb->ccb_dmamap->dm_mapsize,
1344 		    (ccb->ccb_direction & MFI_DATA_IN) ?
1345 		    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1346 
1347 		bus_dmamap_unload(sc->sc_datadmat, ccb->ccb_dmamap);
1348 	}
1349 
1350 	if (rv != 0) {
1351 		aprint_error_dev(sc->sc_dev, "timeout on ccb %d\n",
1352 		    hdr->mfh_context);
1353 		ccb->ccb_flags |= MFI_CCB_F_ERR;
1354 		return 1;
1355 	}
1356 
1357 	return 0;
1358 }
1359 
1360 int
1361 mfi_intr(void *arg)
1362 {
1363 	struct mfi_softc	*sc = arg;
1364 	struct mfi_prod_cons	*pcq;
1365 	struct mfi_ccb		*ccb;
1366 	uint32_t		producer, consumer, ctx;
1367 	int			claimed = 0;
1368 
1369 	if (!mfi_my_intr(sc))
1370 		return 0;
1371 
1372 	pcq = MFIMEM_KVA(sc->sc_pcq);
1373 
1374 	DNPRINTF(MFI_D_INTR, "%s: mfi_intr %#lx %#lx\n", DEVNAME(sc),
1375 	    (u_long)sc, (u_long)pcq);
1376 
1377 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_pcq), 0,
1378 	    sizeof(uint32_t) * sc->sc_max_cmds + sizeof(struct mfi_prod_cons),
1379 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1380 
1381 	producer = pcq->mpc_producer;
1382 	consumer = pcq->mpc_consumer;
1383 
1384 	while (consumer != producer) {
1385 		DNPRINTF(MFI_D_INTR, "%s: mfi_intr pi %#x ci %#x\n",
1386 		    DEVNAME(sc), producer, consumer);
1387 
1388 		ctx = pcq->mpc_reply_q[consumer];
1389 		pcq->mpc_reply_q[consumer] = MFI_INVALID_CTX;
1390 		if (ctx == MFI_INVALID_CTX)
1391 			aprint_error_dev(sc->sc_dev,
1392 			    "invalid context, p: %d c: %d\n",
1393 			    producer, consumer);
1394 		else {
1395 			/* XXX remove from queue and call scsi_done */
1396 			ccb = &sc->sc_ccb[ctx];
1397 			DNPRINTF(MFI_D_INTR, "%s: mfi_intr context %#x\n",
1398 			    DEVNAME(sc), ctx);
1399 			bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
1400 			    ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
1401 			    sc->sc_frames_size,
1402 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1403 			ccb->ccb_done(ccb);
1404 
1405 			claimed = 1;
1406 		}
1407 		consumer++;
1408 		if (consumer == (sc->sc_max_cmds + 1))
1409 			consumer = 0;
1410 	}
1411 
1412 	pcq->mpc_consumer = consumer;
1413 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_pcq), 0,
1414 	    sizeof(uint32_t) * sc->sc_max_cmds + sizeof(struct mfi_prod_cons),
1415 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1416 
1417 	return claimed;
1418 }
1419 
1420 static int
1421 mfi_scsi_ld_io(struct mfi_ccb *ccb, struct scsipi_xfer *xs, uint64_t blockno,
1422     uint32_t blockcnt)
1423 {
1424 	struct scsipi_periph *periph = xs->xs_periph;
1425 	struct mfi_io_frame   *io;
1426 
1427 	DNPRINTF(MFI_D_CMD, "%s: mfi_scsi_ld_io: %d\n",
1428 	    device_xname(periph->periph_channel->chan_adapter->adapt_dev),
1429 	    periph->periph_target);
1430 
1431 	if (!xs->data)
1432 		return 1;
1433 
1434 	io = &ccb->ccb_frame->mfr_io;
1435 	if (xs->xs_control & XS_CTL_DATA_IN) {
1436 		io->mif_header.mfh_cmd = MFI_CMD_LD_READ;
1437 		ccb->ccb_direction = MFI_DATA_IN;
1438 	} else {
1439 		io->mif_header.mfh_cmd = MFI_CMD_LD_WRITE;
1440 		ccb->ccb_direction = MFI_DATA_OUT;
1441 	}
1442 	io->mif_header.mfh_target_id = periph->periph_target;
1443 	io->mif_header.mfh_timeout = 0;
1444 	io->mif_header.mfh_flags = 0;
1445 	io->mif_header.mfh_sense_len = MFI_SENSE_SIZE;
1446 	io->mif_header.mfh_data_len= blockcnt;
1447 	io->mif_lba_hi = (blockno >> 32);
1448 	io->mif_lba_lo = (blockno & 0xffffffff);
1449 	io->mif_sense_addr_lo = htole32(ccb->ccb_psense);
1450 	io->mif_sense_addr_hi = 0;
1451 
1452 	ccb->ccb_done = mfi_scsi_ld_done;
1453 	ccb->ccb_xs = xs;
1454 	ccb->ccb_frame_size = MFI_IO_FRAME_SIZE;
1455 	ccb->ccb_sgl = &io->mif_sgl;
1456 	ccb->ccb_data = xs->data;
1457 	ccb->ccb_len = xs->datalen;
1458 
1459 	if (mfi_create_sgl(ccb, (xs->xs_control & XS_CTL_NOSLEEP) ?
1460 	    BUS_DMA_NOWAIT : BUS_DMA_WAITOK))
1461 		return 1;
1462 
1463 	return 0;
1464 }
1465 
1466 static void
1467 mfi_scsi_ld_done(struct mfi_ccb *ccb)
1468 {
1469 	struct mfi_frame_header	*hdr = &ccb->ccb_frame->mfr_header;
1470 	mfi_scsi_xs_done(ccb, hdr->mfh_cmd_status, hdr->mfh_scsi_status);
1471 }
1472 
1473 static void
1474 mfi_scsi_xs_done(struct mfi_ccb *ccb, int status, int scsi_status)
1475 {
1476 	struct scsipi_xfer	*xs = ccb->ccb_xs;
1477 	struct mfi_softc	*sc = ccb->ccb_sc;
1478 
1479 	DNPRINTF(MFI_D_INTR, "%s: mfi_scsi_xs_done %#lx %#lx\n",
1480 	    DEVNAME(sc), (u_long)ccb, (u_long)ccb->ccb_frame);
1481 
1482 	if (xs->data != NULL) {
1483 		DNPRINTF(MFI_D_INTR, "%s: mfi_scsi_xs_done sync\n",
1484 		    DEVNAME(sc));
1485 		bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
1486 		    ccb->ccb_dmamap->dm_mapsize,
1487 		    (xs->xs_control & XS_CTL_DATA_IN) ?
1488 		    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1489 
1490 		bus_dmamap_unload(sc->sc_datadmat, ccb->ccb_dmamap);
1491 	}
1492 
1493 	if (status != MFI_STAT_OK) {
1494 		xs->error = XS_DRIVER_STUFFUP;
1495 		DNPRINTF(MFI_D_INTR, "%s: mfi_scsi_xs_done stuffup %#x\n",
1496 		    DEVNAME(sc), status);
1497 
1498 		if (scsi_status != 0) {
1499 			bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_sense),
1500 			    ccb->ccb_psense - MFIMEM_DVA(sc->sc_sense),
1501 			    MFI_SENSE_SIZE, BUS_DMASYNC_POSTREAD);
1502 			DNPRINTF(MFI_D_INTR,
1503 			    "%s: mfi_scsi_xs_done sense %#x %lx %lx\n",
1504 			    DEVNAME(sc), scsi_status,
1505 			    (u_long)&xs->sense, (u_long)ccb->ccb_sense);
1506 			memset(&xs->sense, 0, sizeof(xs->sense));
1507 			memcpy(&xs->sense, ccb->ccb_sense,
1508 			    sizeof(struct scsi_sense_data));
1509 			xs->error = XS_SENSE;
1510 		}
1511 	} else {
1512 		xs->error = XS_NOERROR;
1513 		xs->status = SCSI_OK;
1514 		xs->resid = 0;
1515 	}
1516 
1517 	mfi_put_ccb(ccb);
1518 	scsipi_done(xs);
1519 }
1520 
1521 static int
1522 mfi_scsi_ld(struct mfi_ccb *ccb, struct scsipi_xfer *xs)
1523 {
1524 	struct mfi_pass_frame	*pf;
1525 	struct scsipi_periph *periph = xs->xs_periph;
1526 
1527 	DNPRINTF(MFI_D_CMD, "%s: mfi_scsi_ld: %d\n",
1528 	    device_xname(periph->periph_channel->chan_adapter->adapt_dev),
1529 	    periph->periph_target);
1530 
1531 	pf = &ccb->ccb_frame->mfr_pass;
1532 	pf->mpf_header.mfh_cmd = MFI_CMD_LD_SCSI_IO;
1533 	pf->mpf_header.mfh_target_id = periph->periph_target;
1534 	pf->mpf_header.mfh_lun_id = 0;
1535 	pf->mpf_header.mfh_cdb_len = xs->cmdlen;
1536 	pf->mpf_header.mfh_timeout = 0;
1537 	pf->mpf_header.mfh_data_len= xs->datalen; /* XXX */
1538 	pf->mpf_header.mfh_sense_len = MFI_SENSE_SIZE;
1539 
1540 	pf->mpf_sense_addr_hi = 0;
1541 	pf->mpf_sense_addr_lo = htole32(ccb->ccb_psense);
1542 
1543 	memset(pf->mpf_cdb, 0, 16);
1544 	memcpy(pf->mpf_cdb, &xs->cmdstore, xs->cmdlen);
1545 
1546 	ccb->ccb_done = mfi_scsi_ld_done;
1547 	ccb->ccb_xs = xs;
1548 	ccb->ccb_frame_size = MFI_PASS_FRAME_SIZE;
1549 	ccb->ccb_sgl = &pf->mpf_sgl;
1550 
1551 	if (xs->xs_control & (XS_CTL_DATA_IN | XS_CTL_DATA_OUT))
1552 		ccb->ccb_direction = (xs->xs_control & XS_CTL_DATA_IN) ?
1553 		    MFI_DATA_IN : MFI_DATA_OUT;
1554 	else
1555 		ccb->ccb_direction = MFI_DATA_NONE;
1556 
1557 	if (xs->data) {
1558 		ccb->ccb_data = xs->data;
1559 		ccb->ccb_len = xs->datalen;
1560 
1561 		if (mfi_create_sgl(ccb, (xs->xs_control & XS_CTL_NOSLEEP) ?
1562 		    BUS_DMA_NOWAIT : BUS_DMA_WAITOK))
1563 			return 1;
1564 	}
1565 
1566 	return 0;
1567 }
1568 
1569 static void
1570 mfi_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req,
1571     void *arg)
1572 {
1573 	struct scsipi_periph	*periph;
1574 	struct scsipi_xfer	*xs;
1575 	struct scsipi_adapter	*adapt = chan->chan_adapter;
1576 	struct mfi_softc	*sc = device_private(adapt->adapt_dev);
1577 	struct mfi_ccb		*ccb;
1578 	struct scsi_rw_6	*rw;
1579 	struct scsipi_rw_10	*rwb;
1580 	struct scsipi_rw_12	*rw12;
1581 	struct scsipi_rw_16	*rw16;
1582 	uint64_t		blockno;
1583 	uint32_t		blockcnt;
1584 	uint8_t			target;
1585 	uint8_t			mbox[MFI_MBOX_SIZE];
1586 	int			s;
1587 
1588 	switch (req) {
1589 	case ADAPTER_REQ_GROW_RESOURCES:
1590 		/* Not supported. */
1591 		return;
1592 	case ADAPTER_REQ_SET_XFER_MODE:
1593 	{
1594 		struct scsipi_xfer_mode *xm = arg;
1595 		xm->xm_mode = PERIPH_CAP_TQING;
1596 		xm->xm_period = 0;
1597 		xm->xm_offset = 0;
1598 		scsipi_async_event(&sc->sc_chan, ASYNC_EVENT_XFER_MODE, xm);
1599 		return;
1600 	}
1601 	case ADAPTER_REQ_RUN_XFER:
1602 		break;
1603 	}
1604 
1605 	xs = arg;
1606 
1607 	periph = xs->xs_periph;
1608 	target = periph->periph_target;
1609 
1610 	DNPRINTF(MFI_D_CMD, "%s: mfi_scsipi_request req %d opcode: %#x "
1611 	    "target %d lun %d\n", DEVNAME(sc), req, xs->cmd->opcode,
1612 	    periph->periph_target, periph->periph_lun);
1613 
1614 	s = splbio();
1615 	if (target >= MFI_MAX_LD || !sc->sc_ld[target].ld_present ||
1616 	    periph->periph_lun != 0) {
1617 		DNPRINTF(MFI_D_CMD, "%s: invalid target %d\n",
1618 		    DEVNAME(sc), target);
1619 		xs->error = XS_SELTIMEOUT;
1620 		scsipi_done(xs);
1621 		splx(s);
1622 		return;
1623 	}
1624 	if ((xs->cmd->opcode == SCSI_SYNCHRONIZE_CACHE_10 ||
1625 	    xs->cmd->opcode == SCSI_SYNCHRONIZE_CACHE_16) && sc->sc_bbuok) {
1626 		/* the cache is stable storage, don't flush */
1627 		xs->error = XS_NOERROR;
1628 		xs->status = SCSI_OK;
1629 		xs->resid = 0;
1630 		scsipi_done(xs);
1631 		splx(s);
1632 		return;
1633 	}
1634 
1635 	if ((ccb = mfi_get_ccb(sc)) == NULL) {
1636 		DNPRINTF(MFI_D_CMD, "%s: mfi_scsipi_request no ccb\n", DEVNAME(sc));
1637 		xs->error = XS_RESOURCE_SHORTAGE;
1638 		scsipi_done(xs);
1639 		splx(s);
1640 		return;
1641 	}
1642 
1643 	switch (xs->cmd->opcode) {
1644 	/* IO path */
1645 	case READ_16:
1646 	case WRITE_16:
1647 		rw16 = (struct scsipi_rw_16 *)xs->cmd;
1648 		blockno = _8btol(rw16->addr);
1649 		blockcnt = _4btol(rw16->length);
1650 		if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) {
1651 			goto stuffup;
1652 		}
1653 		break;
1654 
1655 	case READ_12:
1656 	case WRITE_12:
1657 		rw12 = (struct scsipi_rw_12 *)xs->cmd;
1658 		blockno = _4btol(rw12->addr);
1659 		blockcnt = _4btol(rw12->length);
1660 		if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) {
1661 			goto stuffup;
1662 		}
1663 		break;
1664 
1665 	case READ_10:
1666 	case WRITE_10:
1667 		rwb = (struct scsipi_rw_10 *)xs->cmd;
1668 		blockno = _4btol(rwb->addr);
1669 		blockcnt = _2btol(rwb->length);
1670 		if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) {
1671 			goto stuffup;
1672 		}
1673 		break;
1674 
1675 	case SCSI_READ_6_COMMAND:
1676 	case SCSI_WRITE_6_COMMAND:
1677 		rw = (struct scsi_rw_6 *)xs->cmd;
1678 		blockno = _3btol(rw->addr) & (SRW_TOPADDR << 16 | 0xffff);
1679 		blockcnt = rw->length ? rw->length : 0x100;
1680 		if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) {
1681 			goto stuffup;
1682 		}
1683 		break;
1684 
1685 	case SCSI_SYNCHRONIZE_CACHE_10:
1686 	case SCSI_SYNCHRONIZE_CACHE_16:
1687 		mbox[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
1688 		if (mfi_mgmt(ccb, xs,
1689 		    MR_DCMD_CTRL_CACHE_FLUSH, MFI_DATA_NONE, 0, NULL, mbox)) {
1690 			goto stuffup;
1691 		}
1692 		break;
1693 
1694 	/* hand it of to the firmware and let it deal with it */
1695 	case SCSI_TEST_UNIT_READY:
1696 		/* save off sd? after autoconf */
1697 		if (!cold)	/* XXX bogus */
1698 			strlcpy(sc->sc_ld[target].ld_dev, device_xname(sc->sc_dev),
1699 			    sizeof(sc->sc_ld[target].ld_dev));
1700 		/* FALLTHROUGH */
1701 
1702 	default:
1703 		if (mfi_scsi_ld(ccb, xs)) {
1704 			goto stuffup;
1705 		}
1706 		break;
1707 	}
1708 
1709 	DNPRINTF(MFI_D_CMD, "%s: start io %d\n", DEVNAME(sc), target);
1710 
1711 	if (xs->xs_control & XS_CTL_POLL) {
1712 		if (mfi_poll(ccb)) {
1713 			/* XXX check for sense in ccb->ccb_sense? */
1714 			aprint_error_dev(sc->sc_dev,
1715 			    "mfi_scsipi_request poll failed\n");
1716 			memset(&xs->sense, 0, sizeof(xs->sense));
1717 			xs->sense.scsi_sense.response_code =
1718 			    SSD_RCODE_VALID | SSD_RCODE_CURRENT;
1719 			xs->sense.scsi_sense.flags = SKEY_ILLEGAL_REQUEST;
1720 			xs->sense.scsi_sense.asc = 0x20; /* invalid opcode */
1721 			xs->error = XS_SENSE;
1722 			xs->status = SCSI_CHECK;
1723 		} else {
1724 			DNPRINTF(MFI_D_DMA,
1725 			    "%s: mfi_scsipi_request poll complete %d\n",
1726 			    DEVNAME(sc), ccb->ccb_dmamap->dm_nsegs);
1727 			xs->error = XS_NOERROR;
1728 			xs->status = SCSI_OK;
1729 			xs->resid = 0;
1730 		}
1731 		mfi_put_ccb(ccb);
1732 		scsipi_done(xs);
1733 		splx(s);
1734 		return;
1735 	}
1736 
1737 	mfi_post(sc, ccb);
1738 
1739 	DNPRINTF(MFI_D_DMA, "%s: mfi_scsipi_request queued %d\n", DEVNAME(sc),
1740 	    ccb->ccb_dmamap->dm_nsegs);
1741 
1742 	splx(s);
1743 	return;
1744 
1745 stuffup:
1746 	mfi_put_ccb(ccb);
1747 	xs->error = XS_DRIVER_STUFFUP;
1748 	scsipi_done(xs);
1749 	splx(s);
1750 }
1751 
1752 static int
1753 mfi_create_sgl(struct mfi_ccb *ccb, int flags)
1754 {
1755 	struct mfi_softc	*sc = ccb->ccb_sc;
1756 	struct mfi_frame_header	*hdr;
1757 	bus_dma_segment_t	*sgd;
1758 	union mfi_sgl		*sgl;
1759 	int			error, i;
1760 
1761 	DNPRINTF(MFI_D_DMA, "%s: mfi_create_sgl %#lx\n", DEVNAME(sc),
1762 	    (u_long)ccb->ccb_data);
1763 
1764 	if (!ccb->ccb_data)
1765 		return 1;
1766 
1767 	KASSERT(flags == BUS_DMA_NOWAIT || !cpu_intr_p());
1768 	error = bus_dmamap_load(sc->sc_datadmat, ccb->ccb_dmamap,
1769 	    ccb->ccb_data, ccb->ccb_len, NULL, flags);
1770 	if (error) {
1771 		if (error == EFBIG) {
1772 			aprint_error_dev(sc->sc_dev, "more than %d dma segs\n",
1773 			    sc->sc_max_sgl);
1774 		} else {
1775 			aprint_error_dev(sc->sc_dev,
1776 			    "error %d loading dma map\n", error);
1777 		}
1778 		return 1;
1779 	}
1780 
1781 	hdr = &ccb->ccb_frame->mfr_header;
1782 	sgl = ccb->ccb_sgl;
1783 	sgd = ccb->ccb_dmamap->dm_segs;
1784 	for (i = 0; i < ccb->ccb_dmamap->dm_nsegs; i++) {
1785 		if (sc->sc_ioptype == MFI_IOP_TBOLT &&
1786 		    (hdr->mfh_cmd == MFI_CMD_PD_SCSI_IO ||
1787 		     hdr->mfh_cmd == MFI_CMD_LD_READ ||
1788 		     hdr->mfh_cmd == MFI_CMD_LD_WRITE)) {
1789 			sgl->sg_ieee[i].addr = htole64(sgd[i].ds_addr);
1790 			sgl->sg_ieee[i].len = htole32(sgd[i].ds_len);
1791 			sgl->sg_ieee[i].flags = 0;
1792 			DNPRINTF(MFI_D_DMA, "%s: addr: %#" PRIx64 " len: %#"
1793 			    PRIx32 "\n",
1794 			    DEVNAME(sc), sgl->sg64[i].addr, sgl->sg64[i].len);
1795 			hdr->mfh_flags |= MFI_FRAME_IEEE_SGL | MFI_FRAME_SGL64;
1796 		} else if (sc->sc_64bit_dma) {
1797 			sgl->sg64[i].addr = htole64(sgd[i].ds_addr);
1798 			sgl->sg64[i].len = htole32(sgd[i].ds_len);
1799 			DNPRINTF(MFI_D_DMA, "%s: addr: %#" PRIx64 " len: %#"
1800 			    PRIx32 "\n",
1801 			    DEVNAME(sc), sgl->sg64[i].addr, sgl->sg64[i].len);
1802 			hdr->mfh_flags |= MFI_FRAME_SGL64;
1803 		} else {
1804 			sgl->sg32[i].addr = htole32(sgd[i].ds_addr);
1805 			sgl->sg32[i].len = htole32(sgd[i].ds_len);
1806 			DNPRINTF(MFI_D_DMA, "%s: addr: %#x  len: %#x\n",
1807 			    DEVNAME(sc), sgl->sg32[i].addr, sgl->sg32[i].len);
1808 			hdr->mfh_flags |= MFI_FRAME_SGL32;
1809 		}
1810 	}
1811 
1812 	if (ccb->ccb_direction == MFI_DATA_IN) {
1813 		hdr->mfh_flags |= MFI_FRAME_DIR_READ;
1814 		bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
1815 		    ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1816 	} else {
1817 		hdr->mfh_flags |= MFI_FRAME_DIR_WRITE;
1818 		bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
1819 		    ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1820 	}
1821 
1822 	hdr->mfh_sg_count = ccb->ccb_dmamap->dm_nsegs;
1823 	ccb->ccb_frame_size += sc->sc_sgl_size * ccb->ccb_dmamap->dm_nsegs;
1824 	ccb->ccb_extra_frames = (ccb->ccb_frame_size - 1) / MFI_FRAME_SIZE;
1825 
1826 	DNPRINTF(MFI_D_DMA, "%s: sg_count: %d  frame_size: %d  frames_size: %d"
1827 	    "  dm_nsegs: %d  extra_frames: %d\n",
1828 	    DEVNAME(sc),
1829 	    hdr->mfh_sg_count,
1830 	    ccb->ccb_frame_size,
1831 	    sc->sc_frames_size,
1832 	    ccb->ccb_dmamap->dm_nsegs,
1833 	    ccb->ccb_extra_frames);
1834 
1835 	return 0;
1836 }
1837 
1838 static int
1839 mfi_mgmt_internal(struct mfi_softc *sc, uint32_t opc, uint32_t dir,
1840     uint32_t len, void *buf, uint8_t *mbox, bool poll)
1841 {
1842 	struct mfi_ccb		*ccb;
1843 	int			rv = 1;
1844 
1845 	if ((ccb = mfi_get_ccb(sc)) == NULL)
1846 		return rv;
1847 	rv = mfi_mgmt(ccb, NULL, opc, dir, len, buf, mbox);
1848 	if (rv)
1849 		return rv;
1850 
1851 	if (poll) {
1852 		rv = 1;
1853 		if (mfi_poll(ccb))
1854 			goto done;
1855 	} else {
1856 		mfi_post(sc, ccb);
1857 
1858 		DNPRINTF(MFI_D_MISC, "%s: mfi_mgmt_internal sleeping\n",
1859 		    DEVNAME(sc));
1860 		while (ccb->ccb_state != MFI_CCB_DONE)
1861 			tsleep(ccb, PRIBIO, "mfi_mgmt", 0);
1862 
1863 		if (ccb->ccb_flags & MFI_CCB_F_ERR)
1864 			goto done;
1865 	}
1866 	rv = 0;
1867 
1868 done:
1869 	mfi_put_ccb(ccb);
1870 	return rv;
1871 }
1872 
1873 static int
1874 mfi_mgmt(struct mfi_ccb *ccb, struct scsipi_xfer *xs,
1875     uint32_t opc, uint32_t dir, uint32_t len, void *buf, uint8_t *mbox)
1876 {
1877 	struct mfi_dcmd_frame	*dcmd;
1878 
1879 	DNPRINTF(MFI_D_MISC, "%s: mfi_mgmt %#x\n", DEVNAME(ccb->ccb_sc), opc);
1880 
1881 	dcmd = &ccb->ccb_frame->mfr_dcmd;
1882 	memset(dcmd->mdf_mbox, 0, MFI_MBOX_SIZE);
1883 	dcmd->mdf_header.mfh_cmd = MFI_CMD_DCMD;
1884 	dcmd->mdf_header.mfh_timeout = 0;
1885 
1886 	dcmd->mdf_opcode = opc;
1887 	dcmd->mdf_header.mfh_data_len = 0;
1888 	ccb->ccb_direction = dir;
1889 	ccb->ccb_xs = xs;
1890 	ccb->ccb_done = mfi_mgmt_done;
1891 
1892 	ccb->ccb_frame_size = MFI_DCMD_FRAME_SIZE;
1893 
1894 	/* handle special opcodes */
1895 	if (mbox)
1896 		memcpy(dcmd->mdf_mbox, mbox, MFI_MBOX_SIZE);
1897 
1898 	if (dir != MFI_DATA_NONE) {
1899 		dcmd->mdf_header.mfh_data_len = len;
1900 		ccb->ccb_data = buf;
1901 		ccb->ccb_len = len;
1902 		ccb->ccb_sgl = &dcmd->mdf_sgl;
1903 
1904 		if (mfi_create_sgl(ccb, BUS_DMA_WAITOK))
1905 			return 1;
1906 	}
1907 	return 0;
1908 }
1909 
1910 static void
1911 mfi_mgmt_done(struct mfi_ccb *ccb)
1912 {
1913 	struct scsipi_xfer	*xs = ccb->ccb_xs;
1914 	struct mfi_softc	*sc = ccb->ccb_sc;
1915 	struct mfi_frame_header	*hdr = &ccb->ccb_frame->mfr_header;
1916 
1917 	DNPRINTF(MFI_D_INTR, "%s: mfi_mgmt_done %#lx %#lx\n",
1918 	    DEVNAME(sc), (u_long)ccb, (u_long)ccb->ccb_frame);
1919 
1920 	if (ccb->ccb_data != NULL) {
1921 		DNPRINTF(MFI_D_INTR, "%s: mfi_mgmt_done sync\n",
1922 		    DEVNAME(sc));
1923 		bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
1924 		    ccb->ccb_dmamap->dm_mapsize,
1925 		    (ccb->ccb_direction & MFI_DATA_IN) ?
1926 		    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1927 
1928 		bus_dmamap_unload(sc->sc_datadmat, ccb->ccb_dmamap);
1929 	}
1930 
1931 	if (hdr->mfh_cmd_status != MFI_STAT_OK)
1932 		ccb->ccb_flags |= MFI_CCB_F_ERR;
1933 
1934 	ccb->ccb_state = MFI_CCB_DONE;
1935 	if (xs) {
1936 		if (hdr->mfh_cmd_status != MFI_STAT_OK) {
1937 			xs->error = XS_DRIVER_STUFFUP;
1938 		} else {
1939 			xs->error = XS_NOERROR;
1940 			xs->status = SCSI_OK;
1941 			xs->resid = 0;
1942 		}
1943 		mfi_put_ccb(ccb);
1944 		scsipi_done(xs);
1945 	} else
1946 		wakeup(ccb);
1947 }
1948 
1949 #if NBIO > 0
1950 int
1951 mfi_ioctl(device_t dev, u_long cmd, void *addr)
1952 {
1953 	struct mfi_softc *sc = device_private(dev);
1954 	int error = 0;
1955 	int s;
1956 
1957 	KERNEL_LOCK(1, curlwp);
1958 	s = splbio();
1959 
1960 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl ", DEVNAME(sc));
1961 
1962 	switch (cmd) {
1963 	case BIOCINQ:
1964 		DNPRINTF(MFI_D_IOCTL, "inq\n");
1965 		error = mfi_ioctl_inq(sc, (struct bioc_inq *)addr);
1966 		break;
1967 
1968 	case BIOCVOL:
1969 		DNPRINTF(MFI_D_IOCTL, "vol\n");
1970 		error = mfi_ioctl_vol(sc, (struct bioc_vol *)addr);
1971 		break;
1972 
1973 	case BIOCDISK:
1974 		DNPRINTF(MFI_D_IOCTL, "disk\n");
1975 		error = mfi_ioctl_disk(sc, (struct bioc_disk *)addr);
1976 		break;
1977 
1978 	case BIOCALARM:
1979 		DNPRINTF(MFI_D_IOCTL, "alarm\n");
1980 		error = mfi_ioctl_alarm(sc, (struct bioc_alarm *)addr);
1981 		break;
1982 
1983 	case BIOCBLINK:
1984 		DNPRINTF(MFI_D_IOCTL, "blink\n");
1985 		error = mfi_ioctl_blink(sc, (struct bioc_blink *)addr);
1986 		break;
1987 
1988 	case BIOCSETSTATE:
1989 		DNPRINTF(MFI_D_IOCTL, "setstate\n");
1990 		error = mfi_ioctl_setstate(sc, (struct bioc_setstate *)addr);
1991 		break;
1992 
1993 	default:
1994 		DNPRINTF(MFI_D_IOCTL, " invalid ioctl\n");
1995 		error = EINVAL;
1996 	}
1997 	splx(s);
1998 	KERNEL_UNLOCK_ONE(curlwp);
1999 
2000 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl return %x\n", DEVNAME(sc), error);
2001 	return error;
2002 }
2003 
2004 static int
2005 mfi_ioctl_inq(struct mfi_softc *sc, struct bioc_inq *bi)
2006 {
2007 	struct mfi_conf		*cfg;
2008 	int			rv = EINVAL;
2009 
2010 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_inq\n", DEVNAME(sc));
2011 
2012 	if (mfi_get_info(sc)) {
2013 		DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_inq failed\n",
2014 		    DEVNAME(sc));
2015 		return EIO;
2016 	}
2017 
2018 	/* get figures */
2019 	cfg = malloc(sizeof *cfg, M_DEVBUF, M_WAITOK);
2020 	if (mfi_mgmt_internal(sc, MD_DCMD_CONF_GET, MFI_DATA_IN,
2021 	    sizeof *cfg, cfg, NULL, false))
2022 		goto freeme;
2023 
2024 	strlcpy(bi->bi_dev, DEVNAME(sc), sizeof(bi->bi_dev));
2025 	bi->bi_novol = cfg->mfc_no_ld + cfg->mfc_no_hs;
2026 	bi->bi_nodisk = sc->sc_info.mci_pd_disks_present;
2027 
2028 	rv = 0;
2029 freeme:
2030 	free(cfg, M_DEVBUF);
2031 	return rv;
2032 }
2033 
2034 static int
2035 mfi_ioctl_vol(struct mfi_softc *sc, struct bioc_vol *bv)
2036 {
2037 	int			i, per, rv = EINVAL;
2038 	uint8_t			mbox[MFI_MBOX_SIZE];
2039 
2040 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_vol %#x\n",
2041 	    DEVNAME(sc), bv->bv_volid);
2042 
2043 	if (mfi_mgmt_internal(sc, MR_DCMD_LD_GET_LIST, MFI_DATA_IN,
2044 	    sizeof(sc->sc_ld_list), &sc->sc_ld_list, NULL, false))
2045 		goto done;
2046 
2047 	i = bv->bv_volid;
2048 	mbox[0] = sc->sc_ld_list.mll_list[i].mll_ld.mld_target;
2049 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_vol target %#x\n",
2050 	    DEVNAME(sc), mbox[0]);
2051 
2052 	if (mfi_mgmt_internal(sc, MR_DCMD_LD_GET_INFO, MFI_DATA_IN,
2053 	    sizeof(sc->sc_ld_details), &sc->sc_ld_details, mbox, false))
2054 		goto done;
2055 
2056 	if (bv->bv_volid >= sc->sc_ld_list.mll_no_ld) {
2057 		/* go do hotspares */
2058 		rv = mfi_bio_hs(sc, bv->bv_volid, MFI_MGMT_VD, bv);
2059 		goto done;
2060 	}
2061 
2062 	strlcpy(bv->bv_dev, sc->sc_ld[i].ld_dev, sizeof(bv->bv_dev));
2063 
2064 	switch(sc->sc_ld_list.mll_list[i].mll_state) {
2065 	case MFI_LD_OFFLINE:
2066 		bv->bv_status = BIOC_SVOFFLINE;
2067 		break;
2068 
2069 	case MFI_LD_PART_DEGRADED:
2070 	case MFI_LD_DEGRADED:
2071 		bv->bv_status = BIOC_SVDEGRADED;
2072 		break;
2073 
2074 	case MFI_LD_ONLINE:
2075 		bv->bv_status = BIOC_SVONLINE;
2076 		break;
2077 
2078 	default:
2079 		bv->bv_status = BIOC_SVINVALID;
2080 		DNPRINTF(MFI_D_IOCTL, "%s: invalid logical disk state %#x\n",
2081 		    DEVNAME(sc),
2082 		    sc->sc_ld_list.mll_list[i].mll_state);
2083 	}
2084 
2085 	/* additional status can modify MFI status */
2086 	switch (sc->sc_ld_details.mld_progress.mlp_in_prog) {
2087 	case MFI_LD_PROG_CC:
2088 	case MFI_LD_PROG_BGI:
2089 		bv->bv_status = BIOC_SVSCRUB;
2090 		per = (int)sc->sc_ld_details.mld_progress.mlp_cc.mp_progress;
2091 		bv->bv_percent = (per * 100) / 0xffff;
2092 		bv->bv_seconds =
2093 		    sc->sc_ld_details.mld_progress.mlp_cc.mp_elapsed_seconds;
2094 		break;
2095 
2096 	case MFI_LD_PROG_FGI:
2097 	case MFI_LD_PROG_RECONSTRUCT:
2098 		/* nothing yet */
2099 		break;
2100 	}
2101 
2102 	/*
2103 	 * The RAID levels are determined per the SNIA DDF spec, this is only
2104 	 * a subset that is valid for the MFI contrller.
2105 	 */
2106 	bv->bv_level = sc->sc_ld_details.mld_cfg.mlc_parm.mpa_pri_raid;
2107 	if (sc->sc_ld_details.mld_cfg.mlc_parm.mpa_sec_raid ==
2108 	    MFI_DDF_SRL_SPANNED)
2109 		bv->bv_level *= 10;
2110 
2111 	bv->bv_nodisk = sc->sc_ld_details.mld_cfg.mlc_parm.mpa_no_drv_per_span *
2112 	    sc->sc_ld_details.mld_cfg.mlc_parm.mpa_span_depth;
2113 
2114 	bv->bv_size = sc->sc_ld_details.mld_size * 512; /* bytes per block */
2115 
2116 	rv = 0;
2117 done:
2118 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_vol done %x\n",
2119 	    DEVNAME(sc), rv);
2120 	return rv;
2121 }
2122 
2123 static int
2124 mfi_ioctl_disk(struct mfi_softc *sc, struct bioc_disk *bd)
2125 {
2126 	struct mfi_conf		*cfg;
2127 	struct mfi_array	*ar;
2128 	struct mfi_ld_cfg	*ld;
2129 	struct mfi_pd_details	*pd;
2130 	struct scsipi_inquiry_data *inqbuf;
2131 	char			vend[8+16+4+1];
2132 	int			i, rv = EINVAL;
2133 	int			arr, vol, disk;
2134 	uint32_t		size;
2135 	uint8_t			mbox[MFI_MBOX_SIZE];
2136 
2137 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_disk %#x\n",
2138 	    DEVNAME(sc), bd->bd_diskid);
2139 
2140 	pd = malloc(sizeof *pd, M_DEVBUF, M_WAITOK | M_ZERO);
2141 
2142 	/* send single element command to retrieve size for full structure */
2143 	cfg = malloc(sizeof *cfg, M_DEVBUF, M_WAITOK);
2144 	if (mfi_mgmt_internal(sc, MD_DCMD_CONF_GET, MFI_DATA_IN,
2145 	    sizeof *cfg, cfg, NULL, false))
2146 		goto freeme;
2147 
2148 	size = cfg->mfc_size;
2149 	free(cfg, M_DEVBUF);
2150 
2151 	/* memory for read config */
2152 	cfg = malloc(size, M_DEVBUF, M_WAITOK|M_ZERO);
2153 	if (mfi_mgmt_internal(sc, MD_DCMD_CONF_GET, MFI_DATA_IN,
2154 	    size, cfg, NULL, false))
2155 		goto freeme;
2156 
2157 	ar = cfg->mfc_array;
2158 
2159 	/* calculate offset to ld structure */
2160 	ld = (struct mfi_ld_cfg *)(
2161 	    ((uint8_t *)cfg) + offsetof(struct mfi_conf, mfc_array) +
2162 	    cfg->mfc_array_size * cfg->mfc_no_array);
2163 
2164 	vol = bd->bd_volid;
2165 
2166 	if (vol >= cfg->mfc_no_ld) {
2167 		/* do hotspares */
2168 		rv = mfi_bio_hs(sc, bd->bd_volid, MFI_MGMT_SD, bd);
2169 		goto freeme;
2170 	}
2171 
2172 	/* find corresponding array for ld */
2173 	for (i = 0, arr = 0; i < vol; i++)
2174 		arr += ld[i].mlc_parm.mpa_span_depth;
2175 
2176 	/* offset disk into pd list */
2177 	disk = bd->bd_diskid % ld[vol].mlc_parm.mpa_no_drv_per_span;
2178 
2179 	/* offset array index into the next spans */
2180 	arr += bd->bd_diskid / ld[vol].mlc_parm.mpa_no_drv_per_span;
2181 
2182 	bd->bd_target = ar[arr].pd[disk].mar_enc_slot;
2183 	switch (ar[arr].pd[disk].mar_pd_state){
2184 	case MFI_PD_UNCONFIG_GOOD:
2185 		bd->bd_status = BIOC_SDUNUSED;
2186 		break;
2187 
2188 	case MFI_PD_HOTSPARE: /* XXX dedicated hotspare part of array? */
2189 		bd->bd_status = BIOC_SDHOTSPARE;
2190 		break;
2191 
2192 	case MFI_PD_OFFLINE:
2193 		bd->bd_status = BIOC_SDOFFLINE;
2194 		break;
2195 
2196 	case MFI_PD_FAILED:
2197 		bd->bd_status = BIOC_SDFAILED;
2198 		break;
2199 
2200 	case MFI_PD_REBUILD:
2201 		bd->bd_status = BIOC_SDREBUILD;
2202 		break;
2203 
2204 	case MFI_PD_ONLINE:
2205 		bd->bd_status = BIOC_SDONLINE;
2206 		break;
2207 
2208 	case MFI_PD_UNCONFIG_BAD: /* XXX define new state in bio */
2209 	default:
2210 		bd->bd_status = BIOC_SDINVALID;
2211 		break;
2212 
2213 	}
2214 
2215 	/* get the remaining fields */
2216 	*((uint16_t *)&mbox) = ar[arr].pd[disk].mar_pd.mfp_id;
2217 	memset(pd, 0, sizeof(*pd));
2218 	if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_INFO, MFI_DATA_IN,
2219 	    sizeof *pd, pd, mbox, false))
2220 		goto freeme;
2221 
2222 	bd->bd_size = pd->mpd_size * 512; /* bytes per block */
2223 
2224 	/* if pd->mpd_enc_idx is 0 then it is not in an enclosure */
2225 	bd->bd_channel = pd->mpd_enc_idx;
2226 
2227 	inqbuf = (struct scsipi_inquiry_data *)&pd->mpd_inq_data;
2228 	memcpy(vend, inqbuf->vendor, sizeof vend - 1);
2229 	vend[sizeof vend - 1] = '\0';
2230 	strlcpy(bd->bd_vendor, vend, sizeof(bd->bd_vendor));
2231 
2232 	/* XXX find a way to retrieve serial nr from drive */
2233 	/* XXX find a way to get bd_procdev */
2234 
2235 	rv = 0;
2236 freeme:
2237 	free(pd, M_DEVBUF);
2238 	free(cfg, M_DEVBUF);
2239 
2240 	return rv;
2241 }
2242 
2243 static int
2244 mfi_ioctl_alarm(struct mfi_softc *sc, struct bioc_alarm *ba)
2245 {
2246 	uint32_t		opc, dir = MFI_DATA_NONE;
2247 	int			rv = 0;
2248 	int8_t			ret;
2249 
2250 	switch(ba->ba_opcode) {
2251 	case BIOC_SADISABLE:
2252 		opc = MR_DCMD_SPEAKER_DISABLE;
2253 		break;
2254 
2255 	case BIOC_SAENABLE:
2256 		opc = MR_DCMD_SPEAKER_ENABLE;
2257 		break;
2258 
2259 	case BIOC_SASILENCE:
2260 		opc = MR_DCMD_SPEAKER_SILENCE;
2261 		break;
2262 
2263 	case BIOC_GASTATUS:
2264 		opc = MR_DCMD_SPEAKER_GET;
2265 		dir = MFI_DATA_IN;
2266 		break;
2267 
2268 	case BIOC_SATEST:
2269 		opc = MR_DCMD_SPEAKER_TEST;
2270 		break;
2271 
2272 	default:
2273 		DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_alarm biocalarm invalid "
2274 		    "opcode %x\n", DEVNAME(sc), ba->ba_opcode);
2275 		return EINVAL;
2276 	}
2277 
2278 	if (mfi_mgmt_internal(sc, opc, dir, sizeof(ret), &ret, NULL, false))
2279 		rv = EINVAL;
2280 	else
2281 		if (ba->ba_opcode == BIOC_GASTATUS)
2282 			ba->ba_status = ret;
2283 		else
2284 			ba->ba_status = 0;
2285 
2286 	return rv;
2287 }
2288 
2289 static int
2290 mfi_ioctl_blink(struct mfi_softc *sc, struct bioc_blink *bb)
2291 {
2292 	int			i, found, rv = EINVAL;
2293 	uint8_t			mbox[MFI_MBOX_SIZE];
2294 	uint32_t		cmd;
2295 	struct mfi_pd_list	*pd;
2296 
2297 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_blink %x\n", DEVNAME(sc),
2298 	    bb->bb_status);
2299 
2300 	/* channel 0 means not in an enclosure so can't be blinked */
2301 	if (bb->bb_channel == 0)
2302 		return EINVAL;
2303 
2304 	pd = malloc(MFI_PD_LIST_SIZE, M_DEVBUF, M_WAITOK);
2305 
2306 	if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_LIST, MFI_DATA_IN,
2307 	    MFI_PD_LIST_SIZE, pd, NULL, false))
2308 		goto done;
2309 
2310 	for (i = 0, found = 0; i < pd->mpl_no_pd; i++)
2311 		if (bb->bb_channel == pd->mpl_address[i].mpa_enc_index &&
2312 		    bb->bb_target == pd->mpl_address[i].mpa_enc_slot) {
2313 		    	found = 1;
2314 			break;
2315 		}
2316 
2317 	if (!found)
2318 		goto done;
2319 
2320 	memset(mbox, 0, sizeof mbox);
2321 
2322 	*((uint16_t *)&mbox) = pd->mpl_address[i].mpa_pd_id;
2323 
2324 	switch (bb->bb_status) {
2325 	case BIOC_SBUNBLINK:
2326 		cmd = MR_DCMD_PD_UNBLINK;
2327 		break;
2328 
2329 	case BIOC_SBBLINK:
2330 		cmd = MR_DCMD_PD_BLINK;
2331 		break;
2332 
2333 	case BIOC_SBALARM:
2334 	default:
2335 		DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_blink biocblink invalid "
2336 		    "opcode %x\n", DEVNAME(sc), bb->bb_status);
2337 		goto done;
2338 	}
2339 
2340 
2341 	if (mfi_mgmt_internal(sc, cmd, MFI_DATA_NONE, 0, NULL, mbox, false))
2342 		goto done;
2343 
2344 	rv = 0;
2345 done:
2346 	free(pd, M_DEVBUF);
2347 	return rv;
2348 }
2349 
2350 static int
2351 mfi_ioctl_setstate(struct mfi_softc *sc, struct bioc_setstate *bs)
2352 {
2353 	struct mfi_pd_list	*pd;
2354 	int			i, found, rv = EINVAL;
2355 	uint8_t			mbox[MFI_MBOX_SIZE];
2356 
2357 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_setstate %x\n", DEVNAME(sc),
2358 	    bs->bs_status);
2359 
2360 	pd = malloc(MFI_PD_LIST_SIZE, M_DEVBUF, M_WAITOK);
2361 
2362 	if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_LIST, MFI_DATA_IN,
2363 	    MFI_PD_LIST_SIZE, pd, NULL, false))
2364 		goto done;
2365 
2366 	for (i = 0, found = 0; i < pd->mpl_no_pd; i++)
2367 		if (bs->bs_channel == pd->mpl_address[i].mpa_enc_index &&
2368 		    bs->bs_target == pd->mpl_address[i].mpa_enc_slot) {
2369 		    	found = 1;
2370 			break;
2371 		}
2372 
2373 	if (!found)
2374 		goto done;
2375 
2376 	memset(mbox, 0, sizeof mbox);
2377 
2378 	*((uint16_t *)&mbox) = pd->mpl_address[i].mpa_pd_id;
2379 
2380 	switch (bs->bs_status) {
2381 	case BIOC_SSONLINE:
2382 		mbox[2] = MFI_PD_ONLINE;
2383 		break;
2384 
2385 	case BIOC_SSOFFLINE:
2386 		mbox[2] = MFI_PD_OFFLINE;
2387 		break;
2388 
2389 	case BIOC_SSHOTSPARE:
2390 		mbox[2] = MFI_PD_HOTSPARE;
2391 		break;
2392 /*
2393 	case BIOC_SSREBUILD:
2394 		break;
2395 */
2396 	default:
2397 		DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_setstate invalid "
2398 		    "opcode %x\n", DEVNAME(sc), bs->bs_status);
2399 		goto done;
2400 	}
2401 
2402 
2403 	if (mfi_mgmt_internal(sc, MD_DCMD_PD_SET_STATE, MFI_DATA_NONE,
2404 	    0, NULL, mbox, false))
2405 		goto done;
2406 
2407 	rv = 0;
2408 done:
2409 	free(pd, M_DEVBUF);
2410 	return rv;
2411 }
2412 
2413 static int
2414 mfi_bio_hs(struct mfi_softc *sc, int volid, int type, void *bio_hs)
2415 {
2416 	struct mfi_conf		*cfg;
2417 	struct mfi_hotspare	*hs;
2418 	struct mfi_pd_details	*pd;
2419 	struct bioc_disk	*sdhs;
2420 	struct bioc_vol		*vdhs;
2421 	struct scsipi_inquiry_data *inqbuf;
2422 	char			vend[8+16+4+1];
2423 	int			i, rv = EINVAL;
2424 	uint32_t		size;
2425 	uint8_t			mbox[MFI_MBOX_SIZE];
2426 
2427 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs %d\n", DEVNAME(sc), volid);
2428 
2429 	if (!bio_hs)
2430 		return EINVAL;
2431 
2432 	pd = malloc(sizeof *pd, M_DEVBUF, M_WAITOK | M_ZERO);
2433 
2434 	/* send single element command to retrieve size for full structure */
2435 	cfg = malloc(sizeof *cfg, M_DEVBUF, M_WAITOK);
2436 	if (mfi_mgmt_internal(sc, MD_DCMD_CONF_GET, MFI_DATA_IN,
2437 	    sizeof *cfg, cfg, NULL, false))
2438 		goto freeme;
2439 
2440 	size = cfg->mfc_size;
2441 	free(cfg, M_DEVBUF);
2442 
2443 	/* memory for read config */
2444 	cfg = malloc(size, M_DEVBUF, M_WAITOK|M_ZERO);
2445 	if (mfi_mgmt_internal(sc, MD_DCMD_CONF_GET, MFI_DATA_IN,
2446 	    size, cfg, NULL, false))
2447 		goto freeme;
2448 
2449 	/* calculate offset to hs structure */
2450 	hs = (struct mfi_hotspare *)(
2451 	    ((uint8_t *)cfg) + offsetof(struct mfi_conf, mfc_array) +
2452 	    cfg->mfc_array_size * cfg->mfc_no_array +
2453 	    cfg->mfc_ld_size * cfg->mfc_no_ld);
2454 
2455 	if (volid < cfg->mfc_no_ld)
2456 		goto freeme; /* not a hotspare */
2457 
2458 	if (volid > (cfg->mfc_no_ld + cfg->mfc_no_hs))
2459 		goto freeme; /* not a hotspare */
2460 
2461 	/* offset into hotspare structure */
2462 	i = volid - cfg->mfc_no_ld;
2463 
2464 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs i %d volid %d no_ld %d no_hs %d "
2465 	    "hs %p cfg %p id %02x\n", DEVNAME(sc), i, volid, cfg->mfc_no_ld,
2466 	    cfg->mfc_no_hs, hs, cfg, hs[i].mhs_pd.mfp_id);
2467 
2468 	/* get pd fields */
2469 	memset(mbox, 0, sizeof mbox);
2470 	*((uint16_t *)&mbox) = hs[i].mhs_pd.mfp_id;
2471 	if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_INFO, MFI_DATA_IN,
2472 	    sizeof *pd, pd, mbox, false)) {
2473 		DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs illegal PD\n",
2474 		    DEVNAME(sc));
2475 		goto freeme;
2476 	}
2477 
2478 	switch (type) {
2479 	case MFI_MGMT_VD:
2480 		vdhs = bio_hs;
2481 		vdhs->bv_status = BIOC_SVONLINE;
2482 		vdhs->bv_size = pd->mpd_size * 512; /* bytes per block */
2483 		vdhs->bv_level = -1; /* hotspare */
2484 		vdhs->bv_nodisk = 1;
2485 		break;
2486 
2487 	case MFI_MGMT_SD:
2488 		sdhs = bio_hs;
2489 		sdhs->bd_status = BIOC_SDHOTSPARE;
2490 		sdhs->bd_size = pd->mpd_size * 512; /* bytes per block */
2491 		sdhs->bd_channel = pd->mpd_enc_idx;
2492 		sdhs->bd_target = pd->mpd_enc_slot;
2493 		inqbuf = (struct scsipi_inquiry_data *)&pd->mpd_inq_data;
2494 		memcpy(vend, inqbuf->vendor, sizeof(vend) - 1);
2495 		vend[sizeof vend - 1] = '\0';
2496 		strlcpy(sdhs->bd_vendor, vend, sizeof(sdhs->bd_vendor));
2497 		break;
2498 
2499 	default:
2500 		goto freeme;
2501 	}
2502 
2503 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs 6\n", DEVNAME(sc));
2504 	rv = 0;
2505 freeme:
2506 	free(pd, M_DEVBUF);
2507 	free(cfg, M_DEVBUF);
2508 
2509 	return rv;
2510 }
2511 
2512 static int
2513 mfi_destroy_sensors(struct mfi_softc *sc)
2514 {
2515 	if (sc->sc_sme == NULL)
2516 		return 0;
2517 	sysmon_envsys_unregister(sc->sc_sme);
2518 	sc->sc_sme = NULL;
2519 	free(sc->sc_sensor, M_DEVBUF);
2520 	return 0;
2521 }
2522 
2523 static int
2524 mfi_create_sensors(struct mfi_softc *sc)
2525 {
2526 	int i;
2527 	int nsensors = sc->sc_ld_cnt + 1;
2528 	int rv;
2529 
2530 	sc->sc_sme = sysmon_envsys_create();
2531 	sc->sc_sensor = malloc(sizeof(envsys_data_t) * nsensors,
2532 	    M_DEVBUF, M_NOWAIT | M_ZERO);
2533 	if (sc->sc_sensor == NULL) {
2534 		aprint_error_dev(sc->sc_dev, "can't allocate envsys_data_t\n");
2535 		return ENOMEM;
2536 	}
2537 
2538 	/* BBU */
2539 	sc->sc_sensor[0].units = ENVSYS_INDICATOR;
2540 	sc->sc_sensor[0].state = ENVSYS_SINVALID;
2541 	sc->sc_sensor[0].value_cur = 0;
2542 	/* Enable monitoring for BBU state changes, if present */
2543 	if (sc->sc_info.mci_hw_present & MFI_INFO_HW_BBU)
2544 		sc->sc_sensor[0].flags |= ENVSYS_FMONCRITICAL;
2545 	snprintf(sc->sc_sensor[0].desc,
2546 	    sizeof(sc->sc_sensor[0].desc), "%s BBU", DEVNAME(sc));
2547 	if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor[0]))
2548 		goto out;
2549 
2550 	for (i = 1; i < nsensors; i++) {
2551 		sc->sc_sensor[i].units = ENVSYS_DRIVE;
2552 		sc->sc_sensor[i].state = ENVSYS_SINVALID;
2553 		sc->sc_sensor[i].value_cur = ENVSYS_DRIVE_EMPTY;
2554 		/* Enable monitoring for drive state changes */
2555 		sc->sc_sensor[i].flags |= ENVSYS_FMONSTCHANGED;
2556 		/* logical drives */
2557 		snprintf(sc->sc_sensor[i].desc,
2558 		    sizeof(sc->sc_sensor[i].desc), "%s:%d",
2559 		    DEVNAME(sc), i - 1);
2560 		if (sysmon_envsys_sensor_attach(sc->sc_sme,
2561 						&sc->sc_sensor[i]))
2562 			goto out;
2563 	}
2564 
2565 	sc->sc_sme->sme_name = DEVNAME(sc);
2566 	sc->sc_sme->sme_cookie = sc;
2567 	sc->sc_sme->sme_refresh = mfi_sensor_refresh;
2568 	rv = sysmon_envsys_register(sc->sc_sme);
2569 	if (rv != 0) {
2570 		aprint_error_dev(sc->sc_dev,
2571 		    "unable to register with sysmon (rv = %d)\n", rv);
2572 		goto out;
2573 	}
2574 	return 0;
2575 
2576 out:
2577 	free(sc->sc_sensor, M_DEVBUF);
2578 	sysmon_envsys_destroy(sc->sc_sme);
2579 	sc->sc_sme = NULL;
2580 	return EINVAL;
2581 }
2582 
2583 static void
2584 mfi_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
2585 {
2586 	struct mfi_softc	*sc = sme->sme_cookie;
2587 	struct bioc_vol		bv;
2588 	int s;
2589 	int error;
2590 
2591 	if (edata->sensor >= sc->sc_ld_cnt + 1)
2592 		return;
2593 
2594 	if (edata->sensor == 0) {
2595 		/* BBU */
2596 		struct mfi_bbu_status	bbu_stat;
2597 		int bbu_status;
2598 		if ((sc->sc_info.mci_hw_present & MFI_INFO_HW_BBU) == 0)
2599 			return;
2600 
2601 		KERNEL_LOCK(1, curlwp);
2602 		s = splbio();
2603 		bbu_status = mfi_get_bbu(sc, &bbu_stat);
2604 		splx(s);
2605 		KERNEL_UNLOCK_ONE(curlwp);
2606 		switch(bbu_status) {
2607 		case MFI_BBU_GOOD:
2608 			edata->value_cur = 1;
2609 			edata->state = ENVSYS_SVALID;
2610 			if (!sc->sc_bbuok)
2611 				aprint_normal_dev(sc->sc_dev,
2612 				    "BBU state changed to good\n");
2613 			sc->sc_bbuok = true;
2614 			break;
2615 		case MFI_BBU_BAD:
2616 			edata->value_cur = 0;
2617 			edata->state = ENVSYS_SCRITICAL;
2618 			if (sc->sc_bbuok)
2619 				aprint_normal_dev(sc->sc_dev,
2620 				    "BBU state changed to bad\n");
2621 			sc->sc_bbuok = false;
2622 			break;
2623 		case MFI_BBU_UNKNOWN:
2624 		default:
2625 			edata->value_cur = 0;
2626 			edata->state = ENVSYS_SINVALID;
2627 			sc->sc_bbuok = false;
2628 			break;
2629 		}
2630 		return;
2631 	}
2632 
2633 	memset(&bv, 0, sizeof(bv));
2634 	bv.bv_volid = edata->sensor - 1;
2635 	KERNEL_LOCK(1, curlwp);
2636 	s = splbio();
2637 	error = mfi_ioctl_vol(sc, &bv);
2638 	splx(s);
2639 	KERNEL_UNLOCK_ONE(curlwp);
2640 	if (error)
2641 		bv.bv_status = BIOC_SVINVALID;
2642 
2643 	bio_vol_to_envsys(edata, &bv);
2644 }
2645 
2646 #endif /* NBIO > 0 */
2647 
2648 static uint32_t
2649 mfi_xscale_fw_state(struct mfi_softc *sc)
2650 {
2651 	return mfi_read(sc, MFI_OMSG0);
2652 }
2653 
2654 static void
2655 mfi_xscale_intr_dis(struct mfi_softc *sc)
2656 {
2657 	mfi_write(sc, MFI_OMSK, 0);
2658 }
2659 
2660 static void
2661 mfi_xscale_intr_ena(struct mfi_softc *sc)
2662 {
2663 	mfi_write(sc, MFI_OMSK, MFI_ENABLE_INTR);
2664 }
2665 
2666 static int
2667 mfi_xscale_intr(struct mfi_softc *sc)
2668 {
2669 	uint32_t status;
2670 
2671 	status = mfi_read(sc, MFI_OSTS);
2672 	if (!ISSET(status, MFI_OSTS_INTR_VALID))
2673 		return 0;
2674 
2675 	/* write status back to acknowledge interrupt */
2676 	mfi_write(sc, MFI_OSTS, status);
2677 	return 1;
2678 }
2679 
2680 static void
2681 mfi_xscale_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
2682 {
2683 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
2684 	    ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
2685 	    sc->sc_frames_size, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2686 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_sense),
2687 	    ccb->ccb_psense - MFIMEM_DVA(sc->sc_sense),
2688 	    MFI_SENSE_SIZE, BUS_DMASYNC_PREREAD);
2689 
2690 	mfi_write(sc, MFI_IQP, (ccb->ccb_pframe >> 3) |
2691 	    ccb->ccb_extra_frames);
2692 	ccb->ccb_state = MFI_CCB_RUNNING;
2693 }
2694 
2695 static uint32_t
2696 mfi_ppc_fw_state(struct mfi_softc *sc)
2697 {
2698 	return mfi_read(sc, MFI_OSP);
2699 }
2700 
2701 static void
2702 mfi_ppc_intr_dis(struct mfi_softc *sc)
2703 {
2704 	/* Taking a wild guess --dyoung */
2705 	mfi_write(sc, MFI_OMSK, ~(uint32_t)0x0);
2706 	mfi_write(sc, MFI_ODC, 0xffffffff);
2707 }
2708 
2709 static void
2710 mfi_ppc_intr_ena(struct mfi_softc *sc)
2711 {
2712 	mfi_write(sc, MFI_ODC, 0xffffffff);
2713 	mfi_write(sc, MFI_OMSK, ~0x80000004);
2714 }
2715 
2716 static int
2717 mfi_ppc_intr(struct mfi_softc *sc)
2718 {
2719 	uint32_t status;
2720 
2721 	status = mfi_read(sc, MFI_OSTS);
2722 	if (!ISSET(status, MFI_OSTS_PPC_INTR_VALID))
2723 		return 0;
2724 
2725 	/* write status back to acknowledge interrupt */
2726 	mfi_write(sc, MFI_ODC, status);
2727 	return 1;
2728 }
2729 
2730 static void
2731 mfi_ppc_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
2732 {
2733 	mfi_write(sc, MFI_IQP, 0x1 | ccb->ccb_pframe |
2734 	    (ccb->ccb_extra_frames << 1));
2735 	ccb->ccb_state = MFI_CCB_RUNNING;
2736 }
2737 
2738 u_int32_t
2739 mfi_gen2_fw_state(struct mfi_softc *sc)
2740 {
2741 	return (mfi_read(sc, MFI_OSP));
2742 }
2743 
2744 void
2745 mfi_gen2_intr_dis(struct mfi_softc *sc)
2746 {
2747 	mfi_write(sc, MFI_OMSK, 0xffffffff);
2748 	mfi_write(sc, MFI_ODC, 0xffffffff);
2749 }
2750 
2751 void
2752 mfi_gen2_intr_ena(struct mfi_softc *sc)
2753 {
2754 	mfi_write(sc, MFI_ODC, 0xffffffff);
2755 	mfi_write(sc, MFI_OMSK, ~MFI_OSTS_GEN2_INTR_VALID);
2756 }
2757 
2758 int
2759 mfi_gen2_intr(struct mfi_softc *sc)
2760 {
2761 	u_int32_t status;
2762 
2763 	status = mfi_read(sc, MFI_OSTS);
2764 	if (!ISSET(status, MFI_OSTS_GEN2_INTR_VALID))
2765 		return (0);
2766 
2767 	/* write status back to acknowledge interrupt */
2768 	mfi_write(sc, MFI_ODC, status);
2769 
2770 	return (1);
2771 }
2772 
2773 void
2774 mfi_gen2_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
2775 {
2776 	mfi_write(sc, MFI_IQP, 0x1 | ccb->ccb_pframe |
2777 	    (ccb->ccb_extra_frames << 1));
2778 	ccb->ccb_state = MFI_CCB_RUNNING;
2779 }
2780 
2781 u_int32_t
2782 mfi_skinny_fw_state(struct mfi_softc *sc)
2783 {
2784 	return (mfi_read(sc, MFI_OSP));
2785 }
2786 
2787 void
2788 mfi_skinny_intr_dis(struct mfi_softc *sc)
2789 {
2790 	mfi_write(sc, MFI_OMSK, 0);
2791 }
2792 
2793 void
2794 mfi_skinny_intr_ena(struct mfi_softc *sc)
2795 {
2796 	mfi_write(sc, MFI_OMSK, ~0x00000001);
2797 }
2798 
2799 int
2800 mfi_skinny_intr(struct mfi_softc *sc)
2801 {
2802 	u_int32_t status;
2803 
2804 	status = mfi_read(sc, MFI_OSTS);
2805 	if (!ISSET(status, MFI_OSTS_SKINNY_INTR_VALID))
2806 		return (0);
2807 
2808 	/* write status back to acknowledge interrupt */
2809 	mfi_write(sc, MFI_OSTS, status);
2810 
2811 	return (1);
2812 }
2813 
2814 void
2815 mfi_skinny_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
2816 {
2817 	mfi_write(sc, MFI_IQPL, 0x1 | ccb->ccb_pframe |
2818 	    (ccb->ccb_extra_frames << 1));
2819 	mfi_write(sc, MFI_IQPH, 0x00000000);
2820 	ccb->ccb_state = MFI_CCB_RUNNING;
2821 }
2822 
2823 #define MFI_FUSION_ENABLE_INTERRUPT_MASK	(0x00000008)
2824 
2825 void
2826 mfi_tbolt_intr_ena(struct mfi_softc *sc)
2827 {
2828 	mfi_write(sc, MFI_OMSK, ~MFI_FUSION_ENABLE_INTERRUPT_MASK);
2829 	mfi_read(sc, MFI_OMSK);
2830 }
2831 
2832 void
2833 mfi_tbolt_intr_dis(struct mfi_softc *sc)
2834 {
2835 	mfi_write(sc, MFI_OMSK, 0xFFFFFFFF);
2836 	mfi_read(sc, MFI_OMSK);
2837 }
2838 
2839 int
2840 mfi_tbolt_intr(struct mfi_softc *sc)
2841 {
2842 	int32_t status;
2843 
2844 	status = mfi_read(sc, MFI_OSTS);
2845 
2846 	if (ISSET(status, 0x1)) {
2847 		mfi_write(sc, MFI_OSTS, status);
2848 		mfi_read(sc, MFI_OSTS);
2849 		if (ISSET(status, MFI_STATE_CHANGE_INTERRUPT))
2850 			return 0;
2851 		return 1;
2852 	}
2853 	if (!ISSET(status, MFI_FUSION_ENABLE_INTERRUPT_MASK))
2854 		return 0;
2855 	mfi_read(sc, MFI_OSTS);
2856 	return 1;
2857 }
2858 
2859 u_int32_t
2860 mfi_tbolt_fw_state(struct mfi_softc *sc)
2861 {
2862 	return mfi_read(sc, MFI_OSP);
2863 }
2864 
2865 void
2866 mfi_tbolt_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
2867 {
2868 	if (sc->sc_MFA_enabled) {
2869 		if ((ccb->ccb_flags & MFI_CCB_F_TBOLT) == 0)
2870 			mfi_tbolt_build_mpt_ccb(ccb);
2871 		mfi_write(sc, MFI_IQPL,
2872 		    ccb->ccb_tb_request_desc.words & 0xFFFFFFFF);
2873 		mfi_write(sc, MFI_IQPH,
2874 		    ccb->ccb_tb_request_desc.words >> 32);
2875 		ccb->ccb_state = MFI_CCB_RUNNING;
2876 		return;
2877 	}
2878 	uint64_t bus_add = ccb->ccb_pframe;
2879 	bus_add |= (MFI_REQ_DESCRIPT_FLAGS_MFA
2880 	    << MFI_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
2881 	mfi_write(sc, MFI_IQPL, bus_add);
2882 	mfi_write(sc, MFI_IQPH, bus_add >> 32);
2883 	ccb->ccb_state = MFI_CCB_RUNNING;
2884 }
2885 
2886 static void
2887 mfi_tbolt_build_mpt_ccb(struct mfi_ccb *ccb)
2888 {
2889 	union mfi_mpi2_request_descriptor *req_desc = &ccb->ccb_tb_request_desc;
2890 	struct mfi_mpi2_request_raid_scsi_io *io_req = ccb->ccb_tb_io_request;
2891 	struct mpi25_ieee_sge_chain64 *mpi25_ieee_chain;
2892 
2893 	io_req->Function = MPI2_FUNCTION_PASSTHRU_IO_REQUEST;
2894 	io_req->SGLOffset0 =
2895 	    offsetof(struct mfi_mpi2_request_raid_scsi_io, SGL) / 4;
2896 	io_req->ChainOffset =
2897 	    offsetof(struct mfi_mpi2_request_raid_scsi_io, SGL) / 16;
2898 
2899 	mpi25_ieee_chain =
2900 	    (struct mpi25_ieee_sge_chain64 *)&io_req->SGL.IeeeChain;
2901 	mpi25_ieee_chain->Address = ccb->ccb_pframe;
2902 
2903 	/*
2904 	  In MFI pass thru, nextChainOffset will always be zero to
2905 	  indicate the end of the chain.
2906 	*/
2907 	mpi25_ieee_chain->Flags= MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT
2908 		| MPI2_IEEE_SGE_FLAGS_IOCPLBNTA_ADDR;
2909 
2910 	/* setting the length to the maximum length */
2911 	mpi25_ieee_chain->Length = 1024;
2912 
2913 	req_desc->header.RequestFlags = (MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO <<
2914 	    MFI_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
2915 	ccb->ccb_flags |= MFI_CCB_F_TBOLT;
2916 	bus_dmamap_sync(ccb->ccb_sc->sc_dmat,
2917 	    MFIMEM_MAP(ccb->ccb_sc->sc_tbolt_reqmsgpool),
2918 	    ccb->ccb_tb_pio_request -
2919 	     MFIMEM_DVA(ccb->ccb_sc->sc_tbolt_reqmsgpool),
2920 	    MEGASAS_THUNDERBOLT_NEW_MSG_SIZE,
2921 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2922 }
2923 
2924 /*
2925  * Description:
2926  *      This function will prepare message pools for the Thunderbolt controller
2927  */
2928 static int
2929 mfi_tbolt_init_desc_pool(struct mfi_softc *sc)
2930 {
2931 	uint32_t     offset = 0;
2932 	uint8_t      *addr = MFIMEM_KVA(sc->sc_tbolt_reqmsgpool);
2933 
2934 	/* Request Decriptors alignment restrictions */
2935 	KASSERT(((uintptr_t)addr & 0xFF) == 0);
2936 
2937 	/* Skip request message pool */
2938 	addr = &addr[MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1)];
2939 
2940 	/* Reply Frame Pool is initialized */
2941 	sc->sc_reply_frame_pool = (struct mfi_mpi2_reply_header *) addr;
2942 	KASSERT(((uintptr_t)addr & 0xFF) == 0);
2943 
2944 	offset = (uintptr_t)sc->sc_reply_frame_pool
2945 	    - (uintptr_t)MFIMEM_KVA(sc->sc_tbolt_reqmsgpool);
2946 	sc->sc_reply_frame_busaddr =
2947 	    MFIMEM_DVA(sc->sc_tbolt_reqmsgpool) + offset;
2948 
2949 	/* initializing reply address to 0xFFFFFFFF */
2950 	memset((uint8_t *)sc->sc_reply_frame_pool, 0xFF,
2951 	       (MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size));
2952 
2953 	/* Skip Reply Frame Pool */
2954 	addr += MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size;
2955 	sc->sc_reply_pool_limit = (void *)addr;
2956 
2957 	offset = MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size;
2958 	sc->sc_sg_frame_busaddr = sc->sc_reply_frame_busaddr + offset;
2959 
2960 	/* initialize the last_reply_idx to 0 */
2961 	sc->sc_last_reply_idx = 0;
2962 	offset = (sc->sc_sg_frame_busaddr + (MEGASAS_MAX_SZ_CHAIN_FRAME *
2963 	    sc->sc_max_cmds)) - MFIMEM_DVA(sc->sc_tbolt_reqmsgpool);
2964 	KASSERT(offset <= sc->sc_tbolt_reqmsgpool->am_size);
2965 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_reqmsgpool), 0,
2966 	    MFIMEM_MAP(sc->sc_tbolt_reqmsgpool)->dm_mapsize,
2967 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2968 	return 0;
2969 }
2970 
2971 /*
2972  * This routine prepare and issue INIT2 frame to the Firmware
2973  */
2974 
2975 static int
2976 mfi_tbolt_init_MFI_queue(struct mfi_softc *sc)
2977 {
2978 	struct mpi2_ioc_init_request   *mpi2IocInit;
2979 	struct mfi_init_frame		*mfi_init;
2980 	struct mfi_ccb			*ccb;
2981 	bus_addr_t			phyAddress;
2982 	mfi_address			*mfiAddressTemp;
2983 	int				s;
2984 	char				*verbuf;
2985 	char				wqbuf[10];
2986 
2987 	/* Check if initialization is already completed */
2988 	if (sc->sc_MFA_enabled) {
2989 		return 1;
2990 	}
2991 
2992 	mpi2IocInit =
2993 	    (struct mpi2_ioc_init_request *)MFIMEM_KVA(sc->sc_tbolt_ioc_init);
2994 
2995 	s = splbio();
2996 	if ((ccb = mfi_get_ccb(sc)) == NULL) {
2997 		splx(s);
2998 		return (EBUSY);
2999 	}
3000 
3001 
3002 	mfi_init = &ccb->ccb_frame->mfr_init;
3003 
3004 	memset(mpi2IocInit, 0, sizeof(struct mpi2_ioc_init_request));
3005 	mpi2IocInit->Function  = MPI2_FUNCTION_IOC_INIT;
3006 	mpi2IocInit->WhoInit   = MPI2_WHOINIT_HOST_DRIVER;
3007 
3008 	/* set MsgVersion and HeaderVersion host driver was built with */
3009 	mpi2IocInit->MsgVersion = MPI2_VERSION;
3010 	mpi2IocInit->HeaderVersion = MPI2_HEADER_VERSION;
3011 	mpi2IocInit->SystemRequestFrameSize = MEGASAS_THUNDERBOLT_NEW_MSG_SIZE/4;
3012 	mpi2IocInit->ReplyDescriptorPostQueueDepth =
3013 	    (uint16_t)sc->sc_reply_pool_size;
3014 	mpi2IocInit->ReplyFreeQueueDepth = 0; /* Not supported by MR. */
3015 
3016 	/* Get physical address of reply frame pool */
3017 	phyAddress = sc->sc_reply_frame_busaddr;
3018 	mfiAddressTemp =
3019 	    (mfi_address *)&mpi2IocInit->ReplyDescriptorPostQueueAddress;
3020 	mfiAddressTemp->u.addressLow = (uint32_t)phyAddress;
3021 	mfiAddressTemp->u.addressHigh = (uint32_t)((uint64_t)phyAddress >> 32);
3022 
3023 	/* Get physical address of request message pool */
3024 	phyAddress =  MFIMEM_DVA(sc->sc_tbolt_reqmsgpool);
3025 	mfiAddressTemp = (mfi_address *)&mpi2IocInit->SystemRequestFrameBaseAddress;
3026 	mfiAddressTemp->u.addressLow = (uint32_t)phyAddress;
3027 	mfiAddressTemp->u.addressHigh = (uint32_t)((uint64_t)phyAddress >> 32);
3028 
3029 	mpi2IocInit->ReplyFreeQueueAddress =  0; /* Not supported by MR. */
3030 	mpi2IocInit->TimeStamp = time_uptime;
3031 
3032 	verbuf = MFIMEM_KVA(sc->sc_tbolt_verbuf);
3033 	snprintf(verbuf, strlen(MEGASAS_VERSION) + 2, "%s\n",
3034                 MEGASAS_VERSION);
3035 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_verbuf), 0,
3036 	    MFIMEM_MAP(sc->sc_tbolt_verbuf)->dm_mapsize, BUS_DMASYNC_PREWRITE);
3037 	mfi_init->driver_ver_lo = htole32(MFIMEM_DVA(sc->sc_tbolt_verbuf));
3038 	mfi_init->driver_ver_hi =
3039 		    htole32((uint64_t)MFIMEM_DVA(sc->sc_tbolt_verbuf) >> 32);
3040 
3041 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_ioc_init), 0,
3042 	    MFIMEM_MAP(sc->sc_tbolt_ioc_init)->dm_mapsize,
3043 	    BUS_DMASYNC_PREWRITE);
3044 	/* Get the physical address of the mpi2 ioc init command */
3045 	phyAddress =  MFIMEM_DVA(sc->sc_tbolt_ioc_init);
3046 	mfi_init->mif_qinfo_new_addr_lo = htole32(phyAddress);
3047 	mfi_init->mif_qinfo_new_addr_hi = htole32((uint64_t)phyAddress >> 32);
3048 
3049 	mfi_init->mif_header.mfh_cmd = MFI_CMD_INIT;
3050 	mfi_init->mif_header.mfh_data_len = sizeof(struct mpi2_ioc_init_request);
3051 	if (mfi_poll(ccb) != 0) {
3052 		aprint_error_dev(sc->sc_dev, "failed to send IOC init2 "
3053 		    "command at 0x%" PRIx64 "\n",
3054 		    (uint64_t)ccb->ccb_pframe);
3055 		splx(s);
3056 		return 1;
3057 	}
3058 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_verbuf), 0,
3059 	    MFIMEM_MAP(sc->sc_tbolt_verbuf)->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3060 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_ioc_init), 0,
3061 	    MFIMEM_MAP(sc->sc_tbolt_ioc_init)->dm_mapsize,
3062 	    BUS_DMASYNC_POSTWRITE);
3063 	mfi_put_ccb(ccb);
3064 	splx(s);
3065 
3066 	if (mfi_init->mif_header.mfh_cmd_status == 0) {
3067 		sc->sc_MFA_enabled = 1;
3068 	}
3069 	else {
3070 		aprint_error_dev(sc->sc_dev, "Init command Failed %x\n",
3071 		    mfi_init->mif_header.mfh_cmd_status);
3072 		return 1;
3073 	}
3074 
3075 	snprintf(wqbuf, sizeof(wqbuf), "%swq", DEVNAME(sc));
3076 	if (workqueue_create(&sc->sc_ldsync_wq, wqbuf, mfi_tbolt_sync_map_info,
3077 	    sc, PRIBIO, IPL_BIO, 0) != 0) {
3078 		aprint_error_dev(sc->sc_dev, "workqueue_create failed\n");
3079 		return 1;
3080 	}
3081 	workqueue_enqueue(sc->sc_ldsync_wq, &sc->sc_ldsync_wk, NULL);
3082 	return 0;
3083 }
3084 
3085 int
3086 mfi_tbolt_intrh(void *arg)
3087 {
3088 	struct mfi_softc	*sc = arg;
3089 	struct mfi_ccb		*ccb;
3090 	union mfi_mpi2_reply_descriptor *desc;
3091 	int smid, num_completed;
3092 
3093 	if (!mfi_tbolt_intr(sc))
3094 		return 0;
3095 
3096 	DNPRINTF(MFI_D_INTR, "%s: mfi_tbolt_intrh %#lx %#lx\n", DEVNAME(sc),
3097 	    (u_long)sc, (u_long)sc->sc_last_reply_idx);
3098 
3099 	KASSERT(sc->sc_last_reply_idx < sc->sc_reply_pool_size);
3100 
3101 	desc = (union mfi_mpi2_reply_descriptor *)
3102 	    ((uintptr_t)sc->sc_reply_frame_pool +
3103 	     sc->sc_last_reply_idx * MEGASAS_THUNDERBOLT_REPLY_SIZE);
3104 
3105 	bus_dmamap_sync(sc->sc_dmat,
3106 	    MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
3107 	    MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1),
3108 	    MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size,
3109 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3110 	num_completed = 0;
3111 	while ((desc->header.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK) !=
3112 	    MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
3113 		smid = desc->header.SMID;
3114 		KASSERT(smid > 0 && smid <= sc->sc_max_cmds);
3115 		ccb = &sc->sc_ccb[smid - 1];
3116 		DNPRINTF(MFI_D_INTR,
3117 		    "%s: mfi_tbolt_intr SMID %#x reply_idx %#x "
3118 		    "desc %#" PRIx64 " ccb %p\n", DEVNAME(sc), smid,
3119 		    sc->sc_last_reply_idx, desc->words, ccb);
3120 		KASSERT(ccb->ccb_state == MFI_CCB_RUNNING);
3121 		if (ccb->ccb_flags & MFI_CCB_F_TBOLT_IO &&
3122 		    ccb->ccb_tb_io_request->ChainOffset != 0) {
3123 			bus_dmamap_sync(sc->sc_dmat,
3124 			    MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
3125 			    ccb->ccb_tb_psg_frame -
3126 				MFIMEM_DVA(sc->sc_tbolt_reqmsgpool),
3127 			    MEGASAS_MAX_SZ_CHAIN_FRAME,  BUS_DMASYNC_POSTREAD);
3128 		}
3129 		if (ccb->ccb_flags & MFI_CCB_F_TBOLT_IO) {
3130 			bus_dmamap_sync(sc->sc_dmat,
3131 			    MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
3132 			    ccb->ccb_tb_pio_request -
3133 				MFIMEM_DVA(sc->sc_tbolt_reqmsgpool),
3134 			    MEGASAS_THUNDERBOLT_NEW_MSG_SIZE,
3135 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3136 		}
3137 		if (ccb->ccb_done)
3138 			ccb->ccb_done(ccb);
3139 		else
3140 			ccb->ccb_state = MFI_CCB_DONE;
3141 		sc->sc_last_reply_idx++;
3142 		if (sc->sc_last_reply_idx >= sc->sc_reply_pool_size) {
3143 			sc->sc_last_reply_idx = 0;
3144 		}
3145 		desc->words = ~0x0;
3146 		/* Get the next reply descriptor */
3147 		desc = (union mfi_mpi2_reply_descriptor *)
3148 		    ((uintptr_t)sc->sc_reply_frame_pool +
3149 		     sc->sc_last_reply_idx * MEGASAS_THUNDERBOLT_REPLY_SIZE);
3150 		num_completed++;
3151 	}
3152 	if (num_completed == 0)
3153 		return 0;
3154 
3155 	bus_dmamap_sync(sc->sc_dmat,
3156 	    MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
3157 	    MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1),
3158 	    MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size,
3159 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3160 	mfi_write(sc, MFI_RPI, sc->sc_last_reply_idx);
3161 	return 1;
3162 }
3163 
3164 
3165 int
3166 mfi_tbolt_scsi_ld_io(struct mfi_ccb *ccb, struct scsipi_xfer *xs,
3167     uint64_t blockno, uint32_t blockcnt)
3168 {
3169 	struct scsipi_periph *periph = xs->xs_periph;
3170 	struct mfi_mpi2_request_raid_scsi_io    *io_req;
3171 	int sge_count;
3172 
3173 	DNPRINTF(MFI_D_CMD, "%s: mfi_tbolt_scsi_ld_io: %d\n",
3174 	    device_xname(periph->periph_channel->chan_adapter->adapt_dev),
3175 	    periph->periph_target);
3176 
3177 	if (!xs->data)
3178 		return 1;
3179 
3180 	ccb->ccb_done = mfi_tbolt_scsi_ld_done;
3181 	ccb->ccb_xs = xs;
3182 	ccb->ccb_data = xs->data;
3183 	ccb->ccb_len = xs->datalen;
3184 
3185 	io_req = ccb->ccb_tb_io_request;
3186 
3187 	/* Just the CDB length,rest of the Flags are zero */
3188 	io_req->IoFlags = xs->cmdlen;
3189 	memset(io_req->CDB.CDB32, 0, 32);
3190 	memcpy(io_req->CDB.CDB32, &xs->cmdstore, xs->cmdlen);
3191 
3192 	io_req->RaidContext.TargetID = periph->periph_target;
3193 	io_req->RaidContext.Status = 0;
3194 	io_req->RaidContext.exStatus = 0;
3195 	io_req->RaidContext.timeoutValue = MFI_FUSION_FP_DEFAULT_TIMEOUT;
3196 	io_req->Function = MPI2_FUNCTION_LD_IO_REQUEST;
3197 	io_req->DevHandle = periph->periph_target;
3198 
3199 	ccb->ccb_tb_request_desc.header.RequestFlags =
3200 	    (MFI_REQ_DESCRIPT_FLAGS_LD_IO << MFI_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
3201 	io_req->DataLength = blockcnt * MFI_SECTOR_LEN;
3202 
3203 	if (xs->xs_control & XS_CTL_DATA_IN) {
3204 		io_req->Control = MPI2_SCSIIO_CONTROL_READ;
3205 		ccb->ccb_direction = MFI_DATA_IN;
3206 	} else {
3207 		io_req->Control = MPI2_SCSIIO_CONTROL_WRITE;
3208 		ccb->ccb_direction = MFI_DATA_OUT;
3209 	}
3210 
3211 	sge_count = mfi_tbolt_create_sgl(ccb,
3212 	    (xs->xs_control & XS_CTL_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK
3213 	    );
3214 	if (sge_count < 0)
3215 		return 1;
3216 	KASSERT(sge_count <= ccb->ccb_sc->sc_max_sgl);
3217 	io_req->RaidContext.numSGE = sge_count;
3218 	io_req->SGLFlags = MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
3219 	io_req->SGLOffset0 =
3220 	    offsetof(struct mfi_mpi2_request_raid_scsi_io, SGL) / 4;
3221 
3222 	io_req->SenseBufferLowAddress = htole32(ccb->ccb_psense);
3223 	io_req->SenseBufferLength = MFI_SENSE_SIZE;
3224 
3225 	ccb->ccb_flags |= MFI_CCB_F_TBOLT | MFI_CCB_F_TBOLT_IO;
3226 	bus_dmamap_sync(ccb->ccb_sc->sc_dmat,
3227 	    MFIMEM_MAP(ccb->ccb_sc->sc_tbolt_reqmsgpool),
3228 	    ccb->ccb_tb_pio_request -
3229 	     MFIMEM_DVA(ccb->ccb_sc->sc_tbolt_reqmsgpool),
3230 	    MEGASAS_THUNDERBOLT_NEW_MSG_SIZE,
3231 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3232 
3233 	return 0;
3234 }
3235 
3236 
3237 static void
3238 mfi_tbolt_scsi_ld_done(struct mfi_ccb *ccb)
3239 {
3240 	struct mfi_mpi2_request_raid_scsi_io *io_req = ccb->ccb_tb_io_request;
3241 	mfi_scsi_xs_done(ccb, io_req->RaidContext.Status,
3242 	    io_req->RaidContext.exStatus);
3243 }
3244 
3245 static int
3246 mfi_tbolt_create_sgl(struct mfi_ccb *ccb, int flags)
3247 {
3248 	struct mfi_softc	*sc = ccb->ccb_sc;
3249 	bus_dma_segment_t	*sgd;
3250 	int			error, i, sge_idx, sge_count;
3251 	struct mfi_mpi2_request_raid_scsi_io *io_req;
3252 	struct mpi25_ieee_sge_chain64 *sgl_ptr;
3253 
3254 	DNPRINTF(MFI_D_DMA, "%s: mfi_tbolt_create_sgl %#lx\n", DEVNAME(sc),
3255 	    (u_long)ccb->ccb_data);
3256 
3257 	if (!ccb->ccb_data)
3258 		return -1;
3259 
3260 	KASSERT(flags == BUS_DMA_NOWAIT || !cpu_intr_p());
3261 	error = bus_dmamap_load(sc->sc_datadmat, ccb->ccb_dmamap,
3262 	    ccb->ccb_data, ccb->ccb_len, NULL, flags);
3263 	if (error) {
3264 		if (error == EFBIG)
3265 			aprint_error_dev(sc->sc_dev, "more than %d dma segs\n",
3266 			    sc->sc_max_sgl);
3267 		else
3268 			aprint_error_dev(sc->sc_dev,
3269 			    "error %d loading dma map\n", error);
3270 		return -1;
3271 	}
3272 
3273 	io_req = ccb->ccb_tb_io_request;
3274 	sgl_ptr = &io_req->SGL.IeeeChain.Chain64;
3275 	sge_count = ccb->ccb_dmamap->dm_nsegs;
3276 	sgd = ccb->ccb_dmamap->dm_segs;
3277 	KASSERT(sge_count <= sc->sc_max_sgl);
3278 	KASSERT(sge_count <=
3279 	    (MEGASAS_THUNDERBOLT_MAX_SGE_IN_MAINMSG - 1 +
3280 	     MEGASAS_THUNDERBOLT_MAX_SGE_IN_CHAINMSG));
3281 
3282 	if (sge_count > MEGASAS_THUNDERBOLT_MAX_SGE_IN_MAINMSG) {
3283 		/* One element to store the chain info */
3284 		sge_idx = MEGASAS_THUNDERBOLT_MAX_SGE_IN_MAINMSG - 1;
3285 		DNPRINTF(MFI_D_DMA,
3286 		    "mfi sge_idx %d sge_count %d io_req paddr 0x%" PRIx64 "\n",
3287 		    sge_idx, sge_count, ccb->ccb_tb_pio_request);
3288 	} else {
3289 		sge_idx = sge_count;
3290 	}
3291 
3292 	for (i = 0; i < sge_idx; i++) {
3293 		sgl_ptr->Address = htole64(sgd[i].ds_addr);
3294 		sgl_ptr->Length = htole32(sgd[i].ds_len);
3295 		sgl_ptr->Flags = 0;
3296 		if (sge_idx < sge_count) {
3297 			DNPRINTF(MFI_D_DMA,
3298 			    "sgl %p %d 0x%" PRIx64 " len 0x%" PRIx32
3299 			    " flags 0x%x\n", sgl_ptr, i,
3300 			    sgl_ptr->Address, sgl_ptr->Length,
3301 			    sgl_ptr->Flags);
3302 		}
3303 		sgl_ptr++;
3304 	}
3305 	io_req->ChainOffset = 0;
3306 	if (sge_idx < sge_count) {
3307 		struct mpi25_ieee_sge_chain64 *sg_chain;
3308 		io_req->ChainOffset = MEGASAS_THUNDERBOLT_CHAIN_OFF_MAINMSG;
3309 		sg_chain = sgl_ptr;
3310 		/* Prepare chain element */
3311 		sg_chain->NextChainOffset = 0;
3312 		sg_chain->Flags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
3313 		    MPI2_IEEE_SGE_FLAGS_IOCPLBNTA_ADDR);
3314 		sg_chain->Length =  (sizeof(mpi2_sge_io_union) *
3315 		    (sge_count - sge_idx));
3316 		sg_chain->Address = ccb->ccb_tb_psg_frame;
3317 		DNPRINTF(MFI_D_DMA,
3318 		    "sgl %p chain 0x%" PRIx64 " len 0x%" PRIx32
3319 		    " flags 0x%x\n", sg_chain, sg_chain->Address,
3320 		    sg_chain->Length, sg_chain->Flags);
3321 		sgl_ptr = &ccb->ccb_tb_sg_frame->IeeeChain.Chain64;
3322 		for (; i < sge_count; i++) {
3323 			sgl_ptr->Address = htole64(sgd[i].ds_addr);
3324 			sgl_ptr->Length = htole32(sgd[i].ds_len);
3325 			sgl_ptr->Flags = 0;
3326 			DNPRINTF(MFI_D_DMA,
3327 			    "sgl %p %d 0x%" PRIx64 " len 0x%" PRIx32
3328 			    " flags 0x%x\n", sgl_ptr, i, sgl_ptr->Address,
3329 			    sgl_ptr->Length, sgl_ptr->Flags);
3330 			sgl_ptr++;
3331 		}
3332 		bus_dmamap_sync(sc->sc_dmat,
3333 		    MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
3334 		    ccb->ccb_tb_psg_frame - MFIMEM_DVA(sc->sc_tbolt_reqmsgpool),
3335 		    MEGASAS_MAX_SZ_CHAIN_FRAME,  BUS_DMASYNC_PREREAD);
3336 	}
3337 
3338 	if (ccb->ccb_direction == MFI_DATA_IN) {
3339 		bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
3340 		    ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3341 	} else {
3342 		bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
3343 		    ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3344 	}
3345 	return sge_count;
3346 }
3347 
3348 /*
3349  * The ThunderBolt HW has an option for the driver to directly
3350  * access the underlying disks and operate on the RAID.  To
3351  * do this there needs to be a capability to keep the RAID controller
3352  * and driver in sync.  The FreeBSD driver does not take advantage
3353  * of this feature since it adds a lot of complexity and slows down
3354  * performance.  Performance is gained by using the controller's
3355  * cache etc.
3356  *
3357  * Even though this driver doesn't access the disks directly, an
3358  * AEN like command is used to inform the RAID firmware to "sync"
3359  * with all LD's via the MFI_DCMD_LD_MAP_GET_INFO command.  This
3360  * command in write mode will return when the RAID firmware has
3361  * detected a change to the RAID state.  Examples of this type
3362  * of change are removing a disk.  Once the command returns then
3363  * the driver needs to acknowledge this and "sync" all LD's again.
3364  * This repeats until we shutdown.  Then we need to cancel this
3365  * pending command.
3366  *
3367  * If this is not done right the RAID firmware will not remove a
3368  * pulled drive and the RAID won't go degraded etc.  Effectively,
3369  * stopping any RAID mangement to functions.
3370  *
3371  * Doing another LD sync, requires the use of an event since the
3372  * driver needs to do a mfi_wait_command and can't do that in an
3373  * interrupt thread.
3374  *
3375  * The driver could get the RAID state via the MFI_DCMD_LD_MAP_GET_INFO
3376  * That requires a bunch of structure and it is simplier to just do
3377  * the MFI_DCMD_LD_GET_LIST versus walking the RAID map.
3378  */
3379 
3380 void
3381 mfi_tbolt_sync_map_info(struct work *w, void *v)
3382 {
3383 	struct mfi_softc *sc = v;
3384 	int i;
3385 	struct mfi_ccb *ccb = NULL;
3386 	uint8_t mbox[MFI_MBOX_SIZE];
3387 	struct mfi_ld *ld_sync = NULL;
3388 	size_t ld_size;
3389 	int s;
3390 
3391 	DNPRINTF(MFI_D_SYNC, "%s: mfi_tbolt_sync_map_info\n", DEVNAME(sc));
3392 again:
3393 	s = splbio();
3394 	if (sc->sc_ldsync_ccb != NULL) {
3395 		splx(s);
3396 		return;
3397 	}
3398 
3399 	if (mfi_mgmt_internal(sc, MR_DCMD_LD_GET_LIST, MFI_DATA_IN,
3400 	    sizeof(sc->sc_ld_list), &sc->sc_ld_list, NULL, false)) {
3401 		aprint_error_dev(sc->sc_dev, "MR_DCMD_LD_GET_LIST failed\n");
3402 		goto err;
3403 	}
3404 
3405 	ld_size = sizeof(*ld_sync) * sc->sc_ld_list.mll_no_ld;
3406 
3407 	ld_sync = malloc(ld_size, M_DEVBUF, M_WAITOK | M_ZERO);
3408 	if (ld_sync == NULL) {
3409 		aprint_error_dev(sc->sc_dev, "Failed to allocate sync\n");
3410 		goto err;
3411 	}
3412 	for (i = 0; i < sc->sc_ld_list.mll_no_ld; i++) {
3413 		ld_sync[i] = sc->sc_ld_list.mll_list[i].mll_ld;
3414 	}
3415 
3416 	if ((ccb = mfi_get_ccb(sc)) == NULL) {
3417 		aprint_error_dev(sc->sc_dev, "Failed to get sync command\n");
3418 		goto err;
3419 	}
3420 	sc->sc_ldsync_ccb = ccb;
3421 
3422 	memset(mbox, 0, MFI_MBOX_SIZE);
3423 	mbox[0] = sc->sc_ld_list.mll_no_ld;
3424 	mbox[1] = MFI_DCMD_MBOX_PEND_FLAG;
3425 	if (mfi_mgmt(ccb, NULL, MR_DCMD_LD_MAP_GET_INFO, MFI_DATA_OUT,
3426 	    ld_size, ld_sync, mbox)) {
3427 		aprint_error_dev(sc->sc_dev, "Failed to create sync command\n");
3428 		goto err;
3429 	}
3430 	/*
3431 	 * we won't sleep on this command, so we have to override
3432 	 * the callback set up by mfi_mgmt()
3433 	 */
3434 	ccb->ccb_done = mfi_sync_map_complete;
3435 
3436 	mfi_post(sc, ccb);
3437 	splx(s);
3438 	return;
3439 
3440 err:
3441 	if (ld_sync)
3442 		free(ld_sync, M_DEVBUF);
3443 	if (ccb)
3444 		mfi_put_ccb(ccb);
3445 	sc->sc_ldsync_ccb = NULL;
3446 	splx(s);
3447 	kpause("ldsyncp", 0, hz, NULL);
3448 	goto again;
3449 }
3450 
3451 static void
3452 mfi_sync_map_complete(struct mfi_ccb *ccb)
3453 {
3454 	struct mfi_softc *sc = ccb->ccb_sc;
3455 	bool aborted = !sc->sc_running;
3456 
3457 	DNPRINTF(MFI_D_SYNC, "%s: mfi_sync_map_complete\n",
3458 	    DEVNAME(ccb->ccb_sc));
3459 	KASSERT(sc->sc_ldsync_ccb == ccb);
3460 	mfi_mgmt_done(ccb);
3461 	free(ccb->ccb_data, M_DEVBUF);
3462 	if (ccb->ccb_flags & MFI_CCB_F_ERR) {
3463 		aprint_error_dev(sc->sc_dev, "sync command failed\n");
3464 		aborted = true;
3465 	}
3466 	mfi_put_ccb(ccb);
3467 	sc->sc_ldsync_ccb = NULL;
3468 
3469 	/* set it up again so the driver can catch more events */
3470 	if (!aborted) {
3471 		workqueue_enqueue(sc->sc_ldsync_wq, &sc->sc_ldsync_wk, NULL);
3472 	}
3473 }
3474 
3475 static int
3476 mfifopen(dev_t dev, int flag, int mode, struct lwp *l)
3477 {
3478 	struct mfi_softc *sc;
3479 
3480 	if ((sc = device_lookup_private(&mfi_cd, minor(dev))) == NULL)
3481 		return (ENXIO);
3482 	return (0);
3483 }
3484 
3485 static int
3486 mfifclose(dev_t dev, int flag, int mode, struct lwp *l)
3487 {
3488 	return (0);
3489 }
3490 
3491 static int
3492 mfifioctl(dev_t dev, u_long cmd, void *data, int flag,
3493     struct lwp *l)
3494 {
3495 	struct mfi_softc *sc;
3496 	struct mfi_ioc_packet *ioc = data;
3497 	uint8_t *udata;
3498 	struct mfi_ccb *ccb = NULL;
3499 	int ctx, i, s, error;
3500 	union mfi_sense_ptr sense_ptr;
3501 
3502 	switch(cmd) {
3503 	case MFI_CMD:
3504 		sc = device_lookup_private(&mfi_cd, ioc->mfi_adapter_no);
3505 		break;
3506 	default:
3507 		return ENOTTY;
3508 	}
3509 	if (sc == NULL)
3510 		return (ENXIO);
3511 	if (sc->sc_opened)
3512 		return (EBUSY);
3513 
3514 	switch(cmd) {
3515 	case MFI_CMD:
3516 		error = kauth_authorize_device_passthru(l->l_cred, dev,
3517 		    KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
3518 		if (error)
3519 			return error;
3520 		if (ioc->mfi_sge_count > MAX_IOCTL_SGE)
3521 			return EINVAL;
3522 		s = splbio();
3523 		if ((ccb = mfi_get_ccb(sc)) == NULL)
3524 			return ENOMEM;
3525 		ccb->ccb_data = NULL;
3526 		ctx = ccb->ccb_frame->mfr_header.mfh_context;
3527 		memcpy(ccb->ccb_frame, ioc->mfi_frame.raw,
3528 		   sizeof(*ccb->ccb_frame));
3529 		ccb->ccb_frame->mfr_header.mfh_context = ctx;
3530 		ccb->ccb_frame->mfr_header.mfh_scsi_status = 0;
3531 		ccb->ccb_frame->mfr_header.mfh_pad0 = 0;
3532 		ccb->ccb_frame_size =
3533 		    (sizeof(union mfi_sgl) * ioc->mfi_sge_count) +
3534 		    ioc->mfi_sgl_off;
3535 		if (ioc->mfi_sge_count > 0) {
3536 			ccb->ccb_sgl = (union mfi_sgl *)
3537 			    &ccb->ccb_frame->mfr_bytes[ioc->mfi_sgl_off];
3538 		}
3539 		if (ccb->ccb_frame->mfr_header.mfh_flags & MFI_FRAME_DIR_READ)
3540 			ccb->ccb_direction = MFI_DATA_IN;
3541 		if (ccb->ccb_frame->mfr_header.mfh_flags & MFI_FRAME_DIR_WRITE)
3542 			ccb->ccb_direction = MFI_DATA_OUT;
3543 		ccb->ccb_len = ccb->ccb_frame->mfr_header.mfh_data_len;
3544 		if (ccb->ccb_len > MAXPHYS) {
3545 			error = ENOMEM;
3546 			goto out;
3547 		}
3548 		if (ccb->ccb_len &&
3549 		    (ccb->ccb_direction & (MFI_DATA_IN | MFI_DATA_OUT)) != 0) {
3550 			udata = malloc(ccb->ccb_len, M_DEVBUF, M_WAITOK|M_ZERO);
3551 			if (udata == NULL) {
3552 				error = ENOMEM;
3553 				goto out;
3554 			}
3555 			ccb->ccb_data = udata;
3556 			if (ccb->ccb_direction & MFI_DATA_OUT) {
3557 				for (i = 0; i < ioc->mfi_sge_count; i++) {
3558 					error = copyin(ioc->mfi_sgl[i].iov_base,
3559 					    udata, ioc->mfi_sgl[i].iov_len);
3560 					if (error)
3561 						goto out;
3562 					udata = &udata[
3563 					    ioc->mfi_sgl[i].iov_len];
3564 				}
3565 			}
3566 			if (mfi_create_sgl(ccb, BUS_DMA_WAITOK)) {
3567 				error = EIO;
3568 				goto out;
3569 			}
3570 		}
3571 		if (ccb->ccb_frame->mfr_header.mfh_cmd == MFI_CMD_PD_SCSI_IO) {
3572 			ccb->ccb_frame->mfr_io.mif_sense_addr_lo =
3573 			    htole32(ccb->ccb_psense);
3574 			ccb->ccb_frame->mfr_io.mif_sense_addr_hi = 0;
3575 		}
3576 		ccb->ccb_done = mfi_mgmt_done;
3577 		mfi_post(sc, ccb);
3578 		while (ccb->ccb_state != MFI_CCB_DONE)
3579 			tsleep(ccb, PRIBIO, "mfi_fioc", 0);
3580 
3581 		if (ccb->ccb_direction & MFI_DATA_IN) {
3582 			udata = ccb->ccb_data;
3583 			for (i = 0; i < ioc->mfi_sge_count; i++) {
3584 				error = copyout(udata,
3585 				    ioc->mfi_sgl[i].iov_base,
3586 				    ioc->mfi_sgl[i].iov_len);
3587 				if (error)
3588 					goto out;
3589 				udata = &udata[
3590 				    ioc->mfi_sgl[i].iov_len];
3591 			}
3592 		}
3593 		if (ioc->mfi_sense_len) {
3594 			memcpy(&sense_ptr.sense_ptr_data[0],
3595 			&ioc->mfi_frame.raw[ioc->mfi_sense_off],
3596 			sizeof(sense_ptr.sense_ptr_data));
3597 			error = copyout(ccb->ccb_sense,
3598 			    sense_ptr.user_space,
3599 			    sizeof(sense_ptr.sense_ptr_data));
3600 			if (error)
3601 				goto out;
3602 		}
3603 		memcpy(ioc->mfi_frame.raw, ccb->ccb_frame,
3604 		   sizeof(*ccb->ccb_frame));
3605 		break;
3606 	default:
3607 		printf("mfifioctl unhandled cmd 0x%lx\n", cmd);
3608 		return ENOTTY;
3609 	}
3610 
3611 out:
3612 	if (ccb->ccb_data)
3613 		free(ccb->ccb_data, M_DEVBUF);
3614 	if (ccb)
3615 		mfi_put_ccb(ccb);
3616 	splx(s);
3617 	return error;
3618 }
3619