1 /* $NetBSD: isp_target.c,v 1.5 2000/07/05 22:25:34 mjacob Exp $ */ 2 /* 3 * Machine and OS Independent Target Mode Code for the Qlogic SCSI/FC adapters. 4 * 5 * Copyright (c) 1999 by Matthew Jacob 6 * All rights reserved. 7 * mjacob@feral.com 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice immediately at the beginning of the file, without modification, 14 * this list of conditions, and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. The name of the author may not be used to endorse or promote products 19 * derived from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 25 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 /* 35 * Include header file appropriate for platform we're building on. 36 */ 37 38 #ifdef __NetBSD__ 39 #include <dev/ic/isp_netbsd.h> 40 #endif 41 #ifdef __FreeBSD__ 42 #include <dev/isp/isp_freebsd.h> 43 #endif 44 #ifdef __OpenBSD__ 45 #include <dev/ic/isp_openbsd.h> 46 #endif 47 #ifdef __linux__ 48 #include "isp_linux.h" 49 #endif 50 51 #ifdef ISP_TARGET_MODE 52 int isp_tdebug = 0; 53 54 static void isp_got_msg __P((struct ispsoftc *, int, in_entry_t *)); 55 static void isp_got_msg_fc __P((struct ispsoftc *, int, in_fcentry_t *)); 56 static void isp_notify_ack __P((struct ispsoftc *, void *)); 57 static void isp_handle_atio(struct ispsoftc *, at_entry_t *); 58 static void isp_handle_atio2(struct ispsoftc *, at2_entry_t *); 59 static void isp_handle_ctio(struct ispsoftc *, ct_entry_t *); 60 static void isp_handle_ctio2(struct ispsoftc *, ct2_entry_t *); 61 62 /* 63 * The Qlogic driver gets an interrupt to look at response queue entries. 64 * Some of these are status completions for initiatior mode commands, but 65 * if target mode is enabled, we get a whole wad of response queue entries 66 * to be handled here. 67 * 68 * Basically the split into 3 main groups: Lun Enable/Modification responses, 69 * SCSI Command processing, and Immediate Notification events. 70 * 71 * You start by writing a request queue entry to enable target mode (and 72 * establish some resource limitations which you can modify later). 73 * The f/w responds with a LUN ENABLE or LUN MODIFY response with 74 * the status of this action. If the enable was successful, you can expect... 75 * 76 * Response queue entries with SCSI commands encapsulate show up in an ATIO 77 * (Accept Target IO) type- sometimes with enough info to stop the command at 78 * this level. Ultimately the driver has to feed back to the f/w's request 79 * queue a sequence of CTIOs (continue target I/O) that describe data to 80 * be moved and/or status to be sent) and finally finishing with sending 81 * to the f/w's response queue an ATIO which then completes the handshake 82 * with the f/w for that command. There's a lot of variations on this theme, 83 * including flags you can set in the CTIO for the Qlogic 2X00 fibre channel 84 * cards that 'auto-replenish' the f/w's ATIO count, but this is the basic 85 * gist of it. 86 * 87 * The third group that can show up in the response queue are Immediate 88 * Notification events. These include things like notifications of SCSI bus 89 * resets, or Bus Device Reset messages or other messages received. This 90 * a classic oddbins area. It can get a little wierd because you then turn 91 * around and acknowledge the Immediate Notify by writing an entry onto the 92 * request queue and then the f/w turns around and gives you an acknowledgement 93 * to *your* acknowledgement on the response queue (the idea being to let 94 * the f/w tell you when the event is *really* over I guess). 95 * 96 */ 97 98 99 /* 100 * A new response queue entry has arrived. The interrupt service code 101 * has already swizzled it into the platform dependent from canonical form. 102 * 103 * Because of the way this driver is designed, unfortunately most of the 104 * actual synchronization work has to be done in the platform specific 105 * code- we have no synchroniation primitives in the common code. 106 */ 107 108 int 109 isp_target_notify(isp, vptr, optrp) 110 struct ispsoftc *isp; 111 void *vptr; 112 u_int16_t *optrp; 113 { 114 u_int16_t status, seqid; 115 union { 116 at_entry_t *atiop; 117 at2_entry_t *at2iop; 118 ct_entry_t *ctiop; 119 ct2_entry_t *ct2iop; 120 lun_entry_t *lunenp; 121 in_entry_t *inotp; 122 in_fcentry_t *inot_fcp; 123 na_entry_t *nackp; 124 na_fcentry_t *nack_fcp; 125 isphdr_t *hp; 126 void * *vp; 127 #define atiop unp.atiop 128 #define at2iop unp.at2iop 129 #define ctiop unp.ctiop 130 #define ct2iop unp.ct2iop 131 #define lunenp unp.lunenp 132 #define inotp unp.inotp 133 #define inot_fcp unp.inot_fcp 134 #define nackp unp.nackp 135 #define nack_fcp unp.nack_fcp 136 #define hdrp unp.hp 137 } unp; 138 int bus, rval = 0; 139 140 unp.vp = vptr; 141 142 ISP_TDQE(isp, "isp_target_notify", (int) *optrp, vptr); 143 144 switch(hdrp->rqs_entry_type) { 145 case RQSTYPE_ATIO: 146 isp_handle_atio(isp, atiop); 147 break; 148 case RQSTYPE_CTIO: 149 isp_handle_ctio(isp, ctiop); 150 break; 151 case RQSTYPE_ATIO2: 152 isp_handle_atio2(isp, at2iop); 153 break; 154 case RQSTYPE_CTIO2: 155 isp_handle_ctio2(isp, ct2iop); 156 break; 157 case RQSTYPE_ENABLE_LUN: 158 case RQSTYPE_MODIFY_LUN: 159 (void) isp_async(isp, ISPASYNC_TARGET_ACTION, vptr); 160 break; 161 162 case RQSTYPE_NOTIFY: 163 /* 164 * Either the ISP received a SCSI message it can't 165 * handle, or it's returning an Immed. Notify entry 166 * we sent. We can send Immed. Notify entries to 167 * increment the firmware's resource count for them 168 * (we set this initially in the Enable Lun entry). 169 */ 170 bus = 0; 171 if (IS_FC(isp)) { 172 status = inot_fcp->in_status; 173 seqid = inot_fcp->in_seqid; 174 } else { 175 status = inotp->in_status & 0xff; 176 seqid = inotp->in_seqid; 177 if (IS_DUALBUS(isp)) { 178 bus = (inotp->in_iid & 0x80) >> 7; 179 inotp->in_iid &= ~0x80; 180 } 181 } 182 ITDEBUG(2, ("isp_target_notify: Immediate Notify, " 183 "status=0x%x seqid=0x%x\n", status, seqid)); 184 switch (status) { 185 case IN_RESET: 186 (void) isp_async(isp, ISPASYNC_BUS_RESET, &bus); 187 break; 188 case IN_MSG_RECEIVED: 189 case IN_IDE_RECEIVED: 190 if (IS_FC(isp)) { 191 isp_got_msg_fc(isp, bus, vptr); 192 } else { 193 isp_got_msg(isp, bus, vptr); 194 } 195 break; 196 case IN_RSRC_UNAVAIL: 197 PRINTF("%s: Firmware out of ATIOs\n", isp->isp_name); 198 break; 199 case IN_ABORT_TASK: 200 PRINTF("%s: Abort Task for Initiator %d RX_ID 0x%x\n", 201 isp->isp_name, inot_fcp->in_iid, seqid); 202 break; 203 case IN_PORT_LOGOUT: 204 PRINTF("%s: Port Logout for Initiator %d RX_ID 0x%x\n", 205 isp->isp_name, inot_fcp->in_iid, seqid); 206 break; 207 case IN_PORT_CHANGED: 208 PRINTF("%s: Port Changed for Initiator %d RX_ID 0x%x\n", 209 isp->isp_name, inot_fcp->in_iid, seqid); 210 break; 211 case IN_GLOBAL_LOGO: 212 PRINTF("%s: All ports logged out\n", isp->isp_name); 213 break; 214 default: 215 PRINTF("%s: bad status (0x%x) in isp_target_notify\n", 216 isp->isp_name, status); 217 break; 218 } 219 isp_notify_ack(isp, vptr); 220 break; 221 222 case RQSTYPE_NOTIFY_ACK: 223 /* 224 * The ISP is acknowledging our acknowledgement of an 225 * Immediate Notify entry for some asynchronous event. 226 */ 227 if (IS_FC(isp)) { 228 ITDEBUG(2, ("%s: Notify Ack status=0x%x seqid 0x%x\n", 229 isp->isp_name, nack_fcp->na_status, 230 nack_fcp->na_seqid)); 231 } else { 232 ITDEBUG(2, ("%s: Notify Ack event 0x%x status=0x%x " 233 "seqid 0x%x\n", isp->isp_name, nackp->na_event, 234 nackp->na_status, nackp->na_seqid)); 235 } 236 break; 237 default: 238 PRINTF("%s: Unknown entry type 0x%x in isp_target_notify", 239 isp->isp_name, hdrp->rqs_entry_type); 240 rval = -1; 241 break; 242 } 243 #undef atiop 244 #undef at2iop 245 #undef ctiop 246 #undef ct2iop 247 #undef lunenp 248 #undef inotp 249 #undef inot_fcp 250 #undef nackp 251 #undef nack_fcp 252 #undef hdrp 253 return (rval); 254 } 255 256 257 /* 258 * Toggle (on/off) target mode for bus/target/lun 259 * 260 * The caller has checked for overlap and legality. 261 * 262 * Note that not all of bus, target or lun can be paid attention to. 263 * Note also that this action will not be complete until the f/w writes 264 * response entry. The caller is responsible for synchronizing this. 265 */ 266 int 267 isp_lun_cmd(isp, cmd, bus, tgt, lun, opaque) 268 struct ispsoftc *isp; 269 int cmd; 270 int bus; 271 int tgt; 272 int lun; 273 u_int32_t opaque; 274 { 275 lun_entry_t el; 276 u_int16_t iptr, optr; 277 void *outp; 278 279 280 MEMZERO(&el, sizeof (el)); 281 if (IS_DUALBUS(isp)) { 282 el.le_rsvd = (bus & 0x1) << 7; 283 } 284 el.le_cmd_count = DFLT_CMD_CNT; 285 el.le_in_count = DFLT_INOTIFY; 286 if (cmd == RQSTYPE_ENABLE_LUN) { 287 if (IS_SCSI(isp)) { 288 el.le_flags = LUN_TQAE|LUN_DISAD; 289 el.le_cdb6len = 12; 290 el.le_cdb7len = 12; 291 } 292 } else if (cmd == -RQSTYPE_ENABLE_LUN) { 293 cmd = RQSTYPE_ENABLE_LUN; 294 el.le_cmd_count = 0; 295 el.le_in_count = 0; 296 } else if (cmd == -RQSTYPE_MODIFY_LUN) { 297 cmd = RQSTYPE_MODIFY_LUN; 298 el.le_ops = LUN_CCDECR | LUN_INDECR; 299 } else { 300 el.le_ops = LUN_CCINCR | LUN_ININCR; 301 } 302 el.le_header.rqs_entry_type = cmd; 303 el.le_header.rqs_entry_count = 1; 304 el.le_reserved = opaque; 305 if (IS_SCSI(isp)) { 306 el.le_tgt = tgt; 307 el.le_lun = lun; 308 } else if (isp->isp_maxluns <= 16) { 309 el.le_lun = lun; 310 } 311 312 if (isp_getrqentry(isp, &iptr, &optr, &outp)) { 313 PRINTF("%s: Request Queue Overflow in isp_lun_cmd\n", 314 isp->isp_name); 315 return (-1); 316 } 317 ISP_SWIZ_ENABLE_LUN(isp, outp, &el); 318 ISP_TDQE(isp, "isp_lun_cmd", (int) optr, &el); 319 ISP_ADD_REQUEST(isp, iptr); 320 return (0); 321 } 322 323 324 int 325 isp_target_put_entry(isp, ap) 326 struct ispsoftc *isp; 327 void *ap; 328 { 329 void *outp; 330 u_int16_t iptr, optr; 331 u_int8_t etype = ((isphdr_t *) ap)->rqs_entry_type; 332 333 if (isp_getrqentry(isp, &iptr, &optr, &outp)) { 334 PRINTF("%s: Request Queue Overflow in isp_target_put_entry " 335 "for type 0x%x\n", isp->isp_name, etype); 336 return (-1); 337 } 338 switch (etype) { 339 case RQSTYPE_ATIO: 340 ISP_SWIZ_ATIO(isp, outp, ap); 341 break; 342 case RQSTYPE_ATIO2: 343 ISP_SWIZ_ATIO2(isp, outp, ap); 344 break; 345 case RQSTYPE_CTIO: 346 ISP_SWIZ_CTIO(isp, outp, ap); 347 break; 348 case RQSTYPE_CTIO2: 349 ISP_SWIZ_CTIO2(isp, outp, ap); 350 break; 351 default: 352 PRINTF("%s: Unknown type 0x%x in isp_put_entry\n", 353 isp->isp_name, etype); 354 return (-1); 355 } 356 357 ISP_TDQE(isp, "isp_target_put_entry", (int) optr, ap);; 358 359 ISP_ADD_REQUEST(isp, iptr); 360 return (0); 361 } 362 363 int 364 isp_target_put_atio(isp, iid, tgt, lun, ttype, tval) 365 struct ispsoftc *isp; 366 int iid; 367 int tgt; 368 int lun; 369 int ttype; 370 int tval; 371 { 372 union { 373 at_entry_t _atio; 374 at2_entry_t _atio2; 375 } atun; 376 377 MEMZERO(&atun, sizeof atun); 378 if (IS_FC(isp)) { 379 atun._atio2.at_header.rqs_entry_type = RQSTYPE_ATIO2; 380 atun._atio2.at_header.rqs_entry_count = 1; 381 if (isp->isp_maxluns > 16) { 382 atun._atio2.at_scclun = (u_int16_t) lun; 383 } else { 384 atun._atio2.at_lun = (u_int8_t) lun; 385 } 386 atun._atio2.at_status = CT_OK; 387 } else { 388 atun._atio.at_header.rqs_entry_type = RQSTYPE_ATIO; 389 atun._atio.at_header.rqs_entry_count = 1; 390 atun._atio.at_iid = iid; 391 atun._atio.at_tgt = tgt; 392 atun._atio.at_lun = lun; 393 atun._atio.at_tag_type = ttype; 394 atun._atio.at_tag_val = tval; 395 atun._atio.at_status = CT_OK; 396 } 397 return (isp_target_put_entry(isp, &atun)); 398 } 399 400 /* 401 * Command completion- both for handling cases of no resources or 402 * no blackhole driver, or other cases where we have to, inline, 403 * finish the command sanely, or for normal command completion. 404 * 405 * The 'completion' code value has the scsi status byte in the low 8 bits. 406 * If status is a CHECK CONDITION and bit 8 is nonzero, then bits 12..15 have 407 * the sense key and bits 16..23 have the ASCQ and bits 24..31 have the ASC 408 * values. 409 * 410 * NB: the key, asc, ascq, cannot be used for parallel SCSI as it doesn't 411 * NB: inline SCSI sense reporting. 412 * 413 * For both parallel && fibre channel, we use the feature that does 414 * an automatic resource autoreplenish so we don't have then later do 415 * put of an atio to replenish the f/w's resource count. 416 */ 417 418 int 419 isp_endcmd(struct ispsoftc *isp, void *arg, u_int32_t code, u_int32_t hdl) 420 { 421 int sts; 422 union { 423 ct_entry_t _ctio; 424 ct2_entry_t _ctio2; 425 } un; 426 427 MEMZERO(&un, sizeof un); 428 sts = code & 0xff; 429 430 if (IS_FC(isp)) { 431 at2_entry_t *aep = arg; 432 ct2_entry_t *cto = &un._ctio2; 433 434 cto->ct_header.rqs_entry_type = RQSTYPE_CTIO2; 435 cto->ct_header.rqs_entry_count = 1; 436 cto->ct_iid = aep->at_iid; 437 if (isp->isp_maxluns <= 16) { 438 cto->ct_lun = aep->at_lun; 439 } 440 cto->ct_rxid = aep->at_rxid; 441 cto->rsp.m1.ct_scsi_status = sts & 0xff; 442 cto->ct_flags = CT2_SENDSTATUS | CT2_NO_DATA | CT2_FLAG_MODE1; 443 if (hdl == 0) { 444 cto->ct_flags |= CT2_CCINCR; 445 } 446 if (aep->at_datalen) { 447 cto->ct_resid = aep->at_datalen; 448 cto->ct_flags |= CT2_DATA_UNDER; 449 } 450 if ((sts & 0xff) == SCSI_CHECK && (sts & ECMD_SVALID)) { 451 cto->rsp.m1.ct_resp[0] = 0xf0; 452 cto->rsp.m1.ct_resp[2] = (code >> 12) & 0xf; 453 cto->rsp.m1.ct_resp[7] = 8; 454 cto->rsp.m1.ct_resp[12] = (code >> 24) & 0xff; 455 cto->rsp.m1.ct_resp[13] = (code >> 16) & 0xff; 456 cto->rsp.m1.ct_senselen = 16; 457 cto->ct_flags |= CT2_SNSLEN_VALID; 458 } 459 cto->ct_reserved = hdl; 460 } else { 461 at_entry_t *aep = arg; 462 ct_entry_t *cto = &un._ctio; 463 464 cto->ct_header.rqs_entry_type = RQSTYPE_CTIO; 465 cto->ct_header.rqs_entry_count = 1; 466 cto->ct_iid = aep->at_iid; 467 cto->ct_tgt = aep->at_tgt; 468 cto->ct_lun = aep->at_lun; 469 cto->ct_tag_type = aep->at_tag_type; 470 cto->ct_tag_val = aep->at_tag_val; 471 cto->ct_flags = CT_SENDSTATUS | CT_NO_DATA; 472 if (hdl == 0) { 473 cto->ct_flags |= CT_CCINCR; 474 } 475 cto->ct_scsi_status = sts; 476 cto->ct_reserved = hdl; 477 } 478 return (isp_target_put_entry(isp, &un)); 479 } 480 481 void 482 isp_target_async(isp, bus, event) 483 struct ispsoftc *isp; 484 int bus; 485 int event; 486 { 487 tmd_event_t evt; 488 tmd_msg_t msg; 489 490 switch (event) { 491 /* 492 * These three we handle here to propagate an effective bus reset 493 * upstream, but these do not require any immediate notify actions 494 * so we return when done. 495 */ 496 case ASYNC_LIP_OCCURRED: 497 case ASYNC_LOOP_UP: 498 case ASYNC_LOOP_DOWN: 499 evt.ev_bus = bus; 500 evt.ev_event = event; 501 (void) isp_async(isp, ISPASYNC_TARGET_EVENT, &evt); 502 return; 503 504 case ASYNC_LOOP_RESET: 505 case ASYNC_BUS_RESET: 506 case ASYNC_TIMEOUT_RESET: 507 if (IS_FC(isp)) { 508 return; /* we'll be getting an inotify instead */ 509 } 510 evt.ev_bus = bus; 511 evt.ev_event = event; 512 (void) isp_async(isp, ISPASYNC_TARGET_EVENT, &evt); 513 break; 514 case ASYNC_DEVICE_RESET: 515 /* 516 * Bus Device Reset resets a specific target, so 517 * we pass this as a synthesized message. 518 */ 519 MEMZERO(&msg, sizeof msg); 520 if (IS_FC(isp)) { 521 msg.nt_iid = 522 ((fcparam *)isp->isp_param)->isp_loopid; 523 } else { 524 msg.nt_iid = 525 ((sdparam *)isp->isp_param)->isp_initiator_id; 526 } 527 msg.nt_bus = bus; 528 msg.nt_msg[0] = MSG_BUS_DEV_RESET; 529 (void) isp_async(isp, ISPASYNC_TARGET_MESSAGE, &msg); 530 break; 531 default: 532 PRINTF("%s: isp_target_async: unknown event 0x%x\n", 533 isp->isp_name, event); 534 break; 535 } 536 isp_notify_ack(isp, NULL); 537 } 538 539 540 /* 541 * Process a received message. 542 * The ISP firmware can handle most messages, there are only 543 * a few that we need to deal with: 544 * - abort: clean up the current command 545 * - abort tag and clear queue 546 */ 547 548 static void 549 isp_got_msg(isp, bus, inp) 550 struct ispsoftc *isp; 551 int bus; 552 in_entry_t *inp; 553 { 554 u_int8_t status = inp->in_status & ~QLTM_SVALID; 555 556 if (status == IN_IDE_RECEIVED || status == IN_MSG_RECEIVED) { 557 tmd_msg_t msg; 558 559 MEMZERO(&msg, sizeof (msg)); 560 msg.nt_bus = bus; 561 msg.nt_iid = inp->in_iid; 562 msg.nt_tgt = inp->in_tgt; 563 msg.nt_lun = inp->in_lun; 564 msg.nt_tagtype = inp->in_tag_type; 565 msg.nt_tagval = inp->in_tag_val; 566 MEMCPY(msg.nt_msg, inp->in_msg, IN_MSGLEN); 567 (void) isp_async(isp, ISPASYNC_TARGET_MESSAGE, &msg); 568 } else { 569 PRINTF("%s: unknown immediate notify status 0x%x\n", 570 isp->isp_name, inp->in_status); 571 } 572 } 573 574 /* 575 * Synthesize a message from the task management flags in a FCP_CMND_IU. 576 */ 577 static void 578 isp_got_msg_fc(isp, bus, inp) 579 struct ispsoftc *isp; 580 int bus; 581 in_fcentry_t *inp; 582 { 583 static char *f1 = "%s: %s from iid %d lun %d seq 0x%x\n"; 584 static char *f2 = 585 "%s: unknown %s 0x%x lun %d iid %d task flags 0x%x seq 0x%x\n"; 586 587 if (inp->in_status != IN_MSG_RECEIVED) { 588 PRINTF(f2, isp->isp_name, "immediate notify status", 589 inp->in_status, inp->in_lun, inp->in_iid, 590 inp->in_task_flags, inp->in_seqid); 591 } else { 592 tmd_msg_t msg; 593 594 MEMZERO(&msg, sizeof (msg)); 595 msg.nt_bus = bus; 596 msg.nt_iid = inp->in_iid; 597 if (isp->isp_maxluns > 16) { 598 msg.nt_lun = inp->in_scclun; 599 } else { 600 msg.nt_lun = inp->in_lun; 601 } 602 msg.nt_tagval = inp->in_seqid; 603 604 if (inp->in_task_flags & TASK_FLAGS_ABORT_TASK) { 605 PRINTF(f1, isp->isp_name, "ABORT TASK", 606 inp->in_iid, inp->in_lun, inp->in_seqid); 607 msg.nt_msg[0] = MSG_ABORT_TAG; 608 } else if (inp->in_task_flags & TASK_FLAGS_CLEAR_TASK_SET) { 609 PRINTF(f1, isp->isp_name, "CLEAR TASK SET", 610 inp->in_iid, inp->in_lun, inp->in_seqid); 611 msg.nt_msg[0] = MSG_CLEAR_QUEUE; 612 } else if (inp->in_task_flags & TASK_FLAGS_TARGET_RESET) { 613 PRINTF(f1, isp->isp_name, "TARGET RESET", 614 inp->in_iid, inp->in_lun, inp->in_seqid); 615 msg.nt_msg[0] = MSG_BUS_DEV_RESET; 616 } else if (inp->in_task_flags & TASK_FLAGS_CLEAR_ACA) { 617 PRINTF(f1, isp->isp_name, "CLEAR ACA", 618 inp->in_iid, inp->in_lun, inp->in_seqid); 619 /* ???? */ 620 msg.nt_msg[0] = MSG_REL_RECOVERY; 621 } else if (inp->in_task_flags & TASK_FLAGS_TERMINATE_TASK) { 622 PRINTF(f1, isp->isp_name, "TERMINATE TASK", 623 inp->in_iid, inp->in_lun, inp->in_seqid); 624 msg.nt_msg[0] = MSG_TERM_IO_PROC; 625 } else { 626 PRINTF(f2, isp->isp_name, "task flag", 627 inp->in_status, inp->in_lun, inp->in_iid, 628 inp->in_task_flags, inp->in_seqid); 629 } 630 if (msg.nt_msg[0]) { 631 (void) isp_async(isp, ISPASYNC_TARGET_MESSAGE, &msg); 632 } 633 } 634 } 635 636 static void 637 isp_notify_ack(isp, arg) 638 struct ispsoftc *isp; 639 void *arg; 640 { 641 char storage[QENTRY_LEN]; 642 u_int16_t iptr, optr; 643 void *outp; 644 645 if (isp_getrqentry(isp, &iptr, &optr, &outp)) { 646 PRINTF("%s: Request Queue Overflow For isp_notify_ack\n", 647 isp->isp_name); 648 return; 649 } 650 651 MEMZERO(storage, QENTRY_LEN); 652 653 if (IS_FC(isp)) { 654 na_fcentry_t *na = (na_fcentry_t *) storage; 655 if (arg) { 656 in_fcentry_t *inp = arg; 657 MEMCPY(storage, arg, sizeof (isphdr_t)); 658 na->na_iid = inp->in_iid; 659 if (isp->isp_maxluns > 16) { 660 na->na_lun = inp->in_scclun; 661 } else { 662 na->na_lun = inp->in_lun; 663 } 664 na->na_task_flags = inp->in_task_flags; 665 na->na_seqid = inp->in_seqid; 666 na->na_flags = NAFC_RCOUNT; 667 if (inp->in_status == IN_RESET) { 668 na->na_flags |= NAFC_RST_CLRD; 669 } 670 } else { 671 na->na_flags = NAFC_RST_CLRD; 672 } 673 na->na_header.rqs_entry_type = RQSTYPE_NOTIFY_ACK; 674 na->na_header.rqs_entry_count = 1; 675 ISP_SWIZ_NOT_ACK_FC(isp, outp, na); 676 } else { 677 na_entry_t *na = (na_entry_t *) storage; 678 if (arg) { 679 in_entry_t *inp = arg; 680 MEMCPY(storage, arg, sizeof (isphdr_t)); 681 na->na_iid = inp->in_iid; 682 na->na_lun = inp->in_lun; 683 na->na_tgt = inp->in_tgt; 684 na->na_seqid = inp->in_seqid; 685 if (inp->in_status == IN_RESET) { 686 na->na_event = NA_RST_CLRD; 687 } 688 } else { 689 na->na_event = NA_RST_CLRD; 690 } 691 na->na_header.rqs_entry_type = RQSTYPE_NOTIFY_ACK; 692 na->na_header.rqs_entry_count = 1; 693 ISP_SWIZ_NOT_ACK(isp, outp, na); 694 } 695 ISP_TDQE(isp, "isp_notify_ack", (int) optr, storage); 696 ISP_ADD_REQUEST(isp, iptr); 697 } 698 699 static void 700 isp_handle_atio(isp, aep) 701 struct ispsoftc *isp; 702 at_entry_t *aep; 703 { 704 int lun; 705 lun = aep->at_lun; 706 /* 707 * The firmware status (except for the QLTM_SVALID bit) indicates 708 * why this ATIO was sent to us. 709 * 710 * If QLTM_SVALID is set, the firware has recommended Sense Data. 711 * 712 * If the DISCONNECTS DISABLED bit is set in the flags field, 713 * we're still connected on the SCSI bus - i.e. the initiator 714 * did not set DiscPriv in the identify message. We don't care 715 * about this so it's ignored. 716 */ 717 718 switch(aep->at_status & ~QLTM_SVALID) { 719 case AT_PATH_INVALID: 720 /* 721 * ATIO rejected by the firmware due to disabled lun. 722 */ 723 PRINTF("%s: rejected ATIO for disabled lun %d\n", 724 isp->isp_name, lun); 725 break; 726 case AT_NOCAP: 727 /* 728 * Requested Capability not available 729 * We sent an ATIO that overflowed the firmware's 730 * command resource count. 731 */ 732 PRINTF("%s: rejected ATIO for lun %d because of command count" 733 " overflow\n", isp->isp_name, lun); 734 break; 735 736 case AT_BDR_MSG: 737 /* 738 * If we send an ATIO to the firmware to increment 739 * its command resource count, and the firmware is 740 * recovering from a Bus Device Reset, it returns 741 * the ATIO with this status. We set the command 742 * resource count in the Enable Lun entry and no 743 * not increment it. Therefore we should never get 744 * this status here. 745 */ 746 PRINTF("%s: ATIO returned for lun %d because it was in the " 747 " middle of coping with a Bus Device Reset\n", 748 isp->isp_name, lun); 749 break; 750 751 case AT_CDB: /* Got a CDB */ 752 case AT_PHASE_ERROR: /* Bus Phase Sequence Error */ 753 /* 754 * Punt to platform specific layer. 755 */ 756 (void) isp_async(isp, ISPASYNC_TARGET_ACTION, aep); 757 break; 758 759 case AT_RESET: 760 /* 761 * A bus reset came along an blew away this command. Why 762 * they do this in addition the async event code stuff, 763 * I dunno. 764 * 765 * Ignore it because the async event will clear things 766 * up for us. 767 */ 768 PRINTF("%s: ATIO returned for lun %d from initiator %d because" 769 " a Bus Reset occurred\n", isp->isp_name, lun, 770 aep->at_iid); 771 break; 772 773 774 default: 775 PRINTF("%s: Unknown ATIO status 0x%x from initiator %d for lun" 776 " %d\n", isp->isp_name, aep->at_status, aep->at_iid, lun); 777 (void) isp_target_put_atio(isp, aep->at_iid, aep->at_tgt, 778 lun, aep->at_tag_type, aep->at_tag_val); 779 break; 780 } 781 } 782 783 static void 784 isp_handle_atio2(isp, aep) 785 struct ispsoftc *isp; 786 at2_entry_t *aep; 787 { 788 int lun; 789 790 if (isp->isp_maxluns > 16) { 791 lun = aep->at_scclun; 792 } else { 793 lun = aep->at_lun; 794 } 795 796 /* 797 * The firmware status (except for the QLTM_SVALID bit) indicates 798 * why this ATIO was sent to us. 799 * 800 * If QLTM_SVALID is set, the firware has recommended Sense Data. 801 * 802 * If the DISCONNECTS DISABLED bit is set in the flags field, 803 * we're still connected on the SCSI bus - i.e. the initiator 804 * did not set DiscPriv in the identify message. We don't care 805 * about this so it's ignored. 806 */ 807 808 switch(aep->at_status & ~QLTM_SVALID) { 809 case AT_PATH_INVALID: 810 /* 811 * ATIO rejected by the firmware due to disabled lun. 812 */ 813 PRINTF("%s: rejected ATIO2 for disabled lun %d\n", 814 isp->isp_name, lun); 815 break; 816 case AT_NOCAP: 817 /* 818 * Requested Capability not available 819 * We sent an ATIO that overflowed the firmware's 820 * command resource count. 821 */ 822 PRINTF("%s: rejected ATIO2 for lun %d because of command count" 823 " overflow\n", isp->isp_name, lun); 824 break; 825 826 case AT_BDR_MSG: 827 /* 828 * If we send an ATIO to the firmware to increment 829 * its command resource count, and the firmware is 830 * recovering from a Bus Device Reset, it returns 831 * the ATIO with this status. We set the command 832 * resource count in the Enable Lun entry and no 833 * not increment it. Therefore we should never get 834 * this status here. 835 */ 836 PRINTF("%s: ATIO2 returned for lun %d because it was in the " 837 " middle of coping with a Bus Device Reset\n", 838 isp->isp_name, lun); 839 break; 840 841 case AT_CDB: /* Got a CDB */ 842 /* 843 * Punt to platform specific layer. 844 */ 845 (void) isp_async(isp, ISPASYNC_TARGET_ACTION, aep); 846 break; 847 848 case AT_RESET: 849 /* 850 * A bus reset came along an blew away this command. Why 851 * they do this in addition the async event code stuff, 852 * I dunno. 853 * 854 * Ignore it because the async event will clear things 855 * up for us. 856 */ 857 PRINTF("%s: ATIO2 returned for lun %d from initiator %d because" 858 " a Bus Reset occurred\n", isp->isp_name, lun, 859 aep->at_iid); 860 break; 861 862 863 default: 864 PRINTF("%s: Unknown ATIO2 status 0x%x from initiator %d for lun" 865 " %d\n", isp->isp_name, aep->at_status, aep->at_iid, lun); 866 (void) isp_target_put_atio(isp, aep->at_iid, 0, lun, 0, 0); 867 break; 868 } 869 } 870 871 static void 872 isp_handle_ctio(isp, ct) 873 struct ispsoftc *isp; 874 ct_entry_t *ct; 875 { 876 ISP_SCSI_XFER_T *xs; 877 int pl = 0; 878 char *fmsg = NULL; 879 880 if (ct->ct_reserved) { 881 xs = isp_find_xs(isp, ct->ct_reserved); 882 if (xs == NULL) 883 pl = 0; 884 } else { 885 pl = 2; 886 xs = NULL; 887 } 888 889 switch(ct->ct_status & ~QLTM_SVALID) { 890 case CT_OK: 891 /* 892 * There are generally 3 possibilities as to why we'd get 893 * this condition: 894 * We disconnected after receiving a CDB. 895 * We sent or received data. 896 * We sent status & command complete. 897 */ 898 899 if (ct->ct_flags & CT_SENDSTATUS) { 900 break; 901 } else if ((ct->ct_flags & CT_DATAMASK) == CT_NO_DATA) { 902 /* 903 * Nothing to do in this case. 904 */ 905 IDPRINTF(pl, ("%s:CTIO- iid %d disconnected OK\n", 906 isp->isp_name, ct->ct_iid)); 907 return; 908 } 909 break; 910 911 case CT_BDR_MSG: 912 /* 913 * Bus Device Reset message received or the SCSI Bus has 914 * been Reset; the firmware has gone to Bus Free. 915 * 916 * The firmware generates an async mailbox interupt to 917 * notify us of this and returns outstanding CTIOs with this 918 * status. These CTIOs are handled in that same way as 919 * CT_ABORTED ones, so just fall through here. 920 */ 921 fmsg = "Bus Device Reset"; 922 /*FALLTHROUGH*/ 923 case CT_RESET: 924 if (fmsg == NULL) 925 fmsg = "Bus Reset"; 926 /*FALLTHROUGH*/ 927 case CT_ABORTED: 928 /* 929 * When an Abort message is received the firmware goes to 930 * Bus Free and returns all outstanding CTIOs with the status 931 * set, then sends us an Immediate Notify entry. 932 */ 933 if (fmsg == NULL) 934 fmsg = "ABORT TASK sent by Initiator"; 935 936 PRINTF("%s: CTIO destroyed by %s\n", isp->isp_name, fmsg); 937 break; 938 939 case CT_INVAL: 940 /* 941 * CTIO rejected by the firmware due to disabled lun. 942 * "Cannot Happen". 943 */ 944 PRINTF("%s: Firmware rejected CTIO for disabled lun %d\n", 945 isp->isp_name, ct->ct_lun); 946 break; 947 948 case CT_NOPATH: 949 /* 950 * CTIO rejected by the firmware due "no path for the 951 * nondisconnecting nexus specified". This means that 952 * we tried to access the bus while a non-disconnecting 953 * command is in process. 954 */ 955 PRINTF("%s: Firmware rejected CTIO for bad nexus %d/%d/%d\n", 956 isp->isp_name, ct->ct_iid, ct->ct_tgt, ct->ct_lun); 957 break; 958 959 case CT_RSELTMO: 960 fmsg = "Reselection"; 961 /*FALLTHROUGH*/ 962 case CT_TIMEOUT: 963 if (fmsg == NULL) 964 fmsg = "Command"; 965 PRINTF("%s: Firmware timed out on %s\n", isp->isp_name, fmsg); 966 break; 967 968 case CT_ERR: 969 fmsg = "Completed with Error"; 970 /*FALLTHROUGH*/ 971 case CT_PHASE_ERROR: 972 if (fmsg == NULL) 973 fmsg = "Phase Sequence Error"; 974 /*FALLTHROUGH*/ 975 case CT_TERMINATED: 976 if (fmsg == NULL) 977 fmsg = "terminated by TERMINATE TRANSFER"; 978 /*FALLTHROUGH*/ 979 case CT_NOACK: 980 if (fmsg == NULL) 981 fmsg = "unacknowledged Immediate Notify pending"; 982 983 PRINTF("%s: CTIO returned by f/w- %s\n", isp->isp_name, fmsg); 984 #if 0 985 if (status & SENSEVALID) { 986 bcopy((caddr_t) (cep + CTIO_SENSE_OFFSET), 987 (caddr_t) &cdp->cd_sensedata, 988 sizeof(scsi_sense_t)); 989 cdp->cd_flags |= CDF_SENSEVALID; 990 } 991 #endif 992 break; 993 default: 994 PRINTF("%s: Unknown CTIO status 0x%x\n", isp->isp_name, 995 ct->ct_status & ~QLTM_SVALID); 996 break; 997 } 998 999 if (xs == NULL) { 1000 /* 1001 * There may be more than one CTIO for a data transfer, 1002 * or this may be a status CTIO we're not monitoring. 1003 * 1004 * The assumption is that they'll all be returned in the 1005 * order we got them. 1006 */ 1007 if (ct->ct_reserved == 0) { 1008 if ((ct->ct_flags & CT_SENDSTATUS) == 0) { 1009 IDPRINTF(pl, 1010 ("%s: intermediate CTIO completed ok\n", 1011 isp->isp_name)); 1012 } else { 1013 IDPRINTF(pl, 1014 ("%s: unmonitored CTIO completed ok\n", 1015 isp->isp_name)); 1016 } 1017 } else { 1018 IDPRINTF(pl, 1019 ("%s: NO xs for CTIO (handle 0x%x) status 0x%x\n", 1020 isp->isp_name, ct->ct_reserved, 1021 ct->ct_status & ~QLTM_SVALID)); 1022 } 1023 } else { 1024 if (ct->ct_flags & CT_SENDSTATUS) { 1025 /* 1026 * Sent status and command complete. 1027 * 1028 * We're now really done with this command, so we 1029 * punt to the platform dependent layers because 1030 * only there can we do the appropriate command 1031 * complete thread synchronization. 1032 */ 1033 IDPRINTF(pl, 1034 ("%s:status CTIO complete\n", isp->isp_name)); 1035 } else { 1036 /* 1037 * Final CTIO completed. Release DMA resources and 1038 * notify platform dependent layers. 1039 */ 1040 IDPRINTF(pl, 1041 ("%s: data CTIO complete\n", isp->isp_name)); 1042 ISP_DMAFREE(isp, xs, ct->ct_reserved); 1043 } 1044 (void) isp_async(isp, ISPASYNC_TARGET_ACTION, ct); 1045 /* 1046 * The platform layer will destroy the handle if appropriate. 1047 */ 1048 } 1049 } 1050 1051 static void 1052 isp_handle_ctio2(isp, ct) 1053 struct ispsoftc *isp; 1054 ct2_entry_t *ct; 1055 { 1056 ISP_SCSI_XFER_T *xs; 1057 int pl = 3; 1058 char *fmsg = NULL; 1059 1060 if (ct->ct_reserved) { 1061 xs = isp_find_xs(isp, ct->ct_reserved); 1062 if (xs == NULL) 1063 pl = 0; 1064 } else { 1065 pl = 2; 1066 xs = NULL; 1067 } 1068 1069 switch(ct->ct_status & ~QLTM_SVALID) { 1070 case CT_OK: 1071 /* 1072 * There are generally 2 possibilities as to why we'd get 1073 * this condition: 1074 * We sent or received data. 1075 * We sent status & command complete. 1076 */ 1077 1078 break; 1079 1080 case CT_BDR_MSG: 1081 /* 1082 * Bus Device Reset message received or the SCSI Bus has 1083 * been Reset; the firmware has gone to Bus Free. 1084 * 1085 * The firmware generates an async mailbox interupt to 1086 * notify us of this and returns outstanding CTIOs with this 1087 * status. These CTIOs are handled in that same way as 1088 * CT_ABORTED ones, so just fall through here. 1089 */ 1090 fmsg = "Bus Device Reset"; 1091 /*FALLTHROUGH*/ 1092 case CT_RESET: 1093 if (fmsg == NULL) 1094 fmsg = "Bus Reset"; 1095 /*FALLTHROUGH*/ 1096 case CT_ABORTED: 1097 /* 1098 * When an Abort message is received the firmware goes to 1099 * Bus Free and returns all outstanding CTIOs with the status 1100 * set, then sends us an Immediate Notify entry. 1101 */ 1102 if (fmsg == NULL) 1103 fmsg = "ABORT TASK sent by Initiator"; 1104 1105 PRINTF("%s: CTIO2 destroyed by %s\n", isp->isp_name, fmsg); 1106 break; 1107 1108 case CT_INVAL: 1109 /* 1110 * CTIO rejected by the firmware - invalid data direction. 1111 */ 1112 PRINTF("%s: CTIO2 had wrong data directiond\n", isp->isp_name); 1113 break; 1114 1115 case CT_NOPATH: 1116 /* 1117 * CTIO rejected by the firmware due "no path for the 1118 * nondisconnecting nexus specified". This means that 1119 * we tried to access the bus while a non-disconnecting 1120 * command is in process. 1121 */ 1122 PRINTF("%s: Firmware rejected CTIO2 for bad nexus %d->%d\n", 1123 isp->isp_name, ct->ct_iid, ct->ct_lun); 1124 break; 1125 1126 case CT_RSELTMO: 1127 fmsg = "Reselection"; 1128 /*FALLTHROUGH*/ 1129 case CT_TIMEOUT: 1130 if (fmsg == NULL) 1131 fmsg = "Command"; 1132 PRINTF("%s: Firmware timed out on %s\n", isp->isp_name, fmsg); 1133 break; 1134 1135 case CT_ERR: 1136 fmsg = "Completed with Error"; 1137 /*FALLTHROUGH*/ 1138 case CT_PHASE_ERROR: /* Bus phase sequence error */ 1139 if (fmsg == NULL) 1140 fmsg = "Phase Sequence Error"; 1141 /*FALLTHROUGH*/ 1142 case CT_TERMINATED: 1143 if (fmsg == NULL) 1144 fmsg = "terminated by TERMINATE TRANSFER"; 1145 /*FALLTHROUGH*/ 1146 case CT_LOGOUT: 1147 if (fmsg == NULL) 1148 fmsg = "Port Logout"; 1149 /*FALLTHROUGH*/ 1150 case CT_PORTNOTAVAIL: 1151 if (fmsg == NULL) 1152 fmsg = "Port not available"; 1153 case CT_NOACK: 1154 if (fmsg == NULL) 1155 fmsg = "unacknowledged Immediate Notify pending"; 1156 1157 PRINTF("%s: CTIO returned by f/w- %s\n", isp->isp_name, fmsg); 1158 #if 0 1159 if (status & SENSEVALID) { 1160 bcopy((caddr_t) (cep + CTIO_SENSE_OFFSET), 1161 (caddr_t) &cdp->cd_sensedata, 1162 sizeof(scsi_sense_t)); 1163 cdp->cd_flags |= CDF_SENSEVALID; 1164 } 1165 #endif 1166 break; 1167 1168 case CT_INVRXID: 1169 /* 1170 * CTIO rejected by the firmware because an invalid RX_ID. 1171 * Just print a message. 1172 */ 1173 PRINTF("%s: CTIO2 completed with Invalid RX_ID 0x%x\n", 1174 isp->isp_name, ct->ct_rxid); 1175 break; 1176 1177 default: 1178 IDPRINTF(pl, ("%s: Unknown CTIO status 0x%x\n", isp->isp_name, 1179 ct->ct_status & ~QLTM_SVALID)); 1180 break; 1181 } 1182 1183 if (xs == NULL) { 1184 /* 1185 * There may be more than one CTIO for a data transfer, 1186 * or this may be a status CTIO we're not monitoring. 1187 * 1188 * The assumption is that they'll all be returned in the 1189 * order we got them. 1190 */ 1191 if (ct->ct_reserved == 0) { 1192 if ((ct->ct_flags & CT_SENDSTATUS) == 0) { 1193 IDPRINTF(pl, 1194 ("%s: intermediate CTIO completed ok\n", 1195 isp->isp_name)); 1196 } else { 1197 IDPRINTF(pl, 1198 ("%s: unmonitored CTIO completed ok\n", 1199 isp->isp_name)); 1200 } 1201 } else { 1202 IDPRINTF(pl, 1203 ("%s: NO xs for CTIO (handle 0x%x) status 0x%x\n", 1204 isp->isp_name, ct->ct_reserved, 1205 ct->ct_status & ~QLTM_SVALID)); 1206 } 1207 } else { 1208 if (ct->ct_flags & CT_SENDSTATUS) { 1209 /* 1210 * Sent status and command complete. 1211 * 1212 * We're now really done with this command, so we 1213 * punt to the platform dependent layers because 1214 * only there can we do the appropriate command 1215 * complete thread synchronization. 1216 */ 1217 IDPRINTF(pl, 1218 ("%s: status CTIO complete\n", isp->isp_name)); 1219 } else { 1220 /* 1221 * Final CTIO completed. Release DMA resources and 1222 * notify platform dependent layers. 1223 */ 1224 IDPRINTF(pl, 1225 ("%s: data CTIO complete\n", isp->isp_name)); 1226 ISP_DMAFREE(isp, xs, ct->ct_reserved); 1227 } 1228 (void) isp_async(isp, ISPASYNC_TARGET_ACTION, ct); 1229 /* 1230 * The platform layer will destroy the handle if appropriate. 1231 */ 1232 } 1233 } 1234 #endif 1235