xref: /netbsd-src/sys/dev/ic/mfi.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /* $NetBSD: mfi.c,v 1.50 2013/10/17 21:24:24 christos Exp $ */
2 /* $OpenBSD: mfi.c,v 1.66 2006/11/28 23:59:45 dlg Exp $ */
3 
4 /*
5  * Copyright (c) 2012 Manuel Bouyer.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 /*
29  * Copyright (c) 2006 Marco Peereboom <marco@peereboom.us>
30  *
31  * Permission to use, copy, modify, and distribute this software for any
32  * purpose with or without fee is hereby granted, provided that the above
33  * copyright notice and this permission notice appear in all copies.
34  *
35  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
36  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
37  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
38  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
39  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
40  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
41  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
42  */
43 
44  /*-
45  * Redistribution and use in source and binary forms, with or without
46  * modification, are permitted provided that the following conditions
47  * are met:
48  *
49  *            Copyright 1994-2009 The FreeBSD Project.
50  *            All rights reserved.
51  *
52  * 1. Redistributions of source code must retain the above copyright
53  *    notice, this list of conditions and the following disclaimer.
54  * 2. Redistributions in binary form must reproduce the above copyright
55  *    notice, this list of conditions and the following disclaimer in the
56  *    documentation and/or other materials provided with the distribution.
57  *
58  *    THIS SOFTWARE IS PROVIDED BY THE FREEBSD PROJECT``AS IS'' AND
59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
60  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
61  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FREEBSD PROJECT OR
62  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
63  * EXEMPLARY,OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
64  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
65  * PROFITS; OR BUSINESS INTERRUPTION)HOWEVER CAUSED AND ON ANY THEORY
66  * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
67  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
68  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
69  *
70  * The views and conclusions contained in the software and documentation
71  * are those of the authors and should not be interpreted as representing
72  * official policies,either expressed or implied, of the FreeBSD Project.
73  */
74 
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: mfi.c,v 1.50 2013/10/17 21:24:24 christos Exp $");
77 
78 #include "bio.h"
79 
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/buf.h>
83 #include <sys/ioctl.h>
84 #include <sys/device.h>
85 #include <sys/kernel.h>
86 #include <sys/malloc.h>
87 #include <sys/proc.h>
88 #include <sys/cpu.h>
89 #include <sys/conf.h>
90 #include <sys/kauth.h>
91 
92 #include <uvm/uvm_param.h>
93 
94 #include <sys/bus.h>
95 
96 #include <dev/scsipi/scsipi_all.h>
97 #include <dev/scsipi/scsi_all.h>
98 #include <dev/scsipi/scsi_spc.h>
99 #include <dev/scsipi/scsipi_disk.h>
100 #include <dev/scsipi/scsi_disk.h>
101 #include <dev/scsipi/scsiconf.h>
102 
103 #include <dev/ic/mfireg.h>
104 #include <dev/ic/mfivar.h>
105 #include <dev/ic/mfiio.h>
106 
107 #if NBIO > 0
108 #include <dev/biovar.h>
109 #endif /* NBIO > 0 */
110 
111 #ifdef MFI_DEBUG
112 uint32_t	mfi_debug = 0
113 /*		    | MFI_D_CMD  */
114 /*		    | MFI_D_INTR */
115 /*		    | MFI_D_MISC */
116 /*		    | MFI_D_DMA */
117 /*		    | MFI_D_IOCTL */
118 /*		    | MFI_D_RW */
119 /*		    | MFI_D_MEM */
120 /*		    | MFI_D_CCB */
121 /*		    | MFI_D_SYNC */
122 		;
123 #endif
124 
125 static void		mfi_scsipi_request(struct scsipi_channel *,
126 				scsipi_adapter_req_t, void *);
127 static void		mfiminphys(struct buf *bp);
128 
129 static struct mfi_ccb	*mfi_get_ccb(struct mfi_softc *);
130 static void		mfi_put_ccb(struct mfi_ccb *);
131 static int		mfi_init_ccb(struct mfi_softc *);
132 
133 static struct mfi_mem	*mfi_allocmem(struct mfi_softc *, size_t);
134 static void		mfi_freemem(struct mfi_softc *, struct mfi_mem **);
135 
136 static int		mfi_transition_firmware(struct mfi_softc *);
137 static int		mfi_initialize_firmware(struct mfi_softc *);
138 static int		mfi_get_info(struct mfi_softc *);
139 static int		mfi_get_bbu(struct mfi_softc *,
140 			    struct mfi_bbu_status *);
141 /* return codes for mfi_get_bbu */
142 #define MFI_BBU_GOOD	0
143 #define MFI_BBU_BAD	1
144 #define MFI_BBU_UNKNOWN	2
145 static uint32_t		mfi_read(struct mfi_softc *, bus_size_t);
146 static void		mfi_write(struct mfi_softc *, bus_size_t, uint32_t);
147 static int		mfi_poll(struct mfi_ccb *);
148 static int		mfi_create_sgl(struct mfi_ccb *, int);
149 
150 /* commands */
151 static int		mfi_scsi_ld(struct mfi_ccb *, struct scsipi_xfer *);
152 static int		mfi_scsi_ld_io(struct mfi_ccb *, struct scsipi_xfer *,
153 				uint64_t, uint32_t);
154 static void		mfi_scsi_ld_done(struct mfi_ccb *);
155 static void		mfi_scsi_xs_done(struct mfi_ccb *, int, int);
156 static int		mfi_mgmt_internal(struct mfi_softc *, uint32_t,
157 			    uint32_t, uint32_t, void *, uint8_t *, bool);
158 static int		mfi_mgmt(struct mfi_ccb *,struct scsipi_xfer *,
159 			    uint32_t, uint32_t, uint32_t, void *, uint8_t *);
160 static void		mfi_mgmt_done(struct mfi_ccb *);
161 
162 #if NBIO > 0
163 static int		mfi_ioctl(device_t, u_long, void *);
164 static int		mfi_ioctl_inq(struct mfi_softc *, struct bioc_inq *);
165 static int		mfi_ioctl_vol(struct mfi_softc *, struct bioc_vol *);
166 static int		mfi_ioctl_disk(struct mfi_softc *, struct bioc_disk *);
167 static int		mfi_ioctl_alarm(struct mfi_softc *,
168 				struct bioc_alarm *);
169 static int		mfi_ioctl_blink(struct mfi_softc *sc,
170 				struct bioc_blink *);
171 static int		mfi_ioctl_setstate(struct mfi_softc *,
172 				struct bioc_setstate *);
173 static int		mfi_bio_hs(struct mfi_softc *, int, int, void *);
174 static int		mfi_create_sensors(struct mfi_softc *);
175 static int		mfi_destroy_sensors(struct mfi_softc *);
176 static void		mfi_sensor_refresh(struct sysmon_envsys *,
177 				envsys_data_t *);
178 #endif /* NBIO > 0 */
179 static bool		mfi_shutdown(device_t, int);
180 static bool		mfi_suspend(device_t, const pmf_qual_t *);
181 static bool		mfi_resume(device_t, const pmf_qual_t *);
182 
183 static dev_type_open(mfifopen);
184 static dev_type_close(mfifclose);
185 static dev_type_ioctl(mfifioctl);
186 const struct cdevsw mfi_cdevsw = {
187 	mfifopen, mfifclose, noread, nowrite, mfifioctl,
188 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER
189 };
190 
191 extern struct cfdriver mfi_cd;
192 
193 static uint32_t 	mfi_xscale_fw_state(struct mfi_softc *sc);
194 static void 		mfi_xscale_intr_ena(struct mfi_softc *sc);
195 static void 		mfi_xscale_intr_dis(struct mfi_softc *sc);
196 static int 		mfi_xscale_intr(struct mfi_softc *sc);
197 static void 		mfi_xscale_post(struct mfi_softc *sc, struct mfi_ccb *ccb);
198 
199 static const struct mfi_iop_ops mfi_iop_xscale = {
200 	mfi_xscale_fw_state,
201 	mfi_xscale_intr_dis,
202 	mfi_xscale_intr_ena,
203 	mfi_xscale_intr,
204 	mfi_xscale_post,
205 	mfi_scsi_ld_io,
206 };
207 
208 static uint32_t 	mfi_ppc_fw_state(struct mfi_softc *sc);
209 static void 		mfi_ppc_intr_ena(struct mfi_softc *sc);
210 static void 		mfi_ppc_intr_dis(struct mfi_softc *sc);
211 static int 		mfi_ppc_intr(struct mfi_softc *sc);
212 static void 		mfi_ppc_post(struct mfi_softc *sc, struct mfi_ccb *ccb);
213 
214 static const struct mfi_iop_ops mfi_iop_ppc = {
215 	mfi_ppc_fw_state,
216 	mfi_ppc_intr_dis,
217 	mfi_ppc_intr_ena,
218 	mfi_ppc_intr,
219 	mfi_ppc_post,
220 	mfi_scsi_ld_io,
221 };
222 
223 uint32_t	mfi_gen2_fw_state(struct mfi_softc *sc);
224 void		mfi_gen2_intr_ena(struct mfi_softc *sc);
225 void		mfi_gen2_intr_dis(struct mfi_softc *sc);
226 int		mfi_gen2_intr(struct mfi_softc *sc);
227 void		mfi_gen2_post(struct mfi_softc *sc, struct mfi_ccb *ccb);
228 
229 static const struct mfi_iop_ops mfi_iop_gen2 = {
230 	mfi_gen2_fw_state,
231 	mfi_gen2_intr_dis,
232 	mfi_gen2_intr_ena,
233 	mfi_gen2_intr,
234 	mfi_gen2_post,
235 	mfi_scsi_ld_io,
236 };
237 
238 u_int32_t	mfi_skinny_fw_state(struct mfi_softc *);
239 void		mfi_skinny_intr_dis(struct mfi_softc *);
240 void		mfi_skinny_intr_ena(struct mfi_softc *);
241 int		mfi_skinny_intr(struct mfi_softc *);
242 void		mfi_skinny_post(struct mfi_softc *, struct mfi_ccb *);
243 
244 static const struct mfi_iop_ops mfi_iop_skinny = {
245 	mfi_skinny_fw_state,
246 	mfi_skinny_intr_dis,
247 	mfi_skinny_intr_ena,
248 	mfi_skinny_intr,
249 	mfi_skinny_post,
250 	mfi_scsi_ld_io,
251 };
252 
253 static int	mfi_tbolt_init_desc_pool(struct mfi_softc *);
254 static int	mfi_tbolt_init_MFI_queue(struct mfi_softc *);
255 static void	mfi_tbolt_build_mpt_ccb(struct mfi_ccb *);
256 int		mfi_tbolt_scsi_ld_io(struct mfi_ccb *, struct scsipi_xfer *,
257 		    uint64_t, uint32_t);
258 static void	mfi_tbolt_scsi_ld_done(struct mfi_ccb *);
259 static int	mfi_tbolt_create_sgl(struct mfi_ccb *, int);
260 void		mfi_tbolt_sync_map_info(struct work *, void *);
261 static void	mfi_sync_map_complete(struct mfi_ccb *);
262 
263 u_int32_t	mfi_tbolt_fw_state(struct mfi_softc *);
264 void		mfi_tbolt_intr_dis(struct mfi_softc *);
265 void		mfi_tbolt_intr_ena(struct mfi_softc *);
266 int		mfi_tbolt_intr(struct mfi_softc *sc);
267 void		mfi_tbolt_post(struct mfi_softc *, struct mfi_ccb *);
268 
269 static const struct mfi_iop_ops mfi_iop_tbolt = {
270 	mfi_tbolt_fw_state,
271 	mfi_tbolt_intr_dis,
272 	mfi_tbolt_intr_ena,
273 	mfi_tbolt_intr,
274 	mfi_tbolt_post,
275 	mfi_tbolt_scsi_ld_io,
276 };
277 
278 #define mfi_fw_state(_s) 	((_s)->sc_iop->mio_fw_state(_s))
279 #define mfi_intr_enable(_s) 	((_s)->sc_iop->mio_intr_ena(_s))
280 #define mfi_intr_disable(_s) 	((_s)->sc_iop->mio_intr_dis(_s))
281 #define mfi_my_intr(_s) 	((_s)->sc_iop->mio_intr(_s))
282 #define mfi_post(_s, _c) 	((_s)->sc_iop->mio_post((_s), (_c)))
283 
284 static struct mfi_ccb *
285 mfi_get_ccb(struct mfi_softc *sc)
286 {
287 	struct mfi_ccb		*ccb;
288 	int			s;
289 
290 	s = splbio();
291 	ccb = TAILQ_FIRST(&sc->sc_ccb_freeq);
292 	if (ccb) {
293 		TAILQ_REMOVE(&sc->sc_ccb_freeq, ccb, ccb_link);
294 		ccb->ccb_state = MFI_CCB_READY;
295 	}
296 	splx(s);
297 
298 	DNPRINTF(MFI_D_CCB, "%s: mfi_get_ccb: %p\n", DEVNAME(sc), ccb);
299 	if (__predict_false(ccb == NULL && sc->sc_running))
300 		aprint_error_dev(sc->sc_dev, "out of ccb\n");
301 
302 	return ccb;
303 }
304 
305 static void
306 mfi_put_ccb(struct mfi_ccb *ccb)
307 {
308 	struct mfi_softc	*sc = ccb->ccb_sc;
309 	struct mfi_frame_header	*hdr = &ccb->ccb_frame->mfr_header;
310 	int			s;
311 
312 	DNPRINTF(MFI_D_CCB, "%s: mfi_put_ccb: %p\n", DEVNAME(sc), ccb);
313 
314 	hdr->mfh_cmd_status = 0x0;
315 	hdr->mfh_flags = 0x0;
316 	ccb->ccb_state = MFI_CCB_FREE;
317 	ccb->ccb_xs = NULL;
318 	ccb->ccb_flags = 0;
319 	ccb->ccb_done = NULL;
320 	ccb->ccb_direction = 0;
321 	ccb->ccb_frame_size = 0;
322 	ccb->ccb_extra_frames = 0;
323 	ccb->ccb_sgl = NULL;
324 	ccb->ccb_data = NULL;
325 	ccb->ccb_len = 0;
326 	if (sc->sc_ioptype == MFI_IOP_TBOLT) {
327 		/* erase tb_request_desc but preserve SMID */
328 		int index = ccb->ccb_tb_request_desc.header.SMID;
329 		ccb->ccb_tb_request_desc.words = 0;
330 		ccb->ccb_tb_request_desc.header.SMID = index;
331 	}
332 	s = splbio();
333 	TAILQ_INSERT_TAIL(&sc->sc_ccb_freeq, ccb, ccb_link);
334 	splx(s);
335 }
336 
337 static int
338 mfi_destroy_ccb(struct mfi_softc *sc)
339 {
340 	struct mfi_ccb		*ccb;
341 	uint32_t		i;
342 
343 	DNPRINTF(MFI_D_CCB, "%s: mfi_destroy_ccb\n", DEVNAME(sc));
344 
345 
346 	for (i = 0; (ccb = mfi_get_ccb(sc)) != NULL; i++) {
347 		/* create a dma map for transfer */
348 		bus_dmamap_destroy(sc->sc_datadmat, ccb->ccb_dmamap);
349 	}
350 
351 	if (i < sc->sc_max_cmds)
352 		return EBUSY;
353 
354 	free(sc->sc_ccb, M_DEVBUF);
355 
356 	return 0;
357 }
358 
359 static int
360 mfi_init_ccb(struct mfi_softc *sc)
361 {
362 	struct mfi_ccb		*ccb;
363 	uint32_t		i;
364 	int			error;
365 	bus_addr_t		io_req_base_phys;
366 	uint8_t			*io_req_base;
367 	int offset;
368 
369 	DNPRINTF(MFI_D_CCB, "%s: mfi_init_ccb\n", DEVNAME(sc));
370 
371 	sc->sc_ccb = malloc(sizeof(struct mfi_ccb) * sc->sc_max_cmds,
372 	    M_DEVBUF, M_WAITOK|M_ZERO);
373 	io_req_base = (uint8_t *)MFIMEM_KVA(sc->sc_tbolt_reqmsgpool);
374 	io_req_base_phys = MFIMEM_DVA(sc->sc_tbolt_reqmsgpool);
375 	if (sc->sc_ioptype == MFI_IOP_TBOLT) {
376 		/*
377 		 * The first 256 bytes (SMID 0) is not used.
378 		 * Don't add to the cmd list.
379 		 */
380 		io_req_base += MEGASAS_THUNDERBOLT_NEW_MSG_SIZE;
381 		io_req_base_phys += MEGASAS_THUNDERBOLT_NEW_MSG_SIZE;
382 	}
383 
384 	for (i = 0; i < sc->sc_max_cmds; i++) {
385 		ccb = &sc->sc_ccb[i];
386 
387 		ccb->ccb_sc = sc;
388 
389 		/* select i'th frame */
390 		ccb->ccb_frame = (union mfi_frame *)
391 		    ((char*)MFIMEM_KVA(sc->sc_frames) + sc->sc_frames_size * i);
392 		ccb->ccb_pframe =
393 		    MFIMEM_DVA(sc->sc_frames) + sc->sc_frames_size * i;
394 		ccb->ccb_frame->mfr_header.mfh_context = i;
395 
396 		/* select i'th sense */
397 		ccb->ccb_sense = (struct mfi_sense *)
398 		    ((char*)MFIMEM_KVA(sc->sc_sense) + MFI_SENSE_SIZE * i);
399 		ccb->ccb_psense =
400 		    (MFIMEM_DVA(sc->sc_sense) + MFI_SENSE_SIZE * i);
401 
402 		/* create a dma map for transfer */
403 		error = bus_dmamap_create(sc->sc_datadmat,
404 		    MAXPHYS, sc->sc_max_sgl, MAXPHYS, 0,
405 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ccb->ccb_dmamap);
406 		if (error) {
407 			aprint_error_dev(sc->sc_dev,
408 			    "cannot create ccb dmamap (%d)\n", error);
409 			goto destroy;
410 		}
411 		if (sc->sc_ioptype == MFI_IOP_TBOLT) {
412 			offset = MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * i;
413 			ccb->ccb_tb_io_request =
414 			    (struct mfi_mpi2_request_raid_scsi_io *)
415 			    (io_req_base + offset);
416 			ccb->ccb_tb_pio_request =
417 			    io_req_base_phys + offset;
418 			offset = MEGASAS_MAX_SZ_CHAIN_FRAME * i;
419 			ccb->ccb_tb_sg_frame =
420 			    (mpi2_sge_io_union *)(sc->sc_reply_pool_limit +
421 			    offset);
422 			ccb->ccb_tb_psg_frame = sc->sc_sg_frame_busaddr +
423 			    offset;
424 			/* SMID 0 is reserved. Set SMID/index from 1 */
425 			ccb->ccb_tb_request_desc.header.SMID = i + 1;
426 		}
427 
428 		DNPRINTF(MFI_D_CCB,
429 		    "ccb(%d): %p frame: %#lx (%#lx) sense: %#lx (%#lx) map: %#lx\n",
430 		    ccb->ccb_frame->mfr_header.mfh_context, ccb,
431 		    (u_long)ccb->ccb_frame, (u_long)ccb->ccb_pframe,
432 		    (u_long)ccb->ccb_sense, (u_long)ccb->ccb_psense,
433 		    (u_long)ccb->ccb_dmamap);
434 
435 		/* add ccb to queue */
436 		mfi_put_ccb(ccb);
437 	}
438 
439 	return 0;
440 destroy:
441 	/* free dma maps and ccb memory */
442 	while (i) {
443 		i--;
444 		ccb = &sc->sc_ccb[i];
445 		bus_dmamap_destroy(sc->sc_datadmat, ccb->ccb_dmamap);
446 	}
447 
448 	free(sc->sc_ccb, M_DEVBUF);
449 
450 	return 1;
451 }
452 
453 static uint32_t
454 mfi_read(struct mfi_softc *sc, bus_size_t r)
455 {
456 	uint32_t rv;
457 
458 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4,
459 	    BUS_SPACE_BARRIER_READ);
460 	rv = bus_space_read_4(sc->sc_iot, sc->sc_ioh, r);
461 
462 	DNPRINTF(MFI_D_RW, "%s: mr 0x%lx 0x08%x ", DEVNAME(sc), (u_long)r, rv);
463 	return rv;
464 }
465 
466 static void
467 mfi_write(struct mfi_softc *sc, bus_size_t r, uint32_t v)
468 {
469 	DNPRINTF(MFI_D_RW, "%s: mw 0x%lx 0x%08x", DEVNAME(sc), (u_long)r, v);
470 
471 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, r, v);
472 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4,
473 	    BUS_SPACE_BARRIER_WRITE);
474 }
475 
476 static struct mfi_mem *
477 mfi_allocmem(struct mfi_softc *sc, size_t size)
478 {
479 	struct mfi_mem		*mm;
480 	int			nsegs;
481 
482 	DNPRINTF(MFI_D_MEM, "%s: mfi_allocmem: %ld\n", DEVNAME(sc),
483 	    (long)size);
484 
485 	mm = malloc(sizeof(struct mfi_mem), M_DEVBUF, M_NOWAIT|M_ZERO);
486 	if (mm == NULL)
487 		return NULL;
488 
489 	mm->am_size = size;
490 
491 	if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
492 	    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &mm->am_map) != 0)
493 		goto amfree;
494 
495 	if (bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &mm->am_seg, 1,
496 	    &nsegs, BUS_DMA_NOWAIT) != 0)
497 		goto destroy;
498 
499 	if (bus_dmamem_map(sc->sc_dmat, &mm->am_seg, nsegs, size, &mm->am_kva,
500 	    BUS_DMA_NOWAIT) != 0)
501 		goto free;
502 
503 	if (bus_dmamap_load(sc->sc_dmat, mm->am_map, mm->am_kva, size, NULL,
504 	    BUS_DMA_NOWAIT) != 0)
505 		goto unmap;
506 
507 	DNPRINTF(MFI_D_MEM, "  kva: %p  dva: %p  map: %p\n",
508 	    mm->am_kva, (void *)mm->am_map->dm_segs[0].ds_addr, mm->am_map);
509 
510 	memset(mm->am_kva, 0, size);
511 	return mm;
512 
513 unmap:
514 	bus_dmamem_unmap(sc->sc_dmat, mm->am_kva, size);
515 free:
516 	bus_dmamem_free(sc->sc_dmat, &mm->am_seg, 1);
517 destroy:
518 	bus_dmamap_destroy(sc->sc_dmat, mm->am_map);
519 amfree:
520 	free(mm, M_DEVBUF);
521 
522 	return NULL;
523 }
524 
525 static void
526 mfi_freemem(struct mfi_softc *sc, struct mfi_mem **mmp)
527 {
528 	struct mfi_mem *mm = *mmp;
529 
530 	if (mm == NULL)
531 		return;
532 
533 	*mmp = NULL;
534 
535 	DNPRINTF(MFI_D_MEM, "%s: mfi_freemem: %p\n", DEVNAME(sc), mm);
536 
537 	bus_dmamap_unload(sc->sc_dmat, mm->am_map);
538 	bus_dmamem_unmap(sc->sc_dmat, mm->am_kva, mm->am_size);
539 	bus_dmamem_free(sc->sc_dmat, &mm->am_seg, 1);
540 	bus_dmamap_destroy(sc->sc_dmat, mm->am_map);
541 	free(mm, M_DEVBUF);
542 }
543 
544 static int
545 mfi_transition_firmware(struct mfi_softc *sc)
546 {
547 	uint32_t		fw_state, cur_state;
548 	int			max_wait, i;
549 
550 	fw_state = mfi_fw_state(sc) & MFI_STATE_MASK;
551 
552 	DNPRINTF(MFI_D_CMD, "%s: mfi_transition_firmware: %#x\n", DEVNAME(sc),
553 	    fw_state);
554 
555 	while (fw_state != MFI_STATE_READY) {
556 		DNPRINTF(MFI_D_MISC,
557 		    "%s: waiting for firmware to become ready\n",
558 		    DEVNAME(sc));
559 		cur_state = fw_state;
560 		switch (fw_state) {
561 		case MFI_STATE_FAULT:
562 			aprint_error_dev(sc->sc_dev, "firmware fault\n");
563 			return 1;
564 		case MFI_STATE_WAIT_HANDSHAKE:
565 			if (sc->sc_ioptype == MFI_IOP_SKINNY ||
566 			    sc->sc_ioptype == MFI_IOP_TBOLT)
567 				mfi_write(sc, MFI_SKINNY_IDB, MFI_INIT_CLEAR_HANDSHAKE);
568 			else
569 				mfi_write(sc, MFI_IDB, MFI_INIT_CLEAR_HANDSHAKE);
570 			max_wait = 2;
571 			break;
572 		case MFI_STATE_OPERATIONAL:
573 			if (sc->sc_ioptype == MFI_IOP_SKINNY ||
574 			    sc->sc_ioptype == MFI_IOP_TBOLT)
575 				mfi_write(sc, MFI_SKINNY_IDB, MFI_INIT_READY);
576 			else
577 				mfi_write(sc, MFI_IDB, MFI_INIT_READY);
578 			max_wait = 10;
579 			break;
580 		case MFI_STATE_UNDEFINED:
581 		case MFI_STATE_BB_INIT:
582 			max_wait = 2;
583 			break;
584 		case MFI_STATE_FW_INIT:
585 		case MFI_STATE_DEVICE_SCAN:
586 		case MFI_STATE_FLUSH_CACHE:
587 			max_wait = 20;
588 			break;
589 		case MFI_STATE_BOOT_MESSAGE_PENDING:
590 			if (sc->sc_ioptype == MFI_IOP_SKINNY ||
591 			    sc->sc_ioptype == MFI_IOP_TBOLT) {
592 				mfi_write(sc, MFI_SKINNY_IDB, MFI_INIT_HOTPLUG);
593 			} else {
594 				mfi_write(sc, MFI_IDB, MFI_INIT_HOTPLUG);
595 			}
596 			max_wait = 180;
597 			break;
598 		default:
599 			aprint_error_dev(sc->sc_dev,
600 			    "unknown firmware state %d\n", fw_state);
601 			return 1;
602 		}
603 		for (i = 0; i < (max_wait * 10); i++) {
604 			fw_state = mfi_fw_state(sc) & MFI_STATE_MASK;
605 			if (fw_state == cur_state)
606 				DELAY(100000);
607 			else
608 				break;
609 		}
610 		if (fw_state == cur_state) {
611 			aprint_error_dev(sc->sc_dev,
612 			    "firmware stuck in state %#x\n", fw_state);
613 			return 1;
614 		}
615 	}
616 
617 	return 0;
618 }
619 
620 static int
621 mfi_initialize_firmware(struct mfi_softc *sc)
622 {
623 	struct mfi_ccb		*ccb;
624 	struct mfi_init_frame	*init;
625 	struct mfi_init_qinfo	*qinfo;
626 
627 	DNPRINTF(MFI_D_MISC, "%s: mfi_initialize_firmware\n", DEVNAME(sc));
628 
629 	if ((ccb = mfi_get_ccb(sc)) == NULL)
630 		return 1;
631 
632 	init = &ccb->ccb_frame->mfr_init;
633 	qinfo = (struct mfi_init_qinfo *)((uint8_t *)init + MFI_FRAME_SIZE);
634 
635 	memset(qinfo, 0, sizeof *qinfo);
636 	qinfo->miq_rq_entries = sc->sc_max_cmds + 1;
637 	qinfo->miq_rq_addr_lo = htole32(MFIMEM_DVA(sc->sc_pcq) +
638 	    offsetof(struct mfi_prod_cons, mpc_reply_q));
639 	qinfo->miq_pi_addr_lo = htole32(MFIMEM_DVA(sc->sc_pcq) +
640 	    offsetof(struct mfi_prod_cons, mpc_producer));
641 	qinfo->miq_ci_addr_lo = htole32(MFIMEM_DVA(sc->sc_pcq) +
642 	    offsetof(struct mfi_prod_cons, mpc_consumer));
643 
644 	init->mif_header.mfh_cmd = MFI_CMD_INIT;
645 	init->mif_header.mfh_data_len = sizeof *qinfo;
646 	init->mif_qinfo_new_addr_lo = htole32(ccb->ccb_pframe + MFI_FRAME_SIZE);
647 
648 	DNPRINTF(MFI_D_MISC, "%s: entries: %#x rq: %#x pi: %#x ci: %#x\n",
649 	    DEVNAME(sc),
650 	    qinfo->miq_rq_entries, qinfo->miq_rq_addr_lo,
651 	    qinfo->miq_pi_addr_lo, qinfo->miq_ci_addr_lo);
652 
653 	if (mfi_poll(ccb)) {
654 		aprint_error_dev(sc->sc_dev,
655 		    "mfi_initialize_firmware failed\n");
656 		return 1;
657 	}
658 
659 	mfi_put_ccb(ccb);
660 
661 	return 0;
662 }
663 
664 static int
665 mfi_get_info(struct mfi_softc *sc)
666 {
667 #ifdef MFI_DEBUG
668 	int i;
669 #endif
670 	DNPRINTF(MFI_D_MISC, "%s: mfi_get_info\n", DEVNAME(sc));
671 
672 	if (mfi_mgmt_internal(sc, MR_DCMD_CTRL_GET_INFO, MFI_DATA_IN,
673 	    sizeof(sc->sc_info), &sc->sc_info, NULL, cold ? true : false))
674 		return 1;
675 
676 #ifdef MFI_DEBUG
677 
678 	for (i = 0; i < sc->sc_info.mci_image_component_count; i++) {
679 		printf("%s: active FW %s Version %s date %s time %s\n",
680 		    DEVNAME(sc),
681 		    sc->sc_info.mci_image_component[i].mic_name,
682 		    sc->sc_info.mci_image_component[i].mic_version,
683 		    sc->sc_info.mci_image_component[i].mic_build_date,
684 		    sc->sc_info.mci_image_component[i].mic_build_time);
685 	}
686 
687 	for (i = 0; i < sc->sc_info.mci_pending_image_component_count; i++) {
688 		printf("%s: pending FW %s Version %s date %s time %s\n",
689 		    DEVNAME(sc),
690 		    sc->sc_info.mci_pending_image_component[i].mic_name,
691 		    sc->sc_info.mci_pending_image_component[i].mic_version,
692 		    sc->sc_info.mci_pending_image_component[i].mic_build_date,
693 		    sc->sc_info.mci_pending_image_component[i].mic_build_time);
694 	}
695 
696 	printf("%s: max_arms %d max_spans %d max_arrs %d max_lds %d name %s\n",
697 	    DEVNAME(sc),
698 	    sc->sc_info.mci_max_arms,
699 	    sc->sc_info.mci_max_spans,
700 	    sc->sc_info.mci_max_arrays,
701 	    sc->sc_info.mci_max_lds,
702 	    sc->sc_info.mci_product_name);
703 
704 	printf("%s: serial %s present %#x fw time %d max_cmds %d max_sg %d\n",
705 	    DEVNAME(sc),
706 	    sc->sc_info.mci_serial_number,
707 	    sc->sc_info.mci_hw_present,
708 	    sc->sc_info.mci_current_fw_time,
709 	    sc->sc_info.mci_max_cmds,
710 	    sc->sc_info.mci_max_sg_elements);
711 
712 	printf("%s: max_rq %d lds_pres %d lds_deg %d lds_off %d pd_pres %d\n",
713 	    DEVNAME(sc),
714 	    sc->sc_info.mci_max_request_size,
715 	    sc->sc_info.mci_lds_present,
716 	    sc->sc_info.mci_lds_degraded,
717 	    sc->sc_info.mci_lds_offline,
718 	    sc->sc_info.mci_pd_present);
719 
720 	printf("%s: pd_dsk_prs %d pd_dsk_pred_fail %d pd_dsk_fail %d\n",
721 	    DEVNAME(sc),
722 	    sc->sc_info.mci_pd_disks_present,
723 	    sc->sc_info.mci_pd_disks_pred_failure,
724 	    sc->sc_info.mci_pd_disks_failed);
725 
726 	printf("%s: nvram %d mem %d flash %d\n",
727 	    DEVNAME(sc),
728 	    sc->sc_info.mci_nvram_size,
729 	    sc->sc_info.mci_memory_size,
730 	    sc->sc_info.mci_flash_size);
731 
732 	printf("%s: ram_cor %d ram_uncor %d clus_all %d clus_act %d\n",
733 	    DEVNAME(sc),
734 	    sc->sc_info.mci_ram_correctable_errors,
735 	    sc->sc_info.mci_ram_uncorrectable_errors,
736 	    sc->sc_info.mci_cluster_allowed,
737 	    sc->sc_info.mci_cluster_active);
738 
739 	printf("%s: max_strps_io %d raid_lvl %#x adapt_ops %#x ld_ops %#x\n",
740 	    DEVNAME(sc),
741 	    sc->sc_info.mci_max_strips_per_io,
742 	    sc->sc_info.mci_raid_levels,
743 	    sc->sc_info.mci_adapter_ops,
744 	    sc->sc_info.mci_ld_ops);
745 
746 	printf("%s: strp_sz_min %d strp_sz_max %d pd_ops %#x pd_mix %#x\n",
747 	    DEVNAME(sc),
748 	    sc->sc_info.mci_stripe_sz_ops.min,
749 	    sc->sc_info.mci_stripe_sz_ops.max,
750 	    sc->sc_info.mci_pd_ops,
751 	    sc->sc_info.mci_pd_mix_support);
752 
753 	printf("%s: ecc_bucket %d pckg_prop %s\n",
754 	    DEVNAME(sc),
755 	    sc->sc_info.mci_ecc_bucket_count,
756 	    sc->sc_info.mci_package_version);
757 
758 	printf("%s: sq_nm %d prd_fail_poll %d intr_thrtl %d intr_thrtl_to %d\n",
759 	    DEVNAME(sc),
760 	    sc->sc_info.mci_properties.mcp_seq_num,
761 	    sc->sc_info.mci_properties.mcp_pred_fail_poll_interval,
762 	    sc->sc_info.mci_properties.mcp_intr_throttle_cnt,
763 	    sc->sc_info.mci_properties.mcp_intr_throttle_timeout);
764 
765 	printf("%s: rbld_rate %d patr_rd_rate %d bgi_rate %d cc_rate %d\n",
766 	    DEVNAME(sc),
767 	    sc->sc_info.mci_properties.mcp_rebuild_rate,
768 	    sc->sc_info.mci_properties.mcp_patrol_read_rate,
769 	    sc->sc_info.mci_properties.mcp_bgi_rate,
770 	    sc->sc_info.mci_properties.mcp_cc_rate);
771 
772 	printf("%s: rc_rate %d ch_flsh %d spin_cnt %d spin_dly %d clus_en %d\n",
773 	    DEVNAME(sc),
774 	    sc->sc_info.mci_properties.mcp_recon_rate,
775 	    sc->sc_info.mci_properties.mcp_cache_flush_interval,
776 	    sc->sc_info.mci_properties.mcp_spinup_drv_cnt,
777 	    sc->sc_info.mci_properties.mcp_spinup_delay,
778 	    sc->sc_info.mci_properties.mcp_cluster_enable);
779 
780 	printf("%s: coerc %d alarm %d dis_auto_rbld %d dis_bat_wrn %d ecc %d\n",
781 	    DEVNAME(sc),
782 	    sc->sc_info.mci_properties.mcp_coercion_mode,
783 	    sc->sc_info.mci_properties.mcp_alarm_enable,
784 	    sc->sc_info.mci_properties.mcp_disable_auto_rebuild,
785 	    sc->sc_info.mci_properties.mcp_disable_battery_warn,
786 	    sc->sc_info.mci_properties.mcp_ecc_bucket_size);
787 
788 	printf("%s: ecc_leak %d rest_hs %d exp_encl_dev %d\n",
789 	    DEVNAME(sc),
790 	    sc->sc_info.mci_properties.mcp_ecc_bucket_leak_rate,
791 	    sc->sc_info.mci_properties.mcp_restore_hotspare_on_insertion,
792 	    sc->sc_info.mci_properties.mcp_expose_encl_devices);
793 
794 	printf("%s: vendor %#x device %#x subvendor %#x subdevice %#x\n",
795 	    DEVNAME(sc),
796 	    sc->sc_info.mci_pci.mip_vendor,
797 	    sc->sc_info.mci_pci.mip_device,
798 	    sc->sc_info.mci_pci.mip_subvendor,
799 	    sc->sc_info.mci_pci.mip_subdevice);
800 
801 	printf("%s: type %#x port_count %d port_addr ",
802 	    DEVNAME(sc),
803 	    sc->sc_info.mci_host.mih_type,
804 	    sc->sc_info.mci_host.mih_port_count);
805 
806 	for (i = 0; i < 8; i++)
807 		printf("%.0" PRIx64 " ", sc->sc_info.mci_host.mih_port_addr[i]);
808 	printf("\n");
809 
810 	printf("%s: type %.x port_count %d port_addr ",
811 	    DEVNAME(sc),
812 	    sc->sc_info.mci_device.mid_type,
813 	    sc->sc_info.mci_device.mid_port_count);
814 
815 	for (i = 0; i < 8; i++) {
816 		printf("%.0" PRIx64 " ",
817 		    sc->sc_info.mci_device.mid_port_addr[i]);
818 	}
819 	printf("\n");
820 #endif /* MFI_DEBUG */
821 
822 	return 0;
823 }
824 
825 static int
826 mfi_get_bbu(struct mfi_softc *sc, struct mfi_bbu_status *stat)
827 {
828 	DNPRINTF(MFI_D_MISC, "%s: mfi_get_bbu\n", DEVNAME(sc));
829 
830 	if (mfi_mgmt_internal(sc, MR_DCMD_BBU_GET_STATUS, MFI_DATA_IN,
831 	    sizeof(*stat), stat, NULL, cold ? true : false))
832 		return MFI_BBU_UNKNOWN;
833 #ifdef MFI_DEBUG
834 	printf("bbu type %d, voltage %d, current %d, temperature %d, "
835 	    "status 0x%x\n", stat->battery_type, stat->voltage, stat->current,
836 	    stat->temperature, stat->fw_status);
837 	printf("details: ");
838 	switch(stat->battery_type) {
839 	case MFI_BBU_TYPE_IBBU:
840 		printf("guage %d relative charge %d charger state %d "
841 		    "charger ctrl %d\n", stat->detail.ibbu.gas_guage_status,
842 		    stat->detail.ibbu.relative_charge ,
843 		    stat->detail.ibbu.charger_system_state ,
844 		    stat->detail.ibbu.charger_system_ctrl);
845 		printf("\tcurrent %d abs charge %d max error %d\n",
846 		    stat->detail.ibbu.charging_current ,
847 		    stat->detail.ibbu.absolute_charge ,
848 		    stat->detail.ibbu.max_error);
849 		break;
850 	case MFI_BBU_TYPE_BBU:
851 		printf("guage %d relative charge %d charger state %d\n",
852 		    stat->detail.ibbu.gas_guage_status,
853 		    stat->detail.bbu.relative_charge ,
854 		    stat->detail.bbu.charger_status );
855 		printf("\trem capacity %d fyll capacity %d SOH %d\n",
856 		    stat->detail.bbu.remaining_capacity ,
857 		    stat->detail.bbu.full_charge_capacity ,
858 		    stat->detail.bbu.is_SOH_good);
859 	default:
860 		printf("\n");
861 	}
862 #endif
863 	switch(stat->battery_type) {
864 	case MFI_BBU_TYPE_BBU:
865 		return (stat->detail.bbu.is_SOH_good ?
866 		    MFI_BBU_GOOD : MFI_BBU_BAD);
867 	case MFI_BBU_TYPE_NONE:
868 		return MFI_BBU_UNKNOWN;
869 	default:
870 		if (stat->fw_status &
871 		    (MFI_BBU_STATE_PACK_MISSING |
872 		     MFI_BBU_STATE_VOLTAGE_LOW |
873 		     MFI_BBU_STATE_TEMPERATURE_HIGH |
874 		     MFI_BBU_STATE_LEARN_CYC_FAIL |
875 		     MFI_BBU_STATE_LEARN_CYC_TIMEOUT |
876 		     MFI_BBU_STATE_I2C_ERR_DETECT))
877 			return MFI_BBU_BAD;
878 		return MFI_BBU_GOOD;
879 	}
880 }
881 
882 static void
883 mfiminphys(struct buf *bp)
884 {
885 	DNPRINTF(MFI_D_MISC, "mfiminphys: %d\n", bp->b_bcount);
886 
887 	/* XXX currently using MFI_MAXFER = MAXPHYS */
888 	if (bp->b_bcount > MFI_MAXFER)
889 		bp->b_bcount = MFI_MAXFER;
890 	minphys(bp);
891 }
892 
893 int
894 mfi_rescan(device_t self, const char *ifattr, const int *locators)
895 {
896 	struct mfi_softc *sc = device_private(self);
897 
898 	if (sc->sc_child != NULL)
899 		return 0;
900 
901 	sc->sc_child = config_found_sm_loc(self, ifattr, locators, &sc->sc_chan,
902 	    scsiprint, NULL);
903 
904 	return 0;
905 }
906 
907 void
908 mfi_childdetached(device_t self, device_t child)
909 {
910 	struct mfi_softc *sc = device_private(self);
911 
912 	KASSERT(self == sc->sc_dev);
913 	KASSERT(child == sc->sc_child);
914 
915 	if (child == sc->sc_child)
916 		sc->sc_child = NULL;
917 }
918 
919 int
920 mfi_detach(struct mfi_softc *sc, int flags)
921 {
922 	int			error;
923 
924 	DNPRINTF(MFI_D_MISC, "%s: mfi_detach\n", DEVNAME(sc));
925 
926 	if ((error = config_detach_children(sc->sc_dev, flags)) != 0)
927 		return error;
928 
929 #if NBIO > 0
930 	mfi_destroy_sensors(sc);
931 	bio_unregister(sc->sc_dev);
932 #endif /* NBIO > 0 */
933 
934 	mfi_intr_disable(sc);
935 	mfi_shutdown(sc->sc_dev, 0);
936 
937 	if (sc->sc_ioptype == MFI_IOP_TBOLT) {
938 		workqueue_destroy(sc->sc_ldsync_wq);
939 		mfi_put_ccb(sc->sc_ldsync_ccb);
940 		mfi_freemem(sc, &sc->sc_tbolt_reqmsgpool);
941 		mfi_freemem(sc, &sc->sc_tbolt_ioc_init);
942 		mfi_freemem(sc, &sc->sc_tbolt_verbuf);
943 	}
944 
945 	if ((error = mfi_destroy_ccb(sc)) != 0)
946 		return error;
947 
948 	mfi_freemem(sc, &sc->sc_sense);
949 
950 	mfi_freemem(sc, &sc->sc_frames);
951 
952 	mfi_freemem(sc, &sc->sc_pcq);
953 
954 	return 0;
955 }
956 
957 static bool
958 mfi_shutdown(device_t dev, int how)
959 {
960 	struct mfi_softc	*sc = device_private(dev);
961 	uint8_t			mbox[MFI_MBOX_SIZE];
962 	int s = splbio();
963 	DNPRINTF(MFI_D_MISC, "%s: mfi_shutdown\n", DEVNAME(sc));
964 	if (sc->sc_running) {
965 		mbox[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
966 		if (mfi_mgmt_internal(sc, MR_DCMD_CTRL_CACHE_FLUSH,
967 		    MFI_DATA_NONE, 0, NULL, mbox, true)) {
968 			aprint_error_dev(dev, "shutdown: cache flush failed\n");
969 			goto fail;
970 		}
971 
972 		mbox[0] = 0;
973 		if (mfi_mgmt_internal(sc, MR_DCMD_CTRL_SHUTDOWN,
974 		    MFI_DATA_NONE, 0, NULL, mbox, true)) {
975 			aprint_error_dev(dev, "shutdown: "
976 			    "firmware shutdown failed\n");
977 			goto fail;
978 		}
979 		sc->sc_running = false;
980 	}
981 	splx(s);
982 	return true;
983 fail:
984 	splx(s);
985 	return false;
986 }
987 
988 static bool
989 mfi_suspend(device_t dev, const pmf_qual_t *q)
990 {
991 	/* XXX to be implemented */
992 	return false;
993 }
994 
995 static bool
996 mfi_resume(device_t dev, const pmf_qual_t *q)
997 {
998 	/* XXX to be implemented */
999 	return false;
1000 }
1001 
1002 int
1003 mfi_attach(struct mfi_softc *sc, enum mfi_iop iop)
1004 {
1005 	struct scsipi_adapter *adapt = &sc->sc_adapt;
1006 	struct scsipi_channel *chan = &sc->sc_chan;
1007 	uint32_t		status, frames, max_sgl;
1008 	int			i;
1009 
1010 	DNPRINTF(MFI_D_MISC, "%s: mfi_attach\n", DEVNAME(sc));
1011 
1012 	sc->sc_ioptype = iop;
1013 
1014 	switch (iop) {
1015 	case MFI_IOP_XSCALE:
1016 		sc->sc_iop = &mfi_iop_xscale;
1017 		break;
1018 	case MFI_IOP_PPC:
1019 		sc->sc_iop = &mfi_iop_ppc;
1020 		break;
1021 	case MFI_IOP_GEN2:
1022 		sc->sc_iop = &mfi_iop_gen2;
1023 		break;
1024 	case MFI_IOP_SKINNY:
1025 		sc->sc_iop = &mfi_iop_skinny;
1026 		break;
1027 	case MFI_IOP_TBOLT:
1028 		sc->sc_iop = &mfi_iop_tbolt;
1029 		break;
1030 	default:
1031 		 panic("%s: unknown iop %d", DEVNAME(sc), iop);
1032 	}
1033 
1034 	if (mfi_transition_firmware(sc))
1035 		return 1;
1036 
1037 	TAILQ_INIT(&sc->sc_ccb_freeq);
1038 
1039 	status = mfi_fw_state(sc);
1040 	sc->sc_max_cmds = status & MFI_STATE_MAXCMD_MASK;
1041 	max_sgl = (status & MFI_STATE_MAXSGL_MASK) >> 16;
1042 	if (sc->sc_ioptype == MFI_IOP_TBOLT) {
1043 		sc->sc_max_sgl = min(max_sgl, (128 * 1024) / PAGE_SIZE + 1);
1044 		sc->sc_sgl_size = sizeof(struct mfi_sg_ieee);
1045 	} else if (sc->sc_64bit_dma) {
1046 		sc->sc_max_sgl = min(max_sgl, (128 * 1024) / PAGE_SIZE + 1);
1047 		sc->sc_sgl_size = sizeof(struct mfi_sg64);
1048 	} else {
1049 		sc->sc_max_sgl = max_sgl;
1050 		sc->sc_sgl_size = sizeof(struct mfi_sg32);
1051 	}
1052 	DNPRINTF(MFI_D_MISC, "%s: max commands: %u, max sgl: %u\n",
1053 	    DEVNAME(sc), sc->sc_max_cmds, sc->sc_max_sgl);
1054 
1055 	if (sc->sc_ioptype == MFI_IOP_TBOLT) {
1056 		uint32_t tb_mem_size;
1057 		/* for Alignment */
1058 		tb_mem_size = MEGASAS_THUNDERBOLT_MSG_ALLIGNMENT;
1059 
1060 		tb_mem_size +=
1061 		    MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1);
1062 		sc->sc_reply_pool_size =
1063 		    ((sc->sc_max_cmds + 1 + 15) / 16) * 16;
1064 		tb_mem_size +=
1065 		    MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size;
1066 
1067 		/* this is for SGL's */
1068 		tb_mem_size += MEGASAS_MAX_SZ_CHAIN_FRAME * sc->sc_max_cmds;
1069 		sc->sc_tbolt_reqmsgpool = mfi_allocmem(sc, tb_mem_size);
1070 		if (sc->sc_tbolt_reqmsgpool == NULL) {
1071 			aprint_error_dev(sc->sc_dev,
1072 			    "unable to allocate thunderbolt "
1073 			    "request message pool\n");
1074 			goto nopcq;
1075 		}
1076 		if (mfi_tbolt_init_desc_pool(sc)) {
1077 			aprint_error_dev(sc->sc_dev,
1078 			    "Thunderbolt pool preparation error\n");
1079 			goto nopcq;
1080 		}
1081 
1082 		/*
1083 		 * Allocate DMA memory mapping for MPI2 IOC Init descriptor,
1084 		 * we are taking it diffrent from what we have allocated for
1085 		 * Request and reply descriptors to avoid confusion later
1086 		 */
1087 		sc->sc_tbolt_ioc_init = mfi_allocmem(sc,
1088 		    sizeof(struct mpi2_ioc_init_request));
1089 		if (sc->sc_tbolt_ioc_init == NULL) {
1090 			aprint_error_dev(sc->sc_dev,
1091 			    "unable to allocate thunderbolt IOC init memory");
1092 			goto nopcq;
1093 		}
1094 
1095 		sc->sc_tbolt_verbuf = mfi_allocmem(sc,
1096 		    MEGASAS_MAX_NAME*sizeof(bus_addr_t));
1097 		if (sc->sc_tbolt_verbuf == NULL) {
1098 			aprint_error_dev(sc->sc_dev,
1099 			    "unable to allocate thunderbolt version buffer\n");
1100 			goto nopcq;
1101 		}
1102 
1103 	}
1104 	/* consumer/producer and reply queue memory */
1105 	sc->sc_pcq = mfi_allocmem(sc, (sizeof(uint32_t) * sc->sc_max_cmds) +
1106 	    sizeof(struct mfi_prod_cons));
1107 	if (sc->sc_pcq == NULL) {
1108 		aprint_error_dev(sc->sc_dev,
1109 		    "unable to allocate reply queue memory\n");
1110 		goto nopcq;
1111 	}
1112 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_pcq), 0,
1113 	    sizeof(uint32_t) * sc->sc_max_cmds + sizeof(struct mfi_prod_cons),
1114 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1115 
1116 	/* frame memory */
1117 	frames = (sc->sc_sgl_size * sc->sc_max_sgl + MFI_FRAME_SIZE - 1) /
1118 	    MFI_FRAME_SIZE + 1;
1119 	sc->sc_frames_size = frames * MFI_FRAME_SIZE;
1120 	sc->sc_frames = mfi_allocmem(sc, sc->sc_frames_size * sc->sc_max_cmds);
1121 	if (sc->sc_frames == NULL) {
1122 		aprint_error_dev(sc->sc_dev,
1123 		    "unable to allocate frame memory\n");
1124 		goto noframe;
1125 	}
1126 	/* XXX hack, fix this */
1127 	if (MFIMEM_DVA(sc->sc_frames) & 0x3f) {
1128 		aprint_error_dev(sc->sc_dev,
1129 		    "improper frame alignment (%#llx) FIXME\n",
1130 		    (long long int)MFIMEM_DVA(sc->sc_frames));
1131 		goto noframe;
1132 	}
1133 
1134 	/* sense memory */
1135 	sc->sc_sense = mfi_allocmem(sc, sc->sc_max_cmds * MFI_SENSE_SIZE);
1136 	if (sc->sc_sense == NULL) {
1137 		aprint_error_dev(sc->sc_dev,
1138 		    "unable to allocate sense memory\n");
1139 		goto nosense;
1140 	}
1141 
1142 	/* now that we have all memory bits go initialize ccbs */
1143 	if (mfi_init_ccb(sc)) {
1144 		aprint_error_dev(sc->sc_dev, "could not init ccb list\n");
1145 		goto noinit;
1146 	}
1147 
1148 	/* kickstart firmware with all addresses and pointers */
1149 	if (sc->sc_ioptype == MFI_IOP_TBOLT) {
1150 		if (mfi_tbolt_init_MFI_queue(sc)) {
1151 			aprint_error_dev(sc->sc_dev,
1152 			    "could not initialize firmware\n");
1153 			goto noinit;
1154 		}
1155 	} else {
1156 		if (mfi_initialize_firmware(sc)) {
1157 			aprint_error_dev(sc->sc_dev,
1158 			    "could not initialize firmware\n");
1159 			goto noinit;
1160 		}
1161 	}
1162 	sc->sc_running = true;
1163 
1164 	if (mfi_get_info(sc)) {
1165 		aprint_error_dev(sc->sc_dev,
1166 		    "could not retrieve controller information\n");
1167 		goto noinit;
1168 	}
1169 	aprint_normal_dev(sc->sc_dev,
1170 	    "%s version %s\n",
1171 	    sc->sc_info.mci_product_name,
1172 	    sc->sc_info.mci_package_version);
1173 
1174 
1175 	aprint_normal_dev(sc->sc_dev, "logical drives %d, %dMB RAM, ",
1176 	    sc->sc_info.mci_lds_present,
1177 	    sc->sc_info.mci_memory_size);
1178 	sc->sc_bbuok = false;
1179 	if (sc->sc_info.mci_hw_present & MFI_INFO_HW_BBU) {
1180 		struct mfi_bbu_status	bbu_stat;
1181 		int mfi_bbu_status = mfi_get_bbu(sc, &bbu_stat);
1182 		aprint_normal("BBU type ");
1183 		switch (bbu_stat.battery_type) {
1184 		case MFI_BBU_TYPE_BBU:
1185 			aprint_normal("BBU");
1186 			break;
1187 		case MFI_BBU_TYPE_IBBU:
1188 			aprint_normal("IBBU");
1189 			break;
1190 		default:
1191 			aprint_normal("unknown type %d", bbu_stat.battery_type);
1192 		}
1193 		aprint_normal(", status ");
1194 		switch(mfi_bbu_status) {
1195 		case MFI_BBU_GOOD:
1196 			aprint_normal("good\n");
1197 			sc->sc_bbuok = true;
1198 			break;
1199 		case MFI_BBU_BAD:
1200 			aprint_normal("bad\n");
1201 			break;
1202 		case MFI_BBU_UNKNOWN:
1203 			aprint_normal("unknown\n");
1204 			break;
1205 		default:
1206 			panic("mfi_bbu_status");
1207 		}
1208 	} else {
1209 		aprint_normal("BBU not present\n");
1210 	}
1211 
1212 	sc->sc_ld_cnt = sc->sc_info.mci_lds_present;
1213 	sc->sc_max_ld = sc->sc_ld_cnt;
1214 	for (i = 0; i < sc->sc_ld_cnt; i++)
1215 		sc->sc_ld[i].ld_present = 1;
1216 
1217 	memset(adapt, 0, sizeof(*adapt));
1218 	adapt->adapt_dev = sc->sc_dev;
1219 	adapt->adapt_nchannels = 1;
1220 	/* keep a few commands for management */
1221 	if (sc->sc_max_cmds > 4)
1222 		adapt->adapt_openings = sc->sc_max_cmds - 4;
1223 	else
1224 		adapt->adapt_openings = sc->sc_max_cmds;
1225 	adapt->adapt_max_periph = adapt->adapt_openings;
1226 	adapt->adapt_request = mfi_scsipi_request;
1227 	adapt->adapt_minphys = mfiminphys;
1228 
1229 	memset(chan, 0, sizeof(*chan));
1230 	chan->chan_adapter = adapt;
1231 	chan->chan_bustype = &scsi_sas_bustype;
1232 	chan->chan_channel = 0;
1233 	chan->chan_flags = 0;
1234 	chan->chan_nluns = 8;
1235 	chan->chan_ntargets = MFI_MAX_LD;
1236 	chan->chan_id = MFI_MAX_LD;
1237 
1238 	mfi_rescan(sc->sc_dev, "scsi", NULL);
1239 
1240 	/* enable interrupts */
1241 	mfi_intr_enable(sc);
1242 
1243 #if NBIO > 0
1244 	if (bio_register(sc->sc_dev, mfi_ioctl) != 0)
1245 		panic("%s: controller registration failed", DEVNAME(sc));
1246 	if (mfi_create_sensors(sc) != 0)
1247 		aprint_error_dev(sc->sc_dev, "unable to create sensors\n");
1248 #endif /* NBIO > 0 */
1249 	if (!pmf_device_register1(sc->sc_dev, mfi_suspend, mfi_resume,
1250 	    mfi_shutdown)) {
1251 		aprint_error_dev(sc->sc_dev,
1252 		    "couldn't establish power handler\n");
1253 	}
1254 
1255 	return 0;
1256 noinit:
1257 	mfi_freemem(sc, &sc->sc_sense);
1258 nosense:
1259 	mfi_freemem(sc, &sc->sc_frames);
1260 noframe:
1261 	mfi_freemem(sc, &sc->sc_pcq);
1262 nopcq:
1263 	if (sc->sc_ioptype == MFI_IOP_TBOLT) {
1264 		if (sc->sc_tbolt_reqmsgpool)
1265 			mfi_freemem(sc, &sc->sc_tbolt_reqmsgpool);
1266 		if (sc->sc_tbolt_verbuf)
1267 			mfi_freemem(sc, &sc->sc_tbolt_verbuf);
1268 	}
1269 	return 1;
1270 }
1271 
1272 static int
1273 mfi_poll(struct mfi_ccb *ccb)
1274 {
1275 	struct mfi_softc *sc = ccb->ccb_sc;
1276 	struct mfi_frame_header	*hdr;
1277 	int			to = 0;
1278 	int			rv = 0;
1279 
1280 	DNPRINTF(MFI_D_CMD, "%s: mfi_poll\n", DEVNAME(sc));
1281 
1282 	hdr = &ccb->ccb_frame->mfr_header;
1283 	hdr->mfh_cmd_status = 0xff;
1284 	if (!sc->sc_MFA_enabled)
1285 		hdr->mfh_flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
1286 
1287 	/* no callback, caller is supposed to do the cleanup */
1288 	ccb->ccb_done = NULL;
1289 
1290 	mfi_post(sc, ccb);
1291 	if (sc->sc_MFA_enabled) {
1292 		/*
1293 		 * depending on the command type, result may be posted
1294 		 * to *hdr, or not. In addition it seems there's
1295 		 * no way to avoid posting the SMID to the reply queue.
1296 		 * So pool using the interrupt routine.
1297 		 */
1298 		 while (ccb->ccb_state != MFI_CCB_DONE) {
1299 			delay(1000);
1300 			if (to++ > 5000) { /* XXX 5 seconds busywait sucks */
1301 				rv = 1;
1302 				break;
1303 			}
1304 			mfi_tbolt_intrh(sc);
1305 		 }
1306 	} else {
1307 		bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
1308 		    ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
1309 		    sc->sc_frames_size, BUS_DMASYNC_POSTREAD);
1310 
1311 		while (hdr->mfh_cmd_status == 0xff) {
1312 			delay(1000);
1313 			if (to++ > 5000) { /* XXX 5 seconds busywait sucks */
1314 				rv = 1;
1315 				break;
1316 			}
1317 			bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
1318 			    ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
1319 			    sc->sc_frames_size, BUS_DMASYNC_POSTREAD);
1320 		}
1321 	}
1322 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
1323 	    ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
1324 	    sc->sc_frames_size, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1325 
1326 	if (ccb->ccb_data != NULL) {
1327 		DNPRINTF(MFI_D_INTR, "%s: mfi_mgmt_done sync\n",
1328 		    DEVNAME(sc));
1329 		bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
1330 		    ccb->ccb_dmamap->dm_mapsize,
1331 		    (ccb->ccb_direction & MFI_DATA_IN) ?
1332 		    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1333 
1334 		bus_dmamap_unload(sc->sc_datadmat, ccb->ccb_dmamap);
1335 	}
1336 
1337 	if (rv != 0) {
1338 		aprint_error_dev(sc->sc_dev, "timeout on ccb %d\n",
1339 		    hdr->mfh_context);
1340 		ccb->ccb_flags |= MFI_CCB_F_ERR;
1341 		return 1;
1342 	}
1343 
1344 	return 0;
1345 }
1346 
1347 int
1348 mfi_intr(void *arg)
1349 {
1350 	struct mfi_softc	*sc = arg;
1351 	struct mfi_prod_cons	*pcq;
1352 	struct mfi_ccb		*ccb;
1353 	uint32_t		producer, consumer, ctx;
1354 	int			claimed = 0;
1355 
1356 	if (!mfi_my_intr(sc))
1357 		return 0;
1358 
1359 	pcq = MFIMEM_KVA(sc->sc_pcq);
1360 
1361 	DNPRINTF(MFI_D_INTR, "%s: mfi_intr %#lx %#lx\n", DEVNAME(sc),
1362 	    (u_long)sc, (u_long)pcq);
1363 
1364 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_pcq), 0,
1365 	    sizeof(uint32_t) * sc->sc_max_cmds + sizeof(struct mfi_prod_cons),
1366 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1367 
1368 	producer = pcq->mpc_producer;
1369 	consumer = pcq->mpc_consumer;
1370 
1371 	while (consumer != producer) {
1372 		DNPRINTF(MFI_D_INTR, "%s: mfi_intr pi %#x ci %#x\n",
1373 		    DEVNAME(sc), producer, consumer);
1374 
1375 		ctx = pcq->mpc_reply_q[consumer];
1376 		pcq->mpc_reply_q[consumer] = MFI_INVALID_CTX;
1377 		if (ctx == MFI_INVALID_CTX)
1378 			aprint_error_dev(sc->sc_dev,
1379 			    "invalid context, p: %d c: %d\n",
1380 			    producer, consumer);
1381 		else {
1382 			/* XXX remove from queue and call scsi_done */
1383 			ccb = &sc->sc_ccb[ctx];
1384 			DNPRINTF(MFI_D_INTR, "%s: mfi_intr context %#x\n",
1385 			    DEVNAME(sc), ctx);
1386 			bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
1387 			    ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
1388 			    sc->sc_frames_size,
1389 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1390 			ccb->ccb_done(ccb);
1391 
1392 			claimed = 1;
1393 		}
1394 		consumer++;
1395 		if (consumer == (sc->sc_max_cmds + 1))
1396 			consumer = 0;
1397 	}
1398 
1399 	pcq->mpc_consumer = consumer;
1400 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_pcq), 0,
1401 	    sizeof(uint32_t) * sc->sc_max_cmds + sizeof(struct mfi_prod_cons),
1402 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1403 
1404 	return claimed;
1405 }
1406 
1407 static int
1408 mfi_scsi_ld_io(struct mfi_ccb *ccb, struct scsipi_xfer *xs, uint64_t blockno,
1409     uint32_t blockcnt)
1410 {
1411 	struct scsipi_periph *periph = xs->xs_periph;
1412 	struct mfi_io_frame   *io;
1413 
1414 	DNPRINTF(MFI_D_CMD, "%s: mfi_scsi_ld_io: %d\n",
1415 	    device_xname(periph->periph_channel->chan_adapter->adapt_dev),
1416 	    periph->periph_target);
1417 
1418 	if (!xs->data)
1419 		return 1;
1420 
1421 	io = &ccb->ccb_frame->mfr_io;
1422 	if (xs->xs_control & XS_CTL_DATA_IN) {
1423 		io->mif_header.mfh_cmd = MFI_CMD_LD_READ;
1424 		ccb->ccb_direction = MFI_DATA_IN;
1425 	} else {
1426 		io->mif_header.mfh_cmd = MFI_CMD_LD_WRITE;
1427 		ccb->ccb_direction = MFI_DATA_OUT;
1428 	}
1429 	io->mif_header.mfh_target_id = periph->periph_target;
1430 	io->mif_header.mfh_timeout = 0;
1431 	io->mif_header.mfh_flags = 0;
1432 	io->mif_header.mfh_sense_len = MFI_SENSE_SIZE;
1433 	io->mif_header.mfh_data_len= blockcnt;
1434 	io->mif_lba_hi = (blockno >> 32);
1435 	io->mif_lba_lo = (blockno & 0xffffffff);
1436 	io->mif_sense_addr_lo = htole32(ccb->ccb_psense);
1437 	io->mif_sense_addr_hi = 0;
1438 
1439 	ccb->ccb_done = mfi_scsi_ld_done;
1440 	ccb->ccb_xs = xs;
1441 	ccb->ccb_frame_size = MFI_IO_FRAME_SIZE;
1442 	ccb->ccb_sgl = &io->mif_sgl;
1443 	ccb->ccb_data = xs->data;
1444 	ccb->ccb_len = xs->datalen;
1445 
1446 	if (mfi_create_sgl(ccb, (xs->xs_control & XS_CTL_NOSLEEP) ?
1447 	    BUS_DMA_NOWAIT : BUS_DMA_WAITOK))
1448 		return 1;
1449 
1450 	return 0;
1451 }
1452 
1453 static void
1454 mfi_scsi_ld_done(struct mfi_ccb *ccb)
1455 {
1456 	struct mfi_frame_header	*hdr = &ccb->ccb_frame->mfr_header;
1457 	mfi_scsi_xs_done(ccb, hdr->mfh_cmd_status, hdr->mfh_scsi_status);
1458 }
1459 
1460 static void
1461 mfi_scsi_xs_done(struct mfi_ccb *ccb, int status, int scsi_status)
1462 {
1463 	struct scsipi_xfer	*xs = ccb->ccb_xs;
1464 	struct mfi_softc	*sc = ccb->ccb_sc;
1465 
1466 	DNPRINTF(MFI_D_INTR, "%s: mfi_scsi_xs_done %#lx %#lx\n",
1467 	    DEVNAME(sc), (u_long)ccb, (u_long)ccb->ccb_frame);
1468 
1469 	if (xs->data != NULL) {
1470 		DNPRINTF(MFI_D_INTR, "%s: mfi_scsi_xs_done sync\n",
1471 		    DEVNAME(sc));
1472 		bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
1473 		    ccb->ccb_dmamap->dm_mapsize,
1474 		    (xs->xs_control & XS_CTL_DATA_IN) ?
1475 		    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1476 
1477 		bus_dmamap_unload(sc->sc_datadmat, ccb->ccb_dmamap);
1478 	}
1479 
1480 	if (status != MFI_STAT_OK) {
1481 		xs->error = XS_DRIVER_STUFFUP;
1482 		DNPRINTF(MFI_D_INTR, "%s: mfi_scsi_xs_done stuffup %#x\n",
1483 		    DEVNAME(sc), status);
1484 
1485 		if (scsi_status != 0) {
1486 			bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_sense),
1487 			    ccb->ccb_psense - MFIMEM_DVA(sc->sc_sense),
1488 			    MFI_SENSE_SIZE, BUS_DMASYNC_POSTREAD);
1489 			DNPRINTF(MFI_D_INTR,
1490 			    "%s: mfi_scsi_xs_done sense %#x %lx %lx\n",
1491 			    DEVNAME(sc), scsi_status,
1492 			    (u_long)&xs->sense, (u_long)ccb->ccb_sense);
1493 			memset(&xs->sense, 0, sizeof(xs->sense));
1494 			memcpy(&xs->sense, ccb->ccb_sense,
1495 			    sizeof(struct scsi_sense_data));
1496 			xs->error = XS_SENSE;
1497 		}
1498 	} else {
1499 		xs->error = XS_NOERROR;
1500 		xs->status = SCSI_OK;
1501 		xs->resid = 0;
1502 	}
1503 
1504 	mfi_put_ccb(ccb);
1505 	scsipi_done(xs);
1506 }
1507 
1508 static int
1509 mfi_scsi_ld(struct mfi_ccb *ccb, struct scsipi_xfer *xs)
1510 {
1511 	struct mfi_pass_frame	*pf;
1512 	struct scsipi_periph *periph = xs->xs_periph;
1513 
1514 	DNPRINTF(MFI_D_CMD, "%s: mfi_scsi_ld: %d\n",
1515 	    device_xname(periph->periph_channel->chan_adapter->adapt_dev),
1516 	    periph->periph_target);
1517 
1518 	pf = &ccb->ccb_frame->mfr_pass;
1519 	pf->mpf_header.mfh_cmd = MFI_CMD_LD_SCSI_IO;
1520 	pf->mpf_header.mfh_target_id = periph->periph_target;
1521 	pf->mpf_header.mfh_lun_id = 0;
1522 	pf->mpf_header.mfh_cdb_len = xs->cmdlen;
1523 	pf->mpf_header.mfh_timeout = 0;
1524 	pf->mpf_header.mfh_data_len= xs->datalen; /* XXX */
1525 	pf->mpf_header.mfh_sense_len = MFI_SENSE_SIZE;
1526 
1527 	pf->mpf_sense_addr_hi = 0;
1528 	pf->mpf_sense_addr_lo = htole32(ccb->ccb_psense);
1529 
1530 	memset(pf->mpf_cdb, 0, 16);
1531 	memcpy(pf->mpf_cdb, &xs->cmdstore, xs->cmdlen);
1532 
1533 	ccb->ccb_done = mfi_scsi_ld_done;
1534 	ccb->ccb_xs = xs;
1535 	ccb->ccb_frame_size = MFI_PASS_FRAME_SIZE;
1536 	ccb->ccb_sgl = &pf->mpf_sgl;
1537 
1538 	if (xs->xs_control & (XS_CTL_DATA_IN | XS_CTL_DATA_OUT))
1539 		ccb->ccb_direction = (xs->xs_control & XS_CTL_DATA_IN) ?
1540 		    MFI_DATA_IN : MFI_DATA_OUT;
1541 	else
1542 		ccb->ccb_direction = MFI_DATA_NONE;
1543 
1544 	if (xs->data) {
1545 		ccb->ccb_data = xs->data;
1546 		ccb->ccb_len = xs->datalen;
1547 
1548 		if (mfi_create_sgl(ccb, (xs->xs_control & XS_CTL_NOSLEEP) ?
1549 		    BUS_DMA_NOWAIT : BUS_DMA_WAITOK))
1550 			return 1;
1551 	}
1552 
1553 	return 0;
1554 }
1555 
1556 static void
1557 mfi_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req,
1558     void *arg)
1559 {
1560 	struct scsipi_periph	*periph;
1561 	struct scsipi_xfer	*xs;
1562 	struct scsipi_adapter	*adapt = chan->chan_adapter;
1563 	struct mfi_softc	*sc = device_private(adapt->adapt_dev);
1564 	struct mfi_ccb		*ccb;
1565 	struct scsi_rw_6	*rw;
1566 	struct scsipi_rw_10	*rwb;
1567 	struct scsipi_rw_12	*rw12;
1568 	struct scsipi_rw_16	*rw16;
1569 	uint64_t		blockno;
1570 	uint32_t		blockcnt;
1571 	uint8_t			target;
1572 	uint8_t			mbox[MFI_MBOX_SIZE];
1573 	int			s;
1574 
1575 	switch (req) {
1576 	case ADAPTER_REQ_GROW_RESOURCES:
1577 		/* Not supported. */
1578 		return;
1579 	case ADAPTER_REQ_SET_XFER_MODE:
1580 	{
1581 		struct scsipi_xfer_mode *xm = arg;
1582 		xm->xm_mode = PERIPH_CAP_TQING;
1583 		xm->xm_period = 0;
1584 		xm->xm_offset = 0;
1585 		scsipi_async_event(&sc->sc_chan, ASYNC_EVENT_XFER_MODE, xm);
1586 		return;
1587 	}
1588 	case ADAPTER_REQ_RUN_XFER:
1589 		break;
1590 	}
1591 
1592 	xs = arg;
1593 
1594 	periph = xs->xs_periph;
1595 	target = periph->periph_target;
1596 
1597 	DNPRINTF(MFI_D_CMD, "%s: mfi_scsipi_request req %d opcode: %#x "
1598 	    "target %d lun %d\n", DEVNAME(sc), req, xs->cmd->opcode,
1599 	    periph->periph_target, periph->periph_lun);
1600 
1601 	s = splbio();
1602 	if (target >= MFI_MAX_LD || !sc->sc_ld[target].ld_present ||
1603 	    periph->periph_lun != 0) {
1604 		DNPRINTF(MFI_D_CMD, "%s: invalid target %d\n",
1605 		    DEVNAME(sc), target);
1606 		xs->error = XS_SELTIMEOUT;
1607 		scsipi_done(xs);
1608 		splx(s);
1609 		return;
1610 	}
1611 	if ((xs->cmd->opcode == SCSI_SYNCHRONIZE_CACHE_10 ||
1612 	    xs->cmd->opcode == SCSI_SYNCHRONIZE_CACHE_16) && sc->sc_bbuok) {
1613 		/* the cache is stable storage, don't flush */
1614 		xs->error = XS_NOERROR;
1615 		xs->status = SCSI_OK;
1616 		xs->resid = 0;
1617 		scsipi_done(xs);
1618 		splx(s);
1619 		return;
1620 	}
1621 
1622 	if ((ccb = mfi_get_ccb(sc)) == NULL) {
1623 		DNPRINTF(MFI_D_CMD, "%s: mfi_scsipi_request no ccb\n", DEVNAME(sc));
1624 		xs->error = XS_RESOURCE_SHORTAGE;
1625 		scsipi_done(xs);
1626 		splx(s);
1627 		return;
1628 	}
1629 
1630 	switch (xs->cmd->opcode) {
1631 	/* IO path */
1632 	case READ_16:
1633 	case WRITE_16:
1634 		rw16 = (struct scsipi_rw_16 *)xs->cmd;
1635 		blockno = _8btol(rw16->addr);
1636 		blockcnt = _4btol(rw16->length);
1637 		if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) {
1638 			goto stuffup;
1639 		}
1640 		break;
1641 
1642 	case READ_12:
1643 	case WRITE_12:
1644 		rw12 = (struct scsipi_rw_12 *)xs->cmd;
1645 		blockno = _4btol(rw12->addr);
1646 		blockcnt = _4btol(rw12->length);
1647 		if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) {
1648 			goto stuffup;
1649 		}
1650 		break;
1651 
1652 	case READ_10:
1653 	case WRITE_10:
1654 		rwb = (struct scsipi_rw_10 *)xs->cmd;
1655 		blockno = _4btol(rwb->addr);
1656 		blockcnt = _2btol(rwb->length);
1657 		if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) {
1658 			goto stuffup;
1659 		}
1660 		break;
1661 
1662 	case SCSI_READ_6_COMMAND:
1663 	case SCSI_WRITE_6_COMMAND:
1664 		rw = (struct scsi_rw_6 *)xs->cmd;
1665 		blockno = _3btol(rw->addr) & (SRW_TOPADDR << 16 | 0xffff);
1666 		blockcnt = rw->length ? rw->length : 0x100;
1667 		if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) {
1668 			goto stuffup;
1669 		}
1670 		break;
1671 
1672 	case SCSI_SYNCHRONIZE_CACHE_10:
1673 	case SCSI_SYNCHRONIZE_CACHE_16:
1674 		mbox[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
1675 		if (mfi_mgmt(ccb, xs,
1676 		    MR_DCMD_CTRL_CACHE_FLUSH, MFI_DATA_NONE, 0, NULL, mbox)) {
1677 			goto stuffup;
1678 		}
1679 		break;
1680 
1681 	/* hand it of to the firmware and let it deal with it */
1682 	case SCSI_TEST_UNIT_READY:
1683 		/* save off sd? after autoconf */
1684 		if (!cold)	/* XXX bogus */
1685 			strlcpy(sc->sc_ld[target].ld_dev, device_xname(sc->sc_dev),
1686 			    sizeof(sc->sc_ld[target].ld_dev));
1687 		/* FALLTHROUGH */
1688 
1689 	default:
1690 		if (mfi_scsi_ld(ccb, xs)) {
1691 			goto stuffup;
1692 		}
1693 		break;
1694 	}
1695 
1696 	DNPRINTF(MFI_D_CMD, "%s: start io %d\n", DEVNAME(sc), target);
1697 
1698 	if (xs->xs_control & XS_CTL_POLL) {
1699 		if (mfi_poll(ccb)) {
1700 			/* XXX check for sense in ccb->ccb_sense? */
1701 			aprint_error_dev(sc->sc_dev,
1702 			    "mfi_scsipi_request poll failed\n");
1703 			memset(&xs->sense, 0, sizeof(xs->sense));
1704 			xs->sense.scsi_sense.response_code =
1705 			    SSD_RCODE_VALID | SSD_RCODE_CURRENT;
1706 			xs->sense.scsi_sense.flags = SKEY_ILLEGAL_REQUEST;
1707 			xs->sense.scsi_sense.asc = 0x20; /* invalid opcode */
1708 			xs->error = XS_SENSE;
1709 			xs->status = SCSI_CHECK;
1710 		} else {
1711 			DNPRINTF(MFI_D_DMA,
1712 			    "%s: mfi_scsipi_request poll complete %d\n",
1713 			    DEVNAME(sc), ccb->ccb_dmamap->dm_nsegs);
1714 			xs->error = XS_NOERROR;
1715 			xs->status = SCSI_OK;
1716 			xs->resid = 0;
1717 		}
1718 		mfi_put_ccb(ccb);
1719 		scsipi_done(xs);
1720 		splx(s);
1721 		return;
1722 	}
1723 
1724 	mfi_post(sc, ccb);
1725 
1726 	DNPRINTF(MFI_D_DMA, "%s: mfi_scsipi_request queued %d\n", DEVNAME(sc),
1727 	    ccb->ccb_dmamap->dm_nsegs);
1728 
1729 	splx(s);
1730 	return;
1731 
1732 stuffup:
1733 	mfi_put_ccb(ccb);
1734 	xs->error = XS_DRIVER_STUFFUP;
1735 	scsipi_done(xs);
1736 	splx(s);
1737 }
1738 
1739 static int
1740 mfi_create_sgl(struct mfi_ccb *ccb, int flags)
1741 {
1742 	struct mfi_softc	*sc = ccb->ccb_sc;
1743 	struct mfi_frame_header	*hdr;
1744 	bus_dma_segment_t	*sgd;
1745 	union mfi_sgl		*sgl;
1746 	int			error, i;
1747 
1748 	DNPRINTF(MFI_D_DMA, "%s: mfi_create_sgl %#lx\n", DEVNAME(sc),
1749 	    (u_long)ccb->ccb_data);
1750 
1751 	if (!ccb->ccb_data)
1752 		return 1;
1753 
1754 	KASSERT(flags == BUS_DMA_NOWAIT || !cpu_intr_p());
1755 	error = bus_dmamap_load(sc->sc_datadmat, ccb->ccb_dmamap,
1756 	    ccb->ccb_data, ccb->ccb_len, NULL, flags);
1757 	if (error) {
1758 		if (error == EFBIG) {
1759 			aprint_error_dev(sc->sc_dev, "more than %d dma segs\n",
1760 			    sc->sc_max_sgl);
1761 		} else {
1762 			aprint_error_dev(sc->sc_dev,
1763 			    "error %d loading dma map\n", error);
1764 		}
1765 		return 1;
1766 	}
1767 
1768 	hdr = &ccb->ccb_frame->mfr_header;
1769 	sgl = ccb->ccb_sgl;
1770 	sgd = ccb->ccb_dmamap->dm_segs;
1771 	for (i = 0; i < ccb->ccb_dmamap->dm_nsegs; i++) {
1772 		if (sc->sc_ioptype == MFI_IOP_TBOLT &&
1773 		    (hdr->mfh_cmd == MFI_CMD_PD_SCSI_IO ||
1774 		     hdr->mfh_cmd == MFI_CMD_LD_READ ||
1775 		     hdr->mfh_cmd == MFI_CMD_LD_WRITE)) {
1776 			sgl->sg_ieee[i].addr = htole64(sgd[i].ds_addr);
1777 			sgl->sg_ieee[i].len = htole32(sgd[i].ds_len);
1778 			sgl->sg_ieee[i].flags = 0;
1779 			DNPRINTF(MFI_D_DMA, "%s: addr: %#" PRIx64 " len: %#"
1780 			    PRIx32 "\n",
1781 			    DEVNAME(sc), sgl->sg64[i].addr, sgl->sg64[i].len);
1782 			hdr->mfh_flags |= MFI_FRAME_IEEE_SGL | MFI_FRAME_SGL64;
1783 		} else if (sc->sc_64bit_dma) {
1784 			sgl->sg64[i].addr = htole64(sgd[i].ds_addr);
1785 			sgl->sg64[i].len = htole32(sgd[i].ds_len);
1786 			DNPRINTF(MFI_D_DMA, "%s: addr: %#" PRIx64 " len: %#"
1787 			    PRIx32 "\n",
1788 			    DEVNAME(sc), sgl->sg64[i].addr, sgl->sg64[i].len);
1789 			hdr->mfh_flags |= MFI_FRAME_SGL64;
1790 		} else {
1791 			sgl->sg32[i].addr = htole32(sgd[i].ds_addr);
1792 			sgl->sg32[i].len = htole32(sgd[i].ds_len);
1793 			DNPRINTF(MFI_D_DMA, "%s: addr: %#x  len: %#x\n",
1794 			    DEVNAME(sc), sgl->sg32[i].addr, sgl->sg32[i].len);
1795 			hdr->mfh_flags |= MFI_FRAME_SGL32;
1796 		}
1797 	}
1798 
1799 	if (ccb->ccb_direction == MFI_DATA_IN) {
1800 		hdr->mfh_flags |= MFI_FRAME_DIR_READ;
1801 		bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
1802 		    ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1803 	} else {
1804 		hdr->mfh_flags |= MFI_FRAME_DIR_WRITE;
1805 		bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
1806 		    ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1807 	}
1808 
1809 	hdr->mfh_sg_count = ccb->ccb_dmamap->dm_nsegs;
1810 	ccb->ccb_frame_size += sc->sc_sgl_size * ccb->ccb_dmamap->dm_nsegs;
1811 	ccb->ccb_extra_frames = (ccb->ccb_frame_size - 1) / MFI_FRAME_SIZE;
1812 
1813 	DNPRINTF(MFI_D_DMA, "%s: sg_count: %d  frame_size: %d  frames_size: %d"
1814 	    "  dm_nsegs: %d  extra_frames: %d\n",
1815 	    DEVNAME(sc),
1816 	    hdr->mfh_sg_count,
1817 	    ccb->ccb_frame_size,
1818 	    sc->sc_frames_size,
1819 	    ccb->ccb_dmamap->dm_nsegs,
1820 	    ccb->ccb_extra_frames);
1821 
1822 	return 0;
1823 }
1824 
1825 static int
1826 mfi_mgmt_internal(struct mfi_softc *sc, uint32_t opc, uint32_t dir,
1827     uint32_t len, void *buf, uint8_t *mbox, bool poll)
1828 {
1829 	struct mfi_ccb		*ccb;
1830 	int			rv = 1;
1831 
1832 	if ((ccb = mfi_get_ccb(sc)) == NULL)
1833 		return rv;
1834 	rv = mfi_mgmt(ccb, NULL, opc, dir, len, buf, mbox);
1835 	if (rv)
1836 		return rv;
1837 
1838 	if (poll) {
1839 		rv = 1;
1840 		if (mfi_poll(ccb))
1841 			goto done;
1842 	} else {
1843 		mfi_post(sc, ccb);
1844 
1845 		DNPRINTF(MFI_D_MISC, "%s: mfi_mgmt_internal sleeping\n",
1846 		    DEVNAME(sc));
1847 		while (ccb->ccb_state != MFI_CCB_DONE)
1848 			tsleep(ccb, PRIBIO, "mfi_mgmt", 0);
1849 
1850 		if (ccb->ccb_flags & MFI_CCB_F_ERR)
1851 			goto done;
1852 	}
1853 	rv = 0;
1854 
1855 done:
1856 	mfi_put_ccb(ccb);
1857 	return rv;
1858 }
1859 
1860 static int
1861 mfi_mgmt(struct mfi_ccb *ccb, struct scsipi_xfer *xs,
1862     uint32_t opc, uint32_t dir, uint32_t len, void *buf, uint8_t *mbox)
1863 {
1864 	struct mfi_dcmd_frame	*dcmd;
1865 
1866 	DNPRINTF(MFI_D_MISC, "%s: mfi_mgmt %#x\n", DEVNAME(ccb->ccb_sc), opc);
1867 
1868 	dcmd = &ccb->ccb_frame->mfr_dcmd;
1869 	memset(dcmd->mdf_mbox, 0, MFI_MBOX_SIZE);
1870 	dcmd->mdf_header.mfh_cmd = MFI_CMD_DCMD;
1871 	dcmd->mdf_header.mfh_timeout = 0;
1872 
1873 	dcmd->mdf_opcode = opc;
1874 	dcmd->mdf_header.mfh_data_len = 0;
1875 	ccb->ccb_direction = dir;
1876 	ccb->ccb_xs = xs;
1877 	ccb->ccb_done = mfi_mgmt_done;
1878 
1879 	ccb->ccb_frame_size = MFI_DCMD_FRAME_SIZE;
1880 
1881 	/* handle special opcodes */
1882 	if (mbox)
1883 		memcpy(dcmd->mdf_mbox, mbox, MFI_MBOX_SIZE);
1884 
1885 	if (dir != MFI_DATA_NONE) {
1886 		dcmd->mdf_header.mfh_data_len = len;
1887 		ccb->ccb_data = buf;
1888 		ccb->ccb_len = len;
1889 		ccb->ccb_sgl = &dcmd->mdf_sgl;
1890 
1891 		if (mfi_create_sgl(ccb, BUS_DMA_WAITOK))
1892 			return 1;
1893 	}
1894 	return 0;
1895 }
1896 
1897 static void
1898 mfi_mgmt_done(struct mfi_ccb *ccb)
1899 {
1900 	struct scsipi_xfer	*xs = ccb->ccb_xs;
1901 	struct mfi_softc	*sc = ccb->ccb_sc;
1902 	struct mfi_frame_header	*hdr = &ccb->ccb_frame->mfr_header;
1903 
1904 	DNPRINTF(MFI_D_INTR, "%s: mfi_mgmt_done %#lx %#lx\n",
1905 	    DEVNAME(sc), (u_long)ccb, (u_long)ccb->ccb_frame);
1906 
1907 	if (ccb->ccb_data != NULL) {
1908 		DNPRINTF(MFI_D_INTR, "%s: mfi_mgmt_done sync\n",
1909 		    DEVNAME(sc));
1910 		bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
1911 		    ccb->ccb_dmamap->dm_mapsize,
1912 		    (ccb->ccb_direction & MFI_DATA_IN) ?
1913 		    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1914 
1915 		bus_dmamap_unload(sc->sc_datadmat, ccb->ccb_dmamap);
1916 	}
1917 
1918 	if (hdr->mfh_cmd_status != MFI_STAT_OK)
1919 		ccb->ccb_flags |= MFI_CCB_F_ERR;
1920 
1921 	ccb->ccb_state = MFI_CCB_DONE;
1922 	if (xs) {
1923 		if (hdr->mfh_cmd_status != MFI_STAT_OK) {
1924 			xs->error = XS_DRIVER_STUFFUP;
1925 		} else {
1926 			xs->error = XS_NOERROR;
1927 			xs->status = SCSI_OK;
1928 			xs->resid = 0;
1929 		}
1930 		mfi_put_ccb(ccb);
1931 		scsipi_done(xs);
1932 	} else
1933 		wakeup(ccb);
1934 }
1935 
1936 #if NBIO > 0
1937 int
1938 mfi_ioctl(device_t dev, u_long cmd, void *addr)
1939 {
1940 	struct mfi_softc *sc = device_private(dev);
1941 	int error = 0;
1942 	int s;
1943 
1944 	KERNEL_LOCK(1, curlwp);
1945 	s = splbio();
1946 
1947 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl ", DEVNAME(sc));
1948 
1949 	switch (cmd) {
1950 	case BIOCINQ:
1951 		DNPRINTF(MFI_D_IOCTL, "inq\n");
1952 		error = mfi_ioctl_inq(sc, (struct bioc_inq *)addr);
1953 		break;
1954 
1955 	case BIOCVOL:
1956 		DNPRINTF(MFI_D_IOCTL, "vol\n");
1957 		error = mfi_ioctl_vol(sc, (struct bioc_vol *)addr);
1958 		break;
1959 
1960 	case BIOCDISK:
1961 		DNPRINTF(MFI_D_IOCTL, "disk\n");
1962 		error = mfi_ioctl_disk(sc, (struct bioc_disk *)addr);
1963 		break;
1964 
1965 	case BIOCALARM:
1966 		DNPRINTF(MFI_D_IOCTL, "alarm\n");
1967 		error = mfi_ioctl_alarm(sc, (struct bioc_alarm *)addr);
1968 		break;
1969 
1970 	case BIOCBLINK:
1971 		DNPRINTF(MFI_D_IOCTL, "blink\n");
1972 		error = mfi_ioctl_blink(sc, (struct bioc_blink *)addr);
1973 		break;
1974 
1975 	case BIOCSETSTATE:
1976 		DNPRINTF(MFI_D_IOCTL, "setstate\n");
1977 		error = mfi_ioctl_setstate(sc, (struct bioc_setstate *)addr);
1978 		break;
1979 
1980 	default:
1981 		DNPRINTF(MFI_D_IOCTL, " invalid ioctl\n");
1982 		error = EINVAL;
1983 	}
1984 	splx(s);
1985 	KERNEL_UNLOCK_ONE(curlwp);
1986 
1987 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl return %x\n", DEVNAME(sc), error);
1988 	return error;
1989 }
1990 
1991 static int
1992 mfi_ioctl_inq(struct mfi_softc *sc, struct bioc_inq *bi)
1993 {
1994 	struct mfi_conf		*cfg;
1995 	int			rv = EINVAL;
1996 
1997 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_inq\n", DEVNAME(sc));
1998 
1999 	if (mfi_get_info(sc)) {
2000 		DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_inq failed\n",
2001 		    DEVNAME(sc));
2002 		return EIO;
2003 	}
2004 
2005 	/* get figures */
2006 	cfg = malloc(sizeof *cfg, M_DEVBUF, M_WAITOK);
2007 	if (mfi_mgmt_internal(sc, MD_DCMD_CONF_GET, MFI_DATA_IN,
2008 	    sizeof *cfg, cfg, NULL, false))
2009 		goto freeme;
2010 
2011 	strlcpy(bi->bi_dev, DEVNAME(sc), sizeof(bi->bi_dev));
2012 	bi->bi_novol = cfg->mfc_no_ld + cfg->mfc_no_hs;
2013 	bi->bi_nodisk = sc->sc_info.mci_pd_disks_present;
2014 
2015 	rv = 0;
2016 freeme:
2017 	free(cfg, M_DEVBUF);
2018 	return rv;
2019 }
2020 
2021 static int
2022 mfi_ioctl_vol(struct mfi_softc *sc, struct bioc_vol *bv)
2023 {
2024 	int			i, per, rv = EINVAL;
2025 	uint8_t			mbox[MFI_MBOX_SIZE];
2026 
2027 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_vol %#x\n",
2028 	    DEVNAME(sc), bv->bv_volid);
2029 
2030 	if (mfi_mgmt_internal(sc, MR_DCMD_LD_GET_LIST, MFI_DATA_IN,
2031 	    sizeof(sc->sc_ld_list), &sc->sc_ld_list, NULL, false))
2032 		goto done;
2033 
2034 	i = bv->bv_volid;
2035 	mbox[0] = sc->sc_ld_list.mll_list[i].mll_ld.mld_target;
2036 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_vol target %#x\n",
2037 	    DEVNAME(sc), mbox[0]);
2038 
2039 	if (mfi_mgmt_internal(sc, MR_DCMD_LD_GET_INFO, MFI_DATA_IN,
2040 	    sizeof(sc->sc_ld_details), &sc->sc_ld_details, mbox, false))
2041 		goto done;
2042 
2043 	if (bv->bv_volid >= sc->sc_ld_list.mll_no_ld) {
2044 		/* go do hotspares */
2045 		rv = mfi_bio_hs(sc, bv->bv_volid, MFI_MGMT_VD, bv);
2046 		goto done;
2047 	}
2048 
2049 	strlcpy(bv->bv_dev, sc->sc_ld[i].ld_dev, sizeof(bv->bv_dev));
2050 
2051 	switch(sc->sc_ld_list.mll_list[i].mll_state) {
2052 	case MFI_LD_OFFLINE:
2053 		bv->bv_status = BIOC_SVOFFLINE;
2054 		break;
2055 
2056 	case MFI_LD_PART_DEGRADED:
2057 	case MFI_LD_DEGRADED:
2058 		bv->bv_status = BIOC_SVDEGRADED;
2059 		break;
2060 
2061 	case MFI_LD_ONLINE:
2062 		bv->bv_status = BIOC_SVONLINE;
2063 		break;
2064 
2065 	default:
2066 		bv->bv_status = BIOC_SVINVALID;
2067 		DNPRINTF(MFI_D_IOCTL, "%s: invalid logical disk state %#x\n",
2068 		    DEVNAME(sc),
2069 		    sc->sc_ld_list.mll_list[i].mll_state);
2070 	}
2071 
2072 	/* additional status can modify MFI status */
2073 	switch (sc->sc_ld_details.mld_progress.mlp_in_prog) {
2074 	case MFI_LD_PROG_CC:
2075 	case MFI_LD_PROG_BGI:
2076 		bv->bv_status = BIOC_SVSCRUB;
2077 		per = (int)sc->sc_ld_details.mld_progress.mlp_cc.mp_progress;
2078 		bv->bv_percent = (per * 100) / 0xffff;
2079 		bv->bv_seconds =
2080 		    sc->sc_ld_details.mld_progress.mlp_cc.mp_elapsed_seconds;
2081 		break;
2082 
2083 	case MFI_LD_PROG_FGI:
2084 	case MFI_LD_PROG_RECONSTRUCT:
2085 		/* nothing yet */
2086 		break;
2087 	}
2088 
2089 	/*
2090 	 * The RAID levels are determined per the SNIA DDF spec, this is only
2091 	 * a subset that is valid for the MFI contrller.
2092 	 */
2093 	bv->bv_level = sc->sc_ld_details.mld_cfg.mlc_parm.mpa_pri_raid;
2094 	if (sc->sc_ld_details.mld_cfg.mlc_parm.mpa_sec_raid ==
2095 	    MFI_DDF_SRL_SPANNED)
2096 		bv->bv_level *= 10;
2097 
2098 	bv->bv_nodisk = sc->sc_ld_details.mld_cfg.mlc_parm.mpa_no_drv_per_span *
2099 	    sc->sc_ld_details.mld_cfg.mlc_parm.mpa_span_depth;
2100 
2101 	bv->bv_size = sc->sc_ld_details.mld_size * 512; /* bytes per block */
2102 
2103 	rv = 0;
2104 done:
2105 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_vol done %x\n",
2106 	    DEVNAME(sc), rv);
2107 	return rv;
2108 }
2109 
2110 static int
2111 mfi_ioctl_disk(struct mfi_softc *sc, struct bioc_disk *bd)
2112 {
2113 	struct mfi_conf		*cfg;
2114 	struct mfi_array	*ar;
2115 	struct mfi_ld_cfg	*ld;
2116 	struct mfi_pd_details	*pd;
2117 	struct scsipi_inquiry_data *inqbuf;
2118 	char			vend[8+16+4+1];
2119 	int			i, rv = EINVAL;
2120 	int			arr, vol, disk;
2121 	uint32_t		size;
2122 	uint8_t			mbox[MFI_MBOX_SIZE];
2123 
2124 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_disk %#x\n",
2125 	    DEVNAME(sc), bd->bd_diskid);
2126 
2127 	pd = malloc(sizeof *pd, M_DEVBUF, M_WAITOK | M_ZERO);
2128 
2129 	/* send single element command to retrieve size for full structure */
2130 	cfg = malloc(sizeof *cfg, M_DEVBUF, M_WAITOK);
2131 	if (mfi_mgmt_internal(sc, MD_DCMD_CONF_GET, MFI_DATA_IN,
2132 	    sizeof *cfg, cfg, NULL, false))
2133 		goto freeme;
2134 
2135 	size = cfg->mfc_size;
2136 	free(cfg, M_DEVBUF);
2137 
2138 	/* memory for read config */
2139 	cfg = malloc(size, M_DEVBUF, M_WAITOK|M_ZERO);
2140 	if (mfi_mgmt_internal(sc, MD_DCMD_CONF_GET, MFI_DATA_IN,
2141 	    size, cfg, NULL, false))
2142 		goto freeme;
2143 
2144 	ar = cfg->mfc_array;
2145 
2146 	/* calculate offset to ld structure */
2147 	ld = (struct mfi_ld_cfg *)(
2148 	    ((uint8_t *)cfg) + offsetof(struct mfi_conf, mfc_array) +
2149 	    cfg->mfc_array_size * cfg->mfc_no_array);
2150 
2151 	vol = bd->bd_volid;
2152 
2153 	if (vol >= cfg->mfc_no_ld) {
2154 		/* do hotspares */
2155 		rv = mfi_bio_hs(sc, bd->bd_volid, MFI_MGMT_SD, bd);
2156 		goto freeme;
2157 	}
2158 
2159 	/* find corresponding array for ld */
2160 	for (i = 0, arr = 0; i < vol; i++)
2161 		arr += ld[i].mlc_parm.mpa_span_depth;
2162 
2163 	/* offset disk into pd list */
2164 	disk = bd->bd_diskid % ld[vol].mlc_parm.mpa_no_drv_per_span;
2165 
2166 	/* offset array index into the next spans */
2167 	arr += bd->bd_diskid / ld[vol].mlc_parm.mpa_no_drv_per_span;
2168 
2169 	bd->bd_target = ar[arr].pd[disk].mar_enc_slot;
2170 	switch (ar[arr].pd[disk].mar_pd_state){
2171 	case MFI_PD_UNCONFIG_GOOD:
2172 		bd->bd_status = BIOC_SDUNUSED;
2173 		break;
2174 
2175 	case MFI_PD_HOTSPARE: /* XXX dedicated hotspare part of array? */
2176 		bd->bd_status = BIOC_SDHOTSPARE;
2177 		break;
2178 
2179 	case MFI_PD_OFFLINE:
2180 		bd->bd_status = BIOC_SDOFFLINE;
2181 		break;
2182 
2183 	case MFI_PD_FAILED:
2184 		bd->bd_status = BIOC_SDFAILED;
2185 		break;
2186 
2187 	case MFI_PD_REBUILD:
2188 		bd->bd_status = BIOC_SDREBUILD;
2189 		break;
2190 
2191 	case MFI_PD_ONLINE:
2192 		bd->bd_status = BIOC_SDONLINE;
2193 		break;
2194 
2195 	case MFI_PD_UNCONFIG_BAD: /* XXX define new state in bio */
2196 	default:
2197 		bd->bd_status = BIOC_SDINVALID;
2198 		break;
2199 
2200 	}
2201 
2202 	/* get the remaining fields */
2203 	*((uint16_t *)&mbox) = ar[arr].pd[disk].mar_pd.mfp_id;
2204 	memset(pd, 0, sizeof(*pd));
2205 	if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_INFO, MFI_DATA_IN,
2206 	    sizeof *pd, pd, mbox, false))
2207 		goto freeme;
2208 
2209 	bd->bd_size = pd->mpd_size * 512; /* bytes per block */
2210 
2211 	/* if pd->mpd_enc_idx is 0 then it is not in an enclosure */
2212 	bd->bd_channel = pd->mpd_enc_idx;
2213 
2214 	inqbuf = (struct scsipi_inquiry_data *)&pd->mpd_inq_data;
2215 	memcpy(vend, inqbuf->vendor, sizeof vend - 1);
2216 	vend[sizeof vend - 1] = '\0';
2217 	strlcpy(bd->bd_vendor, vend, sizeof(bd->bd_vendor));
2218 
2219 	/* XXX find a way to retrieve serial nr from drive */
2220 	/* XXX find a way to get bd_procdev */
2221 
2222 	rv = 0;
2223 freeme:
2224 	free(pd, M_DEVBUF);
2225 	free(cfg, M_DEVBUF);
2226 
2227 	return rv;
2228 }
2229 
2230 static int
2231 mfi_ioctl_alarm(struct mfi_softc *sc, struct bioc_alarm *ba)
2232 {
2233 	uint32_t		opc, dir = MFI_DATA_NONE;
2234 	int			rv = 0;
2235 	int8_t			ret;
2236 
2237 	switch(ba->ba_opcode) {
2238 	case BIOC_SADISABLE:
2239 		opc = MR_DCMD_SPEAKER_DISABLE;
2240 		break;
2241 
2242 	case BIOC_SAENABLE:
2243 		opc = MR_DCMD_SPEAKER_ENABLE;
2244 		break;
2245 
2246 	case BIOC_SASILENCE:
2247 		opc = MR_DCMD_SPEAKER_SILENCE;
2248 		break;
2249 
2250 	case BIOC_GASTATUS:
2251 		opc = MR_DCMD_SPEAKER_GET;
2252 		dir = MFI_DATA_IN;
2253 		break;
2254 
2255 	case BIOC_SATEST:
2256 		opc = MR_DCMD_SPEAKER_TEST;
2257 		break;
2258 
2259 	default:
2260 		DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_alarm biocalarm invalid "
2261 		    "opcode %x\n", DEVNAME(sc), ba->ba_opcode);
2262 		return EINVAL;
2263 	}
2264 
2265 	if (mfi_mgmt_internal(sc, opc, dir, sizeof(ret), &ret, NULL, false))
2266 		rv = EINVAL;
2267 	else
2268 		if (ba->ba_opcode == BIOC_GASTATUS)
2269 			ba->ba_status = ret;
2270 		else
2271 			ba->ba_status = 0;
2272 
2273 	return rv;
2274 }
2275 
2276 static int
2277 mfi_ioctl_blink(struct mfi_softc *sc, struct bioc_blink *bb)
2278 {
2279 	int			i, found, rv = EINVAL;
2280 	uint8_t			mbox[MFI_MBOX_SIZE];
2281 	uint32_t		cmd;
2282 	struct mfi_pd_list	*pd;
2283 
2284 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_blink %x\n", DEVNAME(sc),
2285 	    bb->bb_status);
2286 
2287 	/* channel 0 means not in an enclosure so can't be blinked */
2288 	if (bb->bb_channel == 0)
2289 		return EINVAL;
2290 
2291 	pd = malloc(MFI_PD_LIST_SIZE, M_DEVBUF, M_WAITOK);
2292 
2293 	if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_LIST, MFI_DATA_IN,
2294 	    MFI_PD_LIST_SIZE, pd, NULL, false))
2295 		goto done;
2296 
2297 	for (i = 0, found = 0; i < pd->mpl_no_pd; i++)
2298 		if (bb->bb_channel == pd->mpl_address[i].mpa_enc_index &&
2299 		    bb->bb_target == pd->mpl_address[i].mpa_enc_slot) {
2300 		    	found = 1;
2301 			break;
2302 		}
2303 
2304 	if (!found)
2305 		goto done;
2306 
2307 	memset(mbox, 0, sizeof mbox);
2308 
2309 	*((uint16_t *)&mbox) = pd->mpl_address[i].mpa_pd_id;
2310 
2311 	switch (bb->bb_status) {
2312 	case BIOC_SBUNBLINK:
2313 		cmd = MR_DCMD_PD_UNBLINK;
2314 		break;
2315 
2316 	case BIOC_SBBLINK:
2317 		cmd = MR_DCMD_PD_BLINK;
2318 		break;
2319 
2320 	case BIOC_SBALARM:
2321 	default:
2322 		DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_blink biocblink invalid "
2323 		    "opcode %x\n", DEVNAME(sc), bb->bb_status);
2324 		goto done;
2325 	}
2326 
2327 
2328 	if (mfi_mgmt_internal(sc, cmd, MFI_DATA_NONE, 0, NULL, mbox, false))
2329 		goto done;
2330 
2331 	rv = 0;
2332 done:
2333 	free(pd, M_DEVBUF);
2334 	return rv;
2335 }
2336 
2337 static int
2338 mfi_ioctl_setstate(struct mfi_softc *sc, struct bioc_setstate *bs)
2339 {
2340 	struct mfi_pd_list	*pd;
2341 	int			i, found, rv = EINVAL;
2342 	uint8_t			mbox[MFI_MBOX_SIZE];
2343 
2344 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_setstate %x\n", DEVNAME(sc),
2345 	    bs->bs_status);
2346 
2347 	pd = malloc(MFI_PD_LIST_SIZE, M_DEVBUF, M_WAITOK);
2348 
2349 	if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_LIST, MFI_DATA_IN,
2350 	    MFI_PD_LIST_SIZE, pd, NULL, false))
2351 		goto done;
2352 
2353 	for (i = 0, found = 0; i < pd->mpl_no_pd; i++)
2354 		if (bs->bs_channel == pd->mpl_address[i].mpa_enc_index &&
2355 		    bs->bs_target == pd->mpl_address[i].mpa_enc_slot) {
2356 		    	found = 1;
2357 			break;
2358 		}
2359 
2360 	if (!found)
2361 		goto done;
2362 
2363 	memset(mbox, 0, sizeof mbox);
2364 
2365 	*((uint16_t *)&mbox) = pd->mpl_address[i].mpa_pd_id;
2366 
2367 	switch (bs->bs_status) {
2368 	case BIOC_SSONLINE:
2369 		mbox[2] = MFI_PD_ONLINE;
2370 		break;
2371 
2372 	case BIOC_SSOFFLINE:
2373 		mbox[2] = MFI_PD_OFFLINE;
2374 		break;
2375 
2376 	case BIOC_SSHOTSPARE:
2377 		mbox[2] = MFI_PD_HOTSPARE;
2378 		break;
2379 /*
2380 	case BIOC_SSREBUILD:
2381 		break;
2382 */
2383 	default:
2384 		DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_setstate invalid "
2385 		    "opcode %x\n", DEVNAME(sc), bs->bs_status);
2386 		goto done;
2387 	}
2388 
2389 
2390 	if (mfi_mgmt_internal(sc, MD_DCMD_PD_SET_STATE, MFI_DATA_NONE,
2391 	    0, NULL, mbox, false))
2392 		goto done;
2393 
2394 	rv = 0;
2395 done:
2396 	free(pd, M_DEVBUF);
2397 	return rv;
2398 }
2399 
2400 static int
2401 mfi_bio_hs(struct mfi_softc *sc, int volid, int type, void *bio_hs)
2402 {
2403 	struct mfi_conf		*cfg;
2404 	struct mfi_hotspare	*hs;
2405 	struct mfi_pd_details	*pd;
2406 	struct bioc_disk	*sdhs;
2407 	struct bioc_vol		*vdhs;
2408 	struct scsipi_inquiry_data *inqbuf;
2409 	char			vend[8+16+4+1];
2410 	int			i, rv = EINVAL;
2411 	uint32_t		size;
2412 	uint8_t			mbox[MFI_MBOX_SIZE];
2413 
2414 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs %d\n", DEVNAME(sc), volid);
2415 
2416 	if (!bio_hs)
2417 		return EINVAL;
2418 
2419 	pd = malloc(sizeof *pd, M_DEVBUF, M_WAITOK | M_ZERO);
2420 
2421 	/* send single element command to retrieve size for full structure */
2422 	cfg = malloc(sizeof *cfg, M_DEVBUF, M_WAITOK);
2423 	if (mfi_mgmt_internal(sc, MD_DCMD_CONF_GET, MFI_DATA_IN,
2424 	    sizeof *cfg, cfg, NULL, false))
2425 		goto freeme;
2426 
2427 	size = cfg->mfc_size;
2428 	free(cfg, M_DEVBUF);
2429 
2430 	/* memory for read config */
2431 	cfg = malloc(size, M_DEVBUF, M_WAITOK|M_ZERO);
2432 	if (mfi_mgmt_internal(sc, MD_DCMD_CONF_GET, MFI_DATA_IN,
2433 	    size, cfg, NULL, false))
2434 		goto freeme;
2435 
2436 	/* calculate offset to hs structure */
2437 	hs = (struct mfi_hotspare *)(
2438 	    ((uint8_t *)cfg) + offsetof(struct mfi_conf, mfc_array) +
2439 	    cfg->mfc_array_size * cfg->mfc_no_array +
2440 	    cfg->mfc_ld_size * cfg->mfc_no_ld);
2441 
2442 	if (volid < cfg->mfc_no_ld)
2443 		goto freeme; /* not a hotspare */
2444 
2445 	if (volid > (cfg->mfc_no_ld + cfg->mfc_no_hs))
2446 		goto freeme; /* not a hotspare */
2447 
2448 	/* offset into hotspare structure */
2449 	i = volid - cfg->mfc_no_ld;
2450 
2451 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs i %d volid %d no_ld %d no_hs %d "
2452 	    "hs %p cfg %p id %02x\n", DEVNAME(sc), i, volid, cfg->mfc_no_ld,
2453 	    cfg->mfc_no_hs, hs, cfg, hs[i].mhs_pd.mfp_id);
2454 
2455 	/* get pd fields */
2456 	memset(mbox, 0, sizeof mbox);
2457 	*((uint16_t *)&mbox) = hs[i].mhs_pd.mfp_id;
2458 	if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_INFO, MFI_DATA_IN,
2459 	    sizeof *pd, pd, mbox, false)) {
2460 		DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs illegal PD\n",
2461 		    DEVNAME(sc));
2462 		goto freeme;
2463 	}
2464 
2465 	switch (type) {
2466 	case MFI_MGMT_VD:
2467 		vdhs = bio_hs;
2468 		vdhs->bv_status = BIOC_SVONLINE;
2469 		vdhs->bv_size = pd->mpd_size * 512; /* bytes per block */
2470 		vdhs->bv_level = -1; /* hotspare */
2471 		vdhs->bv_nodisk = 1;
2472 		break;
2473 
2474 	case MFI_MGMT_SD:
2475 		sdhs = bio_hs;
2476 		sdhs->bd_status = BIOC_SDHOTSPARE;
2477 		sdhs->bd_size = pd->mpd_size * 512; /* bytes per block */
2478 		sdhs->bd_channel = pd->mpd_enc_idx;
2479 		sdhs->bd_target = pd->mpd_enc_slot;
2480 		inqbuf = (struct scsipi_inquiry_data *)&pd->mpd_inq_data;
2481 		memcpy(vend, inqbuf->vendor, sizeof(vend) - 1);
2482 		vend[sizeof vend - 1] = '\0';
2483 		strlcpy(sdhs->bd_vendor, vend, sizeof(sdhs->bd_vendor));
2484 		break;
2485 
2486 	default:
2487 		goto freeme;
2488 	}
2489 
2490 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs 6\n", DEVNAME(sc));
2491 	rv = 0;
2492 freeme:
2493 	free(pd, M_DEVBUF);
2494 	free(cfg, M_DEVBUF);
2495 
2496 	return rv;
2497 }
2498 
2499 static int
2500 mfi_destroy_sensors(struct mfi_softc *sc)
2501 {
2502 	if (sc->sc_sme == NULL)
2503 		return 0;
2504 	sysmon_envsys_unregister(sc->sc_sme);
2505 	sc->sc_sme = NULL;
2506 	free(sc->sc_sensor, M_DEVBUF);
2507 	return 0;
2508 }
2509 
2510 static int
2511 mfi_create_sensors(struct mfi_softc *sc)
2512 {
2513 	int i;
2514 	int nsensors = sc->sc_ld_cnt + 1;
2515 	int rv;
2516 
2517 	sc->sc_sme = sysmon_envsys_create();
2518 	sc->sc_sensor = malloc(sizeof(envsys_data_t) * nsensors,
2519 	    M_DEVBUF, M_NOWAIT | M_ZERO);
2520 	if (sc->sc_sensor == NULL) {
2521 		aprint_error_dev(sc->sc_dev, "can't allocate envsys_data_t\n");
2522 		return ENOMEM;
2523 	}
2524 
2525 	/* BBU */
2526 	sc->sc_sensor[0].units = ENVSYS_INDICATOR;
2527 	sc->sc_sensor[0].state = ENVSYS_SINVALID;
2528 	sc->sc_sensor[0].value_cur = 0;
2529 	/* Enable monitoring for BBU state changes, if present */
2530 	if (sc->sc_info.mci_hw_present & MFI_INFO_HW_BBU)
2531 		sc->sc_sensor[0].flags |= ENVSYS_FMONCRITICAL;
2532 	snprintf(sc->sc_sensor[0].desc,
2533 	    sizeof(sc->sc_sensor[0].desc), "%s BBU", DEVNAME(sc));
2534 	if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor[0]))
2535 		goto out;
2536 
2537 	for (i = 1; i < nsensors; i++) {
2538 		sc->sc_sensor[i].units = ENVSYS_DRIVE;
2539 		sc->sc_sensor[i].state = ENVSYS_SINVALID;
2540 		sc->sc_sensor[i].value_cur = ENVSYS_DRIVE_EMPTY;
2541 		/* Enable monitoring for drive state changes */
2542 		sc->sc_sensor[i].flags |= ENVSYS_FMONSTCHANGED;
2543 		/* logical drives */
2544 		snprintf(sc->sc_sensor[i].desc,
2545 		    sizeof(sc->sc_sensor[i].desc), "%s:%d",
2546 		    DEVNAME(sc), i - 1);
2547 		if (sysmon_envsys_sensor_attach(sc->sc_sme,
2548 						&sc->sc_sensor[i]))
2549 			goto out;
2550 	}
2551 
2552 	sc->sc_sme->sme_name = DEVNAME(sc);
2553 	sc->sc_sme->sme_cookie = sc;
2554 	sc->sc_sme->sme_refresh = mfi_sensor_refresh;
2555 	rv = sysmon_envsys_register(sc->sc_sme);
2556 	if (rv != 0) {
2557 		aprint_error_dev(sc->sc_dev,
2558 		    "unable to register with sysmon (rv = %d)\n", rv);
2559 		goto out;
2560 	}
2561 	return 0;
2562 
2563 out:
2564 	free(sc->sc_sensor, M_DEVBUF);
2565 	sysmon_envsys_destroy(sc->sc_sme);
2566 	sc->sc_sme = NULL;
2567 	return EINVAL;
2568 }
2569 
2570 static void
2571 mfi_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
2572 {
2573 	struct mfi_softc	*sc = sme->sme_cookie;
2574 	struct bioc_vol		bv;
2575 	int s;
2576 	int error;
2577 
2578 	if (edata->sensor >= sc->sc_ld_cnt + 1)
2579 		return;
2580 
2581 	if (edata->sensor == 0) {
2582 		/* BBU */
2583 		struct mfi_bbu_status	bbu_stat;
2584 		int bbu_status;
2585 		if ((sc->sc_info.mci_hw_present & MFI_INFO_HW_BBU) == 0)
2586 			return;
2587 
2588 		KERNEL_LOCK(1, curlwp);
2589 		s = splbio();
2590 		bbu_status = mfi_get_bbu(sc, &bbu_stat);
2591 		splx(s);
2592 		KERNEL_UNLOCK_ONE(curlwp);
2593 		switch(bbu_status) {
2594 		case MFI_BBU_GOOD:
2595 			edata->value_cur = 1;
2596 			edata->state = ENVSYS_SVALID;
2597 			if (!sc->sc_bbuok)
2598 				aprint_normal_dev(sc->sc_dev,
2599 				    "BBU state changed to good\n");
2600 			sc->sc_bbuok = true;
2601 			break;
2602 		case MFI_BBU_BAD:
2603 			edata->value_cur = 0;
2604 			edata->state = ENVSYS_SCRITICAL;
2605 			if (sc->sc_bbuok)
2606 				aprint_normal_dev(sc->sc_dev,
2607 				    "BBU state changed to bad\n");
2608 			sc->sc_bbuok = false;
2609 			break;
2610 		case MFI_BBU_UNKNOWN:
2611 		default:
2612 			edata->value_cur = 0;
2613 			edata->state = ENVSYS_SINVALID;
2614 			sc->sc_bbuok = false;
2615 			break;
2616 		}
2617 		return;
2618 	}
2619 
2620 	memset(&bv, 0, sizeof(bv));
2621 	bv.bv_volid = edata->sensor - 1;
2622 	KERNEL_LOCK(1, curlwp);
2623 	s = splbio();
2624 	error = mfi_ioctl_vol(sc, &bv);
2625 	splx(s);
2626 	KERNEL_UNLOCK_ONE(curlwp);
2627 	if (error)
2628 		return;
2629 
2630 	switch(bv.bv_status) {
2631 	case BIOC_SVOFFLINE:
2632 		edata->value_cur = ENVSYS_DRIVE_FAIL;
2633 		edata->state = ENVSYS_SCRITICAL;
2634 		break;
2635 
2636 	case BIOC_SVDEGRADED:
2637 		edata->value_cur = ENVSYS_DRIVE_PFAIL;
2638 		edata->state = ENVSYS_SCRITICAL;
2639 		break;
2640 
2641 	case BIOC_SVSCRUB:
2642 	case BIOC_SVONLINE:
2643 		edata->value_cur = ENVSYS_DRIVE_ONLINE;
2644 		edata->state = ENVSYS_SVALID;
2645 		break;
2646 
2647 	case BIOC_SVINVALID:
2648 		/* FALLTRHOUGH */
2649 	default:
2650 		edata->value_cur = 0; /* unknown */
2651 		edata->state = ENVSYS_SINVALID;
2652 	}
2653 }
2654 
2655 #endif /* NBIO > 0 */
2656 
2657 static uint32_t
2658 mfi_xscale_fw_state(struct mfi_softc *sc)
2659 {
2660 	return mfi_read(sc, MFI_OMSG0);
2661 }
2662 
2663 static void
2664 mfi_xscale_intr_dis(struct mfi_softc *sc)
2665 {
2666 	mfi_write(sc, MFI_OMSK, 0);
2667 }
2668 
2669 static void
2670 mfi_xscale_intr_ena(struct mfi_softc *sc)
2671 {
2672 	mfi_write(sc, MFI_OMSK, MFI_ENABLE_INTR);
2673 }
2674 
2675 static int
2676 mfi_xscale_intr(struct mfi_softc *sc)
2677 {
2678 	uint32_t status;
2679 
2680 	status = mfi_read(sc, MFI_OSTS);
2681 	if (!ISSET(status, MFI_OSTS_INTR_VALID))
2682 		return 0;
2683 
2684 	/* write status back to acknowledge interrupt */
2685 	mfi_write(sc, MFI_OSTS, status);
2686 	return 1;
2687 }
2688 
2689 static void
2690 mfi_xscale_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
2691 {
2692 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
2693 	    ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
2694 	    sc->sc_frames_size, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2695 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_sense),
2696 	    ccb->ccb_psense - MFIMEM_DVA(sc->sc_sense),
2697 	    MFI_SENSE_SIZE, BUS_DMASYNC_PREREAD);
2698 
2699 	mfi_write(sc, MFI_IQP, (ccb->ccb_pframe >> 3) |
2700 	    ccb->ccb_extra_frames);
2701 	ccb->ccb_state = MFI_CCB_RUNNING;
2702 }
2703 
2704 static uint32_t
2705 mfi_ppc_fw_state(struct mfi_softc *sc)
2706 {
2707 	return mfi_read(sc, MFI_OSP);
2708 }
2709 
2710 static void
2711 mfi_ppc_intr_dis(struct mfi_softc *sc)
2712 {
2713 	/* Taking a wild guess --dyoung */
2714 	mfi_write(sc, MFI_OMSK, ~(uint32_t)0x0);
2715 	mfi_write(sc, MFI_ODC, 0xffffffff);
2716 }
2717 
2718 static void
2719 mfi_ppc_intr_ena(struct mfi_softc *sc)
2720 {
2721 	mfi_write(sc, MFI_ODC, 0xffffffff);
2722 	mfi_write(sc, MFI_OMSK, ~0x80000004);
2723 }
2724 
2725 static int
2726 mfi_ppc_intr(struct mfi_softc *sc)
2727 {
2728 	uint32_t status;
2729 
2730 	status = mfi_read(sc, MFI_OSTS);
2731 	if (!ISSET(status, MFI_OSTS_PPC_INTR_VALID))
2732 		return 0;
2733 
2734 	/* write status back to acknowledge interrupt */
2735 	mfi_write(sc, MFI_ODC, status);
2736 	return 1;
2737 }
2738 
2739 static void
2740 mfi_ppc_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
2741 {
2742 	mfi_write(sc, MFI_IQP, 0x1 | ccb->ccb_pframe |
2743 	    (ccb->ccb_extra_frames << 1));
2744 	ccb->ccb_state = MFI_CCB_RUNNING;
2745 }
2746 
2747 u_int32_t
2748 mfi_gen2_fw_state(struct mfi_softc *sc)
2749 {
2750 	return (mfi_read(sc, MFI_OSP));
2751 }
2752 
2753 void
2754 mfi_gen2_intr_dis(struct mfi_softc *sc)
2755 {
2756 	mfi_write(sc, MFI_OMSK, 0xffffffff);
2757 	mfi_write(sc, MFI_ODC, 0xffffffff);
2758 }
2759 
2760 void
2761 mfi_gen2_intr_ena(struct mfi_softc *sc)
2762 {
2763 	mfi_write(sc, MFI_ODC, 0xffffffff);
2764 	mfi_write(sc, MFI_OMSK, ~MFI_OSTS_GEN2_INTR_VALID);
2765 }
2766 
2767 int
2768 mfi_gen2_intr(struct mfi_softc *sc)
2769 {
2770 	u_int32_t status;
2771 
2772 	status = mfi_read(sc, MFI_OSTS);
2773 	if (!ISSET(status, MFI_OSTS_GEN2_INTR_VALID))
2774 		return (0);
2775 
2776 	/* write status back to acknowledge interrupt */
2777 	mfi_write(sc, MFI_ODC, status);
2778 
2779 	return (1);
2780 }
2781 
2782 void
2783 mfi_gen2_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
2784 {
2785 	mfi_write(sc, MFI_IQP, 0x1 | ccb->ccb_pframe |
2786 	    (ccb->ccb_extra_frames << 1));
2787 	ccb->ccb_state = MFI_CCB_RUNNING;
2788 }
2789 
2790 u_int32_t
2791 mfi_skinny_fw_state(struct mfi_softc *sc)
2792 {
2793 	return (mfi_read(sc, MFI_OSP));
2794 }
2795 
2796 void
2797 mfi_skinny_intr_dis(struct mfi_softc *sc)
2798 {
2799 	mfi_write(sc, MFI_OMSK, 0);
2800 }
2801 
2802 void
2803 mfi_skinny_intr_ena(struct mfi_softc *sc)
2804 {
2805 	mfi_write(sc, MFI_OMSK, ~0x00000001);
2806 }
2807 
2808 int
2809 mfi_skinny_intr(struct mfi_softc *sc)
2810 {
2811 	u_int32_t status;
2812 
2813 	status = mfi_read(sc, MFI_OSTS);
2814 	if (!ISSET(status, MFI_OSTS_SKINNY_INTR_VALID))
2815 		return (0);
2816 
2817 	/* write status back to acknowledge interrupt */
2818 	mfi_write(sc, MFI_OSTS, status);
2819 
2820 	return (1);
2821 }
2822 
2823 void
2824 mfi_skinny_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
2825 {
2826 	mfi_write(sc, MFI_IQPL, 0x1 | ccb->ccb_pframe |
2827 	    (ccb->ccb_extra_frames << 1));
2828 	mfi_write(sc, MFI_IQPH, 0x00000000);
2829 	ccb->ccb_state = MFI_CCB_RUNNING;
2830 }
2831 
2832 #define MFI_FUSION_ENABLE_INTERRUPT_MASK	(0x00000008)
2833 
2834 void
2835 mfi_tbolt_intr_ena(struct mfi_softc *sc)
2836 {
2837 	mfi_write(sc, MFI_OMSK, ~MFI_FUSION_ENABLE_INTERRUPT_MASK);
2838 	mfi_read(sc, MFI_OMSK);
2839 }
2840 
2841 void
2842 mfi_tbolt_intr_dis(struct mfi_softc *sc)
2843 {
2844 	mfi_write(sc, MFI_OMSK, 0xFFFFFFFF);
2845 	mfi_read(sc, MFI_OMSK);
2846 }
2847 
2848 int
2849 mfi_tbolt_intr(struct mfi_softc *sc)
2850 {
2851 	int32_t status;
2852 
2853 	status = mfi_read(sc, MFI_OSTS);
2854 
2855 	if (ISSET(status, 0x1)) {
2856 		mfi_write(sc, MFI_OSTS, status);
2857 		mfi_read(sc, MFI_OSTS);
2858 		if (ISSET(status, MFI_STATE_CHANGE_INTERRUPT))
2859 			return 0;
2860 		return 1;
2861 	}
2862 	if (!ISSET(status, MFI_FUSION_ENABLE_INTERRUPT_MASK))
2863 		return 0;
2864 	mfi_read(sc, MFI_OSTS);
2865 	return 1;
2866 }
2867 
2868 u_int32_t
2869 mfi_tbolt_fw_state(struct mfi_softc *sc)
2870 {
2871 	return mfi_read(sc, MFI_OSP);
2872 }
2873 
2874 void
2875 mfi_tbolt_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
2876 {
2877 	if (sc->sc_MFA_enabled) {
2878 		if ((ccb->ccb_flags & MFI_CCB_F_TBOLT) == 0)
2879 			mfi_tbolt_build_mpt_ccb(ccb);
2880 		mfi_write(sc, MFI_IQPL,
2881 		    ccb->ccb_tb_request_desc.words & 0xFFFFFFFF);
2882 		mfi_write(sc, MFI_IQPH,
2883 		    ccb->ccb_tb_request_desc.words >> 32);
2884 		ccb->ccb_state = MFI_CCB_RUNNING;
2885 		return;
2886 	}
2887 	uint64_t bus_add = ccb->ccb_pframe;
2888 	bus_add |= (MFI_REQ_DESCRIPT_FLAGS_MFA
2889 	    << MFI_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
2890 	mfi_write(sc, MFI_IQPL, bus_add);
2891 	mfi_write(sc, MFI_IQPH, bus_add >> 32);
2892 	ccb->ccb_state = MFI_CCB_RUNNING;
2893 }
2894 
2895 static void
2896 mfi_tbolt_build_mpt_ccb(struct mfi_ccb *ccb)
2897 {
2898 	union mfi_mpi2_request_descriptor *req_desc = &ccb->ccb_tb_request_desc;
2899 	struct mfi_mpi2_request_raid_scsi_io *io_req = ccb->ccb_tb_io_request;
2900 	struct mpi25_ieee_sge_chain64 *mpi25_ieee_chain;
2901 
2902 	io_req->Function = MPI2_FUNCTION_PASSTHRU_IO_REQUEST;
2903 	io_req->SGLOffset0 =
2904 	    offsetof(struct mfi_mpi2_request_raid_scsi_io, SGL) / 4;
2905 	io_req->ChainOffset =
2906 	    offsetof(struct mfi_mpi2_request_raid_scsi_io, SGL) / 16;
2907 
2908 	mpi25_ieee_chain =
2909 	    (struct mpi25_ieee_sge_chain64 *)&io_req->SGL.IeeeChain;
2910 	mpi25_ieee_chain->Address = ccb->ccb_pframe;
2911 
2912 	/*
2913 	  In MFI pass thru, nextChainOffset will always be zero to
2914 	  indicate the end of the chain.
2915 	*/
2916 	mpi25_ieee_chain->Flags= MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT
2917 		| MPI2_IEEE_SGE_FLAGS_IOCPLBNTA_ADDR;
2918 
2919 	/* setting the length to the maximum length */
2920 	mpi25_ieee_chain->Length = 1024;
2921 
2922 	req_desc->header.RequestFlags = (MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO <<
2923 	    MFI_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
2924 	ccb->ccb_flags |= MFI_CCB_F_TBOLT;
2925 	bus_dmamap_sync(ccb->ccb_sc->sc_dmat,
2926 	    MFIMEM_MAP(ccb->ccb_sc->sc_tbolt_reqmsgpool),
2927 	    ccb->ccb_tb_pio_request -
2928 	     MFIMEM_DVA(ccb->ccb_sc->sc_tbolt_reqmsgpool),
2929 	    MEGASAS_THUNDERBOLT_NEW_MSG_SIZE,
2930 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2931 }
2932 
2933 /*
2934  * Description:
2935  *      This function will prepare message pools for the Thunderbolt controller
2936  */
2937 static int
2938 mfi_tbolt_init_desc_pool(struct mfi_softc *sc)
2939 {
2940 	uint32_t     offset = 0;
2941 	uint8_t      *addr = MFIMEM_KVA(sc->sc_tbolt_reqmsgpool);
2942 
2943 	/* Request Decriptors alignement restrictions */
2944 	KASSERT(((uintptr_t)addr & 0xFF) == 0);
2945 
2946 	/* Skip request message pool */
2947 	addr = &addr[MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1)];
2948 
2949 	/* Reply Frame Pool is initialized */
2950 	sc->sc_reply_frame_pool = (struct mfi_mpi2_reply_header *) addr;
2951 	KASSERT(((uintptr_t)addr & 0xFF) == 0);
2952 
2953 	offset = (uintptr_t)sc->sc_reply_frame_pool
2954 	    - (uintptr_t)MFIMEM_KVA(sc->sc_tbolt_reqmsgpool);
2955 	sc->sc_reply_frame_busaddr =
2956 	    MFIMEM_DVA(sc->sc_tbolt_reqmsgpool) + offset;
2957 
2958 	/* initializing reply address to 0xFFFFFFFF */
2959 	memset((uint8_t *)sc->sc_reply_frame_pool, 0xFF,
2960 	       (MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size));
2961 
2962 	/* Skip Reply Frame Pool */
2963 	addr += MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size;
2964 	sc->sc_reply_pool_limit = (void *)addr;
2965 
2966 	offset = MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size;
2967 	sc->sc_sg_frame_busaddr = sc->sc_reply_frame_busaddr + offset;
2968 
2969 	/* initialize the last_reply_idx to 0 */
2970 	sc->sc_last_reply_idx = 0;
2971 	offset = (sc->sc_sg_frame_busaddr + (MEGASAS_MAX_SZ_CHAIN_FRAME *
2972 	    sc->sc_max_cmds)) - MFIMEM_DVA(sc->sc_tbolt_reqmsgpool);
2973 	KASSERT(offset <= sc->sc_tbolt_reqmsgpool->am_size);
2974 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_reqmsgpool), 0,
2975 	    MFIMEM_MAP(sc->sc_tbolt_reqmsgpool)->dm_mapsize,
2976 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2977 	return 0;
2978 }
2979 
2980 /*
2981  * This routine prepare and issue INIT2 frame to the Firmware
2982  */
2983 
2984 static int
2985 mfi_tbolt_init_MFI_queue(struct mfi_softc *sc)
2986 {
2987 	struct mpi2_ioc_init_request   *mpi2IocInit;
2988 	struct mfi_init_frame		*mfi_init;
2989 	struct mfi_ccb			*ccb;
2990 	bus_addr_t			phyAddress;
2991 	mfi_address			*mfiAddressTemp;
2992 	int				s;
2993 	char				*verbuf;
2994 	char				wqbuf[10];
2995 
2996 	/* Check if initialization is already completed */
2997 	if (sc->sc_MFA_enabled) {
2998 		return 1;
2999 	}
3000 
3001 	mpi2IocInit =
3002 	    (struct mpi2_ioc_init_request *)MFIMEM_KVA(sc->sc_tbolt_ioc_init);
3003 
3004 	s = splbio();
3005 	if ((ccb = mfi_get_ccb(sc)) == NULL) {
3006 		splx(s);
3007 		return (EBUSY);
3008 	}
3009 
3010 
3011 	mfi_init = &ccb->ccb_frame->mfr_init;
3012 
3013 	memset(mpi2IocInit, 0, sizeof(struct mpi2_ioc_init_request));
3014 	mpi2IocInit->Function  = MPI2_FUNCTION_IOC_INIT;
3015 	mpi2IocInit->WhoInit   = MPI2_WHOINIT_HOST_DRIVER;
3016 
3017 	/* set MsgVersion and HeaderVersion host driver was built with */
3018 	mpi2IocInit->MsgVersion = MPI2_VERSION;
3019 	mpi2IocInit->HeaderVersion = MPI2_HEADER_VERSION;
3020 	mpi2IocInit->SystemRequestFrameSize = MEGASAS_THUNDERBOLT_NEW_MSG_SIZE/4;
3021 	mpi2IocInit->ReplyDescriptorPostQueueDepth =
3022 	    (uint16_t)sc->sc_reply_pool_size;
3023 	mpi2IocInit->ReplyFreeQueueDepth = 0; /* Not supported by MR. */
3024 
3025 	/* Get physical address of reply frame pool */
3026 	phyAddress = sc->sc_reply_frame_busaddr;
3027 	mfiAddressTemp =
3028 	    (mfi_address *)&mpi2IocInit->ReplyDescriptorPostQueueAddress;
3029 	mfiAddressTemp->u.addressLow = (uint32_t)phyAddress;
3030 	mfiAddressTemp->u.addressHigh = (uint32_t)((uint64_t)phyAddress >> 32);
3031 
3032 	/* Get physical address of request message pool */
3033 	phyAddress =  MFIMEM_DVA(sc->sc_tbolt_reqmsgpool);
3034 	mfiAddressTemp = (mfi_address *)&mpi2IocInit->SystemRequestFrameBaseAddress;
3035 	mfiAddressTemp->u.addressLow = (uint32_t)phyAddress;
3036 	mfiAddressTemp->u.addressHigh = (uint32_t)((uint64_t)phyAddress >> 32);
3037 
3038 	mpi2IocInit->ReplyFreeQueueAddress =  0; /* Not supported by MR. */
3039 	mpi2IocInit->TimeStamp = time_uptime;
3040 
3041 	verbuf = MFIMEM_KVA(sc->sc_tbolt_verbuf);
3042 	snprintf(verbuf, strlen(MEGASAS_VERSION) + 2, "%s\n",
3043                 MEGASAS_VERSION);
3044 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_verbuf), 0,
3045 	    MFIMEM_MAP(sc->sc_tbolt_verbuf)->dm_mapsize, BUS_DMASYNC_PREWRITE);
3046 	mfi_init->driver_ver_lo = htole32(MFIMEM_DVA(sc->sc_tbolt_verbuf));
3047 	mfi_init->driver_ver_hi =
3048 		    htole32((uint64_t)MFIMEM_DVA(sc->sc_tbolt_verbuf) >> 32);
3049 
3050 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_ioc_init), 0,
3051 	    MFIMEM_MAP(sc->sc_tbolt_ioc_init)->dm_mapsize,
3052 	    BUS_DMASYNC_PREWRITE);
3053 	/* Get the physical address of the mpi2 ioc init command */
3054 	phyAddress =  MFIMEM_DVA(sc->sc_tbolt_ioc_init);
3055 	mfi_init->mif_qinfo_new_addr_lo = htole32(phyAddress);
3056 	mfi_init->mif_qinfo_new_addr_hi = htole32((uint64_t)phyAddress >> 32);
3057 
3058 	mfi_init->mif_header.mfh_cmd = MFI_CMD_INIT;
3059 	mfi_init->mif_header.mfh_data_len = sizeof(struct mpi2_ioc_init_request);
3060 	if (mfi_poll(ccb) != 0) {
3061 		aprint_error_dev(sc->sc_dev, "failed to send IOC init2 "
3062 		    "command at 0x%" PRIx64 "\n",
3063 		    (uint64_t)ccb->ccb_pframe);
3064 		splx(s);
3065 		return 1;
3066 	}
3067 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_verbuf), 0,
3068 	    MFIMEM_MAP(sc->sc_tbolt_verbuf)->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3069 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_ioc_init), 0,
3070 	    MFIMEM_MAP(sc->sc_tbolt_ioc_init)->dm_mapsize,
3071 	    BUS_DMASYNC_POSTWRITE);
3072 	mfi_put_ccb(ccb);
3073 	splx(s);
3074 
3075 	if (mfi_init->mif_header.mfh_cmd_status == 0) {
3076 		sc->sc_MFA_enabled = 1;
3077 	}
3078 	else {
3079 		aprint_error_dev(sc->sc_dev, "Init command Failed %x\n",
3080 		    mfi_init->mif_header.mfh_cmd_status);
3081 		return 1;
3082 	}
3083 
3084 	snprintf(wqbuf, sizeof(wqbuf), "%swq", DEVNAME(sc));
3085 	if (workqueue_create(&sc->sc_ldsync_wq, wqbuf, mfi_tbolt_sync_map_info,
3086 	    sc, PRIBIO, IPL_BIO, 0) != 0) {
3087 		aprint_error_dev(sc->sc_dev, "workqueue_create failed\n");
3088 		return 1;
3089 	}
3090 	workqueue_enqueue(sc->sc_ldsync_wq, &sc->sc_ldsync_wk, NULL);
3091 	return 0;
3092 }
3093 
3094 int
3095 mfi_tbolt_intrh(void *arg)
3096 {
3097 	struct mfi_softc	*sc = arg;
3098 	struct mfi_ccb		*ccb;
3099 	union mfi_mpi2_reply_descriptor *desc;
3100 	int smid, num_completed;
3101 
3102 	if (!mfi_tbolt_intr(sc))
3103 		return 0;
3104 
3105 	DNPRINTF(MFI_D_INTR, "%s: mfi_tbolt_intrh %#lx %#lx\n", DEVNAME(sc),
3106 	    (u_long)sc, (u_long)sc->sc_last_reply_idx);
3107 
3108 	KASSERT(sc->sc_last_reply_idx < sc->sc_reply_pool_size);
3109 
3110 	desc = (union mfi_mpi2_reply_descriptor *)
3111 	    ((uintptr_t)sc->sc_reply_frame_pool +
3112 	     sc->sc_last_reply_idx * MEGASAS_THUNDERBOLT_REPLY_SIZE);
3113 
3114 	bus_dmamap_sync(sc->sc_dmat,
3115 	    MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
3116 	    MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1),
3117 	    MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size,
3118 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3119 	num_completed = 0;
3120 	while ((desc->header.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK) !=
3121 	    MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
3122 		smid = desc->header.SMID;
3123 		KASSERT(smid > 0 && smid <= sc->sc_max_cmds);
3124 		ccb = &sc->sc_ccb[smid - 1];
3125 		DNPRINTF(MFI_D_INTR,
3126 		    "%s: mfi_tbolt_intr SMID %#x reply_idx %#x "
3127 		    "desc %#" PRIx64 " ccb %p\n", DEVNAME(sc), smid,
3128 		    sc->sc_last_reply_idx, desc->words, ccb);
3129 		KASSERT(ccb->ccb_state == MFI_CCB_RUNNING);
3130 		if (ccb->ccb_flags & MFI_CCB_F_TBOLT_IO &&
3131 		    ccb->ccb_tb_io_request->ChainOffset != 0) {
3132 			bus_dmamap_sync(sc->sc_dmat,
3133 			    MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
3134 			    ccb->ccb_tb_psg_frame -
3135 				MFIMEM_DVA(sc->sc_tbolt_reqmsgpool),
3136 			    MEGASAS_MAX_SZ_CHAIN_FRAME,  BUS_DMASYNC_POSTREAD);
3137 		}
3138 		if (ccb->ccb_flags & MFI_CCB_F_TBOLT_IO) {
3139 			bus_dmamap_sync(sc->sc_dmat,
3140 			    MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
3141 			    ccb->ccb_tb_pio_request -
3142 				MFIMEM_DVA(sc->sc_tbolt_reqmsgpool),
3143 			    MEGASAS_THUNDERBOLT_NEW_MSG_SIZE,
3144 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3145 		}
3146 		if (ccb->ccb_done)
3147 			ccb->ccb_done(ccb);
3148 		else
3149 			ccb->ccb_state = MFI_CCB_DONE;
3150 		sc->sc_last_reply_idx++;
3151 		if (sc->sc_last_reply_idx >= sc->sc_reply_pool_size) {
3152 			sc->sc_last_reply_idx = 0;
3153 		}
3154 		desc->words = ~0x0;
3155 		/* Get the next reply descriptor */
3156 		desc = (union mfi_mpi2_reply_descriptor *)
3157 		    ((uintptr_t)sc->sc_reply_frame_pool +
3158 		     sc->sc_last_reply_idx * MEGASAS_THUNDERBOLT_REPLY_SIZE);
3159 		num_completed++;
3160 	}
3161 	if (num_completed == 0)
3162 		return 0;
3163 
3164 	bus_dmamap_sync(sc->sc_dmat,
3165 	    MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
3166 	    MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1),
3167 	    MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size,
3168 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3169 	mfi_write(sc, MFI_RPI, sc->sc_last_reply_idx);
3170 	return 1;
3171 }
3172 
3173 
3174 int
3175 mfi_tbolt_scsi_ld_io(struct mfi_ccb *ccb, struct scsipi_xfer *xs,
3176     uint64_t blockno, uint32_t blockcnt)
3177 {
3178 	struct scsipi_periph *periph = xs->xs_periph;
3179 	struct mfi_mpi2_request_raid_scsi_io    *io_req;
3180 	int sge_count;
3181 
3182 	DNPRINTF(MFI_D_CMD, "%s: mfi_tbolt_scsi_ld_io: %d\n",
3183 	    device_xname(periph->periph_channel->chan_adapter->adapt_dev),
3184 	    periph->periph_target);
3185 
3186 	if (!xs->data)
3187 		return 1;
3188 
3189 	ccb->ccb_done = mfi_tbolt_scsi_ld_done;
3190 	ccb->ccb_xs = xs;
3191 	ccb->ccb_data = xs->data;
3192 	ccb->ccb_len = xs->datalen;
3193 
3194 	io_req = ccb->ccb_tb_io_request;
3195 
3196 	/* Just the CDB length,rest of the Flags are zero */
3197 	io_req->IoFlags = xs->cmdlen;
3198 	memset(io_req->CDB.CDB32, 0, 32);
3199 	memcpy(io_req->CDB.CDB32, &xs->cmdstore, xs->cmdlen);
3200 
3201 	io_req->RaidContext.TargetID = periph->periph_target;
3202 	io_req->RaidContext.Status = 0;
3203 	io_req->RaidContext.exStatus = 0;
3204 	io_req->RaidContext.timeoutValue = MFI_FUSION_FP_DEFAULT_TIMEOUT;
3205 	io_req->Function = MPI2_FUNCTION_LD_IO_REQUEST;
3206 	io_req->DevHandle = periph->periph_target;
3207 
3208 	ccb->ccb_tb_request_desc.header.RequestFlags =
3209 	    (MFI_REQ_DESCRIPT_FLAGS_LD_IO << MFI_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
3210 	io_req->DataLength = blockcnt * MFI_SECTOR_LEN;
3211 
3212 	if (xs->xs_control & XS_CTL_DATA_IN) {
3213 		io_req->Control = MPI2_SCSIIO_CONTROL_READ;
3214 		ccb->ccb_direction = MFI_DATA_IN;
3215 	} else {
3216 		io_req->Control = MPI2_SCSIIO_CONTROL_WRITE;
3217 		ccb->ccb_direction = MFI_DATA_OUT;
3218 	}
3219 
3220 	sge_count = mfi_tbolt_create_sgl(ccb,
3221 	    (xs->xs_control & XS_CTL_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK
3222 	    );
3223 	if (sge_count < 0)
3224 		return 1;
3225 	KASSERT(sge_count <= ccb->ccb_sc->sc_max_sgl);
3226 	io_req->RaidContext.numSGE = sge_count;
3227 	io_req->SGLFlags = MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
3228 	io_req->SGLOffset0 =
3229 	    offsetof(struct mfi_mpi2_request_raid_scsi_io, SGL) / 4;
3230 
3231 	io_req->SenseBufferLowAddress = htole32(ccb->ccb_psense);
3232 	io_req->SenseBufferLength = MFI_SENSE_SIZE;
3233 
3234 	ccb->ccb_flags |= MFI_CCB_F_TBOLT | MFI_CCB_F_TBOLT_IO;
3235 	bus_dmamap_sync(ccb->ccb_sc->sc_dmat,
3236 	    MFIMEM_MAP(ccb->ccb_sc->sc_tbolt_reqmsgpool),
3237 	    ccb->ccb_tb_pio_request -
3238 	     MFIMEM_DVA(ccb->ccb_sc->sc_tbolt_reqmsgpool),
3239 	    MEGASAS_THUNDERBOLT_NEW_MSG_SIZE,
3240 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3241 
3242 	return 0;
3243 }
3244 
3245 
3246 static void
3247 mfi_tbolt_scsi_ld_done(struct mfi_ccb *ccb)
3248 {
3249 	struct mfi_mpi2_request_raid_scsi_io *io_req = ccb->ccb_tb_io_request;
3250 	mfi_scsi_xs_done(ccb, io_req->RaidContext.Status,
3251 	    io_req->RaidContext.exStatus);
3252 }
3253 
3254 static int
3255 mfi_tbolt_create_sgl(struct mfi_ccb *ccb, int flags)
3256 {
3257 	struct mfi_softc	*sc = ccb->ccb_sc;
3258 	bus_dma_segment_t	*sgd;
3259 	int			error, i, sge_idx, sge_count;
3260 	struct mfi_mpi2_request_raid_scsi_io *io_req;
3261 	struct mpi25_ieee_sge_chain64 *sgl_ptr;
3262 
3263 	DNPRINTF(MFI_D_DMA, "%s: mfi_tbolt_create_sgl %#lx\n", DEVNAME(sc),
3264 	    (u_long)ccb->ccb_data);
3265 
3266 	if (!ccb->ccb_data)
3267 		return -1;
3268 
3269 	KASSERT(flags == BUS_DMA_NOWAIT || !cpu_intr_p());
3270 	error = bus_dmamap_load(sc->sc_datadmat, ccb->ccb_dmamap,
3271 	    ccb->ccb_data, ccb->ccb_len, NULL, flags);
3272 	if (error) {
3273 		if (error == EFBIG)
3274 			aprint_error_dev(sc->sc_dev, "more than %d dma segs\n",
3275 			    sc->sc_max_sgl);
3276 		else
3277 			aprint_error_dev(sc->sc_dev,
3278 			    "error %d loading dma map\n", error);
3279 		return -1;
3280 	}
3281 
3282 	io_req = ccb->ccb_tb_io_request;
3283 	sgl_ptr = &io_req->SGL.IeeeChain.Chain64;
3284 	sge_count = ccb->ccb_dmamap->dm_nsegs;
3285 	sgd = ccb->ccb_dmamap->dm_segs;
3286 	KASSERT(sge_count <= sc->sc_max_sgl);
3287 	KASSERT(sge_count <=
3288 	    (MEGASAS_THUNDERBOLT_MAX_SGE_IN_MAINMSG - 1 +
3289 	     MEGASAS_THUNDERBOLT_MAX_SGE_IN_CHAINMSG));
3290 
3291 	if (sge_count > MEGASAS_THUNDERBOLT_MAX_SGE_IN_MAINMSG) {
3292 		/* One element to store the chain info */
3293 		sge_idx = MEGASAS_THUNDERBOLT_MAX_SGE_IN_MAINMSG - 1;
3294 		DNPRINTF(MFI_D_DMA,
3295 		    "mfi sge_idx %d sge_count %d io_req paddr 0x%" PRIx64 "\n",
3296 		    sge_idx, sge_count, ccb->ccb_tb_pio_request);
3297 	} else {
3298 		sge_idx = sge_count;
3299 	}
3300 
3301 	for (i = 0; i < sge_idx; i++) {
3302 		sgl_ptr->Address = htole64(sgd[i].ds_addr);
3303 		sgl_ptr->Length = htole32(sgd[i].ds_len);
3304 		sgl_ptr->Flags = 0;
3305 		if (sge_idx < sge_count) {
3306 			DNPRINTF(MFI_D_DMA,
3307 			    "sgl %p %d 0x%" PRIx64 " len 0x%" PRIx32
3308 			    " flags 0x%x\n", sgl_ptr, i,
3309 			    sgl_ptr->Address, sgl_ptr->Length,
3310 			    sgl_ptr->Flags);
3311 		}
3312 		sgl_ptr++;
3313 	}
3314 	io_req->ChainOffset = 0;
3315 	if (sge_idx < sge_count) {
3316 		struct mpi25_ieee_sge_chain64 *sg_chain;
3317 		io_req->ChainOffset = MEGASAS_THUNDERBOLT_CHAIN_OFF_MAINMSG;
3318 		sg_chain = sgl_ptr;
3319 		/* Prepare chain element */
3320 		sg_chain->NextChainOffset = 0;
3321 		sg_chain->Flags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
3322 		    MPI2_IEEE_SGE_FLAGS_IOCPLBNTA_ADDR);
3323 		sg_chain->Length =  (sizeof(mpi2_sge_io_union) *
3324 		    (sge_count - sge_idx));
3325 		sg_chain->Address = ccb->ccb_tb_psg_frame;
3326 		DNPRINTF(MFI_D_DMA,
3327 		    "sgl %p chain 0x%" PRIx64 " len 0x%" PRIx32
3328 		    " flags 0x%x\n", sg_chain, sg_chain->Address,
3329 		    sg_chain->Length, sg_chain->Flags);
3330 		sgl_ptr = &ccb->ccb_tb_sg_frame->IeeeChain.Chain64;
3331 		for (; i < sge_count; i++) {
3332 			sgl_ptr->Address = htole64(sgd[i].ds_addr);
3333 			sgl_ptr->Length = htole32(sgd[i].ds_len);
3334 			sgl_ptr->Flags = 0;
3335 			DNPRINTF(MFI_D_DMA,
3336 			    "sgl %p %d 0x%" PRIx64 " len 0x%" PRIx32
3337 			    " flags 0x%x\n", sgl_ptr, i, sgl_ptr->Address,
3338 			    sgl_ptr->Length, sgl_ptr->Flags);
3339 			sgl_ptr++;
3340 		}
3341 		bus_dmamap_sync(sc->sc_dmat,
3342 		    MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
3343 		    ccb->ccb_tb_psg_frame - MFIMEM_DVA(sc->sc_tbolt_reqmsgpool),
3344 		    MEGASAS_MAX_SZ_CHAIN_FRAME,  BUS_DMASYNC_PREREAD);
3345 	}
3346 
3347 	if (ccb->ccb_direction == MFI_DATA_IN) {
3348 		bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
3349 		    ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3350 	} else {
3351 		bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
3352 		    ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3353 	}
3354 	return sge_count;
3355 }
3356 
3357 /*
3358  * The ThunderBolt HW has an option for the driver to directly
3359  * access the underlying disks and operate on the RAID.  To
3360  * do this there needs to be a capability to keep the RAID controller
3361  * and driver in sync.  The FreeBSD driver does not take advantage
3362  * of this feature since it adds a lot of complexity and slows down
3363  * performance.  Performance is gained by using the controller's
3364  * cache etc.
3365  *
3366  * Even though this driver doesn't access the disks directly, an
3367  * AEN like command is used to inform the RAID firmware to "sync"
3368  * with all LD's via the MFI_DCMD_LD_MAP_GET_INFO command.  This
3369  * command in write mode will return when the RAID firmware has
3370  * detected a change to the RAID state.  Examples of this type
3371  * of change are removing a disk.  Once the command returns then
3372  * the driver needs to acknowledge this and "sync" all LD's again.
3373  * This repeats until we shutdown.  Then we need to cancel this
3374  * pending command.
3375  *
3376  * If this is not done right the RAID firmware will not remove a
3377  * pulled drive and the RAID won't go degraded etc.  Effectively,
3378  * stopping any RAID mangement to functions.
3379  *
3380  * Doing another LD sync, requires the use of an event since the
3381  * driver needs to do a mfi_wait_command and can't do that in an
3382  * interrupt thread.
3383  *
3384  * The driver could get the RAID state via the MFI_DCMD_LD_MAP_GET_INFO
3385  * That requires a bunch of structure and it is simplier to just do
3386  * the MFI_DCMD_LD_GET_LIST versus walking the RAID map.
3387  */
3388 
3389 void
3390 mfi_tbolt_sync_map_info(struct work *w, void *v)
3391 {
3392 	struct mfi_softc *sc = v;
3393 	int i;
3394 	struct mfi_ccb *ccb = NULL;
3395 	uint8_t mbox[MFI_MBOX_SIZE];
3396 	struct mfi_ld *ld_sync = NULL;
3397 	size_t ld_size;
3398 	int s;
3399 
3400 	DNPRINTF(MFI_D_SYNC, "%s: mfi_tbolt_sync_map_info\n", DEVNAME(sc));
3401 again:
3402 	s = splbio();
3403 	if (sc->sc_ldsync_ccb != NULL) {
3404 		splx(s);
3405 		return;
3406 	}
3407 
3408 	if (mfi_mgmt_internal(sc, MR_DCMD_LD_GET_LIST, MFI_DATA_IN,
3409 	    sizeof(sc->sc_ld_list), &sc->sc_ld_list, NULL, false)) {
3410 		aprint_error_dev(sc->sc_dev, "MR_DCMD_LD_GET_LIST failed\n");
3411 		goto err;
3412 	}
3413 
3414 	ld_size = sizeof(*ld_sync) * sc->sc_ld_list.mll_no_ld;
3415 
3416 	ld_sync = (struct mfi_ld *) malloc(ld_size, M_DEVBUF,
3417 	     M_WAITOK | M_ZERO);
3418 	if (ld_sync == NULL) {
3419 		aprint_error_dev(sc->sc_dev, "Failed to allocate sync\n");
3420 		goto err;
3421 	}
3422 	for (i = 0; i < sc->sc_ld_list.mll_no_ld; i++) {
3423 		ld_sync[i] = sc->sc_ld_list.mll_list[i].mll_ld;
3424 	}
3425 
3426 	if ((ccb = mfi_get_ccb(sc)) == NULL) {
3427 		aprint_error_dev(sc->sc_dev, "Failed to get sync command\n");
3428 		free(ld_sync, M_DEVBUF);
3429 		goto err;
3430 	}
3431 	sc->sc_ldsync_ccb = ccb;
3432 
3433 	memset(mbox, 0, MFI_MBOX_SIZE);
3434 	mbox[0] = sc->sc_ld_list.mll_no_ld;
3435 	mbox[1] = MFI_DCMD_MBOX_PEND_FLAG;
3436 	if (mfi_mgmt(ccb, NULL, MR_DCMD_LD_MAP_GET_INFO, MFI_DATA_OUT,
3437 	    ld_size, ld_sync, mbox)) {
3438 		aprint_error_dev(sc->sc_dev, "Failed to create sync command\n");
3439 		goto err;
3440 	}
3441 	/*
3442 	 * we won't sleep on this command, so we have to override
3443 	 * the callback set up by mfi_mgmt()
3444 	 */
3445 	ccb->ccb_done = mfi_sync_map_complete;
3446 
3447 	mfi_post(sc, ccb);
3448 	splx(s);
3449 	return;
3450 
3451 err:
3452 	if (ld_sync)
3453 		free(ld_sync, M_DEVBUF);
3454 	if (ccb)
3455 		mfi_put_ccb(ccb);
3456 	sc->sc_ldsync_ccb = NULL;
3457 	splx(s);
3458 	kpause("ldsyncp", 0, hz, NULL);
3459 	goto again;
3460 }
3461 
3462 static void
3463 mfi_sync_map_complete(struct mfi_ccb *ccb)
3464 {
3465 	struct mfi_softc *sc = ccb->ccb_sc;
3466 	bool aborted = !sc->sc_running;
3467 
3468 	DNPRINTF(MFI_D_SYNC, "%s: mfi_sync_map_complete\n",
3469 	    DEVNAME(ccb->ccb_sc));
3470 	KASSERT(sc->sc_ldsync_ccb == ccb);
3471 	mfi_mgmt_done(ccb);
3472 	free(ccb->ccb_data, M_DEVBUF);
3473 	if (ccb->ccb_flags & MFI_CCB_F_ERR) {
3474 		aprint_error_dev(sc->sc_dev, "sync command failed\n");
3475 		aborted = true;
3476 	}
3477 	mfi_put_ccb(ccb);
3478 	sc->sc_ldsync_ccb = NULL;
3479 
3480 	/* set it up again so the driver can catch more events */
3481 	if (!aborted) {
3482 		workqueue_enqueue(sc->sc_ldsync_wq, &sc->sc_ldsync_wk, NULL);
3483 	}
3484 }
3485 
3486 static int
3487 mfifopen(dev_t dev, int flag, int mode, struct lwp *l)
3488 {
3489 	struct mfi_softc *sc;
3490 
3491 	if ((sc = device_lookup_private(&mfi_cd, minor(dev))) == NULL)
3492 		return (ENXIO);
3493 	return (0);
3494 }
3495 
3496 static int
3497 mfifclose(dev_t dev, int flag, int mode, struct lwp *l)
3498 {
3499 	return (0);
3500 }
3501 
3502 static int
3503 mfifioctl(dev_t dev, u_long cmd, void *data, int flag,
3504     struct lwp *l)
3505 {
3506 	struct mfi_softc *sc;
3507 	struct mfi_ioc_packet *ioc = data;
3508 	uint8_t *udata;
3509 	struct mfi_ccb *ccb = NULL;
3510 	int ctx, i, s, error;
3511 	union mfi_sense_ptr sense_ptr;
3512 
3513 	switch(cmd) {
3514 	case MFI_CMD:
3515 		sc = device_lookup_private(&mfi_cd, ioc->mfi_adapter_no);
3516 		break;
3517 	default:
3518 		return ENOTTY;
3519 	}
3520 	if (sc == NULL)
3521 		return (ENXIO);
3522 	if (sc->sc_opened)
3523 		return (EBUSY);
3524 
3525 	switch(cmd) {
3526 	case MFI_CMD:
3527 		error = kauth_authorize_device_passthru(l->l_cred, dev,
3528 		    KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
3529 		if (error)
3530 			return error;
3531 		if (ioc->mfi_sge_count > MAX_IOCTL_SGE)
3532 			return EINVAL;
3533 		s = splbio();
3534 		if ((ccb = mfi_get_ccb(sc)) == NULL)
3535 			return ENOMEM;
3536 		ccb->ccb_data = NULL;
3537 		ctx = ccb->ccb_frame->mfr_header.mfh_context;
3538 		memcpy(ccb->ccb_frame, ioc->mfi_frame.raw,
3539 		   sizeof(*ccb->ccb_frame));
3540 		ccb->ccb_frame->mfr_header.mfh_context = ctx;
3541 		ccb->ccb_frame->mfr_header.mfh_scsi_status = 0;
3542 		ccb->ccb_frame->mfr_header.mfh_pad0 = 0;
3543 		ccb->ccb_frame_size =
3544 		    (sizeof(union mfi_sgl) * ioc->mfi_sge_count) +
3545 		    ioc->mfi_sgl_off;
3546 		if (ioc->mfi_sge_count > 0) {
3547 			ccb->ccb_sgl = (union mfi_sgl *)
3548 			    &ccb->ccb_frame->mfr_bytes[ioc->mfi_sgl_off];
3549 		}
3550 		if (ccb->ccb_frame->mfr_header.mfh_flags & MFI_FRAME_DIR_READ)
3551 			ccb->ccb_direction = MFI_DATA_IN;
3552 		if (ccb->ccb_frame->mfr_header.mfh_flags & MFI_FRAME_DIR_WRITE)
3553 			ccb->ccb_direction = MFI_DATA_OUT;
3554 		ccb->ccb_len = ccb->ccb_frame->mfr_header.mfh_data_len;
3555 		if (ccb->ccb_len > MAXPHYS) {
3556 			error = ENOMEM;
3557 			goto out;
3558 		}
3559 		if (ccb->ccb_len &&
3560 		    (ccb->ccb_direction & (MFI_DATA_IN | MFI_DATA_OUT)) != 0) {
3561 			udata = malloc(ccb->ccb_len, M_DEVBUF, M_WAITOK|M_ZERO);
3562 			if (udata == NULL) {
3563 				error = ENOMEM;
3564 				goto out;
3565 			}
3566 			ccb->ccb_data = udata;
3567 			if (ccb->ccb_direction & MFI_DATA_OUT) {
3568 				for (i = 0; i < ioc->mfi_sge_count; i++) {
3569 					error = copyin(ioc->mfi_sgl[i].iov_base,
3570 					    udata, ioc->mfi_sgl[i].iov_len);
3571 					if (error)
3572 						goto out;
3573 					udata = &udata[
3574 					    ioc->mfi_sgl[i].iov_len];
3575 				}
3576 			}
3577 			if (mfi_create_sgl(ccb, BUS_DMA_WAITOK)) {
3578 				error = EIO;
3579 				goto out;
3580 			}
3581 		}
3582 		if (ccb->ccb_frame->mfr_header.mfh_cmd == MFI_CMD_PD_SCSI_IO) {
3583 			ccb->ccb_frame->mfr_io.mif_sense_addr_lo =
3584 			    htole32(ccb->ccb_psense);
3585 			ccb->ccb_frame->mfr_io.mif_sense_addr_hi = 0;
3586 		}
3587 		ccb->ccb_done = mfi_mgmt_done;
3588 		mfi_post(sc, ccb);
3589 		while (ccb->ccb_state != MFI_CCB_DONE)
3590 			tsleep(ccb, PRIBIO, "mfi_fioc", 0);
3591 
3592 		if (ccb->ccb_direction & MFI_DATA_IN) {
3593 			udata = ccb->ccb_data;
3594 			for (i = 0; i < ioc->mfi_sge_count; i++) {
3595 				error = copyout(udata,
3596 				    ioc->mfi_sgl[i].iov_base,
3597 				    ioc->mfi_sgl[i].iov_len);
3598 				if (error)
3599 					goto out;
3600 				udata = &udata[
3601 				    ioc->mfi_sgl[i].iov_len];
3602 			}
3603 		}
3604 		if (ioc->mfi_sense_len) {
3605 			memcpy(&sense_ptr.sense_ptr_data[0],
3606 			&ioc->mfi_frame.raw[ioc->mfi_sense_off],
3607 			sizeof(sense_ptr.sense_ptr_data));
3608 			error = copyout(ccb->ccb_sense,
3609 			    sense_ptr.user_space,
3610 			    sizeof(sense_ptr.sense_ptr_data));
3611 			if (error)
3612 				goto out;
3613 		}
3614 		memcpy(ioc->mfi_frame.raw, ccb->ccb_frame,
3615 		   sizeof(*ccb->ccb_frame));
3616 		break;
3617 	default:
3618 		printf("mfifioctl unhandled cmd 0x%lx\n", cmd);
3619 		return ENOTTY;
3620 	}
3621 
3622 out:
3623 	if (ccb->ccb_data)
3624 		free(ccb->ccb_data, M_DEVBUF);
3625 	if (ccb)
3626 		mfi_put_ccb(ccb);
3627 	splx(s);
3628 	return error;
3629 }
3630