xref: /netbsd-src/sys/dev/ic/mfi.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* $NetBSD: mfi.c,v 1.52 2014/03/16 05:20:27 dholland Exp $ */
2 /* $OpenBSD: mfi.c,v 1.66 2006/11/28 23:59:45 dlg Exp $ */
3 
4 /*
5  * Copyright (c) 2012 Manuel Bouyer.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 /*
29  * Copyright (c) 2006 Marco Peereboom <marco@peereboom.us>
30  *
31  * Permission to use, copy, modify, and distribute this software for any
32  * purpose with or without fee is hereby granted, provided that the above
33  * copyright notice and this permission notice appear in all copies.
34  *
35  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
36  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
37  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
38  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
39  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
40  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
41  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
42  */
43 
44  /*-
45  * Redistribution and use in source and binary forms, with or without
46  * modification, are permitted provided that the following conditions
47  * are met:
48  *
49  *            Copyright 1994-2009 The FreeBSD Project.
50  *            All rights reserved.
51  *
52  * 1. Redistributions of source code must retain the above copyright
53  *    notice, this list of conditions and the following disclaimer.
54  * 2. Redistributions in binary form must reproduce the above copyright
55  *    notice, this list of conditions and the following disclaimer in the
56  *    documentation and/or other materials provided with the distribution.
57  *
58  *    THIS SOFTWARE IS PROVIDED BY THE FREEBSD PROJECT``AS IS'' AND
59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
60  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
61  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FREEBSD PROJECT OR
62  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
63  * EXEMPLARY,OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
64  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
65  * PROFITS; OR BUSINESS INTERRUPTION)HOWEVER CAUSED AND ON ANY THEORY
66  * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
67  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
68  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
69  *
70  * The views and conclusions contained in the software and documentation
71  * are those of the authors and should not be interpreted as representing
72  * official policies,either expressed or implied, of the FreeBSD Project.
73  */
74 
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: mfi.c,v 1.52 2014/03/16 05:20:27 dholland Exp $");
77 
78 #include "bio.h"
79 
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/buf.h>
83 #include <sys/ioctl.h>
84 #include <sys/device.h>
85 #include <sys/kernel.h>
86 #include <sys/malloc.h>
87 #include <sys/proc.h>
88 #include <sys/cpu.h>
89 #include <sys/conf.h>
90 #include <sys/kauth.h>
91 
92 #include <uvm/uvm_param.h>
93 
94 #include <sys/bus.h>
95 
96 #include <dev/scsipi/scsipi_all.h>
97 #include <dev/scsipi/scsi_all.h>
98 #include <dev/scsipi/scsi_spc.h>
99 #include <dev/scsipi/scsipi_disk.h>
100 #include <dev/scsipi/scsi_disk.h>
101 #include <dev/scsipi/scsiconf.h>
102 
103 #include <dev/ic/mfireg.h>
104 #include <dev/ic/mfivar.h>
105 #include <dev/ic/mfiio.h>
106 
107 #if NBIO > 0
108 #include <dev/biovar.h>
109 #endif /* NBIO > 0 */
110 
111 #ifdef MFI_DEBUG
112 uint32_t	mfi_debug = 0
113 /*		    | MFI_D_CMD  */
114 /*		    | MFI_D_INTR */
115 /*		    | MFI_D_MISC */
116 /*		    | MFI_D_DMA */
117 /*		    | MFI_D_IOCTL */
118 /*		    | MFI_D_RW */
119 /*		    | MFI_D_MEM */
120 /*		    | MFI_D_CCB */
121 /*		    | MFI_D_SYNC */
122 		;
123 #endif
124 
125 static void		mfi_scsipi_request(struct scsipi_channel *,
126 				scsipi_adapter_req_t, void *);
127 static void		mfiminphys(struct buf *bp);
128 
129 static struct mfi_ccb	*mfi_get_ccb(struct mfi_softc *);
130 static void		mfi_put_ccb(struct mfi_ccb *);
131 static int		mfi_init_ccb(struct mfi_softc *);
132 
133 static struct mfi_mem	*mfi_allocmem(struct mfi_softc *, size_t);
134 static void		mfi_freemem(struct mfi_softc *, struct mfi_mem **);
135 
136 static int		mfi_transition_firmware(struct mfi_softc *);
137 static int		mfi_initialize_firmware(struct mfi_softc *);
138 static int		mfi_get_info(struct mfi_softc *);
139 static int		mfi_get_bbu(struct mfi_softc *,
140 			    struct mfi_bbu_status *);
141 /* return codes for mfi_get_bbu */
142 #define MFI_BBU_GOOD	0
143 #define MFI_BBU_BAD	1
144 #define MFI_BBU_UNKNOWN	2
145 static uint32_t		mfi_read(struct mfi_softc *, bus_size_t);
146 static void		mfi_write(struct mfi_softc *, bus_size_t, uint32_t);
147 static int		mfi_poll(struct mfi_ccb *);
148 static int		mfi_create_sgl(struct mfi_ccb *, int);
149 
150 /* commands */
151 static int		mfi_scsi_ld(struct mfi_ccb *, struct scsipi_xfer *);
152 static int		mfi_scsi_ld_io(struct mfi_ccb *, struct scsipi_xfer *,
153 				uint64_t, uint32_t);
154 static void		mfi_scsi_ld_done(struct mfi_ccb *);
155 static void		mfi_scsi_xs_done(struct mfi_ccb *, int, int);
156 static int		mfi_mgmt_internal(struct mfi_softc *, uint32_t,
157 			    uint32_t, uint32_t, void *, uint8_t *, bool);
158 static int		mfi_mgmt(struct mfi_ccb *,struct scsipi_xfer *,
159 			    uint32_t, uint32_t, uint32_t, void *, uint8_t *);
160 static void		mfi_mgmt_done(struct mfi_ccb *);
161 
162 #if NBIO > 0
163 static int		mfi_ioctl(device_t, u_long, void *);
164 static int		mfi_ioctl_inq(struct mfi_softc *, struct bioc_inq *);
165 static int		mfi_ioctl_vol(struct mfi_softc *, struct bioc_vol *);
166 static int		mfi_ioctl_disk(struct mfi_softc *, struct bioc_disk *);
167 static int		mfi_ioctl_alarm(struct mfi_softc *,
168 				struct bioc_alarm *);
169 static int		mfi_ioctl_blink(struct mfi_softc *sc,
170 				struct bioc_blink *);
171 static int		mfi_ioctl_setstate(struct mfi_softc *,
172 				struct bioc_setstate *);
173 static int		mfi_bio_hs(struct mfi_softc *, int, int, void *);
174 static int		mfi_create_sensors(struct mfi_softc *);
175 static int		mfi_destroy_sensors(struct mfi_softc *);
176 static void		mfi_sensor_refresh(struct sysmon_envsys *,
177 				envsys_data_t *);
178 #endif /* NBIO > 0 */
179 static bool		mfi_shutdown(device_t, int);
180 static bool		mfi_suspend(device_t, const pmf_qual_t *);
181 static bool		mfi_resume(device_t, const pmf_qual_t *);
182 
183 static dev_type_open(mfifopen);
184 static dev_type_close(mfifclose);
185 static dev_type_ioctl(mfifioctl);
186 const struct cdevsw mfi_cdevsw = {
187 	.d_open = mfifopen,
188 	.d_close = mfifclose,
189 	.d_read = noread,
190 	.d_write = nowrite,
191 	.d_ioctl = mfifioctl,
192 	.d_stop = nostop,
193 	.d_tty = notty,
194 	.d_poll = nopoll,
195 	.d_mmap = nommap,
196 	.d_kqfilter = nokqfilter,
197 	.d_flag = D_OTHER
198 };
199 
200 extern struct cfdriver mfi_cd;
201 
202 static uint32_t 	mfi_xscale_fw_state(struct mfi_softc *sc);
203 static void 		mfi_xscale_intr_ena(struct mfi_softc *sc);
204 static void 		mfi_xscale_intr_dis(struct mfi_softc *sc);
205 static int 		mfi_xscale_intr(struct mfi_softc *sc);
206 static void 		mfi_xscale_post(struct mfi_softc *sc, struct mfi_ccb *ccb);
207 
208 static const struct mfi_iop_ops mfi_iop_xscale = {
209 	mfi_xscale_fw_state,
210 	mfi_xscale_intr_dis,
211 	mfi_xscale_intr_ena,
212 	mfi_xscale_intr,
213 	mfi_xscale_post,
214 	mfi_scsi_ld_io,
215 };
216 
217 static uint32_t 	mfi_ppc_fw_state(struct mfi_softc *sc);
218 static void 		mfi_ppc_intr_ena(struct mfi_softc *sc);
219 static void 		mfi_ppc_intr_dis(struct mfi_softc *sc);
220 static int 		mfi_ppc_intr(struct mfi_softc *sc);
221 static void 		mfi_ppc_post(struct mfi_softc *sc, struct mfi_ccb *ccb);
222 
223 static const struct mfi_iop_ops mfi_iop_ppc = {
224 	mfi_ppc_fw_state,
225 	mfi_ppc_intr_dis,
226 	mfi_ppc_intr_ena,
227 	mfi_ppc_intr,
228 	mfi_ppc_post,
229 	mfi_scsi_ld_io,
230 };
231 
232 uint32_t	mfi_gen2_fw_state(struct mfi_softc *sc);
233 void		mfi_gen2_intr_ena(struct mfi_softc *sc);
234 void		mfi_gen2_intr_dis(struct mfi_softc *sc);
235 int		mfi_gen2_intr(struct mfi_softc *sc);
236 void		mfi_gen2_post(struct mfi_softc *sc, struct mfi_ccb *ccb);
237 
238 static const struct mfi_iop_ops mfi_iop_gen2 = {
239 	mfi_gen2_fw_state,
240 	mfi_gen2_intr_dis,
241 	mfi_gen2_intr_ena,
242 	mfi_gen2_intr,
243 	mfi_gen2_post,
244 	mfi_scsi_ld_io,
245 };
246 
247 u_int32_t	mfi_skinny_fw_state(struct mfi_softc *);
248 void		mfi_skinny_intr_dis(struct mfi_softc *);
249 void		mfi_skinny_intr_ena(struct mfi_softc *);
250 int		mfi_skinny_intr(struct mfi_softc *);
251 void		mfi_skinny_post(struct mfi_softc *, struct mfi_ccb *);
252 
253 static const struct mfi_iop_ops mfi_iop_skinny = {
254 	mfi_skinny_fw_state,
255 	mfi_skinny_intr_dis,
256 	mfi_skinny_intr_ena,
257 	mfi_skinny_intr,
258 	mfi_skinny_post,
259 	mfi_scsi_ld_io,
260 };
261 
262 static int	mfi_tbolt_init_desc_pool(struct mfi_softc *);
263 static int	mfi_tbolt_init_MFI_queue(struct mfi_softc *);
264 static void	mfi_tbolt_build_mpt_ccb(struct mfi_ccb *);
265 int		mfi_tbolt_scsi_ld_io(struct mfi_ccb *, struct scsipi_xfer *,
266 		    uint64_t, uint32_t);
267 static void	mfi_tbolt_scsi_ld_done(struct mfi_ccb *);
268 static int	mfi_tbolt_create_sgl(struct mfi_ccb *, int);
269 void		mfi_tbolt_sync_map_info(struct work *, void *);
270 static void	mfi_sync_map_complete(struct mfi_ccb *);
271 
272 u_int32_t	mfi_tbolt_fw_state(struct mfi_softc *);
273 void		mfi_tbolt_intr_dis(struct mfi_softc *);
274 void		mfi_tbolt_intr_ena(struct mfi_softc *);
275 int		mfi_tbolt_intr(struct mfi_softc *sc);
276 void		mfi_tbolt_post(struct mfi_softc *, struct mfi_ccb *);
277 
278 static const struct mfi_iop_ops mfi_iop_tbolt = {
279 	mfi_tbolt_fw_state,
280 	mfi_tbolt_intr_dis,
281 	mfi_tbolt_intr_ena,
282 	mfi_tbolt_intr,
283 	mfi_tbolt_post,
284 	mfi_tbolt_scsi_ld_io,
285 };
286 
287 #define mfi_fw_state(_s) 	((_s)->sc_iop->mio_fw_state(_s))
288 #define mfi_intr_enable(_s) 	((_s)->sc_iop->mio_intr_ena(_s))
289 #define mfi_intr_disable(_s) 	((_s)->sc_iop->mio_intr_dis(_s))
290 #define mfi_my_intr(_s) 	((_s)->sc_iop->mio_intr(_s))
291 #define mfi_post(_s, _c) 	((_s)->sc_iop->mio_post((_s), (_c)))
292 
293 static struct mfi_ccb *
294 mfi_get_ccb(struct mfi_softc *sc)
295 {
296 	struct mfi_ccb		*ccb;
297 	int			s;
298 
299 	s = splbio();
300 	ccb = TAILQ_FIRST(&sc->sc_ccb_freeq);
301 	if (ccb) {
302 		TAILQ_REMOVE(&sc->sc_ccb_freeq, ccb, ccb_link);
303 		ccb->ccb_state = MFI_CCB_READY;
304 	}
305 	splx(s);
306 
307 	DNPRINTF(MFI_D_CCB, "%s: mfi_get_ccb: %p\n", DEVNAME(sc), ccb);
308 	if (__predict_false(ccb == NULL && sc->sc_running))
309 		aprint_error_dev(sc->sc_dev, "out of ccb\n");
310 
311 	return ccb;
312 }
313 
314 static void
315 mfi_put_ccb(struct mfi_ccb *ccb)
316 {
317 	struct mfi_softc	*sc = ccb->ccb_sc;
318 	struct mfi_frame_header	*hdr = &ccb->ccb_frame->mfr_header;
319 	int			s;
320 
321 	DNPRINTF(MFI_D_CCB, "%s: mfi_put_ccb: %p\n", DEVNAME(sc), ccb);
322 
323 	hdr->mfh_cmd_status = 0x0;
324 	hdr->mfh_flags = 0x0;
325 	ccb->ccb_state = MFI_CCB_FREE;
326 	ccb->ccb_xs = NULL;
327 	ccb->ccb_flags = 0;
328 	ccb->ccb_done = NULL;
329 	ccb->ccb_direction = 0;
330 	ccb->ccb_frame_size = 0;
331 	ccb->ccb_extra_frames = 0;
332 	ccb->ccb_sgl = NULL;
333 	ccb->ccb_data = NULL;
334 	ccb->ccb_len = 0;
335 	if (sc->sc_ioptype == MFI_IOP_TBOLT) {
336 		/* erase tb_request_desc but preserve SMID */
337 		int index = ccb->ccb_tb_request_desc.header.SMID;
338 		ccb->ccb_tb_request_desc.words = 0;
339 		ccb->ccb_tb_request_desc.header.SMID = index;
340 	}
341 	s = splbio();
342 	TAILQ_INSERT_TAIL(&sc->sc_ccb_freeq, ccb, ccb_link);
343 	splx(s);
344 }
345 
346 static int
347 mfi_destroy_ccb(struct mfi_softc *sc)
348 {
349 	struct mfi_ccb		*ccb;
350 	uint32_t		i;
351 
352 	DNPRINTF(MFI_D_CCB, "%s: mfi_destroy_ccb\n", DEVNAME(sc));
353 
354 
355 	for (i = 0; (ccb = mfi_get_ccb(sc)) != NULL; i++) {
356 		/* create a dma map for transfer */
357 		bus_dmamap_destroy(sc->sc_datadmat, ccb->ccb_dmamap);
358 	}
359 
360 	if (i < sc->sc_max_cmds)
361 		return EBUSY;
362 
363 	free(sc->sc_ccb, M_DEVBUF);
364 
365 	return 0;
366 }
367 
368 static int
369 mfi_init_ccb(struct mfi_softc *sc)
370 {
371 	struct mfi_ccb		*ccb;
372 	uint32_t		i;
373 	int			error;
374 	bus_addr_t		io_req_base_phys;
375 	uint8_t			*io_req_base;
376 	int offset;
377 
378 	DNPRINTF(MFI_D_CCB, "%s: mfi_init_ccb\n", DEVNAME(sc));
379 
380 	sc->sc_ccb = malloc(sizeof(struct mfi_ccb) * sc->sc_max_cmds,
381 	    M_DEVBUF, M_WAITOK|M_ZERO);
382 	io_req_base = (uint8_t *)MFIMEM_KVA(sc->sc_tbolt_reqmsgpool);
383 	io_req_base_phys = MFIMEM_DVA(sc->sc_tbolt_reqmsgpool);
384 	if (sc->sc_ioptype == MFI_IOP_TBOLT) {
385 		/*
386 		 * The first 256 bytes (SMID 0) is not used.
387 		 * Don't add to the cmd list.
388 		 */
389 		io_req_base += MEGASAS_THUNDERBOLT_NEW_MSG_SIZE;
390 		io_req_base_phys += MEGASAS_THUNDERBOLT_NEW_MSG_SIZE;
391 	}
392 
393 	for (i = 0; i < sc->sc_max_cmds; i++) {
394 		ccb = &sc->sc_ccb[i];
395 
396 		ccb->ccb_sc = sc;
397 
398 		/* select i'th frame */
399 		ccb->ccb_frame = (union mfi_frame *)
400 		    ((char*)MFIMEM_KVA(sc->sc_frames) + sc->sc_frames_size * i);
401 		ccb->ccb_pframe =
402 		    MFIMEM_DVA(sc->sc_frames) + sc->sc_frames_size * i;
403 		ccb->ccb_frame->mfr_header.mfh_context = i;
404 
405 		/* select i'th sense */
406 		ccb->ccb_sense = (struct mfi_sense *)
407 		    ((char*)MFIMEM_KVA(sc->sc_sense) + MFI_SENSE_SIZE * i);
408 		ccb->ccb_psense =
409 		    (MFIMEM_DVA(sc->sc_sense) + MFI_SENSE_SIZE * i);
410 
411 		/* create a dma map for transfer */
412 		error = bus_dmamap_create(sc->sc_datadmat,
413 		    MAXPHYS, sc->sc_max_sgl, MAXPHYS, 0,
414 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ccb->ccb_dmamap);
415 		if (error) {
416 			aprint_error_dev(sc->sc_dev,
417 			    "cannot create ccb dmamap (%d)\n", error);
418 			goto destroy;
419 		}
420 		if (sc->sc_ioptype == MFI_IOP_TBOLT) {
421 			offset = MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * i;
422 			ccb->ccb_tb_io_request =
423 			    (struct mfi_mpi2_request_raid_scsi_io *)
424 			    (io_req_base + offset);
425 			ccb->ccb_tb_pio_request =
426 			    io_req_base_phys + offset;
427 			offset = MEGASAS_MAX_SZ_CHAIN_FRAME * i;
428 			ccb->ccb_tb_sg_frame =
429 			    (mpi2_sge_io_union *)(sc->sc_reply_pool_limit +
430 			    offset);
431 			ccb->ccb_tb_psg_frame = sc->sc_sg_frame_busaddr +
432 			    offset;
433 			/* SMID 0 is reserved. Set SMID/index from 1 */
434 			ccb->ccb_tb_request_desc.header.SMID = i + 1;
435 		}
436 
437 		DNPRINTF(MFI_D_CCB,
438 		    "ccb(%d): %p frame: %#lx (%#lx) sense: %#lx (%#lx) map: %#lx\n",
439 		    ccb->ccb_frame->mfr_header.mfh_context, ccb,
440 		    (u_long)ccb->ccb_frame, (u_long)ccb->ccb_pframe,
441 		    (u_long)ccb->ccb_sense, (u_long)ccb->ccb_psense,
442 		    (u_long)ccb->ccb_dmamap);
443 
444 		/* add ccb to queue */
445 		mfi_put_ccb(ccb);
446 	}
447 
448 	return 0;
449 destroy:
450 	/* free dma maps and ccb memory */
451 	while (i) {
452 		i--;
453 		ccb = &sc->sc_ccb[i];
454 		bus_dmamap_destroy(sc->sc_datadmat, ccb->ccb_dmamap);
455 	}
456 
457 	free(sc->sc_ccb, M_DEVBUF);
458 
459 	return 1;
460 }
461 
462 static uint32_t
463 mfi_read(struct mfi_softc *sc, bus_size_t r)
464 {
465 	uint32_t rv;
466 
467 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4,
468 	    BUS_SPACE_BARRIER_READ);
469 	rv = bus_space_read_4(sc->sc_iot, sc->sc_ioh, r);
470 
471 	DNPRINTF(MFI_D_RW, "%s: mr 0x%lx 0x08%x ", DEVNAME(sc), (u_long)r, rv);
472 	return rv;
473 }
474 
475 static void
476 mfi_write(struct mfi_softc *sc, bus_size_t r, uint32_t v)
477 {
478 	DNPRINTF(MFI_D_RW, "%s: mw 0x%lx 0x%08x", DEVNAME(sc), (u_long)r, v);
479 
480 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, r, v);
481 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4,
482 	    BUS_SPACE_BARRIER_WRITE);
483 }
484 
485 static struct mfi_mem *
486 mfi_allocmem(struct mfi_softc *sc, size_t size)
487 {
488 	struct mfi_mem		*mm;
489 	int			nsegs;
490 
491 	DNPRINTF(MFI_D_MEM, "%s: mfi_allocmem: %ld\n", DEVNAME(sc),
492 	    (long)size);
493 
494 	mm = malloc(sizeof(struct mfi_mem), M_DEVBUF, M_NOWAIT|M_ZERO);
495 	if (mm == NULL)
496 		return NULL;
497 
498 	mm->am_size = size;
499 
500 	if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
501 	    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &mm->am_map) != 0)
502 		goto amfree;
503 
504 	if (bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &mm->am_seg, 1,
505 	    &nsegs, BUS_DMA_NOWAIT) != 0)
506 		goto destroy;
507 
508 	if (bus_dmamem_map(sc->sc_dmat, &mm->am_seg, nsegs, size, &mm->am_kva,
509 	    BUS_DMA_NOWAIT) != 0)
510 		goto free;
511 
512 	if (bus_dmamap_load(sc->sc_dmat, mm->am_map, mm->am_kva, size, NULL,
513 	    BUS_DMA_NOWAIT) != 0)
514 		goto unmap;
515 
516 	DNPRINTF(MFI_D_MEM, "  kva: %p  dva: %p  map: %p\n",
517 	    mm->am_kva, (void *)mm->am_map->dm_segs[0].ds_addr, mm->am_map);
518 
519 	memset(mm->am_kva, 0, size);
520 	return mm;
521 
522 unmap:
523 	bus_dmamem_unmap(sc->sc_dmat, mm->am_kva, size);
524 free:
525 	bus_dmamem_free(sc->sc_dmat, &mm->am_seg, 1);
526 destroy:
527 	bus_dmamap_destroy(sc->sc_dmat, mm->am_map);
528 amfree:
529 	free(mm, M_DEVBUF);
530 
531 	return NULL;
532 }
533 
534 static void
535 mfi_freemem(struct mfi_softc *sc, struct mfi_mem **mmp)
536 {
537 	struct mfi_mem *mm = *mmp;
538 
539 	if (mm == NULL)
540 		return;
541 
542 	*mmp = NULL;
543 
544 	DNPRINTF(MFI_D_MEM, "%s: mfi_freemem: %p\n", DEVNAME(sc), mm);
545 
546 	bus_dmamap_unload(sc->sc_dmat, mm->am_map);
547 	bus_dmamem_unmap(sc->sc_dmat, mm->am_kva, mm->am_size);
548 	bus_dmamem_free(sc->sc_dmat, &mm->am_seg, 1);
549 	bus_dmamap_destroy(sc->sc_dmat, mm->am_map);
550 	free(mm, M_DEVBUF);
551 }
552 
553 static int
554 mfi_transition_firmware(struct mfi_softc *sc)
555 {
556 	uint32_t		fw_state, cur_state;
557 	int			max_wait, i;
558 
559 	fw_state = mfi_fw_state(sc) & MFI_STATE_MASK;
560 
561 	DNPRINTF(MFI_D_CMD, "%s: mfi_transition_firmware: %#x\n", DEVNAME(sc),
562 	    fw_state);
563 
564 	while (fw_state != MFI_STATE_READY) {
565 		DNPRINTF(MFI_D_MISC,
566 		    "%s: waiting for firmware to become ready\n",
567 		    DEVNAME(sc));
568 		cur_state = fw_state;
569 		switch (fw_state) {
570 		case MFI_STATE_FAULT:
571 			aprint_error_dev(sc->sc_dev, "firmware fault\n");
572 			return 1;
573 		case MFI_STATE_WAIT_HANDSHAKE:
574 			if (sc->sc_ioptype == MFI_IOP_SKINNY ||
575 			    sc->sc_ioptype == MFI_IOP_TBOLT)
576 				mfi_write(sc, MFI_SKINNY_IDB, MFI_INIT_CLEAR_HANDSHAKE);
577 			else
578 				mfi_write(sc, MFI_IDB, MFI_INIT_CLEAR_HANDSHAKE);
579 			max_wait = 2;
580 			break;
581 		case MFI_STATE_OPERATIONAL:
582 			if (sc->sc_ioptype == MFI_IOP_SKINNY ||
583 			    sc->sc_ioptype == MFI_IOP_TBOLT)
584 				mfi_write(sc, MFI_SKINNY_IDB, MFI_INIT_READY);
585 			else
586 				mfi_write(sc, MFI_IDB, MFI_INIT_READY);
587 			max_wait = 10;
588 			break;
589 		case MFI_STATE_UNDEFINED:
590 		case MFI_STATE_BB_INIT:
591 			max_wait = 2;
592 			break;
593 		case MFI_STATE_FW_INIT:
594 		case MFI_STATE_DEVICE_SCAN:
595 		case MFI_STATE_FLUSH_CACHE:
596 			max_wait = 20;
597 			break;
598 		case MFI_STATE_BOOT_MESSAGE_PENDING:
599 			if (sc->sc_ioptype == MFI_IOP_SKINNY ||
600 			    sc->sc_ioptype == MFI_IOP_TBOLT) {
601 				mfi_write(sc, MFI_SKINNY_IDB, MFI_INIT_HOTPLUG);
602 			} else {
603 				mfi_write(sc, MFI_IDB, MFI_INIT_HOTPLUG);
604 			}
605 			max_wait = 180;
606 			break;
607 		default:
608 			aprint_error_dev(sc->sc_dev,
609 			    "unknown firmware state %d\n", fw_state);
610 			return 1;
611 		}
612 		for (i = 0; i < (max_wait * 10); i++) {
613 			fw_state = mfi_fw_state(sc) & MFI_STATE_MASK;
614 			if (fw_state == cur_state)
615 				DELAY(100000);
616 			else
617 				break;
618 		}
619 		if (fw_state == cur_state) {
620 			aprint_error_dev(sc->sc_dev,
621 			    "firmware stuck in state %#x\n", fw_state);
622 			return 1;
623 		}
624 	}
625 
626 	return 0;
627 }
628 
629 static int
630 mfi_initialize_firmware(struct mfi_softc *sc)
631 {
632 	struct mfi_ccb		*ccb;
633 	struct mfi_init_frame	*init;
634 	struct mfi_init_qinfo	*qinfo;
635 
636 	DNPRINTF(MFI_D_MISC, "%s: mfi_initialize_firmware\n", DEVNAME(sc));
637 
638 	if ((ccb = mfi_get_ccb(sc)) == NULL)
639 		return 1;
640 
641 	init = &ccb->ccb_frame->mfr_init;
642 	qinfo = (struct mfi_init_qinfo *)((uint8_t *)init + MFI_FRAME_SIZE);
643 
644 	memset(qinfo, 0, sizeof *qinfo);
645 	qinfo->miq_rq_entries = sc->sc_max_cmds + 1;
646 	qinfo->miq_rq_addr_lo = htole32(MFIMEM_DVA(sc->sc_pcq) +
647 	    offsetof(struct mfi_prod_cons, mpc_reply_q));
648 	qinfo->miq_pi_addr_lo = htole32(MFIMEM_DVA(sc->sc_pcq) +
649 	    offsetof(struct mfi_prod_cons, mpc_producer));
650 	qinfo->miq_ci_addr_lo = htole32(MFIMEM_DVA(sc->sc_pcq) +
651 	    offsetof(struct mfi_prod_cons, mpc_consumer));
652 
653 	init->mif_header.mfh_cmd = MFI_CMD_INIT;
654 	init->mif_header.mfh_data_len = sizeof *qinfo;
655 	init->mif_qinfo_new_addr_lo = htole32(ccb->ccb_pframe + MFI_FRAME_SIZE);
656 
657 	DNPRINTF(MFI_D_MISC, "%s: entries: %#x rq: %#x pi: %#x ci: %#x\n",
658 	    DEVNAME(sc),
659 	    qinfo->miq_rq_entries, qinfo->miq_rq_addr_lo,
660 	    qinfo->miq_pi_addr_lo, qinfo->miq_ci_addr_lo);
661 
662 	if (mfi_poll(ccb)) {
663 		aprint_error_dev(sc->sc_dev,
664 		    "mfi_initialize_firmware failed\n");
665 		return 1;
666 	}
667 
668 	mfi_put_ccb(ccb);
669 
670 	return 0;
671 }
672 
673 static int
674 mfi_get_info(struct mfi_softc *sc)
675 {
676 #ifdef MFI_DEBUG
677 	int i;
678 #endif
679 	DNPRINTF(MFI_D_MISC, "%s: mfi_get_info\n", DEVNAME(sc));
680 
681 	if (mfi_mgmt_internal(sc, MR_DCMD_CTRL_GET_INFO, MFI_DATA_IN,
682 	    sizeof(sc->sc_info), &sc->sc_info, NULL, cold ? true : false))
683 		return 1;
684 
685 #ifdef MFI_DEBUG
686 
687 	for (i = 0; i < sc->sc_info.mci_image_component_count; i++) {
688 		printf("%s: active FW %s Version %s date %s time %s\n",
689 		    DEVNAME(sc),
690 		    sc->sc_info.mci_image_component[i].mic_name,
691 		    sc->sc_info.mci_image_component[i].mic_version,
692 		    sc->sc_info.mci_image_component[i].mic_build_date,
693 		    sc->sc_info.mci_image_component[i].mic_build_time);
694 	}
695 
696 	for (i = 0; i < sc->sc_info.mci_pending_image_component_count; i++) {
697 		printf("%s: pending FW %s Version %s date %s time %s\n",
698 		    DEVNAME(sc),
699 		    sc->sc_info.mci_pending_image_component[i].mic_name,
700 		    sc->sc_info.mci_pending_image_component[i].mic_version,
701 		    sc->sc_info.mci_pending_image_component[i].mic_build_date,
702 		    sc->sc_info.mci_pending_image_component[i].mic_build_time);
703 	}
704 
705 	printf("%s: max_arms %d max_spans %d max_arrs %d max_lds %d name %s\n",
706 	    DEVNAME(sc),
707 	    sc->sc_info.mci_max_arms,
708 	    sc->sc_info.mci_max_spans,
709 	    sc->sc_info.mci_max_arrays,
710 	    sc->sc_info.mci_max_lds,
711 	    sc->sc_info.mci_product_name);
712 
713 	printf("%s: serial %s present %#x fw time %d max_cmds %d max_sg %d\n",
714 	    DEVNAME(sc),
715 	    sc->sc_info.mci_serial_number,
716 	    sc->sc_info.mci_hw_present,
717 	    sc->sc_info.mci_current_fw_time,
718 	    sc->sc_info.mci_max_cmds,
719 	    sc->sc_info.mci_max_sg_elements);
720 
721 	printf("%s: max_rq %d lds_pres %d lds_deg %d lds_off %d pd_pres %d\n",
722 	    DEVNAME(sc),
723 	    sc->sc_info.mci_max_request_size,
724 	    sc->sc_info.mci_lds_present,
725 	    sc->sc_info.mci_lds_degraded,
726 	    sc->sc_info.mci_lds_offline,
727 	    sc->sc_info.mci_pd_present);
728 
729 	printf("%s: pd_dsk_prs %d pd_dsk_pred_fail %d pd_dsk_fail %d\n",
730 	    DEVNAME(sc),
731 	    sc->sc_info.mci_pd_disks_present,
732 	    sc->sc_info.mci_pd_disks_pred_failure,
733 	    sc->sc_info.mci_pd_disks_failed);
734 
735 	printf("%s: nvram %d mem %d flash %d\n",
736 	    DEVNAME(sc),
737 	    sc->sc_info.mci_nvram_size,
738 	    sc->sc_info.mci_memory_size,
739 	    sc->sc_info.mci_flash_size);
740 
741 	printf("%s: ram_cor %d ram_uncor %d clus_all %d clus_act %d\n",
742 	    DEVNAME(sc),
743 	    sc->sc_info.mci_ram_correctable_errors,
744 	    sc->sc_info.mci_ram_uncorrectable_errors,
745 	    sc->sc_info.mci_cluster_allowed,
746 	    sc->sc_info.mci_cluster_active);
747 
748 	printf("%s: max_strps_io %d raid_lvl %#x adapt_ops %#x ld_ops %#x\n",
749 	    DEVNAME(sc),
750 	    sc->sc_info.mci_max_strips_per_io,
751 	    sc->sc_info.mci_raid_levels,
752 	    sc->sc_info.mci_adapter_ops,
753 	    sc->sc_info.mci_ld_ops);
754 
755 	printf("%s: strp_sz_min %d strp_sz_max %d pd_ops %#x pd_mix %#x\n",
756 	    DEVNAME(sc),
757 	    sc->sc_info.mci_stripe_sz_ops.min,
758 	    sc->sc_info.mci_stripe_sz_ops.max,
759 	    sc->sc_info.mci_pd_ops,
760 	    sc->sc_info.mci_pd_mix_support);
761 
762 	printf("%s: ecc_bucket %d pckg_prop %s\n",
763 	    DEVNAME(sc),
764 	    sc->sc_info.mci_ecc_bucket_count,
765 	    sc->sc_info.mci_package_version);
766 
767 	printf("%s: sq_nm %d prd_fail_poll %d intr_thrtl %d intr_thrtl_to %d\n",
768 	    DEVNAME(sc),
769 	    sc->sc_info.mci_properties.mcp_seq_num,
770 	    sc->sc_info.mci_properties.mcp_pred_fail_poll_interval,
771 	    sc->sc_info.mci_properties.mcp_intr_throttle_cnt,
772 	    sc->sc_info.mci_properties.mcp_intr_throttle_timeout);
773 
774 	printf("%s: rbld_rate %d patr_rd_rate %d bgi_rate %d cc_rate %d\n",
775 	    DEVNAME(sc),
776 	    sc->sc_info.mci_properties.mcp_rebuild_rate,
777 	    sc->sc_info.mci_properties.mcp_patrol_read_rate,
778 	    sc->sc_info.mci_properties.mcp_bgi_rate,
779 	    sc->sc_info.mci_properties.mcp_cc_rate);
780 
781 	printf("%s: rc_rate %d ch_flsh %d spin_cnt %d spin_dly %d clus_en %d\n",
782 	    DEVNAME(sc),
783 	    sc->sc_info.mci_properties.mcp_recon_rate,
784 	    sc->sc_info.mci_properties.mcp_cache_flush_interval,
785 	    sc->sc_info.mci_properties.mcp_spinup_drv_cnt,
786 	    sc->sc_info.mci_properties.mcp_spinup_delay,
787 	    sc->sc_info.mci_properties.mcp_cluster_enable);
788 
789 	printf("%s: coerc %d alarm %d dis_auto_rbld %d dis_bat_wrn %d ecc %d\n",
790 	    DEVNAME(sc),
791 	    sc->sc_info.mci_properties.mcp_coercion_mode,
792 	    sc->sc_info.mci_properties.mcp_alarm_enable,
793 	    sc->sc_info.mci_properties.mcp_disable_auto_rebuild,
794 	    sc->sc_info.mci_properties.mcp_disable_battery_warn,
795 	    sc->sc_info.mci_properties.mcp_ecc_bucket_size);
796 
797 	printf("%s: ecc_leak %d rest_hs %d exp_encl_dev %d\n",
798 	    DEVNAME(sc),
799 	    sc->sc_info.mci_properties.mcp_ecc_bucket_leak_rate,
800 	    sc->sc_info.mci_properties.mcp_restore_hotspare_on_insertion,
801 	    sc->sc_info.mci_properties.mcp_expose_encl_devices);
802 
803 	printf("%s: vendor %#x device %#x subvendor %#x subdevice %#x\n",
804 	    DEVNAME(sc),
805 	    sc->sc_info.mci_pci.mip_vendor,
806 	    sc->sc_info.mci_pci.mip_device,
807 	    sc->sc_info.mci_pci.mip_subvendor,
808 	    sc->sc_info.mci_pci.mip_subdevice);
809 
810 	printf("%s: type %#x port_count %d port_addr ",
811 	    DEVNAME(sc),
812 	    sc->sc_info.mci_host.mih_type,
813 	    sc->sc_info.mci_host.mih_port_count);
814 
815 	for (i = 0; i < 8; i++)
816 		printf("%.0" PRIx64 " ", sc->sc_info.mci_host.mih_port_addr[i]);
817 	printf("\n");
818 
819 	printf("%s: type %.x port_count %d port_addr ",
820 	    DEVNAME(sc),
821 	    sc->sc_info.mci_device.mid_type,
822 	    sc->sc_info.mci_device.mid_port_count);
823 
824 	for (i = 0; i < 8; i++) {
825 		printf("%.0" PRIx64 " ",
826 		    sc->sc_info.mci_device.mid_port_addr[i]);
827 	}
828 	printf("\n");
829 #endif /* MFI_DEBUG */
830 
831 	return 0;
832 }
833 
834 static int
835 mfi_get_bbu(struct mfi_softc *sc, struct mfi_bbu_status *stat)
836 {
837 	DNPRINTF(MFI_D_MISC, "%s: mfi_get_bbu\n", DEVNAME(sc));
838 
839 	if (mfi_mgmt_internal(sc, MR_DCMD_BBU_GET_STATUS, MFI_DATA_IN,
840 	    sizeof(*stat), stat, NULL, cold ? true : false))
841 		return MFI_BBU_UNKNOWN;
842 #ifdef MFI_DEBUG
843 	printf("bbu type %d, voltage %d, current %d, temperature %d, "
844 	    "status 0x%x\n", stat->battery_type, stat->voltage, stat->current,
845 	    stat->temperature, stat->fw_status);
846 	printf("details: ");
847 	switch(stat->battery_type) {
848 	case MFI_BBU_TYPE_IBBU:
849 		printf("guage %d relative charge %d charger state %d "
850 		    "charger ctrl %d\n", stat->detail.ibbu.gas_guage_status,
851 		    stat->detail.ibbu.relative_charge ,
852 		    stat->detail.ibbu.charger_system_state ,
853 		    stat->detail.ibbu.charger_system_ctrl);
854 		printf("\tcurrent %d abs charge %d max error %d\n",
855 		    stat->detail.ibbu.charging_current ,
856 		    stat->detail.ibbu.absolute_charge ,
857 		    stat->detail.ibbu.max_error);
858 		break;
859 	case MFI_BBU_TYPE_BBU:
860 		printf("guage %d relative charge %d charger state %d\n",
861 		    stat->detail.ibbu.gas_guage_status,
862 		    stat->detail.bbu.relative_charge ,
863 		    stat->detail.bbu.charger_status );
864 		printf("\trem capacity %d fyll capacity %d SOH %d\n",
865 		    stat->detail.bbu.remaining_capacity ,
866 		    stat->detail.bbu.full_charge_capacity ,
867 		    stat->detail.bbu.is_SOH_good);
868 	default:
869 		printf("\n");
870 	}
871 #endif
872 	switch(stat->battery_type) {
873 	case MFI_BBU_TYPE_BBU:
874 		return (stat->detail.bbu.is_SOH_good ?
875 		    MFI_BBU_GOOD : MFI_BBU_BAD);
876 	case MFI_BBU_TYPE_NONE:
877 		return MFI_BBU_UNKNOWN;
878 	default:
879 		if (stat->fw_status &
880 		    (MFI_BBU_STATE_PACK_MISSING |
881 		     MFI_BBU_STATE_VOLTAGE_LOW |
882 		     MFI_BBU_STATE_TEMPERATURE_HIGH |
883 		     MFI_BBU_STATE_LEARN_CYC_FAIL |
884 		     MFI_BBU_STATE_LEARN_CYC_TIMEOUT |
885 		     MFI_BBU_STATE_I2C_ERR_DETECT))
886 			return MFI_BBU_BAD;
887 		return MFI_BBU_GOOD;
888 	}
889 }
890 
891 static void
892 mfiminphys(struct buf *bp)
893 {
894 	DNPRINTF(MFI_D_MISC, "mfiminphys: %d\n", bp->b_bcount);
895 
896 	/* XXX currently using MFI_MAXFER = MAXPHYS */
897 	if (bp->b_bcount > MFI_MAXFER)
898 		bp->b_bcount = MFI_MAXFER;
899 	minphys(bp);
900 }
901 
902 int
903 mfi_rescan(device_t self, const char *ifattr, const int *locators)
904 {
905 	struct mfi_softc *sc = device_private(self);
906 
907 	if (sc->sc_child != NULL)
908 		return 0;
909 
910 	sc->sc_child = config_found_sm_loc(self, ifattr, locators, &sc->sc_chan,
911 	    scsiprint, NULL);
912 
913 	return 0;
914 }
915 
916 void
917 mfi_childdetached(device_t self, device_t child)
918 {
919 	struct mfi_softc *sc = device_private(self);
920 
921 	KASSERT(self == sc->sc_dev);
922 	KASSERT(child == sc->sc_child);
923 
924 	if (child == sc->sc_child)
925 		sc->sc_child = NULL;
926 }
927 
928 int
929 mfi_detach(struct mfi_softc *sc, int flags)
930 {
931 	int			error;
932 
933 	DNPRINTF(MFI_D_MISC, "%s: mfi_detach\n", DEVNAME(sc));
934 
935 	if ((error = config_detach_children(sc->sc_dev, flags)) != 0)
936 		return error;
937 
938 #if NBIO > 0
939 	mfi_destroy_sensors(sc);
940 	bio_unregister(sc->sc_dev);
941 #endif /* NBIO > 0 */
942 
943 	mfi_intr_disable(sc);
944 	mfi_shutdown(sc->sc_dev, 0);
945 
946 	if (sc->sc_ioptype == MFI_IOP_TBOLT) {
947 		workqueue_destroy(sc->sc_ldsync_wq);
948 		mfi_put_ccb(sc->sc_ldsync_ccb);
949 		mfi_freemem(sc, &sc->sc_tbolt_reqmsgpool);
950 		mfi_freemem(sc, &sc->sc_tbolt_ioc_init);
951 		mfi_freemem(sc, &sc->sc_tbolt_verbuf);
952 	}
953 
954 	if ((error = mfi_destroy_ccb(sc)) != 0)
955 		return error;
956 
957 	mfi_freemem(sc, &sc->sc_sense);
958 
959 	mfi_freemem(sc, &sc->sc_frames);
960 
961 	mfi_freemem(sc, &sc->sc_pcq);
962 
963 	return 0;
964 }
965 
966 static bool
967 mfi_shutdown(device_t dev, int how)
968 {
969 	struct mfi_softc	*sc = device_private(dev);
970 	uint8_t			mbox[MFI_MBOX_SIZE];
971 	int s = splbio();
972 	DNPRINTF(MFI_D_MISC, "%s: mfi_shutdown\n", DEVNAME(sc));
973 	if (sc->sc_running) {
974 		mbox[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
975 		if (mfi_mgmt_internal(sc, MR_DCMD_CTRL_CACHE_FLUSH,
976 		    MFI_DATA_NONE, 0, NULL, mbox, true)) {
977 			aprint_error_dev(dev, "shutdown: cache flush failed\n");
978 			goto fail;
979 		}
980 
981 		mbox[0] = 0;
982 		if (mfi_mgmt_internal(sc, MR_DCMD_CTRL_SHUTDOWN,
983 		    MFI_DATA_NONE, 0, NULL, mbox, true)) {
984 			aprint_error_dev(dev, "shutdown: "
985 			    "firmware shutdown failed\n");
986 			goto fail;
987 		}
988 		sc->sc_running = false;
989 	}
990 	splx(s);
991 	return true;
992 fail:
993 	splx(s);
994 	return false;
995 }
996 
997 static bool
998 mfi_suspend(device_t dev, const pmf_qual_t *q)
999 {
1000 	/* XXX to be implemented */
1001 	return false;
1002 }
1003 
1004 static bool
1005 mfi_resume(device_t dev, const pmf_qual_t *q)
1006 {
1007 	/* XXX to be implemented */
1008 	return false;
1009 }
1010 
1011 int
1012 mfi_attach(struct mfi_softc *sc, enum mfi_iop iop)
1013 {
1014 	struct scsipi_adapter *adapt = &sc->sc_adapt;
1015 	struct scsipi_channel *chan = &sc->sc_chan;
1016 	uint32_t		status, frames, max_sgl;
1017 	int			i;
1018 
1019 	DNPRINTF(MFI_D_MISC, "%s: mfi_attach\n", DEVNAME(sc));
1020 
1021 	sc->sc_ioptype = iop;
1022 
1023 	switch (iop) {
1024 	case MFI_IOP_XSCALE:
1025 		sc->sc_iop = &mfi_iop_xscale;
1026 		break;
1027 	case MFI_IOP_PPC:
1028 		sc->sc_iop = &mfi_iop_ppc;
1029 		break;
1030 	case MFI_IOP_GEN2:
1031 		sc->sc_iop = &mfi_iop_gen2;
1032 		break;
1033 	case MFI_IOP_SKINNY:
1034 		sc->sc_iop = &mfi_iop_skinny;
1035 		break;
1036 	case MFI_IOP_TBOLT:
1037 		sc->sc_iop = &mfi_iop_tbolt;
1038 		break;
1039 	default:
1040 		 panic("%s: unknown iop %d", DEVNAME(sc), iop);
1041 	}
1042 
1043 	if (mfi_transition_firmware(sc))
1044 		return 1;
1045 
1046 	TAILQ_INIT(&sc->sc_ccb_freeq);
1047 
1048 	status = mfi_fw_state(sc);
1049 	sc->sc_max_cmds = status & MFI_STATE_MAXCMD_MASK;
1050 	max_sgl = (status & MFI_STATE_MAXSGL_MASK) >> 16;
1051 	if (sc->sc_ioptype == MFI_IOP_TBOLT) {
1052 		sc->sc_max_sgl = min(max_sgl, (128 * 1024) / PAGE_SIZE + 1);
1053 		sc->sc_sgl_size = sizeof(struct mfi_sg_ieee);
1054 	} else if (sc->sc_64bit_dma) {
1055 		sc->sc_max_sgl = min(max_sgl, (128 * 1024) / PAGE_SIZE + 1);
1056 		sc->sc_sgl_size = sizeof(struct mfi_sg64);
1057 	} else {
1058 		sc->sc_max_sgl = max_sgl;
1059 		sc->sc_sgl_size = sizeof(struct mfi_sg32);
1060 	}
1061 	DNPRINTF(MFI_D_MISC, "%s: max commands: %u, max sgl: %u\n",
1062 	    DEVNAME(sc), sc->sc_max_cmds, sc->sc_max_sgl);
1063 
1064 	if (sc->sc_ioptype == MFI_IOP_TBOLT) {
1065 		uint32_t tb_mem_size;
1066 		/* for Alignment */
1067 		tb_mem_size = MEGASAS_THUNDERBOLT_MSG_ALLIGNMENT;
1068 
1069 		tb_mem_size +=
1070 		    MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1);
1071 		sc->sc_reply_pool_size =
1072 		    ((sc->sc_max_cmds + 1 + 15) / 16) * 16;
1073 		tb_mem_size +=
1074 		    MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size;
1075 
1076 		/* this is for SGL's */
1077 		tb_mem_size += MEGASAS_MAX_SZ_CHAIN_FRAME * sc->sc_max_cmds;
1078 		sc->sc_tbolt_reqmsgpool = mfi_allocmem(sc, tb_mem_size);
1079 		if (sc->sc_tbolt_reqmsgpool == NULL) {
1080 			aprint_error_dev(sc->sc_dev,
1081 			    "unable to allocate thunderbolt "
1082 			    "request message pool\n");
1083 			goto nopcq;
1084 		}
1085 		if (mfi_tbolt_init_desc_pool(sc)) {
1086 			aprint_error_dev(sc->sc_dev,
1087 			    "Thunderbolt pool preparation error\n");
1088 			goto nopcq;
1089 		}
1090 
1091 		/*
1092 		 * Allocate DMA memory mapping for MPI2 IOC Init descriptor,
1093 		 * we are taking it diffrent from what we have allocated for
1094 		 * Request and reply descriptors to avoid confusion later
1095 		 */
1096 		sc->sc_tbolt_ioc_init = mfi_allocmem(sc,
1097 		    sizeof(struct mpi2_ioc_init_request));
1098 		if (sc->sc_tbolt_ioc_init == NULL) {
1099 			aprint_error_dev(sc->sc_dev,
1100 			    "unable to allocate thunderbolt IOC init memory");
1101 			goto nopcq;
1102 		}
1103 
1104 		sc->sc_tbolt_verbuf = mfi_allocmem(sc,
1105 		    MEGASAS_MAX_NAME*sizeof(bus_addr_t));
1106 		if (sc->sc_tbolt_verbuf == NULL) {
1107 			aprint_error_dev(sc->sc_dev,
1108 			    "unable to allocate thunderbolt version buffer\n");
1109 			goto nopcq;
1110 		}
1111 
1112 	}
1113 	/* consumer/producer and reply queue memory */
1114 	sc->sc_pcq = mfi_allocmem(sc, (sizeof(uint32_t) * sc->sc_max_cmds) +
1115 	    sizeof(struct mfi_prod_cons));
1116 	if (sc->sc_pcq == NULL) {
1117 		aprint_error_dev(sc->sc_dev,
1118 		    "unable to allocate reply queue memory\n");
1119 		goto nopcq;
1120 	}
1121 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_pcq), 0,
1122 	    sizeof(uint32_t) * sc->sc_max_cmds + sizeof(struct mfi_prod_cons),
1123 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1124 
1125 	/* frame memory */
1126 	frames = (sc->sc_sgl_size * sc->sc_max_sgl + MFI_FRAME_SIZE - 1) /
1127 	    MFI_FRAME_SIZE + 1;
1128 	sc->sc_frames_size = frames * MFI_FRAME_SIZE;
1129 	sc->sc_frames = mfi_allocmem(sc, sc->sc_frames_size * sc->sc_max_cmds);
1130 	if (sc->sc_frames == NULL) {
1131 		aprint_error_dev(sc->sc_dev,
1132 		    "unable to allocate frame memory\n");
1133 		goto noframe;
1134 	}
1135 	/* XXX hack, fix this */
1136 	if (MFIMEM_DVA(sc->sc_frames) & 0x3f) {
1137 		aprint_error_dev(sc->sc_dev,
1138 		    "improper frame alignment (%#llx) FIXME\n",
1139 		    (long long int)MFIMEM_DVA(sc->sc_frames));
1140 		goto noframe;
1141 	}
1142 
1143 	/* sense memory */
1144 	sc->sc_sense = mfi_allocmem(sc, sc->sc_max_cmds * MFI_SENSE_SIZE);
1145 	if (sc->sc_sense == NULL) {
1146 		aprint_error_dev(sc->sc_dev,
1147 		    "unable to allocate sense memory\n");
1148 		goto nosense;
1149 	}
1150 
1151 	/* now that we have all memory bits go initialize ccbs */
1152 	if (mfi_init_ccb(sc)) {
1153 		aprint_error_dev(sc->sc_dev, "could not init ccb list\n");
1154 		goto noinit;
1155 	}
1156 
1157 	/* kickstart firmware with all addresses and pointers */
1158 	if (sc->sc_ioptype == MFI_IOP_TBOLT) {
1159 		if (mfi_tbolt_init_MFI_queue(sc)) {
1160 			aprint_error_dev(sc->sc_dev,
1161 			    "could not initialize firmware\n");
1162 			goto noinit;
1163 		}
1164 	} else {
1165 		if (mfi_initialize_firmware(sc)) {
1166 			aprint_error_dev(sc->sc_dev,
1167 			    "could not initialize firmware\n");
1168 			goto noinit;
1169 		}
1170 	}
1171 	sc->sc_running = true;
1172 
1173 	if (mfi_get_info(sc)) {
1174 		aprint_error_dev(sc->sc_dev,
1175 		    "could not retrieve controller information\n");
1176 		goto noinit;
1177 	}
1178 	aprint_normal_dev(sc->sc_dev,
1179 	    "%s version %s\n",
1180 	    sc->sc_info.mci_product_name,
1181 	    sc->sc_info.mci_package_version);
1182 
1183 
1184 	aprint_normal_dev(sc->sc_dev, "logical drives %d, %dMB RAM, ",
1185 	    sc->sc_info.mci_lds_present,
1186 	    sc->sc_info.mci_memory_size);
1187 	sc->sc_bbuok = false;
1188 	if (sc->sc_info.mci_hw_present & MFI_INFO_HW_BBU) {
1189 		struct mfi_bbu_status	bbu_stat;
1190 		int mfi_bbu_status = mfi_get_bbu(sc, &bbu_stat);
1191 		aprint_normal("BBU type ");
1192 		switch (bbu_stat.battery_type) {
1193 		case MFI_BBU_TYPE_BBU:
1194 			aprint_normal("BBU");
1195 			break;
1196 		case MFI_BBU_TYPE_IBBU:
1197 			aprint_normal("IBBU");
1198 			break;
1199 		default:
1200 			aprint_normal("unknown type %d", bbu_stat.battery_type);
1201 		}
1202 		aprint_normal(", status ");
1203 		switch(mfi_bbu_status) {
1204 		case MFI_BBU_GOOD:
1205 			aprint_normal("good\n");
1206 			sc->sc_bbuok = true;
1207 			break;
1208 		case MFI_BBU_BAD:
1209 			aprint_normal("bad\n");
1210 			break;
1211 		case MFI_BBU_UNKNOWN:
1212 			aprint_normal("unknown\n");
1213 			break;
1214 		default:
1215 			panic("mfi_bbu_status");
1216 		}
1217 	} else {
1218 		aprint_normal("BBU not present\n");
1219 	}
1220 
1221 	sc->sc_ld_cnt = sc->sc_info.mci_lds_present;
1222 	sc->sc_max_ld = sc->sc_ld_cnt;
1223 	for (i = 0; i < sc->sc_ld_cnt; i++)
1224 		sc->sc_ld[i].ld_present = 1;
1225 
1226 	memset(adapt, 0, sizeof(*adapt));
1227 	adapt->adapt_dev = sc->sc_dev;
1228 	adapt->adapt_nchannels = 1;
1229 	/* keep a few commands for management */
1230 	if (sc->sc_max_cmds > 4)
1231 		adapt->adapt_openings = sc->sc_max_cmds - 4;
1232 	else
1233 		adapt->adapt_openings = sc->sc_max_cmds;
1234 	adapt->adapt_max_periph = adapt->adapt_openings;
1235 	adapt->adapt_request = mfi_scsipi_request;
1236 	adapt->adapt_minphys = mfiminphys;
1237 
1238 	memset(chan, 0, sizeof(*chan));
1239 	chan->chan_adapter = adapt;
1240 	chan->chan_bustype = &scsi_sas_bustype;
1241 	chan->chan_channel = 0;
1242 	chan->chan_flags = 0;
1243 	chan->chan_nluns = 8;
1244 	chan->chan_ntargets = MFI_MAX_LD;
1245 	chan->chan_id = MFI_MAX_LD;
1246 
1247 	mfi_rescan(sc->sc_dev, "scsi", NULL);
1248 
1249 	/* enable interrupts */
1250 	mfi_intr_enable(sc);
1251 
1252 #if NBIO > 0
1253 	if (bio_register(sc->sc_dev, mfi_ioctl) != 0)
1254 		panic("%s: controller registration failed", DEVNAME(sc));
1255 	if (mfi_create_sensors(sc) != 0)
1256 		aprint_error_dev(sc->sc_dev, "unable to create sensors\n");
1257 #endif /* NBIO > 0 */
1258 	if (!pmf_device_register1(sc->sc_dev, mfi_suspend, mfi_resume,
1259 	    mfi_shutdown)) {
1260 		aprint_error_dev(sc->sc_dev,
1261 		    "couldn't establish power handler\n");
1262 	}
1263 
1264 	return 0;
1265 noinit:
1266 	mfi_freemem(sc, &sc->sc_sense);
1267 nosense:
1268 	mfi_freemem(sc, &sc->sc_frames);
1269 noframe:
1270 	mfi_freemem(sc, &sc->sc_pcq);
1271 nopcq:
1272 	if (sc->sc_ioptype == MFI_IOP_TBOLT) {
1273 		if (sc->sc_tbolt_reqmsgpool)
1274 			mfi_freemem(sc, &sc->sc_tbolt_reqmsgpool);
1275 		if (sc->sc_tbolt_verbuf)
1276 			mfi_freemem(sc, &sc->sc_tbolt_verbuf);
1277 	}
1278 	return 1;
1279 }
1280 
1281 static int
1282 mfi_poll(struct mfi_ccb *ccb)
1283 {
1284 	struct mfi_softc *sc = ccb->ccb_sc;
1285 	struct mfi_frame_header	*hdr;
1286 	int			to = 0;
1287 	int			rv = 0;
1288 
1289 	DNPRINTF(MFI_D_CMD, "%s: mfi_poll\n", DEVNAME(sc));
1290 
1291 	hdr = &ccb->ccb_frame->mfr_header;
1292 	hdr->mfh_cmd_status = 0xff;
1293 	if (!sc->sc_MFA_enabled)
1294 		hdr->mfh_flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
1295 
1296 	/* no callback, caller is supposed to do the cleanup */
1297 	ccb->ccb_done = NULL;
1298 
1299 	mfi_post(sc, ccb);
1300 	if (sc->sc_MFA_enabled) {
1301 		/*
1302 		 * depending on the command type, result may be posted
1303 		 * to *hdr, or not. In addition it seems there's
1304 		 * no way to avoid posting the SMID to the reply queue.
1305 		 * So pool using the interrupt routine.
1306 		 */
1307 		 while (ccb->ccb_state != MFI_CCB_DONE) {
1308 			delay(1000);
1309 			if (to++ > 5000) { /* XXX 5 seconds busywait sucks */
1310 				rv = 1;
1311 				break;
1312 			}
1313 			mfi_tbolt_intrh(sc);
1314 		 }
1315 	} else {
1316 		bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
1317 		    ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
1318 		    sc->sc_frames_size, BUS_DMASYNC_POSTREAD);
1319 
1320 		while (hdr->mfh_cmd_status == 0xff) {
1321 			delay(1000);
1322 			if (to++ > 5000) { /* XXX 5 seconds busywait sucks */
1323 				rv = 1;
1324 				break;
1325 			}
1326 			bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
1327 			    ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
1328 			    sc->sc_frames_size, BUS_DMASYNC_POSTREAD);
1329 		}
1330 	}
1331 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
1332 	    ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
1333 	    sc->sc_frames_size, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1334 
1335 	if (ccb->ccb_data != NULL) {
1336 		DNPRINTF(MFI_D_INTR, "%s: mfi_mgmt_done sync\n",
1337 		    DEVNAME(sc));
1338 		bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
1339 		    ccb->ccb_dmamap->dm_mapsize,
1340 		    (ccb->ccb_direction & MFI_DATA_IN) ?
1341 		    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1342 
1343 		bus_dmamap_unload(sc->sc_datadmat, ccb->ccb_dmamap);
1344 	}
1345 
1346 	if (rv != 0) {
1347 		aprint_error_dev(sc->sc_dev, "timeout on ccb %d\n",
1348 		    hdr->mfh_context);
1349 		ccb->ccb_flags |= MFI_CCB_F_ERR;
1350 		return 1;
1351 	}
1352 
1353 	return 0;
1354 }
1355 
1356 int
1357 mfi_intr(void *arg)
1358 {
1359 	struct mfi_softc	*sc = arg;
1360 	struct mfi_prod_cons	*pcq;
1361 	struct mfi_ccb		*ccb;
1362 	uint32_t		producer, consumer, ctx;
1363 	int			claimed = 0;
1364 
1365 	if (!mfi_my_intr(sc))
1366 		return 0;
1367 
1368 	pcq = MFIMEM_KVA(sc->sc_pcq);
1369 
1370 	DNPRINTF(MFI_D_INTR, "%s: mfi_intr %#lx %#lx\n", DEVNAME(sc),
1371 	    (u_long)sc, (u_long)pcq);
1372 
1373 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_pcq), 0,
1374 	    sizeof(uint32_t) * sc->sc_max_cmds + sizeof(struct mfi_prod_cons),
1375 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1376 
1377 	producer = pcq->mpc_producer;
1378 	consumer = pcq->mpc_consumer;
1379 
1380 	while (consumer != producer) {
1381 		DNPRINTF(MFI_D_INTR, "%s: mfi_intr pi %#x ci %#x\n",
1382 		    DEVNAME(sc), producer, consumer);
1383 
1384 		ctx = pcq->mpc_reply_q[consumer];
1385 		pcq->mpc_reply_q[consumer] = MFI_INVALID_CTX;
1386 		if (ctx == MFI_INVALID_CTX)
1387 			aprint_error_dev(sc->sc_dev,
1388 			    "invalid context, p: %d c: %d\n",
1389 			    producer, consumer);
1390 		else {
1391 			/* XXX remove from queue and call scsi_done */
1392 			ccb = &sc->sc_ccb[ctx];
1393 			DNPRINTF(MFI_D_INTR, "%s: mfi_intr context %#x\n",
1394 			    DEVNAME(sc), ctx);
1395 			bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
1396 			    ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
1397 			    sc->sc_frames_size,
1398 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1399 			ccb->ccb_done(ccb);
1400 
1401 			claimed = 1;
1402 		}
1403 		consumer++;
1404 		if (consumer == (sc->sc_max_cmds + 1))
1405 			consumer = 0;
1406 	}
1407 
1408 	pcq->mpc_consumer = consumer;
1409 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_pcq), 0,
1410 	    sizeof(uint32_t) * sc->sc_max_cmds + sizeof(struct mfi_prod_cons),
1411 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1412 
1413 	return claimed;
1414 }
1415 
1416 static int
1417 mfi_scsi_ld_io(struct mfi_ccb *ccb, struct scsipi_xfer *xs, uint64_t blockno,
1418     uint32_t blockcnt)
1419 {
1420 	struct scsipi_periph *periph = xs->xs_periph;
1421 	struct mfi_io_frame   *io;
1422 
1423 	DNPRINTF(MFI_D_CMD, "%s: mfi_scsi_ld_io: %d\n",
1424 	    device_xname(periph->periph_channel->chan_adapter->adapt_dev),
1425 	    periph->periph_target);
1426 
1427 	if (!xs->data)
1428 		return 1;
1429 
1430 	io = &ccb->ccb_frame->mfr_io;
1431 	if (xs->xs_control & XS_CTL_DATA_IN) {
1432 		io->mif_header.mfh_cmd = MFI_CMD_LD_READ;
1433 		ccb->ccb_direction = MFI_DATA_IN;
1434 	} else {
1435 		io->mif_header.mfh_cmd = MFI_CMD_LD_WRITE;
1436 		ccb->ccb_direction = MFI_DATA_OUT;
1437 	}
1438 	io->mif_header.mfh_target_id = periph->periph_target;
1439 	io->mif_header.mfh_timeout = 0;
1440 	io->mif_header.mfh_flags = 0;
1441 	io->mif_header.mfh_sense_len = MFI_SENSE_SIZE;
1442 	io->mif_header.mfh_data_len= blockcnt;
1443 	io->mif_lba_hi = (blockno >> 32);
1444 	io->mif_lba_lo = (blockno & 0xffffffff);
1445 	io->mif_sense_addr_lo = htole32(ccb->ccb_psense);
1446 	io->mif_sense_addr_hi = 0;
1447 
1448 	ccb->ccb_done = mfi_scsi_ld_done;
1449 	ccb->ccb_xs = xs;
1450 	ccb->ccb_frame_size = MFI_IO_FRAME_SIZE;
1451 	ccb->ccb_sgl = &io->mif_sgl;
1452 	ccb->ccb_data = xs->data;
1453 	ccb->ccb_len = xs->datalen;
1454 
1455 	if (mfi_create_sgl(ccb, (xs->xs_control & XS_CTL_NOSLEEP) ?
1456 	    BUS_DMA_NOWAIT : BUS_DMA_WAITOK))
1457 		return 1;
1458 
1459 	return 0;
1460 }
1461 
1462 static void
1463 mfi_scsi_ld_done(struct mfi_ccb *ccb)
1464 {
1465 	struct mfi_frame_header	*hdr = &ccb->ccb_frame->mfr_header;
1466 	mfi_scsi_xs_done(ccb, hdr->mfh_cmd_status, hdr->mfh_scsi_status);
1467 }
1468 
1469 static void
1470 mfi_scsi_xs_done(struct mfi_ccb *ccb, int status, int scsi_status)
1471 {
1472 	struct scsipi_xfer	*xs = ccb->ccb_xs;
1473 	struct mfi_softc	*sc = ccb->ccb_sc;
1474 
1475 	DNPRINTF(MFI_D_INTR, "%s: mfi_scsi_xs_done %#lx %#lx\n",
1476 	    DEVNAME(sc), (u_long)ccb, (u_long)ccb->ccb_frame);
1477 
1478 	if (xs->data != NULL) {
1479 		DNPRINTF(MFI_D_INTR, "%s: mfi_scsi_xs_done sync\n",
1480 		    DEVNAME(sc));
1481 		bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
1482 		    ccb->ccb_dmamap->dm_mapsize,
1483 		    (xs->xs_control & XS_CTL_DATA_IN) ?
1484 		    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1485 
1486 		bus_dmamap_unload(sc->sc_datadmat, ccb->ccb_dmamap);
1487 	}
1488 
1489 	if (status != MFI_STAT_OK) {
1490 		xs->error = XS_DRIVER_STUFFUP;
1491 		DNPRINTF(MFI_D_INTR, "%s: mfi_scsi_xs_done stuffup %#x\n",
1492 		    DEVNAME(sc), status);
1493 
1494 		if (scsi_status != 0) {
1495 			bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_sense),
1496 			    ccb->ccb_psense - MFIMEM_DVA(sc->sc_sense),
1497 			    MFI_SENSE_SIZE, BUS_DMASYNC_POSTREAD);
1498 			DNPRINTF(MFI_D_INTR,
1499 			    "%s: mfi_scsi_xs_done sense %#x %lx %lx\n",
1500 			    DEVNAME(sc), scsi_status,
1501 			    (u_long)&xs->sense, (u_long)ccb->ccb_sense);
1502 			memset(&xs->sense, 0, sizeof(xs->sense));
1503 			memcpy(&xs->sense, ccb->ccb_sense,
1504 			    sizeof(struct scsi_sense_data));
1505 			xs->error = XS_SENSE;
1506 		}
1507 	} else {
1508 		xs->error = XS_NOERROR;
1509 		xs->status = SCSI_OK;
1510 		xs->resid = 0;
1511 	}
1512 
1513 	mfi_put_ccb(ccb);
1514 	scsipi_done(xs);
1515 }
1516 
1517 static int
1518 mfi_scsi_ld(struct mfi_ccb *ccb, struct scsipi_xfer *xs)
1519 {
1520 	struct mfi_pass_frame	*pf;
1521 	struct scsipi_periph *periph = xs->xs_periph;
1522 
1523 	DNPRINTF(MFI_D_CMD, "%s: mfi_scsi_ld: %d\n",
1524 	    device_xname(periph->periph_channel->chan_adapter->adapt_dev),
1525 	    periph->periph_target);
1526 
1527 	pf = &ccb->ccb_frame->mfr_pass;
1528 	pf->mpf_header.mfh_cmd = MFI_CMD_LD_SCSI_IO;
1529 	pf->mpf_header.mfh_target_id = periph->periph_target;
1530 	pf->mpf_header.mfh_lun_id = 0;
1531 	pf->mpf_header.mfh_cdb_len = xs->cmdlen;
1532 	pf->mpf_header.mfh_timeout = 0;
1533 	pf->mpf_header.mfh_data_len= xs->datalen; /* XXX */
1534 	pf->mpf_header.mfh_sense_len = MFI_SENSE_SIZE;
1535 
1536 	pf->mpf_sense_addr_hi = 0;
1537 	pf->mpf_sense_addr_lo = htole32(ccb->ccb_psense);
1538 
1539 	memset(pf->mpf_cdb, 0, 16);
1540 	memcpy(pf->mpf_cdb, &xs->cmdstore, xs->cmdlen);
1541 
1542 	ccb->ccb_done = mfi_scsi_ld_done;
1543 	ccb->ccb_xs = xs;
1544 	ccb->ccb_frame_size = MFI_PASS_FRAME_SIZE;
1545 	ccb->ccb_sgl = &pf->mpf_sgl;
1546 
1547 	if (xs->xs_control & (XS_CTL_DATA_IN | XS_CTL_DATA_OUT))
1548 		ccb->ccb_direction = (xs->xs_control & XS_CTL_DATA_IN) ?
1549 		    MFI_DATA_IN : MFI_DATA_OUT;
1550 	else
1551 		ccb->ccb_direction = MFI_DATA_NONE;
1552 
1553 	if (xs->data) {
1554 		ccb->ccb_data = xs->data;
1555 		ccb->ccb_len = xs->datalen;
1556 
1557 		if (mfi_create_sgl(ccb, (xs->xs_control & XS_CTL_NOSLEEP) ?
1558 		    BUS_DMA_NOWAIT : BUS_DMA_WAITOK))
1559 			return 1;
1560 	}
1561 
1562 	return 0;
1563 }
1564 
1565 static void
1566 mfi_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req,
1567     void *arg)
1568 {
1569 	struct scsipi_periph	*periph;
1570 	struct scsipi_xfer	*xs;
1571 	struct scsipi_adapter	*adapt = chan->chan_adapter;
1572 	struct mfi_softc	*sc = device_private(adapt->adapt_dev);
1573 	struct mfi_ccb		*ccb;
1574 	struct scsi_rw_6	*rw;
1575 	struct scsipi_rw_10	*rwb;
1576 	struct scsipi_rw_12	*rw12;
1577 	struct scsipi_rw_16	*rw16;
1578 	uint64_t		blockno;
1579 	uint32_t		blockcnt;
1580 	uint8_t			target;
1581 	uint8_t			mbox[MFI_MBOX_SIZE];
1582 	int			s;
1583 
1584 	switch (req) {
1585 	case ADAPTER_REQ_GROW_RESOURCES:
1586 		/* Not supported. */
1587 		return;
1588 	case ADAPTER_REQ_SET_XFER_MODE:
1589 	{
1590 		struct scsipi_xfer_mode *xm = arg;
1591 		xm->xm_mode = PERIPH_CAP_TQING;
1592 		xm->xm_period = 0;
1593 		xm->xm_offset = 0;
1594 		scsipi_async_event(&sc->sc_chan, ASYNC_EVENT_XFER_MODE, xm);
1595 		return;
1596 	}
1597 	case ADAPTER_REQ_RUN_XFER:
1598 		break;
1599 	}
1600 
1601 	xs = arg;
1602 
1603 	periph = xs->xs_periph;
1604 	target = periph->periph_target;
1605 
1606 	DNPRINTF(MFI_D_CMD, "%s: mfi_scsipi_request req %d opcode: %#x "
1607 	    "target %d lun %d\n", DEVNAME(sc), req, xs->cmd->opcode,
1608 	    periph->periph_target, periph->periph_lun);
1609 
1610 	s = splbio();
1611 	if (target >= MFI_MAX_LD || !sc->sc_ld[target].ld_present ||
1612 	    periph->periph_lun != 0) {
1613 		DNPRINTF(MFI_D_CMD, "%s: invalid target %d\n",
1614 		    DEVNAME(sc), target);
1615 		xs->error = XS_SELTIMEOUT;
1616 		scsipi_done(xs);
1617 		splx(s);
1618 		return;
1619 	}
1620 	if ((xs->cmd->opcode == SCSI_SYNCHRONIZE_CACHE_10 ||
1621 	    xs->cmd->opcode == SCSI_SYNCHRONIZE_CACHE_16) && sc->sc_bbuok) {
1622 		/* the cache is stable storage, don't flush */
1623 		xs->error = XS_NOERROR;
1624 		xs->status = SCSI_OK;
1625 		xs->resid = 0;
1626 		scsipi_done(xs);
1627 		splx(s);
1628 		return;
1629 	}
1630 
1631 	if ((ccb = mfi_get_ccb(sc)) == NULL) {
1632 		DNPRINTF(MFI_D_CMD, "%s: mfi_scsipi_request no ccb\n", DEVNAME(sc));
1633 		xs->error = XS_RESOURCE_SHORTAGE;
1634 		scsipi_done(xs);
1635 		splx(s);
1636 		return;
1637 	}
1638 
1639 	switch (xs->cmd->opcode) {
1640 	/* IO path */
1641 	case READ_16:
1642 	case WRITE_16:
1643 		rw16 = (struct scsipi_rw_16 *)xs->cmd;
1644 		blockno = _8btol(rw16->addr);
1645 		blockcnt = _4btol(rw16->length);
1646 		if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) {
1647 			goto stuffup;
1648 		}
1649 		break;
1650 
1651 	case READ_12:
1652 	case WRITE_12:
1653 		rw12 = (struct scsipi_rw_12 *)xs->cmd;
1654 		blockno = _4btol(rw12->addr);
1655 		blockcnt = _4btol(rw12->length);
1656 		if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) {
1657 			goto stuffup;
1658 		}
1659 		break;
1660 
1661 	case READ_10:
1662 	case WRITE_10:
1663 		rwb = (struct scsipi_rw_10 *)xs->cmd;
1664 		blockno = _4btol(rwb->addr);
1665 		blockcnt = _2btol(rwb->length);
1666 		if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) {
1667 			goto stuffup;
1668 		}
1669 		break;
1670 
1671 	case SCSI_READ_6_COMMAND:
1672 	case SCSI_WRITE_6_COMMAND:
1673 		rw = (struct scsi_rw_6 *)xs->cmd;
1674 		blockno = _3btol(rw->addr) & (SRW_TOPADDR << 16 | 0xffff);
1675 		blockcnt = rw->length ? rw->length : 0x100;
1676 		if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) {
1677 			goto stuffup;
1678 		}
1679 		break;
1680 
1681 	case SCSI_SYNCHRONIZE_CACHE_10:
1682 	case SCSI_SYNCHRONIZE_CACHE_16:
1683 		mbox[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
1684 		if (mfi_mgmt(ccb, xs,
1685 		    MR_DCMD_CTRL_CACHE_FLUSH, MFI_DATA_NONE, 0, NULL, mbox)) {
1686 			goto stuffup;
1687 		}
1688 		break;
1689 
1690 	/* hand it of to the firmware and let it deal with it */
1691 	case SCSI_TEST_UNIT_READY:
1692 		/* save off sd? after autoconf */
1693 		if (!cold)	/* XXX bogus */
1694 			strlcpy(sc->sc_ld[target].ld_dev, device_xname(sc->sc_dev),
1695 			    sizeof(sc->sc_ld[target].ld_dev));
1696 		/* FALLTHROUGH */
1697 
1698 	default:
1699 		if (mfi_scsi_ld(ccb, xs)) {
1700 			goto stuffup;
1701 		}
1702 		break;
1703 	}
1704 
1705 	DNPRINTF(MFI_D_CMD, "%s: start io %d\n", DEVNAME(sc), target);
1706 
1707 	if (xs->xs_control & XS_CTL_POLL) {
1708 		if (mfi_poll(ccb)) {
1709 			/* XXX check for sense in ccb->ccb_sense? */
1710 			aprint_error_dev(sc->sc_dev,
1711 			    "mfi_scsipi_request poll failed\n");
1712 			memset(&xs->sense, 0, sizeof(xs->sense));
1713 			xs->sense.scsi_sense.response_code =
1714 			    SSD_RCODE_VALID | SSD_RCODE_CURRENT;
1715 			xs->sense.scsi_sense.flags = SKEY_ILLEGAL_REQUEST;
1716 			xs->sense.scsi_sense.asc = 0x20; /* invalid opcode */
1717 			xs->error = XS_SENSE;
1718 			xs->status = SCSI_CHECK;
1719 		} else {
1720 			DNPRINTF(MFI_D_DMA,
1721 			    "%s: mfi_scsipi_request poll complete %d\n",
1722 			    DEVNAME(sc), ccb->ccb_dmamap->dm_nsegs);
1723 			xs->error = XS_NOERROR;
1724 			xs->status = SCSI_OK;
1725 			xs->resid = 0;
1726 		}
1727 		mfi_put_ccb(ccb);
1728 		scsipi_done(xs);
1729 		splx(s);
1730 		return;
1731 	}
1732 
1733 	mfi_post(sc, ccb);
1734 
1735 	DNPRINTF(MFI_D_DMA, "%s: mfi_scsipi_request queued %d\n", DEVNAME(sc),
1736 	    ccb->ccb_dmamap->dm_nsegs);
1737 
1738 	splx(s);
1739 	return;
1740 
1741 stuffup:
1742 	mfi_put_ccb(ccb);
1743 	xs->error = XS_DRIVER_STUFFUP;
1744 	scsipi_done(xs);
1745 	splx(s);
1746 }
1747 
1748 static int
1749 mfi_create_sgl(struct mfi_ccb *ccb, int flags)
1750 {
1751 	struct mfi_softc	*sc = ccb->ccb_sc;
1752 	struct mfi_frame_header	*hdr;
1753 	bus_dma_segment_t	*sgd;
1754 	union mfi_sgl		*sgl;
1755 	int			error, i;
1756 
1757 	DNPRINTF(MFI_D_DMA, "%s: mfi_create_sgl %#lx\n", DEVNAME(sc),
1758 	    (u_long)ccb->ccb_data);
1759 
1760 	if (!ccb->ccb_data)
1761 		return 1;
1762 
1763 	KASSERT(flags == BUS_DMA_NOWAIT || !cpu_intr_p());
1764 	error = bus_dmamap_load(sc->sc_datadmat, ccb->ccb_dmamap,
1765 	    ccb->ccb_data, ccb->ccb_len, NULL, flags);
1766 	if (error) {
1767 		if (error == EFBIG) {
1768 			aprint_error_dev(sc->sc_dev, "more than %d dma segs\n",
1769 			    sc->sc_max_sgl);
1770 		} else {
1771 			aprint_error_dev(sc->sc_dev,
1772 			    "error %d loading dma map\n", error);
1773 		}
1774 		return 1;
1775 	}
1776 
1777 	hdr = &ccb->ccb_frame->mfr_header;
1778 	sgl = ccb->ccb_sgl;
1779 	sgd = ccb->ccb_dmamap->dm_segs;
1780 	for (i = 0; i < ccb->ccb_dmamap->dm_nsegs; i++) {
1781 		if (sc->sc_ioptype == MFI_IOP_TBOLT &&
1782 		    (hdr->mfh_cmd == MFI_CMD_PD_SCSI_IO ||
1783 		     hdr->mfh_cmd == MFI_CMD_LD_READ ||
1784 		     hdr->mfh_cmd == MFI_CMD_LD_WRITE)) {
1785 			sgl->sg_ieee[i].addr = htole64(sgd[i].ds_addr);
1786 			sgl->sg_ieee[i].len = htole32(sgd[i].ds_len);
1787 			sgl->sg_ieee[i].flags = 0;
1788 			DNPRINTF(MFI_D_DMA, "%s: addr: %#" PRIx64 " len: %#"
1789 			    PRIx32 "\n",
1790 			    DEVNAME(sc), sgl->sg64[i].addr, sgl->sg64[i].len);
1791 			hdr->mfh_flags |= MFI_FRAME_IEEE_SGL | MFI_FRAME_SGL64;
1792 		} else if (sc->sc_64bit_dma) {
1793 			sgl->sg64[i].addr = htole64(sgd[i].ds_addr);
1794 			sgl->sg64[i].len = htole32(sgd[i].ds_len);
1795 			DNPRINTF(MFI_D_DMA, "%s: addr: %#" PRIx64 " len: %#"
1796 			    PRIx32 "\n",
1797 			    DEVNAME(sc), sgl->sg64[i].addr, sgl->sg64[i].len);
1798 			hdr->mfh_flags |= MFI_FRAME_SGL64;
1799 		} else {
1800 			sgl->sg32[i].addr = htole32(sgd[i].ds_addr);
1801 			sgl->sg32[i].len = htole32(sgd[i].ds_len);
1802 			DNPRINTF(MFI_D_DMA, "%s: addr: %#x  len: %#x\n",
1803 			    DEVNAME(sc), sgl->sg32[i].addr, sgl->sg32[i].len);
1804 			hdr->mfh_flags |= MFI_FRAME_SGL32;
1805 		}
1806 	}
1807 
1808 	if (ccb->ccb_direction == MFI_DATA_IN) {
1809 		hdr->mfh_flags |= MFI_FRAME_DIR_READ;
1810 		bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
1811 		    ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1812 	} else {
1813 		hdr->mfh_flags |= MFI_FRAME_DIR_WRITE;
1814 		bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
1815 		    ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1816 	}
1817 
1818 	hdr->mfh_sg_count = ccb->ccb_dmamap->dm_nsegs;
1819 	ccb->ccb_frame_size += sc->sc_sgl_size * ccb->ccb_dmamap->dm_nsegs;
1820 	ccb->ccb_extra_frames = (ccb->ccb_frame_size - 1) / MFI_FRAME_SIZE;
1821 
1822 	DNPRINTF(MFI_D_DMA, "%s: sg_count: %d  frame_size: %d  frames_size: %d"
1823 	    "  dm_nsegs: %d  extra_frames: %d\n",
1824 	    DEVNAME(sc),
1825 	    hdr->mfh_sg_count,
1826 	    ccb->ccb_frame_size,
1827 	    sc->sc_frames_size,
1828 	    ccb->ccb_dmamap->dm_nsegs,
1829 	    ccb->ccb_extra_frames);
1830 
1831 	return 0;
1832 }
1833 
1834 static int
1835 mfi_mgmt_internal(struct mfi_softc *sc, uint32_t opc, uint32_t dir,
1836     uint32_t len, void *buf, uint8_t *mbox, bool poll)
1837 {
1838 	struct mfi_ccb		*ccb;
1839 	int			rv = 1;
1840 
1841 	if ((ccb = mfi_get_ccb(sc)) == NULL)
1842 		return rv;
1843 	rv = mfi_mgmt(ccb, NULL, opc, dir, len, buf, mbox);
1844 	if (rv)
1845 		return rv;
1846 
1847 	if (poll) {
1848 		rv = 1;
1849 		if (mfi_poll(ccb))
1850 			goto done;
1851 	} else {
1852 		mfi_post(sc, ccb);
1853 
1854 		DNPRINTF(MFI_D_MISC, "%s: mfi_mgmt_internal sleeping\n",
1855 		    DEVNAME(sc));
1856 		while (ccb->ccb_state != MFI_CCB_DONE)
1857 			tsleep(ccb, PRIBIO, "mfi_mgmt", 0);
1858 
1859 		if (ccb->ccb_flags & MFI_CCB_F_ERR)
1860 			goto done;
1861 	}
1862 	rv = 0;
1863 
1864 done:
1865 	mfi_put_ccb(ccb);
1866 	return rv;
1867 }
1868 
1869 static int
1870 mfi_mgmt(struct mfi_ccb *ccb, struct scsipi_xfer *xs,
1871     uint32_t opc, uint32_t dir, uint32_t len, void *buf, uint8_t *mbox)
1872 {
1873 	struct mfi_dcmd_frame	*dcmd;
1874 
1875 	DNPRINTF(MFI_D_MISC, "%s: mfi_mgmt %#x\n", DEVNAME(ccb->ccb_sc), opc);
1876 
1877 	dcmd = &ccb->ccb_frame->mfr_dcmd;
1878 	memset(dcmd->mdf_mbox, 0, MFI_MBOX_SIZE);
1879 	dcmd->mdf_header.mfh_cmd = MFI_CMD_DCMD;
1880 	dcmd->mdf_header.mfh_timeout = 0;
1881 
1882 	dcmd->mdf_opcode = opc;
1883 	dcmd->mdf_header.mfh_data_len = 0;
1884 	ccb->ccb_direction = dir;
1885 	ccb->ccb_xs = xs;
1886 	ccb->ccb_done = mfi_mgmt_done;
1887 
1888 	ccb->ccb_frame_size = MFI_DCMD_FRAME_SIZE;
1889 
1890 	/* handle special opcodes */
1891 	if (mbox)
1892 		memcpy(dcmd->mdf_mbox, mbox, MFI_MBOX_SIZE);
1893 
1894 	if (dir != MFI_DATA_NONE) {
1895 		dcmd->mdf_header.mfh_data_len = len;
1896 		ccb->ccb_data = buf;
1897 		ccb->ccb_len = len;
1898 		ccb->ccb_sgl = &dcmd->mdf_sgl;
1899 
1900 		if (mfi_create_sgl(ccb, BUS_DMA_WAITOK))
1901 			return 1;
1902 	}
1903 	return 0;
1904 }
1905 
1906 static void
1907 mfi_mgmt_done(struct mfi_ccb *ccb)
1908 {
1909 	struct scsipi_xfer	*xs = ccb->ccb_xs;
1910 	struct mfi_softc	*sc = ccb->ccb_sc;
1911 	struct mfi_frame_header	*hdr = &ccb->ccb_frame->mfr_header;
1912 
1913 	DNPRINTF(MFI_D_INTR, "%s: mfi_mgmt_done %#lx %#lx\n",
1914 	    DEVNAME(sc), (u_long)ccb, (u_long)ccb->ccb_frame);
1915 
1916 	if (ccb->ccb_data != NULL) {
1917 		DNPRINTF(MFI_D_INTR, "%s: mfi_mgmt_done sync\n",
1918 		    DEVNAME(sc));
1919 		bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
1920 		    ccb->ccb_dmamap->dm_mapsize,
1921 		    (ccb->ccb_direction & MFI_DATA_IN) ?
1922 		    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1923 
1924 		bus_dmamap_unload(sc->sc_datadmat, ccb->ccb_dmamap);
1925 	}
1926 
1927 	if (hdr->mfh_cmd_status != MFI_STAT_OK)
1928 		ccb->ccb_flags |= MFI_CCB_F_ERR;
1929 
1930 	ccb->ccb_state = MFI_CCB_DONE;
1931 	if (xs) {
1932 		if (hdr->mfh_cmd_status != MFI_STAT_OK) {
1933 			xs->error = XS_DRIVER_STUFFUP;
1934 		} else {
1935 			xs->error = XS_NOERROR;
1936 			xs->status = SCSI_OK;
1937 			xs->resid = 0;
1938 		}
1939 		mfi_put_ccb(ccb);
1940 		scsipi_done(xs);
1941 	} else
1942 		wakeup(ccb);
1943 }
1944 
1945 #if NBIO > 0
1946 int
1947 mfi_ioctl(device_t dev, u_long cmd, void *addr)
1948 {
1949 	struct mfi_softc *sc = device_private(dev);
1950 	int error = 0;
1951 	int s;
1952 
1953 	KERNEL_LOCK(1, curlwp);
1954 	s = splbio();
1955 
1956 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl ", DEVNAME(sc));
1957 
1958 	switch (cmd) {
1959 	case BIOCINQ:
1960 		DNPRINTF(MFI_D_IOCTL, "inq\n");
1961 		error = mfi_ioctl_inq(sc, (struct bioc_inq *)addr);
1962 		break;
1963 
1964 	case BIOCVOL:
1965 		DNPRINTF(MFI_D_IOCTL, "vol\n");
1966 		error = mfi_ioctl_vol(sc, (struct bioc_vol *)addr);
1967 		break;
1968 
1969 	case BIOCDISK:
1970 		DNPRINTF(MFI_D_IOCTL, "disk\n");
1971 		error = mfi_ioctl_disk(sc, (struct bioc_disk *)addr);
1972 		break;
1973 
1974 	case BIOCALARM:
1975 		DNPRINTF(MFI_D_IOCTL, "alarm\n");
1976 		error = mfi_ioctl_alarm(sc, (struct bioc_alarm *)addr);
1977 		break;
1978 
1979 	case BIOCBLINK:
1980 		DNPRINTF(MFI_D_IOCTL, "blink\n");
1981 		error = mfi_ioctl_blink(sc, (struct bioc_blink *)addr);
1982 		break;
1983 
1984 	case BIOCSETSTATE:
1985 		DNPRINTF(MFI_D_IOCTL, "setstate\n");
1986 		error = mfi_ioctl_setstate(sc, (struct bioc_setstate *)addr);
1987 		break;
1988 
1989 	default:
1990 		DNPRINTF(MFI_D_IOCTL, " invalid ioctl\n");
1991 		error = EINVAL;
1992 	}
1993 	splx(s);
1994 	KERNEL_UNLOCK_ONE(curlwp);
1995 
1996 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl return %x\n", DEVNAME(sc), error);
1997 	return error;
1998 }
1999 
2000 static int
2001 mfi_ioctl_inq(struct mfi_softc *sc, struct bioc_inq *bi)
2002 {
2003 	struct mfi_conf		*cfg;
2004 	int			rv = EINVAL;
2005 
2006 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_inq\n", DEVNAME(sc));
2007 
2008 	if (mfi_get_info(sc)) {
2009 		DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_inq failed\n",
2010 		    DEVNAME(sc));
2011 		return EIO;
2012 	}
2013 
2014 	/* get figures */
2015 	cfg = malloc(sizeof *cfg, M_DEVBUF, M_WAITOK);
2016 	if (mfi_mgmt_internal(sc, MD_DCMD_CONF_GET, MFI_DATA_IN,
2017 	    sizeof *cfg, cfg, NULL, false))
2018 		goto freeme;
2019 
2020 	strlcpy(bi->bi_dev, DEVNAME(sc), sizeof(bi->bi_dev));
2021 	bi->bi_novol = cfg->mfc_no_ld + cfg->mfc_no_hs;
2022 	bi->bi_nodisk = sc->sc_info.mci_pd_disks_present;
2023 
2024 	rv = 0;
2025 freeme:
2026 	free(cfg, M_DEVBUF);
2027 	return rv;
2028 }
2029 
2030 static int
2031 mfi_ioctl_vol(struct mfi_softc *sc, struct bioc_vol *bv)
2032 {
2033 	int			i, per, rv = EINVAL;
2034 	uint8_t			mbox[MFI_MBOX_SIZE];
2035 
2036 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_vol %#x\n",
2037 	    DEVNAME(sc), bv->bv_volid);
2038 
2039 	if (mfi_mgmt_internal(sc, MR_DCMD_LD_GET_LIST, MFI_DATA_IN,
2040 	    sizeof(sc->sc_ld_list), &sc->sc_ld_list, NULL, false))
2041 		goto done;
2042 
2043 	i = bv->bv_volid;
2044 	mbox[0] = sc->sc_ld_list.mll_list[i].mll_ld.mld_target;
2045 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_vol target %#x\n",
2046 	    DEVNAME(sc), mbox[0]);
2047 
2048 	if (mfi_mgmt_internal(sc, MR_DCMD_LD_GET_INFO, MFI_DATA_IN,
2049 	    sizeof(sc->sc_ld_details), &sc->sc_ld_details, mbox, false))
2050 		goto done;
2051 
2052 	if (bv->bv_volid >= sc->sc_ld_list.mll_no_ld) {
2053 		/* go do hotspares */
2054 		rv = mfi_bio_hs(sc, bv->bv_volid, MFI_MGMT_VD, bv);
2055 		goto done;
2056 	}
2057 
2058 	strlcpy(bv->bv_dev, sc->sc_ld[i].ld_dev, sizeof(bv->bv_dev));
2059 
2060 	switch(sc->sc_ld_list.mll_list[i].mll_state) {
2061 	case MFI_LD_OFFLINE:
2062 		bv->bv_status = BIOC_SVOFFLINE;
2063 		break;
2064 
2065 	case MFI_LD_PART_DEGRADED:
2066 	case MFI_LD_DEGRADED:
2067 		bv->bv_status = BIOC_SVDEGRADED;
2068 		break;
2069 
2070 	case MFI_LD_ONLINE:
2071 		bv->bv_status = BIOC_SVONLINE;
2072 		break;
2073 
2074 	default:
2075 		bv->bv_status = BIOC_SVINVALID;
2076 		DNPRINTF(MFI_D_IOCTL, "%s: invalid logical disk state %#x\n",
2077 		    DEVNAME(sc),
2078 		    sc->sc_ld_list.mll_list[i].mll_state);
2079 	}
2080 
2081 	/* additional status can modify MFI status */
2082 	switch (sc->sc_ld_details.mld_progress.mlp_in_prog) {
2083 	case MFI_LD_PROG_CC:
2084 	case MFI_LD_PROG_BGI:
2085 		bv->bv_status = BIOC_SVSCRUB;
2086 		per = (int)sc->sc_ld_details.mld_progress.mlp_cc.mp_progress;
2087 		bv->bv_percent = (per * 100) / 0xffff;
2088 		bv->bv_seconds =
2089 		    sc->sc_ld_details.mld_progress.mlp_cc.mp_elapsed_seconds;
2090 		break;
2091 
2092 	case MFI_LD_PROG_FGI:
2093 	case MFI_LD_PROG_RECONSTRUCT:
2094 		/* nothing yet */
2095 		break;
2096 	}
2097 
2098 	/*
2099 	 * The RAID levels are determined per the SNIA DDF spec, this is only
2100 	 * a subset that is valid for the MFI contrller.
2101 	 */
2102 	bv->bv_level = sc->sc_ld_details.mld_cfg.mlc_parm.mpa_pri_raid;
2103 	if (sc->sc_ld_details.mld_cfg.mlc_parm.mpa_sec_raid ==
2104 	    MFI_DDF_SRL_SPANNED)
2105 		bv->bv_level *= 10;
2106 
2107 	bv->bv_nodisk = sc->sc_ld_details.mld_cfg.mlc_parm.mpa_no_drv_per_span *
2108 	    sc->sc_ld_details.mld_cfg.mlc_parm.mpa_span_depth;
2109 
2110 	bv->bv_size = sc->sc_ld_details.mld_size * 512; /* bytes per block */
2111 
2112 	rv = 0;
2113 done:
2114 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_vol done %x\n",
2115 	    DEVNAME(sc), rv);
2116 	return rv;
2117 }
2118 
2119 static int
2120 mfi_ioctl_disk(struct mfi_softc *sc, struct bioc_disk *bd)
2121 {
2122 	struct mfi_conf		*cfg;
2123 	struct mfi_array	*ar;
2124 	struct mfi_ld_cfg	*ld;
2125 	struct mfi_pd_details	*pd;
2126 	struct scsipi_inquiry_data *inqbuf;
2127 	char			vend[8+16+4+1];
2128 	int			i, rv = EINVAL;
2129 	int			arr, vol, disk;
2130 	uint32_t		size;
2131 	uint8_t			mbox[MFI_MBOX_SIZE];
2132 
2133 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_disk %#x\n",
2134 	    DEVNAME(sc), bd->bd_diskid);
2135 
2136 	pd = malloc(sizeof *pd, M_DEVBUF, M_WAITOK | M_ZERO);
2137 
2138 	/* send single element command to retrieve size for full structure */
2139 	cfg = malloc(sizeof *cfg, M_DEVBUF, M_WAITOK);
2140 	if (mfi_mgmt_internal(sc, MD_DCMD_CONF_GET, MFI_DATA_IN,
2141 	    sizeof *cfg, cfg, NULL, false))
2142 		goto freeme;
2143 
2144 	size = cfg->mfc_size;
2145 	free(cfg, M_DEVBUF);
2146 
2147 	/* memory for read config */
2148 	cfg = malloc(size, M_DEVBUF, M_WAITOK|M_ZERO);
2149 	if (mfi_mgmt_internal(sc, MD_DCMD_CONF_GET, MFI_DATA_IN,
2150 	    size, cfg, NULL, false))
2151 		goto freeme;
2152 
2153 	ar = cfg->mfc_array;
2154 
2155 	/* calculate offset to ld structure */
2156 	ld = (struct mfi_ld_cfg *)(
2157 	    ((uint8_t *)cfg) + offsetof(struct mfi_conf, mfc_array) +
2158 	    cfg->mfc_array_size * cfg->mfc_no_array);
2159 
2160 	vol = bd->bd_volid;
2161 
2162 	if (vol >= cfg->mfc_no_ld) {
2163 		/* do hotspares */
2164 		rv = mfi_bio_hs(sc, bd->bd_volid, MFI_MGMT_SD, bd);
2165 		goto freeme;
2166 	}
2167 
2168 	/* find corresponding array for ld */
2169 	for (i = 0, arr = 0; i < vol; i++)
2170 		arr += ld[i].mlc_parm.mpa_span_depth;
2171 
2172 	/* offset disk into pd list */
2173 	disk = bd->bd_diskid % ld[vol].mlc_parm.mpa_no_drv_per_span;
2174 
2175 	/* offset array index into the next spans */
2176 	arr += bd->bd_diskid / ld[vol].mlc_parm.mpa_no_drv_per_span;
2177 
2178 	bd->bd_target = ar[arr].pd[disk].mar_enc_slot;
2179 	switch (ar[arr].pd[disk].mar_pd_state){
2180 	case MFI_PD_UNCONFIG_GOOD:
2181 		bd->bd_status = BIOC_SDUNUSED;
2182 		break;
2183 
2184 	case MFI_PD_HOTSPARE: /* XXX dedicated hotspare part of array? */
2185 		bd->bd_status = BIOC_SDHOTSPARE;
2186 		break;
2187 
2188 	case MFI_PD_OFFLINE:
2189 		bd->bd_status = BIOC_SDOFFLINE;
2190 		break;
2191 
2192 	case MFI_PD_FAILED:
2193 		bd->bd_status = BIOC_SDFAILED;
2194 		break;
2195 
2196 	case MFI_PD_REBUILD:
2197 		bd->bd_status = BIOC_SDREBUILD;
2198 		break;
2199 
2200 	case MFI_PD_ONLINE:
2201 		bd->bd_status = BIOC_SDONLINE;
2202 		break;
2203 
2204 	case MFI_PD_UNCONFIG_BAD: /* XXX define new state in bio */
2205 	default:
2206 		bd->bd_status = BIOC_SDINVALID;
2207 		break;
2208 
2209 	}
2210 
2211 	/* get the remaining fields */
2212 	*((uint16_t *)&mbox) = ar[arr].pd[disk].mar_pd.mfp_id;
2213 	memset(pd, 0, sizeof(*pd));
2214 	if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_INFO, MFI_DATA_IN,
2215 	    sizeof *pd, pd, mbox, false))
2216 		goto freeme;
2217 
2218 	bd->bd_size = pd->mpd_size * 512; /* bytes per block */
2219 
2220 	/* if pd->mpd_enc_idx is 0 then it is not in an enclosure */
2221 	bd->bd_channel = pd->mpd_enc_idx;
2222 
2223 	inqbuf = (struct scsipi_inquiry_data *)&pd->mpd_inq_data;
2224 	memcpy(vend, inqbuf->vendor, sizeof vend - 1);
2225 	vend[sizeof vend - 1] = '\0';
2226 	strlcpy(bd->bd_vendor, vend, sizeof(bd->bd_vendor));
2227 
2228 	/* XXX find a way to retrieve serial nr from drive */
2229 	/* XXX find a way to get bd_procdev */
2230 
2231 	rv = 0;
2232 freeme:
2233 	free(pd, M_DEVBUF);
2234 	free(cfg, M_DEVBUF);
2235 
2236 	return rv;
2237 }
2238 
2239 static int
2240 mfi_ioctl_alarm(struct mfi_softc *sc, struct bioc_alarm *ba)
2241 {
2242 	uint32_t		opc, dir = MFI_DATA_NONE;
2243 	int			rv = 0;
2244 	int8_t			ret;
2245 
2246 	switch(ba->ba_opcode) {
2247 	case BIOC_SADISABLE:
2248 		opc = MR_DCMD_SPEAKER_DISABLE;
2249 		break;
2250 
2251 	case BIOC_SAENABLE:
2252 		opc = MR_DCMD_SPEAKER_ENABLE;
2253 		break;
2254 
2255 	case BIOC_SASILENCE:
2256 		opc = MR_DCMD_SPEAKER_SILENCE;
2257 		break;
2258 
2259 	case BIOC_GASTATUS:
2260 		opc = MR_DCMD_SPEAKER_GET;
2261 		dir = MFI_DATA_IN;
2262 		break;
2263 
2264 	case BIOC_SATEST:
2265 		opc = MR_DCMD_SPEAKER_TEST;
2266 		break;
2267 
2268 	default:
2269 		DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_alarm biocalarm invalid "
2270 		    "opcode %x\n", DEVNAME(sc), ba->ba_opcode);
2271 		return EINVAL;
2272 	}
2273 
2274 	if (mfi_mgmt_internal(sc, opc, dir, sizeof(ret), &ret, NULL, false))
2275 		rv = EINVAL;
2276 	else
2277 		if (ba->ba_opcode == BIOC_GASTATUS)
2278 			ba->ba_status = ret;
2279 		else
2280 			ba->ba_status = 0;
2281 
2282 	return rv;
2283 }
2284 
2285 static int
2286 mfi_ioctl_blink(struct mfi_softc *sc, struct bioc_blink *bb)
2287 {
2288 	int			i, found, rv = EINVAL;
2289 	uint8_t			mbox[MFI_MBOX_SIZE];
2290 	uint32_t		cmd;
2291 	struct mfi_pd_list	*pd;
2292 
2293 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_blink %x\n", DEVNAME(sc),
2294 	    bb->bb_status);
2295 
2296 	/* channel 0 means not in an enclosure so can't be blinked */
2297 	if (bb->bb_channel == 0)
2298 		return EINVAL;
2299 
2300 	pd = malloc(MFI_PD_LIST_SIZE, M_DEVBUF, M_WAITOK);
2301 
2302 	if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_LIST, MFI_DATA_IN,
2303 	    MFI_PD_LIST_SIZE, pd, NULL, false))
2304 		goto done;
2305 
2306 	for (i = 0, found = 0; i < pd->mpl_no_pd; i++)
2307 		if (bb->bb_channel == pd->mpl_address[i].mpa_enc_index &&
2308 		    bb->bb_target == pd->mpl_address[i].mpa_enc_slot) {
2309 		    	found = 1;
2310 			break;
2311 		}
2312 
2313 	if (!found)
2314 		goto done;
2315 
2316 	memset(mbox, 0, sizeof mbox);
2317 
2318 	*((uint16_t *)&mbox) = pd->mpl_address[i].mpa_pd_id;
2319 
2320 	switch (bb->bb_status) {
2321 	case BIOC_SBUNBLINK:
2322 		cmd = MR_DCMD_PD_UNBLINK;
2323 		break;
2324 
2325 	case BIOC_SBBLINK:
2326 		cmd = MR_DCMD_PD_BLINK;
2327 		break;
2328 
2329 	case BIOC_SBALARM:
2330 	default:
2331 		DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_blink biocblink invalid "
2332 		    "opcode %x\n", DEVNAME(sc), bb->bb_status);
2333 		goto done;
2334 	}
2335 
2336 
2337 	if (mfi_mgmt_internal(sc, cmd, MFI_DATA_NONE, 0, NULL, mbox, false))
2338 		goto done;
2339 
2340 	rv = 0;
2341 done:
2342 	free(pd, M_DEVBUF);
2343 	return rv;
2344 }
2345 
2346 static int
2347 mfi_ioctl_setstate(struct mfi_softc *sc, struct bioc_setstate *bs)
2348 {
2349 	struct mfi_pd_list	*pd;
2350 	int			i, found, rv = EINVAL;
2351 	uint8_t			mbox[MFI_MBOX_SIZE];
2352 
2353 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_setstate %x\n", DEVNAME(sc),
2354 	    bs->bs_status);
2355 
2356 	pd = malloc(MFI_PD_LIST_SIZE, M_DEVBUF, M_WAITOK);
2357 
2358 	if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_LIST, MFI_DATA_IN,
2359 	    MFI_PD_LIST_SIZE, pd, NULL, false))
2360 		goto done;
2361 
2362 	for (i = 0, found = 0; i < pd->mpl_no_pd; i++)
2363 		if (bs->bs_channel == pd->mpl_address[i].mpa_enc_index &&
2364 		    bs->bs_target == pd->mpl_address[i].mpa_enc_slot) {
2365 		    	found = 1;
2366 			break;
2367 		}
2368 
2369 	if (!found)
2370 		goto done;
2371 
2372 	memset(mbox, 0, sizeof mbox);
2373 
2374 	*((uint16_t *)&mbox) = pd->mpl_address[i].mpa_pd_id;
2375 
2376 	switch (bs->bs_status) {
2377 	case BIOC_SSONLINE:
2378 		mbox[2] = MFI_PD_ONLINE;
2379 		break;
2380 
2381 	case BIOC_SSOFFLINE:
2382 		mbox[2] = MFI_PD_OFFLINE;
2383 		break;
2384 
2385 	case BIOC_SSHOTSPARE:
2386 		mbox[2] = MFI_PD_HOTSPARE;
2387 		break;
2388 /*
2389 	case BIOC_SSREBUILD:
2390 		break;
2391 */
2392 	default:
2393 		DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_setstate invalid "
2394 		    "opcode %x\n", DEVNAME(sc), bs->bs_status);
2395 		goto done;
2396 	}
2397 
2398 
2399 	if (mfi_mgmt_internal(sc, MD_DCMD_PD_SET_STATE, MFI_DATA_NONE,
2400 	    0, NULL, mbox, false))
2401 		goto done;
2402 
2403 	rv = 0;
2404 done:
2405 	free(pd, M_DEVBUF);
2406 	return rv;
2407 }
2408 
2409 static int
2410 mfi_bio_hs(struct mfi_softc *sc, int volid, int type, void *bio_hs)
2411 {
2412 	struct mfi_conf		*cfg;
2413 	struct mfi_hotspare	*hs;
2414 	struct mfi_pd_details	*pd;
2415 	struct bioc_disk	*sdhs;
2416 	struct bioc_vol		*vdhs;
2417 	struct scsipi_inquiry_data *inqbuf;
2418 	char			vend[8+16+4+1];
2419 	int			i, rv = EINVAL;
2420 	uint32_t		size;
2421 	uint8_t			mbox[MFI_MBOX_SIZE];
2422 
2423 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs %d\n", DEVNAME(sc), volid);
2424 
2425 	if (!bio_hs)
2426 		return EINVAL;
2427 
2428 	pd = malloc(sizeof *pd, M_DEVBUF, M_WAITOK | M_ZERO);
2429 
2430 	/* send single element command to retrieve size for full structure */
2431 	cfg = malloc(sizeof *cfg, M_DEVBUF, M_WAITOK);
2432 	if (mfi_mgmt_internal(sc, MD_DCMD_CONF_GET, MFI_DATA_IN,
2433 	    sizeof *cfg, cfg, NULL, false))
2434 		goto freeme;
2435 
2436 	size = cfg->mfc_size;
2437 	free(cfg, M_DEVBUF);
2438 
2439 	/* memory for read config */
2440 	cfg = malloc(size, M_DEVBUF, M_WAITOK|M_ZERO);
2441 	if (mfi_mgmt_internal(sc, MD_DCMD_CONF_GET, MFI_DATA_IN,
2442 	    size, cfg, NULL, false))
2443 		goto freeme;
2444 
2445 	/* calculate offset to hs structure */
2446 	hs = (struct mfi_hotspare *)(
2447 	    ((uint8_t *)cfg) + offsetof(struct mfi_conf, mfc_array) +
2448 	    cfg->mfc_array_size * cfg->mfc_no_array +
2449 	    cfg->mfc_ld_size * cfg->mfc_no_ld);
2450 
2451 	if (volid < cfg->mfc_no_ld)
2452 		goto freeme; /* not a hotspare */
2453 
2454 	if (volid > (cfg->mfc_no_ld + cfg->mfc_no_hs))
2455 		goto freeme; /* not a hotspare */
2456 
2457 	/* offset into hotspare structure */
2458 	i = volid - cfg->mfc_no_ld;
2459 
2460 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs i %d volid %d no_ld %d no_hs %d "
2461 	    "hs %p cfg %p id %02x\n", DEVNAME(sc), i, volid, cfg->mfc_no_ld,
2462 	    cfg->mfc_no_hs, hs, cfg, hs[i].mhs_pd.mfp_id);
2463 
2464 	/* get pd fields */
2465 	memset(mbox, 0, sizeof mbox);
2466 	*((uint16_t *)&mbox) = hs[i].mhs_pd.mfp_id;
2467 	if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_INFO, MFI_DATA_IN,
2468 	    sizeof *pd, pd, mbox, false)) {
2469 		DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs illegal PD\n",
2470 		    DEVNAME(sc));
2471 		goto freeme;
2472 	}
2473 
2474 	switch (type) {
2475 	case MFI_MGMT_VD:
2476 		vdhs = bio_hs;
2477 		vdhs->bv_status = BIOC_SVONLINE;
2478 		vdhs->bv_size = pd->mpd_size * 512; /* bytes per block */
2479 		vdhs->bv_level = -1; /* hotspare */
2480 		vdhs->bv_nodisk = 1;
2481 		break;
2482 
2483 	case MFI_MGMT_SD:
2484 		sdhs = bio_hs;
2485 		sdhs->bd_status = BIOC_SDHOTSPARE;
2486 		sdhs->bd_size = pd->mpd_size * 512; /* bytes per block */
2487 		sdhs->bd_channel = pd->mpd_enc_idx;
2488 		sdhs->bd_target = pd->mpd_enc_slot;
2489 		inqbuf = (struct scsipi_inquiry_data *)&pd->mpd_inq_data;
2490 		memcpy(vend, inqbuf->vendor, sizeof(vend) - 1);
2491 		vend[sizeof vend - 1] = '\0';
2492 		strlcpy(sdhs->bd_vendor, vend, sizeof(sdhs->bd_vendor));
2493 		break;
2494 
2495 	default:
2496 		goto freeme;
2497 	}
2498 
2499 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs 6\n", DEVNAME(sc));
2500 	rv = 0;
2501 freeme:
2502 	free(pd, M_DEVBUF);
2503 	free(cfg, M_DEVBUF);
2504 
2505 	return rv;
2506 }
2507 
2508 static int
2509 mfi_destroy_sensors(struct mfi_softc *sc)
2510 {
2511 	if (sc->sc_sme == NULL)
2512 		return 0;
2513 	sysmon_envsys_unregister(sc->sc_sme);
2514 	sc->sc_sme = NULL;
2515 	free(sc->sc_sensor, M_DEVBUF);
2516 	return 0;
2517 }
2518 
2519 static int
2520 mfi_create_sensors(struct mfi_softc *sc)
2521 {
2522 	int i;
2523 	int nsensors = sc->sc_ld_cnt + 1;
2524 	int rv;
2525 
2526 	sc->sc_sme = sysmon_envsys_create();
2527 	sc->sc_sensor = malloc(sizeof(envsys_data_t) * nsensors,
2528 	    M_DEVBUF, M_NOWAIT | M_ZERO);
2529 	if (sc->sc_sensor == NULL) {
2530 		aprint_error_dev(sc->sc_dev, "can't allocate envsys_data_t\n");
2531 		return ENOMEM;
2532 	}
2533 
2534 	/* BBU */
2535 	sc->sc_sensor[0].units = ENVSYS_INDICATOR;
2536 	sc->sc_sensor[0].state = ENVSYS_SINVALID;
2537 	sc->sc_sensor[0].value_cur = 0;
2538 	/* Enable monitoring for BBU state changes, if present */
2539 	if (sc->sc_info.mci_hw_present & MFI_INFO_HW_BBU)
2540 		sc->sc_sensor[0].flags |= ENVSYS_FMONCRITICAL;
2541 	snprintf(sc->sc_sensor[0].desc,
2542 	    sizeof(sc->sc_sensor[0].desc), "%s BBU", DEVNAME(sc));
2543 	if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor[0]))
2544 		goto out;
2545 
2546 	for (i = 1; i < nsensors; i++) {
2547 		sc->sc_sensor[i].units = ENVSYS_DRIVE;
2548 		sc->sc_sensor[i].state = ENVSYS_SINVALID;
2549 		sc->sc_sensor[i].value_cur = ENVSYS_DRIVE_EMPTY;
2550 		/* Enable monitoring for drive state changes */
2551 		sc->sc_sensor[i].flags |= ENVSYS_FMONSTCHANGED;
2552 		/* logical drives */
2553 		snprintf(sc->sc_sensor[i].desc,
2554 		    sizeof(sc->sc_sensor[i].desc), "%s:%d",
2555 		    DEVNAME(sc), i - 1);
2556 		if (sysmon_envsys_sensor_attach(sc->sc_sme,
2557 						&sc->sc_sensor[i]))
2558 			goto out;
2559 	}
2560 
2561 	sc->sc_sme->sme_name = DEVNAME(sc);
2562 	sc->sc_sme->sme_cookie = sc;
2563 	sc->sc_sme->sme_refresh = mfi_sensor_refresh;
2564 	rv = sysmon_envsys_register(sc->sc_sme);
2565 	if (rv != 0) {
2566 		aprint_error_dev(sc->sc_dev,
2567 		    "unable to register with sysmon (rv = %d)\n", rv);
2568 		goto out;
2569 	}
2570 	return 0;
2571 
2572 out:
2573 	free(sc->sc_sensor, M_DEVBUF);
2574 	sysmon_envsys_destroy(sc->sc_sme);
2575 	sc->sc_sme = NULL;
2576 	return EINVAL;
2577 }
2578 
2579 static void
2580 mfi_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
2581 {
2582 	struct mfi_softc	*sc = sme->sme_cookie;
2583 	struct bioc_vol		bv;
2584 	int s;
2585 	int error;
2586 
2587 	if (edata->sensor >= sc->sc_ld_cnt + 1)
2588 		return;
2589 
2590 	if (edata->sensor == 0) {
2591 		/* BBU */
2592 		struct mfi_bbu_status	bbu_stat;
2593 		int bbu_status;
2594 		if ((sc->sc_info.mci_hw_present & MFI_INFO_HW_BBU) == 0)
2595 			return;
2596 
2597 		KERNEL_LOCK(1, curlwp);
2598 		s = splbio();
2599 		bbu_status = mfi_get_bbu(sc, &bbu_stat);
2600 		splx(s);
2601 		KERNEL_UNLOCK_ONE(curlwp);
2602 		switch(bbu_status) {
2603 		case MFI_BBU_GOOD:
2604 			edata->value_cur = 1;
2605 			edata->state = ENVSYS_SVALID;
2606 			if (!sc->sc_bbuok)
2607 				aprint_normal_dev(sc->sc_dev,
2608 				    "BBU state changed to good\n");
2609 			sc->sc_bbuok = true;
2610 			break;
2611 		case MFI_BBU_BAD:
2612 			edata->value_cur = 0;
2613 			edata->state = ENVSYS_SCRITICAL;
2614 			if (sc->sc_bbuok)
2615 				aprint_normal_dev(sc->sc_dev,
2616 				    "BBU state changed to bad\n");
2617 			sc->sc_bbuok = false;
2618 			break;
2619 		case MFI_BBU_UNKNOWN:
2620 		default:
2621 			edata->value_cur = 0;
2622 			edata->state = ENVSYS_SINVALID;
2623 			sc->sc_bbuok = false;
2624 			break;
2625 		}
2626 		return;
2627 	}
2628 
2629 	memset(&bv, 0, sizeof(bv));
2630 	bv.bv_volid = edata->sensor - 1;
2631 	KERNEL_LOCK(1, curlwp);
2632 	s = splbio();
2633 	error = mfi_ioctl_vol(sc, &bv);
2634 	splx(s);
2635 	KERNEL_UNLOCK_ONE(curlwp);
2636 	if (error)
2637 		return;
2638 
2639 	switch(bv.bv_status) {
2640 	case BIOC_SVOFFLINE:
2641 		edata->value_cur = ENVSYS_DRIVE_FAIL;
2642 		edata->state = ENVSYS_SCRITICAL;
2643 		break;
2644 
2645 	case BIOC_SVDEGRADED:
2646 		edata->value_cur = ENVSYS_DRIVE_PFAIL;
2647 		edata->state = ENVSYS_SCRITICAL;
2648 		break;
2649 
2650 	case BIOC_SVSCRUB:
2651 	case BIOC_SVONLINE:
2652 		edata->value_cur = ENVSYS_DRIVE_ONLINE;
2653 		edata->state = ENVSYS_SVALID;
2654 		break;
2655 
2656 	case BIOC_SVINVALID:
2657 		/* FALLTRHOUGH */
2658 	default:
2659 		edata->value_cur = 0; /* unknown */
2660 		edata->state = ENVSYS_SINVALID;
2661 	}
2662 }
2663 
2664 #endif /* NBIO > 0 */
2665 
2666 static uint32_t
2667 mfi_xscale_fw_state(struct mfi_softc *sc)
2668 {
2669 	return mfi_read(sc, MFI_OMSG0);
2670 }
2671 
2672 static void
2673 mfi_xscale_intr_dis(struct mfi_softc *sc)
2674 {
2675 	mfi_write(sc, MFI_OMSK, 0);
2676 }
2677 
2678 static void
2679 mfi_xscale_intr_ena(struct mfi_softc *sc)
2680 {
2681 	mfi_write(sc, MFI_OMSK, MFI_ENABLE_INTR);
2682 }
2683 
2684 static int
2685 mfi_xscale_intr(struct mfi_softc *sc)
2686 {
2687 	uint32_t status;
2688 
2689 	status = mfi_read(sc, MFI_OSTS);
2690 	if (!ISSET(status, MFI_OSTS_INTR_VALID))
2691 		return 0;
2692 
2693 	/* write status back to acknowledge interrupt */
2694 	mfi_write(sc, MFI_OSTS, status);
2695 	return 1;
2696 }
2697 
2698 static void
2699 mfi_xscale_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
2700 {
2701 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
2702 	    ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
2703 	    sc->sc_frames_size, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2704 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_sense),
2705 	    ccb->ccb_psense - MFIMEM_DVA(sc->sc_sense),
2706 	    MFI_SENSE_SIZE, BUS_DMASYNC_PREREAD);
2707 
2708 	mfi_write(sc, MFI_IQP, (ccb->ccb_pframe >> 3) |
2709 	    ccb->ccb_extra_frames);
2710 	ccb->ccb_state = MFI_CCB_RUNNING;
2711 }
2712 
2713 static uint32_t
2714 mfi_ppc_fw_state(struct mfi_softc *sc)
2715 {
2716 	return mfi_read(sc, MFI_OSP);
2717 }
2718 
2719 static void
2720 mfi_ppc_intr_dis(struct mfi_softc *sc)
2721 {
2722 	/* Taking a wild guess --dyoung */
2723 	mfi_write(sc, MFI_OMSK, ~(uint32_t)0x0);
2724 	mfi_write(sc, MFI_ODC, 0xffffffff);
2725 }
2726 
2727 static void
2728 mfi_ppc_intr_ena(struct mfi_softc *sc)
2729 {
2730 	mfi_write(sc, MFI_ODC, 0xffffffff);
2731 	mfi_write(sc, MFI_OMSK, ~0x80000004);
2732 }
2733 
2734 static int
2735 mfi_ppc_intr(struct mfi_softc *sc)
2736 {
2737 	uint32_t status;
2738 
2739 	status = mfi_read(sc, MFI_OSTS);
2740 	if (!ISSET(status, MFI_OSTS_PPC_INTR_VALID))
2741 		return 0;
2742 
2743 	/* write status back to acknowledge interrupt */
2744 	mfi_write(sc, MFI_ODC, status);
2745 	return 1;
2746 }
2747 
2748 static void
2749 mfi_ppc_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
2750 {
2751 	mfi_write(sc, MFI_IQP, 0x1 | ccb->ccb_pframe |
2752 	    (ccb->ccb_extra_frames << 1));
2753 	ccb->ccb_state = MFI_CCB_RUNNING;
2754 }
2755 
2756 u_int32_t
2757 mfi_gen2_fw_state(struct mfi_softc *sc)
2758 {
2759 	return (mfi_read(sc, MFI_OSP));
2760 }
2761 
2762 void
2763 mfi_gen2_intr_dis(struct mfi_softc *sc)
2764 {
2765 	mfi_write(sc, MFI_OMSK, 0xffffffff);
2766 	mfi_write(sc, MFI_ODC, 0xffffffff);
2767 }
2768 
2769 void
2770 mfi_gen2_intr_ena(struct mfi_softc *sc)
2771 {
2772 	mfi_write(sc, MFI_ODC, 0xffffffff);
2773 	mfi_write(sc, MFI_OMSK, ~MFI_OSTS_GEN2_INTR_VALID);
2774 }
2775 
2776 int
2777 mfi_gen2_intr(struct mfi_softc *sc)
2778 {
2779 	u_int32_t status;
2780 
2781 	status = mfi_read(sc, MFI_OSTS);
2782 	if (!ISSET(status, MFI_OSTS_GEN2_INTR_VALID))
2783 		return (0);
2784 
2785 	/* write status back to acknowledge interrupt */
2786 	mfi_write(sc, MFI_ODC, status);
2787 
2788 	return (1);
2789 }
2790 
2791 void
2792 mfi_gen2_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
2793 {
2794 	mfi_write(sc, MFI_IQP, 0x1 | ccb->ccb_pframe |
2795 	    (ccb->ccb_extra_frames << 1));
2796 	ccb->ccb_state = MFI_CCB_RUNNING;
2797 }
2798 
2799 u_int32_t
2800 mfi_skinny_fw_state(struct mfi_softc *sc)
2801 {
2802 	return (mfi_read(sc, MFI_OSP));
2803 }
2804 
2805 void
2806 mfi_skinny_intr_dis(struct mfi_softc *sc)
2807 {
2808 	mfi_write(sc, MFI_OMSK, 0);
2809 }
2810 
2811 void
2812 mfi_skinny_intr_ena(struct mfi_softc *sc)
2813 {
2814 	mfi_write(sc, MFI_OMSK, ~0x00000001);
2815 }
2816 
2817 int
2818 mfi_skinny_intr(struct mfi_softc *sc)
2819 {
2820 	u_int32_t status;
2821 
2822 	status = mfi_read(sc, MFI_OSTS);
2823 	if (!ISSET(status, MFI_OSTS_SKINNY_INTR_VALID))
2824 		return (0);
2825 
2826 	/* write status back to acknowledge interrupt */
2827 	mfi_write(sc, MFI_OSTS, status);
2828 
2829 	return (1);
2830 }
2831 
2832 void
2833 mfi_skinny_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
2834 {
2835 	mfi_write(sc, MFI_IQPL, 0x1 | ccb->ccb_pframe |
2836 	    (ccb->ccb_extra_frames << 1));
2837 	mfi_write(sc, MFI_IQPH, 0x00000000);
2838 	ccb->ccb_state = MFI_CCB_RUNNING;
2839 }
2840 
2841 #define MFI_FUSION_ENABLE_INTERRUPT_MASK	(0x00000008)
2842 
2843 void
2844 mfi_tbolt_intr_ena(struct mfi_softc *sc)
2845 {
2846 	mfi_write(sc, MFI_OMSK, ~MFI_FUSION_ENABLE_INTERRUPT_MASK);
2847 	mfi_read(sc, MFI_OMSK);
2848 }
2849 
2850 void
2851 mfi_tbolt_intr_dis(struct mfi_softc *sc)
2852 {
2853 	mfi_write(sc, MFI_OMSK, 0xFFFFFFFF);
2854 	mfi_read(sc, MFI_OMSK);
2855 }
2856 
2857 int
2858 mfi_tbolt_intr(struct mfi_softc *sc)
2859 {
2860 	int32_t status;
2861 
2862 	status = mfi_read(sc, MFI_OSTS);
2863 
2864 	if (ISSET(status, 0x1)) {
2865 		mfi_write(sc, MFI_OSTS, status);
2866 		mfi_read(sc, MFI_OSTS);
2867 		if (ISSET(status, MFI_STATE_CHANGE_INTERRUPT))
2868 			return 0;
2869 		return 1;
2870 	}
2871 	if (!ISSET(status, MFI_FUSION_ENABLE_INTERRUPT_MASK))
2872 		return 0;
2873 	mfi_read(sc, MFI_OSTS);
2874 	return 1;
2875 }
2876 
2877 u_int32_t
2878 mfi_tbolt_fw_state(struct mfi_softc *sc)
2879 {
2880 	return mfi_read(sc, MFI_OSP);
2881 }
2882 
2883 void
2884 mfi_tbolt_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
2885 {
2886 	if (sc->sc_MFA_enabled) {
2887 		if ((ccb->ccb_flags & MFI_CCB_F_TBOLT) == 0)
2888 			mfi_tbolt_build_mpt_ccb(ccb);
2889 		mfi_write(sc, MFI_IQPL,
2890 		    ccb->ccb_tb_request_desc.words & 0xFFFFFFFF);
2891 		mfi_write(sc, MFI_IQPH,
2892 		    ccb->ccb_tb_request_desc.words >> 32);
2893 		ccb->ccb_state = MFI_CCB_RUNNING;
2894 		return;
2895 	}
2896 	uint64_t bus_add = ccb->ccb_pframe;
2897 	bus_add |= (MFI_REQ_DESCRIPT_FLAGS_MFA
2898 	    << MFI_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
2899 	mfi_write(sc, MFI_IQPL, bus_add);
2900 	mfi_write(sc, MFI_IQPH, bus_add >> 32);
2901 	ccb->ccb_state = MFI_CCB_RUNNING;
2902 }
2903 
2904 static void
2905 mfi_tbolt_build_mpt_ccb(struct mfi_ccb *ccb)
2906 {
2907 	union mfi_mpi2_request_descriptor *req_desc = &ccb->ccb_tb_request_desc;
2908 	struct mfi_mpi2_request_raid_scsi_io *io_req = ccb->ccb_tb_io_request;
2909 	struct mpi25_ieee_sge_chain64 *mpi25_ieee_chain;
2910 
2911 	io_req->Function = MPI2_FUNCTION_PASSTHRU_IO_REQUEST;
2912 	io_req->SGLOffset0 =
2913 	    offsetof(struct mfi_mpi2_request_raid_scsi_io, SGL) / 4;
2914 	io_req->ChainOffset =
2915 	    offsetof(struct mfi_mpi2_request_raid_scsi_io, SGL) / 16;
2916 
2917 	mpi25_ieee_chain =
2918 	    (struct mpi25_ieee_sge_chain64 *)&io_req->SGL.IeeeChain;
2919 	mpi25_ieee_chain->Address = ccb->ccb_pframe;
2920 
2921 	/*
2922 	  In MFI pass thru, nextChainOffset will always be zero to
2923 	  indicate the end of the chain.
2924 	*/
2925 	mpi25_ieee_chain->Flags= MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT
2926 		| MPI2_IEEE_SGE_FLAGS_IOCPLBNTA_ADDR;
2927 
2928 	/* setting the length to the maximum length */
2929 	mpi25_ieee_chain->Length = 1024;
2930 
2931 	req_desc->header.RequestFlags = (MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO <<
2932 	    MFI_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
2933 	ccb->ccb_flags |= MFI_CCB_F_TBOLT;
2934 	bus_dmamap_sync(ccb->ccb_sc->sc_dmat,
2935 	    MFIMEM_MAP(ccb->ccb_sc->sc_tbolt_reqmsgpool),
2936 	    ccb->ccb_tb_pio_request -
2937 	     MFIMEM_DVA(ccb->ccb_sc->sc_tbolt_reqmsgpool),
2938 	    MEGASAS_THUNDERBOLT_NEW_MSG_SIZE,
2939 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2940 }
2941 
2942 /*
2943  * Description:
2944  *      This function will prepare message pools for the Thunderbolt controller
2945  */
2946 static int
2947 mfi_tbolt_init_desc_pool(struct mfi_softc *sc)
2948 {
2949 	uint32_t     offset = 0;
2950 	uint8_t      *addr = MFIMEM_KVA(sc->sc_tbolt_reqmsgpool);
2951 
2952 	/* Request Decriptors alignment restrictions */
2953 	KASSERT(((uintptr_t)addr & 0xFF) == 0);
2954 
2955 	/* Skip request message pool */
2956 	addr = &addr[MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1)];
2957 
2958 	/* Reply Frame Pool is initialized */
2959 	sc->sc_reply_frame_pool = (struct mfi_mpi2_reply_header *) addr;
2960 	KASSERT(((uintptr_t)addr & 0xFF) == 0);
2961 
2962 	offset = (uintptr_t)sc->sc_reply_frame_pool
2963 	    - (uintptr_t)MFIMEM_KVA(sc->sc_tbolt_reqmsgpool);
2964 	sc->sc_reply_frame_busaddr =
2965 	    MFIMEM_DVA(sc->sc_tbolt_reqmsgpool) + offset;
2966 
2967 	/* initializing reply address to 0xFFFFFFFF */
2968 	memset((uint8_t *)sc->sc_reply_frame_pool, 0xFF,
2969 	       (MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size));
2970 
2971 	/* Skip Reply Frame Pool */
2972 	addr += MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size;
2973 	sc->sc_reply_pool_limit = (void *)addr;
2974 
2975 	offset = MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size;
2976 	sc->sc_sg_frame_busaddr = sc->sc_reply_frame_busaddr + offset;
2977 
2978 	/* initialize the last_reply_idx to 0 */
2979 	sc->sc_last_reply_idx = 0;
2980 	offset = (sc->sc_sg_frame_busaddr + (MEGASAS_MAX_SZ_CHAIN_FRAME *
2981 	    sc->sc_max_cmds)) - MFIMEM_DVA(sc->sc_tbolt_reqmsgpool);
2982 	KASSERT(offset <= sc->sc_tbolt_reqmsgpool->am_size);
2983 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_reqmsgpool), 0,
2984 	    MFIMEM_MAP(sc->sc_tbolt_reqmsgpool)->dm_mapsize,
2985 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2986 	return 0;
2987 }
2988 
2989 /*
2990  * This routine prepare and issue INIT2 frame to the Firmware
2991  */
2992 
2993 static int
2994 mfi_tbolt_init_MFI_queue(struct mfi_softc *sc)
2995 {
2996 	struct mpi2_ioc_init_request   *mpi2IocInit;
2997 	struct mfi_init_frame		*mfi_init;
2998 	struct mfi_ccb			*ccb;
2999 	bus_addr_t			phyAddress;
3000 	mfi_address			*mfiAddressTemp;
3001 	int				s;
3002 	char				*verbuf;
3003 	char				wqbuf[10];
3004 
3005 	/* Check if initialization is already completed */
3006 	if (sc->sc_MFA_enabled) {
3007 		return 1;
3008 	}
3009 
3010 	mpi2IocInit =
3011 	    (struct mpi2_ioc_init_request *)MFIMEM_KVA(sc->sc_tbolt_ioc_init);
3012 
3013 	s = splbio();
3014 	if ((ccb = mfi_get_ccb(sc)) == NULL) {
3015 		splx(s);
3016 		return (EBUSY);
3017 	}
3018 
3019 
3020 	mfi_init = &ccb->ccb_frame->mfr_init;
3021 
3022 	memset(mpi2IocInit, 0, sizeof(struct mpi2_ioc_init_request));
3023 	mpi2IocInit->Function  = MPI2_FUNCTION_IOC_INIT;
3024 	mpi2IocInit->WhoInit   = MPI2_WHOINIT_HOST_DRIVER;
3025 
3026 	/* set MsgVersion and HeaderVersion host driver was built with */
3027 	mpi2IocInit->MsgVersion = MPI2_VERSION;
3028 	mpi2IocInit->HeaderVersion = MPI2_HEADER_VERSION;
3029 	mpi2IocInit->SystemRequestFrameSize = MEGASAS_THUNDERBOLT_NEW_MSG_SIZE/4;
3030 	mpi2IocInit->ReplyDescriptorPostQueueDepth =
3031 	    (uint16_t)sc->sc_reply_pool_size;
3032 	mpi2IocInit->ReplyFreeQueueDepth = 0; /* Not supported by MR. */
3033 
3034 	/* Get physical address of reply frame pool */
3035 	phyAddress = sc->sc_reply_frame_busaddr;
3036 	mfiAddressTemp =
3037 	    (mfi_address *)&mpi2IocInit->ReplyDescriptorPostQueueAddress;
3038 	mfiAddressTemp->u.addressLow = (uint32_t)phyAddress;
3039 	mfiAddressTemp->u.addressHigh = (uint32_t)((uint64_t)phyAddress >> 32);
3040 
3041 	/* Get physical address of request message pool */
3042 	phyAddress =  MFIMEM_DVA(sc->sc_tbolt_reqmsgpool);
3043 	mfiAddressTemp = (mfi_address *)&mpi2IocInit->SystemRequestFrameBaseAddress;
3044 	mfiAddressTemp->u.addressLow = (uint32_t)phyAddress;
3045 	mfiAddressTemp->u.addressHigh = (uint32_t)((uint64_t)phyAddress >> 32);
3046 
3047 	mpi2IocInit->ReplyFreeQueueAddress =  0; /* Not supported by MR. */
3048 	mpi2IocInit->TimeStamp = time_uptime;
3049 
3050 	verbuf = MFIMEM_KVA(sc->sc_tbolt_verbuf);
3051 	snprintf(verbuf, strlen(MEGASAS_VERSION) + 2, "%s\n",
3052                 MEGASAS_VERSION);
3053 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_verbuf), 0,
3054 	    MFIMEM_MAP(sc->sc_tbolt_verbuf)->dm_mapsize, BUS_DMASYNC_PREWRITE);
3055 	mfi_init->driver_ver_lo = htole32(MFIMEM_DVA(sc->sc_tbolt_verbuf));
3056 	mfi_init->driver_ver_hi =
3057 		    htole32((uint64_t)MFIMEM_DVA(sc->sc_tbolt_verbuf) >> 32);
3058 
3059 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_ioc_init), 0,
3060 	    MFIMEM_MAP(sc->sc_tbolt_ioc_init)->dm_mapsize,
3061 	    BUS_DMASYNC_PREWRITE);
3062 	/* Get the physical address of the mpi2 ioc init command */
3063 	phyAddress =  MFIMEM_DVA(sc->sc_tbolt_ioc_init);
3064 	mfi_init->mif_qinfo_new_addr_lo = htole32(phyAddress);
3065 	mfi_init->mif_qinfo_new_addr_hi = htole32((uint64_t)phyAddress >> 32);
3066 
3067 	mfi_init->mif_header.mfh_cmd = MFI_CMD_INIT;
3068 	mfi_init->mif_header.mfh_data_len = sizeof(struct mpi2_ioc_init_request);
3069 	if (mfi_poll(ccb) != 0) {
3070 		aprint_error_dev(sc->sc_dev, "failed to send IOC init2 "
3071 		    "command at 0x%" PRIx64 "\n",
3072 		    (uint64_t)ccb->ccb_pframe);
3073 		splx(s);
3074 		return 1;
3075 	}
3076 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_verbuf), 0,
3077 	    MFIMEM_MAP(sc->sc_tbolt_verbuf)->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3078 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_ioc_init), 0,
3079 	    MFIMEM_MAP(sc->sc_tbolt_ioc_init)->dm_mapsize,
3080 	    BUS_DMASYNC_POSTWRITE);
3081 	mfi_put_ccb(ccb);
3082 	splx(s);
3083 
3084 	if (mfi_init->mif_header.mfh_cmd_status == 0) {
3085 		sc->sc_MFA_enabled = 1;
3086 	}
3087 	else {
3088 		aprint_error_dev(sc->sc_dev, "Init command Failed %x\n",
3089 		    mfi_init->mif_header.mfh_cmd_status);
3090 		return 1;
3091 	}
3092 
3093 	snprintf(wqbuf, sizeof(wqbuf), "%swq", DEVNAME(sc));
3094 	if (workqueue_create(&sc->sc_ldsync_wq, wqbuf, mfi_tbolt_sync_map_info,
3095 	    sc, PRIBIO, IPL_BIO, 0) != 0) {
3096 		aprint_error_dev(sc->sc_dev, "workqueue_create failed\n");
3097 		return 1;
3098 	}
3099 	workqueue_enqueue(sc->sc_ldsync_wq, &sc->sc_ldsync_wk, NULL);
3100 	return 0;
3101 }
3102 
3103 int
3104 mfi_tbolt_intrh(void *arg)
3105 {
3106 	struct mfi_softc	*sc = arg;
3107 	struct mfi_ccb		*ccb;
3108 	union mfi_mpi2_reply_descriptor *desc;
3109 	int smid, num_completed;
3110 
3111 	if (!mfi_tbolt_intr(sc))
3112 		return 0;
3113 
3114 	DNPRINTF(MFI_D_INTR, "%s: mfi_tbolt_intrh %#lx %#lx\n", DEVNAME(sc),
3115 	    (u_long)sc, (u_long)sc->sc_last_reply_idx);
3116 
3117 	KASSERT(sc->sc_last_reply_idx < sc->sc_reply_pool_size);
3118 
3119 	desc = (union mfi_mpi2_reply_descriptor *)
3120 	    ((uintptr_t)sc->sc_reply_frame_pool +
3121 	     sc->sc_last_reply_idx * MEGASAS_THUNDERBOLT_REPLY_SIZE);
3122 
3123 	bus_dmamap_sync(sc->sc_dmat,
3124 	    MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
3125 	    MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1),
3126 	    MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size,
3127 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3128 	num_completed = 0;
3129 	while ((desc->header.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK) !=
3130 	    MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
3131 		smid = desc->header.SMID;
3132 		KASSERT(smid > 0 && smid <= sc->sc_max_cmds);
3133 		ccb = &sc->sc_ccb[smid - 1];
3134 		DNPRINTF(MFI_D_INTR,
3135 		    "%s: mfi_tbolt_intr SMID %#x reply_idx %#x "
3136 		    "desc %#" PRIx64 " ccb %p\n", DEVNAME(sc), smid,
3137 		    sc->sc_last_reply_idx, desc->words, ccb);
3138 		KASSERT(ccb->ccb_state == MFI_CCB_RUNNING);
3139 		if (ccb->ccb_flags & MFI_CCB_F_TBOLT_IO &&
3140 		    ccb->ccb_tb_io_request->ChainOffset != 0) {
3141 			bus_dmamap_sync(sc->sc_dmat,
3142 			    MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
3143 			    ccb->ccb_tb_psg_frame -
3144 				MFIMEM_DVA(sc->sc_tbolt_reqmsgpool),
3145 			    MEGASAS_MAX_SZ_CHAIN_FRAME,  BUS_DMASYNC_POSTREAD);
3146 		}
3147 		if (ccb->ccb_flags & MFI_CCB_F_TBOLT_IO) {
3148 			bus_dmamap_sync(sc->sc_dmat,
3149 			    MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
3150 			    ccb->ccb_tb_pio_request -
3151 				MFIMEM_DVA(sc->sc_tbolt_reqmsgpool),
3152 			    MEGASAS_THUNDERBOLT_NEW_MSG_SIZE,
3153 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3154 		}
3155 		if (ccb->ccb_done)
3156 			ccb->ccb_done(ccb);
3157 		else
3158 			ccb->ccb_state = MFI_CCB_DONE;
3159 		sc->sc_last_reply_idx++;
3160 		if (sc->sc_last_reply_idx >= sc->sc_reply_pool_size) {
3161 			sc->sc_last_reply_idx = 0;
3162 		}
3163 		desc->words = ~0x0;
3164 		/* Get the next reply descriptor */
3165 		desc = (union mfi_mpi2_reply_descriptor *)
3166 		    ((uintptr_t)sc->sc_reply_frame_pool +
3167 		     sc->sc_last_reply_idx * MEGASAS_THUNDERBOLT_REPLY_SIZE);
3168 		num_completed++;
3169 	}
3170 	if (num_completed == 0)
3171 		return 0;
3172 
3173 	bus_dmamap_sync(sc->sc_dmat,
3174 	    MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
3175 	    MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1),
3176 	    MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size,
3177 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3178 	mfi_write(sc, MFI_RPI, sc->sc_last_reply_idx);
3179 	return 1;
3180 }
3181 
3182 
3183 int
3184 mfi_tbolt_scsi_ld_io(struct mfi_ccb *ccb, struct scsipi_xfer *xs,
3185     uint64_t blockno, uint32_t blockcnt)
3186 {
3187 	struct scsipi_periph *periph = xs->xs_periph;
3188 	struct mfi_mpi2_request_raid_scsi_io    *io_req;
3189 	int sge_count;
3190 
3191 	DNPRINTF(MFI_D_CMD, "%s: mfi_tbolt_scsi_ld_io: %d\n",
3192 	    device_xname(periph->periph_channel->chan_adapter->adapt_dev),
3193 	    periph->periph_target);
3194 
3195 	if (!xs->data)
3196 		return 1;
3197 
3198 	ccb->ccb_done = mfi_tbolt_scsi_ld_done;
3199 	ccb->ccb_xs = xs;
3200 	ccb->ccb_data = xs->data;
3201 	ccb->ccb_len = xs->datalen;
3202 
3203 	io_req = ccb->ccb_tb_io_request;
3204 
3205 	/* Just the CDB length,rest of the Flags are zero */
3206 	io_req->IoFlags = xs->cmdlen;
3207 	memset(io_req->CDB.CDB32, 0, 32);
3208 	memcpy(io_req->CDB.CDB32, &xs->cmdstore, xs->cmdlen);
3209 
3210 	io_req->RaidContext.TargetID = periph->periph_target;
3211 	io_req->RaidContext.Status = 0;
3212 	io_req->RaidContext.exStatus = 0;
3213 	io_req->RaidContext.timeoutValue = MFI_FUSION_FP_DEFAULT_TIMEOUT;
3214 	io_req->Function = MPI2_FUNCTION_LD_IO_REQUEST;
3215 	io_req->DevHandle = periph->periph_target;
3216 
3217 	ccb->ccb_tb_request_desc.header.RequestFlags =
3218 	    (MFI_REQ_DESCRIPT_FLAGS_LD_IO << MFI_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
3219 	io_req->DataLength = blockcnt * MFI_SECTOR_LEN;
3220 
3221 	if (xs->xs_control & XS_CTL_DATA_IN) {
3222 		io_req->Control = MPI2_SCSIIO_CONTROL_READ;
3223 		ccb->ccb_direction = MFI_DATA_IN;
3224 	} else {
3225 		io_req->Control = MPI2_SCSIIO_CONTROL_WRITE;
3226 		ccb->ccb_direction = MFI_DATA_OUT;
3227 	}
3228 
3229 	sge_count = mfi_tbolt_create_sgl(ccb,
3230 	    (xs->xs_control & XS_CTL_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK
3231 	    );
3232 	if (sge_count < 0)
3233 		return 1;
3234 	KASSERT(sge_count <= ccb->ccb_sc->sc_max_sgl);
3235 	io_req->RaidContext.numSGE = sge_count;
3236 	io_req->SGLFlags = MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
3237 	io_req->SGLOffset0 =
3238 	    offsetof(struct mfi_mpi2_request_raid_scsi_io, SGL) / 4;
3239 
3240 	io_req->SenseBufferLowAddress = htole32(ccb->ccb_psense);
3241 	io_req->SenseBufferLength = MFI_SENSE_SIZE;
3242 
3243 	ccb->ccb_flags |= MFI_CCB_F_TBOLT | MFI_CCB_F_TBOLT_IO;
3244 	bus_dmamap_sync(ccb->ccb_sc->sc_dmat,
3245 	    MFIMEM_MAP(ccb->ccb_sc->sc_tbolt_reqmsgpool),
3246 	    ccb->ccb_tb_pio_request -
3247 	     MFIMEM_DVA(ccb->ccb_sc->sc_tbolt_reqmsgpool),
3248 	    MEGASAS_THUNDERBOLT_NEW_MSG_SIZE,
3249 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3250 
3251 	return 0;
3252 }
3253 
3254 
3255 static void
3256 mfi_tbolt_scsi_ld_done(struct mfi_ccb *ccb)
3257 {
3258 	struct mfi_mpi2_request_raid_scsi_io *io_req = ccb->ccb_tb_io_request;
3259 	mfi_scsi_xs_done(ccb, io_req->RaidContext.Status,
3260 	    io_req->RaidContext.exStatus);
3261 }
3262 
3263 static int
3264 mfi_tbolt_create_sgl(struct mfi_ccb *ccb, int flags)
3265 {
3266 	struct mfi_softc	*sc = ccb->ccb_sc;
3267 	bus_dma_segment_t	*sgd;
3268 	int			error, i, sge_idx, sge_count;
3269 	struct mfi_mpi2_request_raid_scsi_io *io_req;
3270 	struct mpi25_ieee_sge_chain64 *sgl_ptr;
3271 
3272 	DNPRINTF(MFI_D_DMA, "%s: mfi_tbolt_create_sgl %#lx\n", DEVNAME(sc),
3273 	    (u_long)ccb->ccb_data);
3274 
3275 	if (!ccb->ccb_data)
3276 		return -1;
3277 
3278 	KASSERT(flags == BUS_DMA_NOWAIT || !cpu_intr_p());
3279 	error = bus_dmamap_load(sc->sc_datadmat, ccb->ccb_dmamap,
3280 	    ccb->ccb_data, ccb->ccb_len, NULL, flags);
3281 	if (error) {
3282 		if (error == EFBIG)
3283 			aprint_error_dev(sc->sc_dev, "more than %d dma segs\n",
3284 			    sc->sc_max_sgl);
3285 		else
3286 			aprint_error_dev(sc->sc_dev,
3287 			    "error %d loading dma map\n", error);
3288 		return -1;
3289 	}
3290 
3291 	io_req = ccb->ccb_tb_io_request;
3292 	sgl_ptr = &io_req->SGL.IeeeChain.Chain64;
3293 	sge_count = ccb->ccb_dmamap->dm_nsegs;
3294 	sgd = ccb->ccb_dmamap->dm_segs;
3295 	KASSERT(sge_count <= sc->sc_max_sgl);
3296 	KASSERT(sge_count <=
3297 	    (MEGASAS_THUNDERBOLT_MAX_SGE_IN_MAINMSG - 1 +
3298 	     MEGASAS_THUNDERBOLT_MAX_SGE_IN_CHAINMSG));
3299 
3300 	if (sge_count > MEGASAS_THUNDERBOLT_MAX_SGE_IN_MAINMSG) {
3301 		/* One element to store the chain info */
3302 		sge_idx = MEGASAS_THUNDERBOLT_MAX_SGE_IN_MAINMSG - 1;
3303 		DNPRINTF(MFI_D_DMA,
3304 		    "mfi sge_idx %d sge_count %d io_req paddr 0x%" PRIx64 "\n",
3305 		    sge_idx, sge_count, ccb->ccb_tb_pio_request);
3306 	} else {
3307 		sge_idx = sge_count;
3308 	}
3309 
3310 	for (i = 0; i < sge_idx; i++) {
3311 		sgl_ptr->Address = htole64(sgd[i].ds_addr);
3312 		sgl_ptr->Length = htole32(sgd[i].ds_len);
3313 		sgl_ptr->Flags = 0;
3314 		if (sge_idx < sge_count) {
3315 			DNPRINTF(MFI_D_DMA,
3316 			    "sgl %p %d 0x%" PRIx64 " len 0x%" PRIx32
3317 			    " flags 0x%x\n", sgl_ptr, i,
3318 			    sgl_ptr->Address, sgl_ptr->Length,
3319 			    sgl_ptr->Flags);
3320 		}
3321 		sgl_ptr++;
3322 	}
3323 	io_req->ChainOffset = 0;
3324 	if (sge_idx < sge_count) {
3325 		struct mpi25_ieee_sge_chain64 *sg_chain;
3326 		io_req->ChainOffset = MEGASAS_THUNDERBOLT_CHAIN_OFF_MAINMSG;
3327 		sg_chain = sgl_ptr;
3328 		/* Prepare chain element */
3329 		sg_chain->NextChainOffset = 0;
3330 		sg_chain->Flags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
3331 		    MPI2_IEEE_SGE_FLAGS_IOCPLBNTA_ADDR);
3332 		sg_chain->Length =  (sizeof(mpi2_sge_io_union) *
3333 		    (sge_count - sge_idx));
3334 		sg_chain->Address = ccb->ccb_tb_psg_frame;
3335 		DNPRINTF(MFI_D_DMA,
3336 		    "sgl %p chain 0x%" PRIx64 " len 0x%" PRIx32
3337 		    " flags 0x%x\n", sg_chain, sg_chain->Address,
3338 		    sg_chain->Length, sg_chain->Flags);
3339 		sgl_ptr = &ccb->ccb_tb_sg_frame->IeeeChain.Chain64;
3340 		for (; i < sge_count; i++) {
3341 			sgl_ptr->Address = htole64(sgd[i].ds_addr);
3342 			sgl_ptr->Length = htole32(sgd[i].ds_len);
3343 			sgl_ptr->Flags = 0;
3344 			DNPRINTF(MFI_D_DMA,
3345 			    "sgl %p %d 0x%" PRIx64 " len 0x%" PRIx32
3346 			    " flags 0x%x\n", sgl_ptr, i, sgl_ptr->Address,
3347 			    sgl_ptr->Length, sgl_ptr->Flags);
3348 			sgl_ptr++;
3349 		}
3350 		bus_dmamap_sync(sc->sc_dmat,
3351 		    MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
3352 		    ccb->ccb_tb_psg_frame - MFIMEM_DVA(sc->sc_tbolt_reqmsgpool),
3353 		    MEGASAS_MAX_SZ_CHAIN_FRAME,  BUS_DMASYNC_PREREAD);
3354 	}
3355 
3356 	if (ccb->ccb_direction == MFI_DATA_IN) {
3357 		bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
3358 		    ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3359 	} else {
3360 		bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
3361 		    ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3362 	}
3363 	return sge_count;
3364 }
3365 
3366 /*
3367  * The ThunderBolt HW has an option for the driver to directly
3368  * access the underlying disks and operate on the RAID.  To
3369  * do this there needs to be a capability to keep the RAID controller
3370  * and driver in sync.  The FreeBSD driver does not take advantage
3371  * of this feature since it adds a lot of complexity and slows down
3372  * performance.  Performance is gained by using the controller's
3373  * cache etc.
3374  *
3375  * Even though this driver doesn't access the disks directly, an
3376  * AEN like command is used to inform the RAID firmware to "sync"
3377  * with all LD's via the MFI_DCMD_LD_MAP_GET_INFO command.  This
3378  * command in write mode will return when the RAID firmware has
3379  * detected a change to the RAID state.  Examples of this type
3380  * of change are removing a disk.  Once the command returns then
3381  * the driver needs to acknowledge this and "sync" all LD's again.
3382  * This repeats until we shutdown.  Then we need to cancel this
3383  * pending command.
3384  *
3385  * If this is not done right the RAID firmware will not remove a
3386  * pulled drive and the RAID won't go degraded etc.  Effectively,
3387  * stopping any RAID mangement to functions.
3388  *
3389  * Doing another LD sync, requires the use of an event since the
3390  * driver needs to do a mfi_wait_command and can't do that in an
3391  * interrupt thread.
3392  *
3393  * The driver could get the RAID state via the MFI_DCMD_LD_MAP_GET_INFO
3394  * That requires a bunch of structure and it is simplier to just do
3395  * the MFI_DCMD_LD_GET_LIST versus walking the RAID map.
3396  */
3397 
3398 void
3399 mfi_tbolt_sync_map_info(struct work *w, void *v)
3400 {
3401 	struct mfi_softc *sc = v;
3402 	int i;
3403 	struct mfi_ccb *ccb = NULL;
3404 	uint8_t mbox[MFI_MBOX_SIZE];
3405 	struct mfi_ld *ld_sync = NULL;
3406 	size_t ld_size;
3407 	int s;
3408 
3409 	DNPRINTF(MFI_D_SYNC, "%s: mfi_tbolt_sync_map_info\n", DEVNAME(sc));
3410 again:
3411 	s = splbio();
3412 	if (sc->sc_ldsync_ccb != NULL) {
3413 		splx(s);
3414 		return;
3415 	}
3416 
3417 	if (mfi_mgmt_internal(sc, MR_DCMD_LD_GET_LIST, MFI_DATA_IN,
3418 	    sizeof(sc->sc_ld_list), &sc->sc_ld_list, NULL, false)) {
3419 		aprint_error_dev(sc->sc_dev, "MR_DCMD_LD_GET_LIST failed\n");
3420 		goto err;
3421 	}
3422 
3423 	ld_size = sizeof(*ld_sync) * sc->sc_ld_list.mll_no_ld;
3424 
3425 	ld_sync = (struct mfi_ld *) malloc(ld_size, M_DEVBUF,
3426 	     M_WAITOK | M_ZERO);
3427 	if (ld_sync == NULL) {
3428 		aprint_error_dev(sc->sc_dev, "Failed to allocate sync\n");
3429 		goto err;
3430 	}
3431 	for (i = 0; i < sc->sc_ld_list.mll_no_ld; i++) {
3432 		ld_sync[i] = sc->sc_ld_list.mll_list[i].mll_ld;
3433 	}
3434 
3435 	if ((ccb = mfi_get_ccb(sc)) == NULL) {
3436 		aprint_error_dev(sc->sc_dev, "Failed to get sync command\n");
3437 		free(ld_sync, M_DEVBUF);
3438 		goto err;
3439 	}
3440 	sc->sc_ldsync_ccb = ccb;
3441 
3442 	memset(mbox, 0, MFI_MBOX_SIZE);
3443 	mbox[0] = sc->sc_ld_list.mll_no_ld;
3444 	mbox[1] = MFI_DCMD_MBOX_PEND_FLAG;
3445 	if (mfi_mgmt(ccb, NULL, MR_DCMD_LD_MAP_GET_INFO, MFI_DATA_OUT,
3446 	    ld_size, ld_sync, mbox)) {
3447 		aprint_error_dev(sc->sc_dev, "Failed to create sync command\n");
3448 		goto err;
3449 	}
3450 	/*
3451 	 * we won't sleep on this command, so we have to override
3452 	 * the callback set up by mfi_mgmt()
3453 	 */
3454 	ccb->ccb_done = mfi_sync_map_complete;
3455 
3456 	mfi_post(sc, ccb);
3457 	splx(s);
3458 	return;
3459 
3460 err:
3461 	if (ld_sync)
3462 		free(ld_sync, M_DEVBUF);
3463 	if (ccb)
3464 		mfi_put_ccb(ccb);
3465 	sc->sc_ldsync_ccb = NULL;
3466 	splx(s);
3467 	kpause("ldsyncp", 0, hz, NULL);
3468 	goto again;
3469 }
3470 
3471 static void
3472 mfi_sync_map_complete(struct mfi_ccb *ccb)
3473 {
3474 	struct mfi_softc *sc = ccb->ccb_sc;
3475 	bool aborted = !sc->sc_running;
3476 
3477 	DNPRINTF(MFI_D_SYNC, "%s: mfi_sync_map_complete\n",
3478 	    DEVNAME(ccb->ccb_sc));
3479 	KASSERT(sc->sc_ldsync_ccb == ccb);
3480 	mfi_mgmt_done(ccb);
3481 	free(ccb->ccb_data, M_DEVBUF);
3482 	if (ccb->ccb_flags & MFI_CCB_F_ERR) {
3483 		aprint_error_dev(sc->sc_dev, "sync command failed\n");
3484 		aborted = true;
3485 	}
3486 	mfi_put_ccb(ccb);
3487 	sc->sc_ldsync_ccb = NULL;
3488 
3489 	/* set it up again so the driver can catch more events */
3490 	if (!aborted) {
3491 		workqueue_enqueue(sc->sc_ldsync_wq, &sc->sc_ldsync_wk, NULL);
3492 	}
3493 }
3494 
3495 static int
3496 mfifopen(dev_t dev, int flag, int mode, struct lwp *l)
3497 {
3498 	struct mfi_softc *sc;
3499 
3500 	if ((sc = device_lookup_private(&mfi_cd, minor(dev))) == NULL)
3501 		return (ENXIO);
3502 	return (0);
3503 }
3504 
3505 static int
3506 mfifclose(dev_t dev, int flag, int mode, struct lwp *l)
3507 {
3508 	return (0);
3509 }
3510 
3511 static int
3512 mfifioctl(dev_t dev, u_long cmd, void *data, int flag,
3513     struct lwp *l)
3514 {
3515 	struct mfi_softc *sc;
3516 	struct mfi_ioc_packet *ioc = data;
3517 	uint8_t *udata;
3518 	struct mfi_ccb *ccb = NULL;
3519 	int ctx, i, s, error;
3520 	union mfi_sense_ptr sense_ptr;
3521 
3522 	switch(cmd) {
3523 	case MFI_CMD:
3524 		sc = device_lookup_private(&mfi_cd, ioc->mfi_adapter_no);
3525 		break;
3526 	default:
3527 		return ENOTTY;
3528 	}
3529 	if (sc == NULL)
3530 		return (ENXIO);
3531 	if (sc->sc_opened)
3532 		return (EBUSY);
3533 
3534 	switch(cmd) {
3535 	case MFI_CMD:
3536 		error = kauth_authorize_device_passthru(l->l_cred, dev,
3537 		    KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
3538 		if (error)
3539 			return error;
3540 		if (ioc->mfi_sge_count > MAX_IOCTL_SGE)
3541 			return EINVAL;
3542 		s = splbio();
3543 		if ((ccb = mfi_get_ccb(sc)) == NULL)
3544 			return ENOMEM;
3545 		ccb->ccb_data = NULL;
3546 		ctx = ccb->ccb_frame->mfr_header.mfh_context;
3547 		memcpy(ccb->ccb_frame, ioc->mfi_frame.raw,
3548 		   sizeof(*ccb->ccb_frame));
3549 		ccb->ccb_frame->mfr_header.mfh_context = ctx;
3550 		ccb->ccb_frame->mfr_header.mfh_scsi_status = 0;
3551 		ccb->ccb_frame->mfr_header.mfh_pad0 = 0;
3552 		ccb->ccb_frame_size =
3553 		    (sizeof(union mfi_sgl) * ioc->mfi_sge_count) +
3554 		    ioc->mfi_sgl_off;
3555 		if (ioc->mfi_sge_count > 0) {
3556 			ccb->ccb_sgl = (union mfi_sgl *)
3557 			    &ccb->ccb_frame->mfr_bytes[ioc->mfi_sgl_off];
3558 		}
3559 		if (ccb->ccb_frame->mfr_header.mfh_flags & MFI_FRAME_DIR_READ)
3560 			ccb->ccb_direction = MFI_DATA_IN;
3561 		if (ccb->ccb_frame->mfr_header.mfh_flags & MFI_FRAME_DIR_WRITE)
3562 			ccb->ccb_direction = MFI_DATA_OUT;
3563 		ccb->ccb_len = ccb->ccb_frame->mfr_header.mfh_data_len;
3564 		if (ccb->ccb_len > MAXPHYS) {
3565 			error = ENOMEM;
3566 			goto out;
3567 		}
3568 		if (ccb->ccb_len &&
3569 		    (ccb->ccb_direction & (MFI_DATA_IN | MFI_DATA_OUT)) != 0) {
3570 			udata = malloc(ccb->ccb_len, M_DEVBUF, M_WAITOK|M_ZERO);
3571 			if (udata == NULL) {
3572 				error = ENOMEM;
3573 				goto out;
3574 			}
3575 			ccb->ccb_data = udata;
3576 			if (ccb->ccb_direction & MFI_DATA_OUT) {
3577 				for (i = 0; i < ioc->mfi_sge_count; i++) {
3578 					error = copyin(ioc->mfi_sgl[i].iov_base,
3579 					    udata, ioc->mfi_sgl[i].iov_len);
3580 					if (error)
3581 						goto out;
3582 					udata = &udata[
3583 					    ioc->mfi_sgl[i].iov_len];
3584 				}
3585 			}
3586 			if (mfi_create_sgl(ccb, BUS_DMA_WAITOK)) {
3587 				error = EIO;
3588 				goto out;
3589 			}
3590 		}
3591 		if (ccb->ccb_frame->mfr_header.mfh_cmd == MFI_CMD_PD_SCSI_IO) {
3592 			ccb->ccb_frame->mfr_io.mif_sense_addr_lo =
3593 			    htole32(ccb->ccb_psense);
3594 			ccb->ccb_frame->mfr_io.mif_sense_addr_hi = 0;
3595 		}
3596 		ccb->ccb_done = mfi_mgmt_done;
3597 		mfi_post(sc, ccb);
3598 		while (ccb->ccb_state != MFI_CCB_DONE)
3599 			tsleep(ccb, PRIBIO, "mfi_fioc", 0);
3600 
3601 		if (ccb->ccb_direction & MFI_DATA_IN) {
3602 			udata = ccb->ccb_data;
3603 			for (i = 0; i < ioc->mfi_sge_count; i++) {
3604 				error = copyout(udata,
3605 				    ioc->mfi_sgl[i].iov_base,
3606 				    ioc->mfi_sgl[i].iov_len);
3607 				if (error)
3608 					goto out;
3609 				udata = &udata[
3610 				    ioc->mfi_sgl[i].iov_len];
3611 			}
3612 		}
3613 		if (ioc->mfi_sense_len) {
3614 			memcpy(&sense_ptr.sense_ptr_data[0],
3615 			&ioc->mfi_frame.raw[ioc->mfi_sense_off],
3616 			sizeof(sense_ptr.sense_ptr_data));
3617 			error = copyout(ccb->ccb_sense,
3618 			    sense_ptr.user_space,
3619 			    sizeof(sense_ptr.sense_ptr_data));
3620 			if (error)
3621 				goto out;
3622 		}
3623 		memcpy(ioc->mfi_frame.raw, ccb->ccb_frame,
3624 		   sizeof(*ccb->ccb_frame));
3625 		break;
3626 	default:
3627 		printf("mfifioctl unhandled cmd 0x%lx\n", cmd);
3628 		return ENOTTY;
3629 	}
3630 
3631 out:
3632 	if (ccb->ccb_data)
3633 		free(ccb->ccb_data, M_DEVBUF);
3634 	if (ccb)
3635 		mfi_put_ccb(ccb);
3636 	splx(s);
3637 	return error;
3638 }
3639