1 /* $NetBSD: iha.c,v 1.24 2003/11/02 11:07:45 wiz Exp $ */ 2 3 /*- 4 * Device driver for the INI-9XXXU/UW or INIC-940/950 PCI SCSI Controller. 5 * 6 * Written for 386bsd and FreeBSD by 7 * Winston Hung <winstonh@initio.com> 8 * 9 * Copyright (c) 1997-1999 Initio Corp. 10 * Copyright (c) 2000, 2001 Ken Westerback 11 * Copyright (c) 2001, 2002 Izumi Tsutsui 12 * All rights reserved. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer, 19 * without modification, immediately at the beginning of the file. 20 * 2. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR OR HIS RELATIVES BE LIABLE FOR ANY DIRECT, 27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 29 * SERVICES; LOSS OF MIND, USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 31 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 32 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 33 * THE POSSIBILITY OF SUCH DAMAGE. 34 */ 35 36 /* 37 * Ported to NetBSD by Izumi Tsutsui <tsutsui@ceres.dti.ne.jp> from OpenBSD: 38 * $OpenBSD: iha.c,v 1.3 2001/02/20 00:47:33 krw Exp $ 39 */ 40 41 #include <sys/cdefs.h> 42 __KERNEL_RCSID(0, "$NetBSD: iha.c,v 1.24 2003/11/02 11:07:45 wiz Exp $"); 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/kernel.h> 47 #include <sys/buf.h> 48 #include <sys/device.h> 49 #include <sys/malloc.h> 50 51 #include <uvm/uvm_extern.h> 52 53 #include <machine/bus.h> 54 #include <machine/intr.h> 55 56 #include <dev/scsipi/scsi_all.h> 57 #include <dev/scsipi/scsipi_all.h> 58 #include <dev/scsipi/scsiconf.h> 59 #include <dev/scsipi/scsi_message.h> 60 61 #include <dev/ic/ihareg.h> 62 #include <dev/ic/ihavar.h> 63 64 /* 65 * SCSI Rate Table, indexed by FLAG_SCSI_RATE field of 66 * tcs flags. 67 */ 68 static const u_int8_t iha_rate_tbl[] = { 69 /* fast 20 */ 70 /* nanosecond divide by 4 */ 71 12, /* 50ns, 20M */ 72 18, /* 75ns, 13.3M */ 73 25, /* 100ns, 10M */ 74 31, /* 125ns, 8M */ 75 37, /* 150ns, 6.6M */ 76 43, /* 175ns, 5.7M */ 77 50, /* 200ns, 5M */ 78 62 /* 250ns, 4M */ 79 }; 80 #define IHA_MAX_PERIOD 62 81 82 #ifdef notused 83 static u_int16_t eeprom_default[EEPROM_SIZE] = { 84 /* -- Header ------------------------------------ */ 85 /* signature */ 86 EEP_SIGNATURE, 87 /* size, revision */ 88 EEP_WORD(EEPROM_SIZE * 2, 0x01), 89 /* -- Host Adapter Structure -------------------- */ 90 /* model */ 91 0x0095, 92 /* model info, number of channel */ 93 EEP_WORD(0x00, 1), 94 /* BIOS config */ 95 EEP_BIOSCFG_DEFAULT, 96 /* host adapter config */ 97 0, 98 99 /* -- eeprom_adapter[0] ------------------------------- */ 100 /* ID, adapter config 1 */ 101 EEP_WORD(7, CFG_DEFAULT), 102 /* adapter config 2, number of targets */ 103 EEP_WORD(0x00, 8), 104 /* target flags */ 105 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT), 106 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT), 107 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT), 108 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT), 109 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT), 110 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT), 111 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT), 112 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT), 113 114 /* -- eeprom_adapter[1] ------------------------------- */ 115 /* ID, adapter config 1 */ 116 EEP_WORD(7, CFG_DEFAULT), 117 /* adapter config 2, number of targets */ 118 EEP_WORD(0x00, 8), 119 /* target flags */ 120 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT), 121 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT), 122 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT), 123 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT), 124 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT), 125 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT), 126 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT), 127 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT), 128 /* reserved[5] */ 129 0, 0, 0, 0, 0, 130 /* checksum */ 131 0 132 }; 133 #endif 134 135 static void iha_append_free_scb(struct iha_softc *, struct iha_scb *); 136 static void iha_append_done_scb(struct iha_softc *, struct iha_scb *, u_int8_t); 137 static __inline struct iha_scb *iha_pop_done_scb(struct iha_softc *); 138 139 static struct iha_scb *iha_find_pend_scb(struct iha_softc *); 140 static __inline void iha_append_pend_scb(struct iha_softc *, struct iha_scb *); 141 static __inline void iha_push_pend_scb(struct iha_softc *, struct iha_scb *); 142 static __inline void iha_del_pend_scb(struct iha_softc *, struct iha_scb *); 143 static __inline void iha_mark_busy_scb(struct iha_scb *); 144 145 static __inline void iha_set_ssig(struct iha_softc *, u_int8_t, u_int8_t); 146 147 static int iha_alloc_sglist(struct iha_softc *); 148 149 static void iha_scsipi_request(struct scsipi_channel *, scsipi_adapter_req_t, 150 void *); 151 static void iha_update_xfer_mode(struct iha_softc *, int); 152 153 static void iha_reset_scsi_bus(struct iha_softc *); 154 static void iha_reset_chip(struct iha_softc *); 155 static void iha_reset_dma(struct iha_softc *); 156 static void iha_reset_tcs(struct tcs *, u_int8_t); 157 158 static void iha_main(struct iha_softc *); 159 static void iha_scsi(struct iha_softc *); 160 static void iha_select(struct iha_softc *, struct iha_scb *, u_int8_t); 161 static int iha_wait(struct iha_softc *, u_int8_t); 162 163 static void iha_exec_scb(struct iha_softc *, struct iha_scb *); 164 static void iha_done_scb(struct iha_softc *, struct iha_scb *); 165 static int iha_push_sense_request(struct iha_softc *, struct iha_scb *); 166 167 static void iha_timeout(void *); 168 static void iha_abort_xs(struct iha_softc *, struct scsipi_xfer *, u_int8_t); 169 static u_int8_t iha_data_over_run(struct iha_scb *); 170 171 static int iha_next_state(struct iha_softc *); 172 static int iha_state_1(struct iha_softc *); 173 static int iha_state_2(struct iha_softc *); 174 static int iha_state_3(struct iha_softc *); 175 static int iha_state_4(struct iha_softc *); 176 static int iha_state_5(struct iha_softc *); 177 static int iha_state_6(struct iha_softc *); 178 static int iha_state_8(struct iha_softc *); 179 180 static int iha_xfer_data(struct iha_softc *, struct iha_scb *, int); 181 static int iha_xpad_in(struct iha_softc *); 182 static int iha_xpad_out(struct iha_softc *); 183 184 static int iha_status_msg(struct iha_softc *); 185 static void iha_busfree(struct iha_softc *); 186 static int iha_resel(struct iha_softc *); 187 188 static int iha_msgin(struct iha_softc *); 189 static int iha_msgin_extended(struct iha_softc *); 190 static int iha_msgin_sdtr(struct iha_softc *); 191 static int iha_msgin_ignore_wid_resid(struct iha_softc *); 192 193 static int iha_msgout(struct iha_softc *, u_int8_t); 194 static void iha_msgout_abort(struct iha_softc *, u_int8_t); 195 static int iha_msgout_reject(struct iha_softc *); 196 static int iha_msgout_extended(struct iha_softc *); 197 static int iha_msgout_wdtr(struct iha_softc *); 198 static int iha_msgout_sdtr(struct iha_softc *); 199 200 static void iha_wide_done(struct iha_softc *); 201 static void iha_sync_done(struct iha_softc *); 202 203 static void iha_bad_seq(struct iha_softc *); 204 205 static void iha_read_eeprom(struct iha_softc *, struct iha_eeprom *); 206 static int iha_se2_rd_all(struct iha_softc *, u_int16_t *); 207 static void iha_se2_instr(struct iha_softc *, int); 208 static u_int16_t iha_se2_rd(struct iha_softc *, int); 209 #ifdef notused 210 static void iha_se2_update_all(struct iha_softc *); 211 static void iha_se2_wr(struct iha_softc *, int, u_int16_t); 212 #endif 213 214 /* 215 * iha_append_free_scb - append the supplied SCB to the tail of the 216 * sc_freescb queue after clearing and resetting 217 * everything possible. 218 */ 219 static void 220 iha_append_free_scb(sc, scb) 221 struct iha_softc *sc; 222 struct iha_scb *scb; 223 { 224 int s; 225 226 s = splbio(); 227 228 if (scb == sc->sc_actscb) 229 sc->sc_actscb = NULL; 230 231 scb->status = STATUS_QUEUED; 232 scb->ha_stat = HOST_OK; 233 scb->ta_stat = SCSI_OK; 234 235 scb->nextstat = 0; 236 scb->scb_tagmsg = 0; 237 238 scb->xs = NULL; 239 scb->tcs = NULL; 240 241 /* 242 * scb_tagid, sg_addr, sglist 243 * SCB_SensePtr are set at initialization 244 * and never change 245 */ 246 247 TAILQ_INSERT_TAIL(&sc->sc_freescb, scb, chain); 248 249 splx(s); 250 } 251 252 static void 253 iha_append_done_scb(sc, scb, hastat) 254 struct iha_softc *sc; 255 struct iha_scb *scb; 256 u_int8_t hastat; 257 { 258 struct tcs *tcs; 259 int s; 260 261 s = splbio(); 262 263 if (scb->xs != NULL) 264 callout_stop(&scb->xs->xs_callout); 265 266 if (scb == sc->sc_actscb) 267 sc->sc_actscb = NULL; 268 269 tcs = scb->tcs; 270 271 if (scb->scb_tagmsg != 0) { 272 if (tcs->tagcnt) 273 tcs->tagcnt--; 274 } else if (tcs->ntagscb == scb) 275 tcs->ntagscb = NULL; 276 277 scb->status = STATUS_QUEUED; 278 scb->ha_stat = hastat; 279 280 TAILQ_INSERT_TAIL(&sc->sc_donescb, scb, chain); 281 282 splx(s); 283 } 284 285 static __inline struct iha_scb * 286 iha_pop_done_scb(sc) 287 struct iha_softc *sc; 288 { 289 struct iha_scb *scb; 290 int s; 291 292 s = splbio(); 293 294 scb = TAILQ_FIRST(&sc->sc_donescb); 295 296 if (scb != NULL) { 297 scb->status = STATUS_RENT; 298 TAILQ_REMOVE(&sc->sc_donescb, scb, chain); 299 } 300 301 splx(s); 302 303 return (scb); 304 } 305 306 /* 307 * iha_find_pend_scb - scan the pending queue for a SCB that can be 308 * processed immediately. Return NULL if none found 309 * and a pointer to the SCB if one is found. If there 310 * is an active SCB, return NULL! 311 */ 312 static struct iha_scb * 313 iha_find_pend_scb(sc) 314 struct iha_softc *sc; 315 { 316 struct iha_scb *scb; 317 struct tcs *tcs; 318 int s; 319 320 s = splbio(); 321 322 if (sc->sc_actscb != NULL) 323 scb = NULL; 324 325 else 326 TAILQ_FOREACH(scb, &sc->sc_pendscb, chain) { 327 if ((scb->xs->xs_control & XS_CTL_RESET) != 0) 328 /* ALWAYS willing to reset a device */ 329 break; 330 331 tcs = scb->tcs; 332 333 if ((scb->scb_tagmsg) != 0) { 334 /* 335 * A Tagged I/O. OK to start If no 336 * non-tagged I/O is active on the same 337 * target 338 */ 339 if (tcs->ntagscb == NULL) 340 break; 341 342 } else if (scb->cmd[0] == REQUEST_SENSE) { 343 /* 344 * OK to do a non-tagged request sense 345 * even if a non-tagged I/O has been 346 * started, 'cuz we don't allow any 347 * disconnect during a request sense op 348 */ 349 break; 350 351 } else if (tcs->tagcnt == 0) { 352 /* 353 * No tagged I/O active on this target, 354 * ok to start a non-tagged one if one 355 * is not already active 356 */ 357 if (tcs->ntagscb == NULL) 358 break; 359 } 360 } 361 362 splx(s); 363 364 return (scb); 365 } 366 367 static __inline void 368 iha_append_pend_scb(sc, scb) 369 struct iha_softc *sc; 370 struct iha_scb *scb; 371 { 372 /* ASSUMPTION: only called within a splbio()/splx() pair */ 373 374 if (scb == sc->sc_actscb) 375 sc->sc_actscb = NULL; 376 377 scb->status = STATUS_QUEUED; 378 379 TAILQ_INSERT_TAIL(&sc->sc_pendscb, scb, chain); 380 } 381 382 static __inline void 383 iha_push_pend_scb(sc, scb) 384 struct iha_softc *sc; 385 struct iha_scb *scb; 386 { 387 int s; 388 389 s = splbio(); 390 391 if (scb == sc->sc_actscb) 392 sc->sc_actscb = NULL; 393 394 scb->status = STATUS_QUEUED; 395 396 TAILQ_INSERT_HEAD(&sc->sc_pendscb, scb, chain); 397 398 splx(s); 399 } 400 401 /* 402 * iha_del_pend_scb - remove scb from sc_pendscb 403 */ 404 static __inline void 405 iha_del_pend_scb(sc, scb) 406 struct iha_softc *sc; 407 struct iha_scb *scb; 408 { 409 int s; 410 411 s = splbio(); 412 413 TAILQ_REMOVE(&sc->sc_pendscb, scb, chain); 414 415 splx(s); 416 } 417 418 static __inline void 419 iha_mark_busy_scb(scb) 420 struct iha_scb *scb; 421 { 422 int s; 423 424 s = splbio(); 425 426 scb->status = STATUS_BUSY; 427 428 if (scb->scb_tagmsg == 0) 429 scb->tcs->ntagscb = scb; 430 else 431 scb->tcs->tagcnt++; 432 433 splx(s); 434 } 435 436 /* 437 * iha_set_ssig - read the current scsi signal mask, then write a new 438 * one which turns off/on the specified signals. 439 */ 440 static __inline void 441 iha_set_ssig(sc, offsigs, onsigs) 442 struct iha_softc *sc; 443 u_int8_t offsigs, onsigs; 444 { 445 bus_space_tag_t iot = sc->sc_iot; 446 bus_space_handle_t ioh = sc->sc_ioh; 447 u_int8_t currsigs; 448 449 currsigs = bus_space_read_1(iot, ioh, TUL_SSIGI); 450 bus_space_write_1(iot, ioh, TUL_SSIGO, (currsigs & ~offsigs) | onsigs); 451 } 452 453 /* 454 * iha_intr - the interrupt service routine for the iha driver 455 */ 456 int 457 iha_intr(arg) 458 void *arg; 459 { 460 bus_space_tag_t iot; 461 bus_space_handle_t ioh; 462 struct iha_softc *sc; 463 int s; 464 465 sc = (struct iha_softc *)arg; 466 iot = sc->sc_iot; 467 ioh = sc->sc_ioh; 468 469 if ((bus_space_read_1(iot, ioh, TUL_STAT0) & INTPD) == 0) 470 return (0); 471 472 s = splbio(); /* XXX - Or are interrupts off when ISR's are called? */ 473 474 if (sc->sc_semaph != SEMAPH_IN_MAIN) { 475 /* XXX - need these inside a splbio()/splx()? */ 476 bus_space_write_1(iot, ioh, TUL_IMSK, MASK_ALL); 477 sc->sc_semaph = SEMAPH_IN_MAIN; 478 479 iha_main(sc); 480 481 sc->sc_semaph = ~SEMAPH_IN_MAIN; 482 bus_space_write_1(iot, ioh, TUL_IMSK, (MASK_ALL & ~MSCMP)); 483 } 484 485 splx(s); 486 487 return (1); 488 } 489 490 void 491 iha_attach(sc) 492 struct iha_softc *sc; 493 { 494 bus_space_tag_t iot = sc->sc_iot; 495 bus_space_handle_t ioh = sc->sc_ioh; 496 struct iha_scb *scb; 497 struct iha_eeprom eeprom; 498 struct eeprom_adapter *conf; 499 int i, error, reg; 500 501 iha_read_eeprom(sc, &eeprom); 502 503 conf = &eeprom.adapter[0]; 504 505 /* 506 * fill in the rest of the iha_softc fields 507 */ 508 sc->sc_id = CFG_ID(conf->config1); 509 sc->sc_semaph = ~SEMAPH_IN_MAIN; 510 sc->sc_status0 = 0; 511 sc->sc_actscb = NULL; 512 513 TAILQ_INIT(&sc->sc_freescb); 514 TAILQ_INIT(&sc->sc_pendscb); 515 TAILQ_INIT(&sc->sc_donescb); 516 error = iha_alloc_sglist(sc); 517 if (error != 0) { 518 printf(": cannot allocate sglist\n"); 519 return; 520 } 521 522 sc->sc_scb = malloc(sizeof(struct iha_scb) * IHA_MAX_SCB, 523 M_DEVBUF, M_NOWAIT|M_ZERO); 524 if (sc->sc_scb == NULL) { 525 printf(": cannot allocate SCB\n"); 526 return; 527 } 528 529 for (i = 0, scb = sc->sc_scb; i < IHA_MAX_SCB; i++, scb++) { 530 scb->scb_tagid = i; 531 scb->sgoffset = IHA_SG_SIZE * i; 532 scb->sglist = sc->sc_sglist + IHA_MAX_SG_ENTRIES * i; 533 scb->sg_addr = 534 sc->sc_dmamap->dm_segs[0].ds_addr + scb->sgoffset; 535 536 error = bus_dmamap_create(sc->sc_dmat, 537 MAXPHYS, IHA_MAX_SG_ENTRIES, MAXPHYS, 0, 538 BUS_DMA_NOWAIT, &scb->dmap); 539 540 if (error != 0) { 541 printf(": couldn't create SCB DMA map, error = %d\n", 542 error); 543 return; 544 } 545 TAILQ_INSERT_TAIL(&sc->sc_freescb, scb, chain); 546 } 547 548 /* Mask all the interrupts */ 549 bus_space_write_1(iot, ioh, TUL_IMSK, MASK_ALL); 550 551 /* Stop any I/O and reset the scsi module */ 552 iha_reset_dma(sc); 553 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSMOD); 554 555 /* Program HBA's SCSI ID */ 556 bus_space_write_1(iot, ioh, TUL_SID, sc->sc_id << 4); 557 558 /* 559 * Configure the channel as requested by the NVRAM settings read 560 * by iha_read_eeprom() above. 561 */ 562 563 sc->sc_sconf1 = SCONFIG0DEFAULT; 564 if ((conf->config1 & CFG_EN_PAR) != 0) 565 sc->sc_sconf1 |= SPCHK; 566 bus_space_write_1(iot, ioh, TUL_SCONFIG0, sc->sc_sconf1); 567 568 /* set selection time out 250 ms */ 569 bus_space_write_1(iot, ioh, TUL_STIMO, STIMO_250MS); 570 571 /* Enable desired SCSI termination configuration read from eeprom */ 572 reg = 0; 573 if (conf->config1 & CFG_ACT_TERM1) 574 reg |= ENTMW; 575 if (conf->config1 & CFG_ACT_TERM2) 576 reg |= ENTM; 577 bus_space_write_1(iot, ioh, TUL_DCTRL0, reg); 578 579 reg = bus_space_read_1(iot, ioh, TUL_GCTRL1) & ~ATDEN; 580 if (conf->config1 & CFG_AUTO_TERM) 581 reg |= ATDEN; 582 bus_space_write_1(iot, ioh, TUL_GCTRL1, reg); 583 584 for (i = 0; i < IHA_MAX_TARGETS / 2; i++) { 585 sc->sc_tcs[i * 2 ].flags = EEP_LBYTE(conf->tflags[i]); 586 sc->sc_tcs[i * 2 + 1].flags = EEP_HBYTE(conf->tflags[i]); 587 iha_reset_tcs(&sc->sc_tcs[i * 2 ], sc->sc_sconf1); 588 iha_reset_tcs(&sc->sc_tcs[i * 2 + 1], sc->sc_sconf1); 589 } 590 591 iha_reset_chip(sc); 592 bus_space_write_1(iot, ioh, TUL_SIEN, ALL_INTERRUPTS); 593 594 /* 595 * fill in the adapter. 596 */ 597 sc->sc_adapter.adapt_dev = &sc->sc_dev; 598 sc->sc_adapter.adapt_nchannels = 1; 599 sc->sc_adapter.adapt_openings = IHA_MAX_SCB; 600 sc->sc_adapter.adapt_max_periph = IHA_MAX_SCB; 601 sc->sc_adapter.adapt_ioctl = NULL; 602 sc->sc_adapter.adapt_minphys = minphys; 603 sc->sc_adapter.adapt_request = iha_scsipi_request; 604 605 /* 606 * fill in the channel. 607 */ 608 sc->sc_channel.chan_adapter = &sc->sc_adapter; 609 sc->sc_channel.chan_bustype = &scsi_bustype; 610 sc->sc_channel.chan_channel = 0; 611 sc->sc_channel.chan_ntargets = CFG_TARGET(conf->config2); 612 sc->sc_channel.chan_nluns = 8; 613 sc->sc_channel.chan_id = sc->sc_id; 614 615 /* 616 * Now try to attach all the sub devices. 617 */ 618 config_found(&sc->sc_dev, &sc->sc_channel, scsiprint); 619 } 620 621 /* 622 * iha_alloc_sglist - allocate and map sglist for SCB's 623 */ 624 static int 625 iha_alloc_sglist(sc) 626 struct iha_softc *sc; 627 { 628 bus_dma_segment_t seg; 629 int error, rseg; 630 631 /* 632 * Allocate DMA-safe memory for the SCB's sglist 633 */ 634 if ((error = bus_dmamem_alloc(sc->sc_dmat, 635 IHA_SG_SIZE * IHA_MAX_SCB, 636 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) { 637 printf(": unable to allocate sglist, error = %d\n", error); 638 return (error); 639 } 640 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, 641 IHA_SG_SIZE * IHA_MAX_SCB, (caddr_t *)&sc->sc_sglist, 642 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) { 643 printf(": unable to map sglist, error = %d\n", error); 644 return (error); 645 } 646 647 /* 648 * Create and load the DMA map used for the SCBs 649 */ 650 if ((error = bus_dmamap_create(sc->sc_dmat, 651 IHA_SG_SIZE * IHA_MAX_SCB, 1, IHA_SG_SIZE * IHA_MAX_SCB, 652 0, BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) { 653 printf(": unable to create control DMA map, error = %d\n", 654 error); 655 return (error); 656 } 657 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, 658 sc->sc_sglist, IHA_SG_SIZE * IHA_MAX_SCB, 659 NULL, BUS_DMA_NOWAIT)) != 0) { 660 printf(": unable to load control DMA map, error = %d\n", error); 661 return (error); 662 } 663 664 memset(sc->sc_sglist, 0, IHA_SG_SIZE * IHA_MAX_SCB); 665 666 return (0); 667 } 668 669 void 670 iha_scsipi_request(chan, req, arg) 671 struct scsipi_channel *chan; 672 scsipi_adapter_req_t req; 673 void *arg; 674 { 675 struct scsipi_xfer *xs; 676 struct scsipi_periph *periph; 677 struct iha_scb *scb; 678 struct iha_softc *sc; 679 int error, s; 680 681 sc = (struct iha_softc *)chan->chan_adapter->adapt_dev; 682 683 switch (req) { 684 case ADAPTER_REQ_RUN_XFER: 685 xs = arg; 686 periph = xs->xs_periph; 687 688 if (xs->cmdlen > sizeof(struct scsi_generic) || 689 periph->periph_target >= IHA_MAX_TARGETS) { 690 xs->error = XS_DRIVER_STUFFUP; 691 return; 692 } 693 694 s = splbio(); 695 scb = TAILQ_FIRST(&sc->sc_freescb); 696 if (scb != NULL) { 697 scb->status = STATUS_RENT; 698 TAILQ_REMOVE(&sc->sc_freescb, scb, chain); 699 } 700 #ifdef DIAGNOSTIC 701 else { 702 scsipi_printaddr(periph); 703 printf("unable to allocate scb\n"); 704 panic("iha_scsipi_request"); 705 } 706 #endif 707 splx(s); 708 709 scb->target = periph->periph_target; 710 scb->lun = periph->periph_lun; 711 scb->tcs = &sc->sc_tcs[scb->target]; 712 scb->scb_id = MSG_IDENTIFY(periph->periph_lun, 713 (xs->xs_control & XS_CTL_REQSENSE) == 0); 714 715 scb->xs = xs; 716 scb->cmdlen = xs->cmdlen; 717 memcpy(&scb->cmd, xs->cmd, xs->cmdlen); 718 scb->buflen = xs->datalen; 719 scb->flags = 0; 720 if (xs->xs_control & XS_CTL_DATA_OUT) 721 scb->flags |= FLAG_DATAOUT; 722 if (xs->xs_control & XS_CTL_DATA_IN) 723 scb->flags |= FLAG_DATAIN; 724 725 if (scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) { 726 error = bus_dmamap_load(sc->sc_dmat, scb->dmap, 727 xs->data, scb->buflen, NULL, 728 ((xs->xs_control & XS_CTL_NOSLEEP) ? 729 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) | 730 BUS_DMA_STREAMING | 731 ((scb->flags & FLAG_DATAIN) ? 732 BUS_DMA_READ : BUS_DMA_WRITE)); 733 734 if (error) { 735 printf("%s: error %d loading DMA map\n", 736 sc->sc_dev.dv_xname, error); 737 iha_append_free_scb(sc, scb); 738 xs->error = XS_DRIVER_STUFFUP; 739 scsipi_done(xs); 740 return; 741 } 742 bus_dmamap_sync(sc->sc_dmat, scb->dmap, 743 0, scb->dmap->dm_mapsize, 744 (scb->flags & FLAG_DATAIN) ? 745 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE); 746 } 747 748 iha_exec_scb(sc, scb); 749 return; 750 751 case ADAPTER_REQ_GROW_RESOURCES: 752 return; /* XXX */ 753 754 case ADAPTER_REQ_SET_XFER_MODE: 755 { 756 struct tcs *tcs; 757 struct scsipi_xfer_mode *xm = arg; 758 759 tcs = &sc->sc_tcs[xm->xm_target]; 760 761 if ((xm->xm_mode & PERIPH_CAP_WIDE16) != 0 && 762 (tcs->flags & FLAG_NO_WIDE) == 0) 763 tcs->flags &= ~(FLAG_WIDE_DONE|FLAG_SYNC_DONE); 764 765 if ((xm->xm_mode & PERIPH_CAP_SYNC) != 0 && 766 (tcs->flags & FLAG_NO_SYNC) == 0) 767 tcs->flags &= ~FLAG_SYNC_DONE; 768 769 /* 770 * If we're not going to negotiate, send the 771 * notification now, since it won't happen later. 772 */ 773 if ((tcs->flags & (FLAG_WIDE_DONE|FLAG_SYNC_DONE)) == 774 (FLAG_WIDE_DONE|FLAG_SYNC_DONE)) 775 iha_update_xfer_mode(sc, xm->xm_target); 776 777 return; 778 } 779 } 780 } 781 782 void 783 iha_update_xfer_mode(sc, target) 784 struct iha_softc *sc; 785 int target; 786 { 787 struct tcs *tcs = &sc->sc_tcs[target]; 788 struct scsipi_xfer_mode xm; 789 790 xm.xm_target = target; 791 xm.xm_mode = 0; 792 xm.xm_period = 0; 793 xm.xm_offset = 0; 794 795 if (tcs->syncm & PERIOD_WIDE_SCSI) 796 xm.xm_mode |= PERIPH_CAP_WIDE16; 797 798 if (tcs->period) { 799 xm.xm_mode |= PERIPH_CAP_SYNC; 800 xm.xm_period = tcs->period; 801 xm.xm_offset = tcs->offset; 802 } 803 804 scsipi_async_event(&sc->sc_channel, ASYNC_EVENT_XFER_MODE, &xm); 805 } 806 807 static void 808 iha_reset_scsi_bus(sc) 809 struct iha_softc *sc; 810 { 811 struct iha_scb *scb; 812 struct tcs *tcs; 813 int i, s; 814 815 s = splbio(); 816 817 iha_reset_dma(sc); 818 819 for (i = 0, scb = sc->sc_scb; i < IHA_MAX_SCB; i++, scb++) 820 switch (scb->status) { 821 case STATUS_BUSY: 822 iha_append_done_scb(sc, scb, HOST_SCSI_RST); 823 break; 824 825 case STATUS_SELECT: 826 iha_push_pend_scb(sc, scb); 827 break; 828 829 default: 830 break; 831 } 832 833 for (i = 0, tcs = sc->sc_tcs; i < IHA_MAX_TARGETS; i++, tcs++) 834 iha_reset_tcs(tcs, sc->sc_sconf1); 835 836 splx(s); 837 } 838 839 void 840 iha_reset_chip(sc) 841 struct iha_softc *sc; 842 { 843 bus_space_tag_t iot = sc->sc_iot; 844 bus_space_handle_t ioh = sc->sc_ioh; 845 846 /* reset tulip chip */ 847 848 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSCSI); 849 850 do { 851 sc->sc_sistat = bus_space_read_1(iot, ioh, TUL_SISTAT); 852 } while ((sc->sc_sistat & SRSTD) == 0); 853 854 iha_set_ssig(sc, 0, 0); 855 856 bus_space_read_1(iot, ioh, TUL_SISTAT); /* Clear any active interrupt*/ 857 } 858 859 /* 860 * iha_reset_dma - abort any active DMA xfer, reset tulip FIFO. 861 */ 862 static void 863 iha_reset_dma(sc) 864 struct iha_softc *sc; 865 { 866 bus_space_tag_t iot = sc->sc_iot; 867 bus_space_handle_t ioh = sc->sc_ioh; 868 869 if ((bus_space_read_1(iot, ioh, TUL_ISTUS1) & XPEND) != 0) { 870 /* if DMA xfer is pending, abort DMA xfer */ 871 bus_space_write_1(iot, ioh, TUL_DCMD, ABTXFR); 872 /* wait Abort DMA xfer done */ 873 while ((bus_space_read_1(iot, ioh, TUL_ISTUS0) & DABT) == 0) 874 ; 875 } 876 877 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO); 878 } 879 880 /* 881 * iha_reset_tcs - reset the target control structure pointed 882 * to by tcs to default values. tcs flags 883 * only has the negotiation done bits reset as 884 * the other bits are fixed at initialization. 885 */ 886 static void 887 iha_reset_tcs(tcs, config0) 888 struct tcs *tcs; 889 u_int8_t config0; 890 { 891 892 tcs->flags &= ~(FLAG_SYNC_DONE | FLAG_WIDE_DONE); 893 tcs->period = 0; 894 tcs->offset = 0; 895 tcs->tagcnt = 0; 896 tcs->ntagscb = NULL; 897 tcs->syncm = 0; 898 tcs->sconfig0 = config0; 899 } 900 901 /* 902 * iha_main - process the active SCB, taking one off pending and making it 903 * active if necessary, and any done SCB's created as 904 * a result until there are no interrupts pending and no pending 905 * SCB's that can be started. 906 */ 907 static void 908 iha_main(sc) 909 struct iha_softc *sc; 910 { 911 bus_space_tag_t iot = sc->sc_iot; 912 bus_space_handle_t ioh =sc->sc_ioh; 913 struct iha_scb *scb; 914 915 for (;;) { 916 iha_scsi(sc); 917 918 while ((scb = iha_pop_done_scb(sc)) != NULL) 919 iha_done_scb(sc, scb); 920 921 /* 922 * If there are no interrupts pending, or we can't start 923 * a pending sc, break out of the for(;;). Otherwise 924 * continue the good work with another call to 925 * iha_scsi(). 926 */ 927 if (((bus_space_read_1(iot, ioh, TUL_STAT0) & INTPD) == 0) 928 && (iha_find_pend_scb(sc) == NULL)) 929 break; 930 } 931 } 932 933 /* 934 * iha_scsi - service any outstanding interrupts. If there are none, try to 935 * start another SCB currently in the pending queue. 936 */ 937 static void 938 iha_scsi(sc) 939 struct iha_softc *sc; 940 { 941 bus_space_tag_t iot = sc->sc_iot; 942 bus_space_handle_t ioh = sc->sc_ioh; 943 struct iha_scb *scb; 944 struct tcs *tcs; 945 u_int8_t stat; 946 947 /* service pending interrupts asap */ 948 949 stat = bus_space_read_1(iot, ioh, TUL_STAT0); 950 if ((stat & INTPD) != 0) { 951 sc->sc_status0 = stat; 952 sc->sc_status1 = bus_space_read_1(iot, ioh, TUL_STAT1); 953 sc->sc_sistat = bus_space_read_1(iot, ioh, TUL_SISTAT); 954 955 sc->sc_phase = sc->sc_status0 & PH_MASK; 956 957 if ((sc->sc_sistat & SRSTD) != 0) { 958 iha_reset_scsi_bus(sc); 959 return; 960 } 961 962 if ((sc->sc_sistat & RSELED) != 0) { 963 iha_resel(sc); 964 return; 965 } 966 967 if ((sc->sc_sistat & (STIMEO | DISCD)) != 0) { 968 iha_busfree(sc); 969 return; 970 } 971 972 if ((sc->sc_sistat & (SCMDN | SBSRV)) != 0) { 973 iha_next_state(sc); 974 return; 975 } 976 977 if ((sc->sc_sistat & SELED) != 0) 978 iha_set_ssig(sc, 0, 0); 979 } 980 981 /* 982 * There were no interrupts pending which required action elsewhere, so 983 * see if it is possible to start the selection phase on a pending SCB 984 */ 985 if ((scb = iha_find_pend_scb(sc)) == NULL) 986 return; 987 988 tcs = scb->tcs; 989 990 /* program HBA's SCSI ID & target SCSI ID */ 991 bus_space_write_1(iot, ioh, TUL_SID, (sc->sc_id << 4) | scb->target); 992 993 if ((scb->xs->xs_control & XS_CTL_RESET) == 0) { 994 bus_space_write_1(iot, ioh, TUL_SYNCM, tcs->syncm); 995 996 if ((tcs->flags & FLAG_NO_NEG_SYNC) == 0 || 997 (tcs->flags & FLAG_NO_NEG_WIDE) == 0) 998 iha_select(sc, scb, SELATNSTOP); 999 1000 else if (scb->scb_tagmsg != 0) 1001 iha_select(sc, scb, SEL_ATN3); 1002 1003 else 1004 iha_select(sc, scb, SEL_ATN); 1005 1006 } else { 1007 iha_select(sc, scb, SELATNSTOP); 1008 scb->nextstat = 8; 1009 } 1010 1011 if ((scb->xs->xs_control & XS_CTL_POLL) != 0) { 1012 int timeout; 1013 for (timeout = scb->xs->timeout; timeout > 0; timeout--) { 1014 if (iha_wait(sc, NO_OP) == -1) 1015 break; 1016 if (iha_next_state(sc) == -1) 1017 break; 1018 delay(1000); /* Only happens in boot, so it's ok */ 1019 } 1020 1021 /* 1022 * Since done queue processing not done until AFTER this 1023 * function returns, scb is on the done queue, not 1024 * the free queue at this point and still has valid data 1025 * 1026 * Conversely, xs->error has not been set yet 1027 */ 1028 if (timeout == 0) 1029 iha_timeout(scb); 1030 } 1031 } 1032 1033 static void 1034 iha_select(sc, scb, select_type) 1035 struct iha_softc *sc; 1036 struct iha_scb *scb; 1037 u_int8_t select_type; 1038 { 1039 bus_space_tag_t iot = sc->sc_iot; 1040 bus_space_handle_t ioh = sc->sc_ioh; 1041 1042 switch (select_type) { 1043 case SEL_ATN: 1044 bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_id); 1045 bus_space_write_multi_1(iot, ioh, TUL_SFIFO, 1046 scb->cmd, scb->cmdlen); 1047 1048 scb->nextstat = 2; 1049 break; 1050 1051 case SELATNSTOP: 1052 scb->nextstat = 1; 1053 break; 1054 1055 case SEL_ATN3: 1056 bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_id); 1057 bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_tagmsg); 1058 bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_tagid); 1059 1060 bus_space_write_multi_1(iot, ioh, TUL_SFIFO, scb->cmd, 1061 scb->cmdlen); 1062 1063 scb->nextstat = 2; 1064 break; 1065 1066 default: 1067 printf("[debug] iha_select() - unknown select type = 0x%02x\n", 1068 select_type); 1069 return; 1070 } 1071 1072 iha_del_pend_scb(sc, scb); 1073 scb->status = STATUS_SELECT; 1074 1075 sc->sc_actscb = scb; 1076 1077 bus_space_write_1(iot, ioh, TUL_SCMD, select_type); 1078 } 1079 1080 /* 1081 * iha_wait - wait for an interrupt to service or a SCSI bus phase change 1082 * after writing the supplied command to the tulip chip. If 1083 * the command is NO_OP, skip the command writing. 1084 */ 1085 static int 1086 iha_wait(sc, cmd) 1087 struct iha_softc *sc; 1088 u_int8_t cmd; 1089 { 1090 bus_space_tag_t iot = sc->sc_iot; 1091 bus_space_handle_t ioh = sc->sc_ioh; 1092 1093 if (cmd != NO_OP) 1094 bus_space_write_1(iot, ioh, TUL_SCMD, cmd); 1095 1096 /* 1097 * Have to do this here, in addition to in iha_isr, because 1098 * interrupts might be turned off when we get here. 1099 */ 1100 do { 1101 sc->sc_status0 = bus_space_read_1(iot, ioh, TUL_STAT0); 1102 } while ((sc->sc_status0 & INTPD) == 0); 1103 1104 sc->sc_status1 = bus_space_read_1(iot, ioh, TUL_STAT1); 1105 sc->sc_sistat = bus_space_read_1(iot, ioh, TUL_SISTAT); 1106 1107 sc->sc_phase = sc->sc_status0 & PH_MASK; 1108 1109 if ((sc->sc_sistat & SRSTD) != 0) { 1110 /* SCSI bus reset interrupt */ 1111 iha_reset_scsi_bus(sc); 1112 return (-1); 1113 } 1114 1115 if ((sc->sc_sistat & RSELED) != 0) 1116 /* Reselection interrupt */ 1117 return (iha_resel(sc)); 1118 1119 if ((sc->sc_sistat & STIMEO) != 0) { 1120 /* selected/reselected timeout interrupt */ 1121 iha_busfree(sc); 1122 return (-1); 1123 } 1124 1125 if ((sc->sc_sistat & DISCD) != 0) { 1126 /* BUS disconnection interrupt */ 1127 if ((sc->sc_flags & FLAG_EXPECT_DONE_DISC) != 0) { 1128 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO); 1129 bus_space_write_1(iot, ioh, TUL_SCONFIG0, 1130 SCONFIG0DEFAULT); 1131 bus_space_write_1(iot, ioh, TUL_SCTRL1, EHRSL); 1132 iha_append_done_scb(sc, sc->sc_actscb, HOST_OK); 1133 sc->sc_flags &= ~FLAG_EXPECT_DONE_DISC; 1134 1135 } else if ((sc->sc_flags & FLAG_EXPECT_DISC) != 0) { 1136 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO); 1137 bus_space_write_1(iot, ioh, TUL_SCONFIG0, 1138 SCONFIG0DEFAULT); 1139 bus_space_write_1(iot, ioh, TUL_SCTRL1, EHRSL); 1140 sc->sc_actscb = NULL; 1141 sc->sc_flags &= ~FLAG_EXPECT_DISC; 1142 1143 } else 1144 iha_busfree(sc); 1145 1146 return (-1); 1147 } 1148 1149 return (sc->sc_phase); 1150 } 1151 1152 static void 1153 iha_exec_scb(sc, scb) 1154 struct iha_softc *sc; 1155 struct iha_scb *scb; 1156 { 1157 bus_space_tag_t iot; 1158 bus_space_handle_t ioh; 1159 bus_dmamap_t dm; 1160 struct scsipi_xfer *xs = scb->xs; 1161 int nseg, s; 1162 1163 dm = scb->dmap; 1164 nseg = dm->dm_nsegs; 1165 1166 if (nseg > 1) { 1167 struct iha_sg_element *sg = scb->sglist; 1168 int i; 1169 1170 for (i = 0; i < nseg; i++) { 1171 sg[i].sg_len = htole32(dm->dm_segs[i].ds_len); 1172 sg[i].sg_addr = htole32(dm->dm_segs[i].ds_addr); 1173 } 1174 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap, 1175 scb->sgoffset, IHA_SG_SIZE, 1176 BUS_DMASYNC_PREWRITE); 1177 1178 scb->flags |= FLAG_SG; 1179 scb->sg_size = scb->sg_max = nseg; 1180 scb->sg_index = 0; 1181 1182 scb->bufaddr = scb->sg_addr; 1183 } else 1184 scb->bufaddr = dm->dm_segs[0].ds_addr; 1185 1186 if ((xs->xs_control & XS_CTL_POLL) == 0) { 1187 int timeout = mstohz(xs->timeout); 1188 if (timeout == 0) 1189 timeout = 1; 1190 callout_reset(&xs->xs_callout, timeout, iha_timeout, scb); 1191 } 1192 1193 s = splbio(); 1194 1195 if (((scb->xs->xs_control & XS_RESET) != 0) || 1196 (scb->cmd[0] == REQUEST_SENSE)) 1197 iha_push_pend_scb(sc, scb); /* Insert SCB at head of Pend */ 1198 else 1199 iha_append_pend_scb(sc, scb); /* Append SCB to tail of Pend */ 1200 1201 /* 1202 * Run through iha_main() to ensure something is active, if 1203 * only this new SCB. 1204 */ 1205 if (sc->sc_semaph != SEMAPH_IN_MAIN) { 1206 iot = sc->sc_iot; 1207 ioh = sc->sc_ioh; 1208 1209 bus_space_write_1(iot, ioh, TUL_IMSK, MASK_ALL); 1210 sc->sc_semaph = SEMAPH_IN_MAIN; 1211 1212 splx(s); 1213 iha_main(sc); 1214 s = splbio(); 1215 1216 sc->sc_semaph = ~SEMAPH_IN_MAIN; 1217 bus_space_write_1(iot, ioh, TUL_IMSK, (MASK_ALL & ~MSCMP)); 1218 } 1219 1220 splx(s); 1221 } 1222 1223 /* 1224 * iha_done_scb - We have a scb which has been processed by the 1225 * adaptor, now we look to see how the operation went. 1226 */ 1227 static void 1228 iha_done_scb(sc, scb) 1229 struct iha_softc *sc; 1230 struct iha_scb *scb; 1231 { 1232 struct scsipi_xfer *xs = scb->xs; 1233 1234 if (xs != NULL) { 1235 /* Cancel the timeout. */ 1236 callout_stop(&xs->xs_callout); 1237 1238 if (scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) { 1239 bus_dmamap_sync(sc->sc_dmat, scb->dmap, 1240 0, scb->dmap->dm_mapsize, 1241 (scb->flags & FLAG_DATAIN) ? 1242 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE); 1243 bus_dmamap_unload(sc->sc_dmat, scb->dmap); 1244 } 1245 1246 xs->status = scb->ta_stat; 1247 1248 switch (scb->ha_stat) { 1249 case HOST_OK: 1250 switch (scb->ta_stat) { 1251 case SCSI_OK: 1252 case SCSI_CONDITION_MET: 1253 case SCSI_INTERM: 1254 case SCSI_INTERM_COND_MET: 1255 xs->resid = scb->buflen; 1256 xs->error = XS_NOERROR; 1257 if ((scb->flags & FLAG_RSENS) != 0) 1258 xs->error = XS_SENSE; 1259 break; 1260 1261 case SCSI_RESV_CONFLICT: 1262 case SCSI_BUSY: 1263 case SCSI_QUEUE_FULL: 1264 xs->error = XS_BUSY; 1265 break; 1266 1267 case SCSI_TERMINATED: 1268 case SCSI_ACA_ACTIVE: 1269 case SCSI_CHECK: 1270 scb->tcs->flags &= 1271 ~(FLAG_SYNC_DONE | FLAG_WIDE_DONE); 1272 1273 if ((scb->flags & FLAG_RSENS) != 0 || 1274 iha_push_sense_request(sc, scb) != 0) { 1275 scb->flags &= ~FLAG_RSENS; 1276 printf("%s: request sense failed\n", 1277 sc->sc_dev.dv_xname); 1278 xs->error = XS_DRIVER_STUFFUP; 1279 break; 1280 } 1281 1282 xs->error = XS_SENSE; 1283 return; 1284 1285 default: 1286 xs->error = XS_DRIVER_STUFFUP; 1287 break; 1288 } 1289 break; 1290 1291 case HOST_SEL_TOUT: 1292 xs->error = XS_SELTIMEOUT; 1293 break; 1294 1295 case HOST_SCSI_RST: 1296 case HOST_DEV_RST: 1297 xs->error = XS_RESET; 1298 break; 1299 1300 case HOST_SPERR: 1301 printf("%s: SCSI Parity error detected\n", 1302 sc->sc_dev.dv_xname); 1303 xs->error = XS_DRIVER_STUFFUP; 1304 break; 1305 1306 case HOST_TIMED_OUT: 1307 xs->error = XS_TIMEOUT; 1308 break; 1309 1310 case HOST_DO_DU: 1311 case HOST_BAD_PHAS: 1312 default: 1313 xs->error = XS_DRIVER_STUFFUP; 1314 break; 1315 } 1316 1317 scsipi_done(xs); 1318 } 1319 1320 iha_append_free_scb(sc, scb); 1321 } 1322 1323 /* 1324 * iha_push_sense_request - obtain auto sense data by pushing the 1325 * SCB needing it back onto the pending 1326 * queue with a REQUEST_SENSE CDB. 1327 */ 1328 static int 1329 iha_push_sense_request(sc, scb) 1330 struct iha_softc *sc; 1331 struct iha_scb *scb; 1332 { 1333 struct scsipi_xfer *xs = scb->xs; 1334 struct scsipi_periph *periph = xs->xs_periph; 1335 struct scsipi_sense *ss = (struct scsipi_sense *)scb->cmd; 1336 int lun = periph->periph_lun; 1337 int err; 1338 1339 ss->opcode = REQUEST_SENSE; 1340 ss->byte2 = lun << SCSI_CMD_LUN_SHIFT; 1341 ss->unused[0] = ss->unused[1] = 0; 1342 ss->length = sizeof(struct scsipi_sense_data); 1343 ss->control = 0; 1344 1345 scb->flags = FLAG_RSENS | FLAG_DATAIN; 1346 1347 scb->scb_id &= ~MSG_IDENTIFY_DISCFLAG; 1348 1349 scb->scb_tagmsg = 0; 1350 scb->ta_stat = SCSI_OK; 1351 1352 scb->cmdlen = sizeof(struct scsipi_sense); 1353 scb->buflen = ss->length; 1354 1355 err = bus_dmamap_load(sc->sc_dmat, scb->dmap, 1356 &xs->sense.scsi_sense, scb->buflen, NULL, 1357 BUS_DMA_READ|BUS_DMA_NOWAIT); 1358 if (err != 0) { 1359 printf("iha_push_sense_request: cannot bus_dmamap_load()\n"); 1360 xs->error = XS_DRIVER_STUFFUP; 1361 return 1; 1362 } 1363 bus_dmamap_sync(sc->sc_dmat, scb->dmap, 1364 0, scb->buflen, BUS_DMASYNC_PREREAD); 1365 1366 /* XXX What about queued command? */ 1367 iha_exec_scb(sc, scb); 1368 1369 return 0; 1370 } 1371 1372 static void 1373 iha_timeout(arg) 1374 void *arg; 1375 { 1376 struct iha_scb *scb = (struct iha_scb *)arg; 1377 struct scsipi_xfer *xs = scb->xs; 1378 struct scsipi_periph *periph = xs->xs_periph; 1379 struct iha_softc *sc; 1380 1381 sc = (void *)periph->periph_channel->chan_adapter->adapt_dev; 1382 1383 if (xs == NULL) 1384 printf("[debug] iha_timeout called with xs == NULL\n"); 1385 1386 else { 1387 scsipi_printaddr(periph); 1388 printf("SCSI OpCode 0x%02x timed out\n", xs->cmd->opcode); 1389 1390 iha_abort_xs(sc, xs, HOST_TIMED_OUT); 1391 } 1392 } 1393 1394 /* 1395 * iha_abort_xs - find the SCB associated with the supplied xs and 1396 * stop all processing on it, moving it to the done 1397 * queue with the supplied host status value. 1398 */ 1399 static void 1400 iha_abort_xs(sc, xs, hastat) 1401 struct iha_softc *sc; 1402 struct scsipi_xfer *xs; 1403 u_int8_t hastat; 1404 { 1405 struct iha_scb *scb; 1406 int i, s; 1407 1408 s = splbio(); 1409 1410 /* Check the pending queue for the SCB pointing to xs */ 1411 1412 TAILQ_FOREACH(scb, &sc->sc_pendscb, chain) 1413 if (scb->xs == xs) { 1414 iha_del_pend_scb(sc, scb); 1415 iha_append_done_scb(sc, scb, hastat); 1416 splx(s); 1417 return; 1418 } 1419 1420 /* 1421 * If that didn't work, check all BUSY/SELECTING SCB's for one 1422 * pointing to xs 1423 */ 1424 1425 for (i = 0, scb = sc->sc_scb; i < IHA_MAX_SCB; i++, scb++) 1426 switch (scb->status) { 1427 case STATUS_BUSY: 1428 case STATUS_SELECT: 1429 if (scb->xs == xs) { 1430 iha_append_done_scb(sc, scb, hastat); 1431 splx(s); 1432 return; 1433 } 1434 break; 1435 default: 1436 break; 1437 } 1438 1439 splx(s); 1440 } 1441 1442 /* 1443 * iha_data_over_run - return HOST_OK for all SCSI opcodes where BufLen 1444 * is an 'Allocation Length'. All other SCSI opcodes 1445 * get HOST_DO_DU as they SHOULD have xferred all the 1446 * data requested. 1447 * 1448 * The list of opcodes using 'Allocation Length' was 1449 * found by scanning all the SCSI-3 T10 drafts. See 1450 * www.t10.org for the curious with a .pdf reader. 1451 */ 1452 static u_int8_t 1453 iha_data_over_run(scb) 1454 struct iha_scb *scb; 1455 { 1456 switch (scb->cmd[0]) { 1457 case 0x03: /* Request Sense SPC-2 */ 1458 case 0x12: /* Inquiry SPC-2 */ 1459 case 0x1a: /* Mode Sense (6 byte version) SPC-2 */ 1460 case 0x1c: /* Receive Diagnostic Results SPC-2 */ 1461 case 0x23: /* Read Format Capacities MMC-2 */ 1462 case 0x29: /* Read Generation SBC */ 1463 case 0x34: /* Read Position SSC-2 */ 1464 case 0x37: /* Read Defect Data SBC */ 1465 case 0x3c: /* Read Buffer SPC-2 */ 1466 case 0x42: /* Read Sub Channel MMC-2 */ 1467 case 0x43: /* Read TOC/PMA/ATIP MMC */ 1468 1469 /* XXX - 2 with same opcode of 0x44? */ 1470 case 0x44: /* Read Header/Read Density Suprt MMC/SSC*/ 1471 1472 case 0x46: /* Get Configuration MMC-2 */ 1473 case 0x4a: /* Get Event/Status Notification MMC-2 */ 1474 case 0x4d: /* Log Sense SPC-2 */ 1475 case 0x51: /* Read Disc Information MMC */ 1476 case 0x52: /* Read Track Information MMC */ 1477 case 0x59: /* Read Master CUE MMC */ 1478 case 0x5a: /* Mode Sense (10 byte version) SPC-2 */ 1479 case 0x5c: /* Read Buffer Capacity MMC */ 1480 case 0x5e: /* Persistent Reserve In SPC-2 */ 1481 case 0x84: /* Receive Copy Results SPC-2 */ 1482 case 0xa0: /* Report LUNs SPC-2 */ 1483 case 0xa3: /* Various Report requests SBC-2/SCC-2*/ 1484 case 0xa4: /* Report Key MMC-2 */ 1485 case 0xad: /* Read DVD Structure MMC-2 */ 1486 case 0xb4: /* Read Element Status (Attached) SMC */ 1487 case 0xb5: /* Request Volume Element Address SMC */ 1488 case 0xb7: /* Read Defect Data (12 byte ver.) SBC */ 1489 case 0xb8: /* Read Element Status (Independ.) SMC */ 1490 case 0xba: /* Report Redundancy SCC-2 */ 1491 case 0xbd: /* Mechanism Status MMC */ 1492 case 0xbe: /* Report Basic Redundancy SCC-2 */ 1493 1494 return (HOST_OK); 1495 1496 default: 1497 return (HOST_DO_DU); 1498 } 1499 } 1500 1501 /* 1502 * iha_next_state - process the current SCB as requested in its 1503 * nextstat member. 1504 */ 1505 static int 1506 iha_next_state(sc) 1507 struct iha_softc *sc; 1508 { 1509 1510 if (sc->sc_actscb == NULL) 1511 return (-1); 1512 1513 switch (sc->sc_actscb->nextstat) { 1514 case 1: 1515 if (iha_state_1(sc) == 3) 1516 goto state_3; 1517 break; 1518 1519 case 2: 1520 switch (iha_state_2(sc)) { 1521 case 3: 1522 goto state_3; 1523 case 4: 1524 goto state_4; 1525 default: 1526 break; 1527 } 1528 break; 1529 1530 case 3: 1531 state_3: 1532 if (iha_state_3(sc) == 4) 1533 goto state_4; 1534 break; 1535 1536 case 4: 1537 state_4: 1538 switch (iha_state_4(sc)) { 1539 case 0: 1540 return (0); 1541 case 6: 1542 goto state_6; 1543 default: 1544 break; 1545 } 1546 break; 1547 1548 case 5: 1549 switch (iha_state_5(sc)) { 1550 case 4: 1551 goto state_4; 1552 case 6: 1553 goto state_6; 1554 default: 1555 break; 1556 } 1557 break; 1558 1559 case 6: 1560 state_6: 1561 iha_state_6(sc); 1562 break; 1563 1564 case 8: 1565 iha_state_8(sc); 1566 break; 1567 1568 default: 1569 #ifdef IHA_DEBUG_STATE 1570 printf("[debug] -unknown state: %i-\n", 1571 sc->sc_actscb->nextstat); 1572 #endif 1573 iha_bad_seq(sc); 1574 break; 1575 } 1576 1577 return (-1); 1578 } 1579 1580 /* 1581 * iha_state_1 - selection is complete after a SELATNSTOP. If the target 1582 * has put the bus into MSG_OUT phase start wide/sync 1583 * negotiation. Otherwise clear the FIFO and go to state 3, 1584 * which will send the SCSI CDB to the target. 1585 */ 1586 static int 1587 iha_state_1(sc) 1588 struct iha_softc *sc; 1589 { 1590 bus_space_tag_t iot = sc->sc_iot; 1591 bus_space_handle_t ioh = sc->sc_ioh; 1592 struct iha_scb *scb = sc->sc_actscb; 1593 struct tcs *tcs; 1594 int flags; 1595 1596 iha_mark_busy_scb(scb); 1597 1598 tcs = scb->tcs; 1599 1600 bus_space_write_1(iot, ioh, TUL_SCONFIG0, tcs->sconfig0); 1601 1602 /* 1603 * If we are in PHASE_MSG_OUT, send 1604 * a) IDENT message (with tags if appropriate) 1605 * b) WDTR if the target is configured to negotiate wide xfers 1606 * ** OR ** 1607 * c) SDTR if the target is configured to negotiate sync xfers 1608 * but not wide ones 1609 * 1610 * If we are NOT, then the target is not asking for anything but 1611 * the data/command, so go straight to state 3. 1612 */ 1613 if (sc->sc_phase == PHASE_MSG_OUT) { 1614 bus_space_write_1(iot, ioh, TUL_SCTRL1, (ESBUSIN | EHRSL)); 1615 bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_id); 1616 1617 if (scb->scb_tagmsg != 0) { 1618 bus_space_write_1(iot, ioh, TUL_SFIFO, 1619 scb->scb_tagmsg); 1620 bus_space_write_1(iot, ioh, TUL_SFIFO, 1621 scb->scb_tagid); 1622 } 1623 1624 flags = tcs->flags; 1625 if ((flags & FLAG_NO_NEG_WIDE) == 0) { 1626 if (iha_msgout_wdtr(sc) == -1) 1627 return (-1); 1628 } else if ((flags & FLAG_NO_NEG_SYNC) == 0) { 1629 if (iha_msgout_sdtr(sc) == -1) 1630 return (-1); 1631 } 1632 1633 } else { 1634 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO); 1635 iha_set_ssig(sc, REQ | BSY | SEL | ATN, 0); 1636 } 1637 1638 return (3); 1639 } 1640 1641 /* 1642 * iha_state_2 - selection is complete after a SEL_ATN or SEL_ATN3. If the SCSI 1643 * CDB has already been send, go to state 4 to start the data 1644 * xfer. Otherwise reset the FIFO and go to state 3, sending 1645 * the SCSI CDB. 1646 */ 1647 static int 1648 iha_state_2(sc) 1649 struct iha_softc *sc; 1650 { 1651 bus_space_tag_t iot = sc->sc_iot; 1652 bus_space_handle_t ioh = sc->sc_ioh; 1653 struct iha_scb *scb = sc->sc_actscb; 1654 1655 iha_mark_busy_scb(scb); 1656 1657 bus_space_write_1(iot, ioh, TUL_SCONFIG0, scb->tcs->sconfig0); 1658 1659 if ((sc->sc_status1 & CPDNE) != 0) 1660 return (4); 1661 1662 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO); 1663 1664 iha_set_ssig(sc, REQ | BSY | SEL | ATN, 0); 1665 1666 return (3); 1667 } 1668 1669 /* 1670 * iha_state_3 - send the SCSI CDB to the target, processing any status 1671 * or other messages received until that is done or 1672 * abandoned. 1673 */ 1674 static int 1675 iha_state_3(sc) 1676 struct iha_softc *sc; 1677 { 1678 bus_space_tag_t iot = sc->sc_iot; 1679 bus_space_handle_t ioh = sc->sc_ioh; 1680 struct iha_scb *scb = sc->sc_actscb; 1681 int flags; 1682 1683 for (;;) { 1684 switch (sc->sc_phase) { 1685 case PHASE_CMD_OUT: 1686 bus_space_write_multi_1(iot, ioh, TUL_SFIFO, 1687 scb->cmd, scb->cmdlen); 1688 if (iha_wait(sc, XF_FIFO_OUT) == -1) 1689 return (-1); 1690 else if (sc->sc_phase == PHASE_CMD_OUT) { 1691 iha_bad_seq(sc); 1692 return (-1); 1693 } else 1694 return (4); 1695 1696 case PHASE_MSG_IN: 1697 scb->nextstat = 3; 1698 if (iha_msgin(sc) == -1) 1699 return (-1); 1700 break; 1701 1702 case PHASE_STATUS_IN: 1703 if (iha_status_msg(sc) == -1) 1704 return (-1); 1705 break; 1706 1707 case PHASE_MSG_OUT: 1708 flags = scb->tcs->flags; 1709 if ((flags & FLAG_NO_NEG_SYNC) != 0) { 1710 if (iha_msgout(sc, MSG_NOOP) == -1) 1711 return (-1); 1712 } else if (iha_msgout_sdtr(sc) == -1) 1713 return (-1); 1714 break; 1715 1716 default: 1717 printf("[debug] -s3- bad phase = %d\n", sc->sc_phase); 1718 iha_bad_seq(sc); 1719 return (-1); 1720 } 1721 } 1722 } 1723 1724 /* 1725 * iha_state_4 - start a data xfer. Handle any bus state 1726 * transitions until PHASE_DATA_IN/_OUT 1727 * or the attempt is abandoned. If there is 1728 * no data to xfer, go to state 6 and finish 1729 * processing the current SCB. 1730 */ 1731 static int 1732 iha_state_4(sc) 1733 struct iha_softc *sc; 1734 { 1735 struct iha_scb *scb = sc->sc_actscb; 1736 1737 if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) == 1738 (FLAG_DATAIN | FLAG_DATAOUT)) 1739 return (6); /* Both dir flags set => NO xfer was requested */ 1740 1741 for (;;) { 1742 if (scb->buflen == 0) 1743 return (6); 1744 1745 switch (sc->sc_phase) { 1746 case PHASE_STATUS_IN: 1747 if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) != 0) 1748 scb->ha_stat = iha_data_over_run(scb); 1749 if ((iha_status_msg(sc)) == -1) 1750 return (-1); 1751 break; 1752 1753 case PHASE_MSG_IN: 1754 scb->nextstat = 4; 1755 if (iha_msgin(sc) == -1) 1756 return (-1); 1757 break; 1758 1759 case PHASE_MSG_OUT: 1760 if ((sc->sc_status0 & SPERR) != 0) { 1761 scb->buflen = 0; 1762 scb->ha_stat = HOST_SPERR; 1763 if (iha_msgout(sc, MSG_INITIATOR_DET_ERR) == -1) 1764 return (-1); 1765 else 1766 return (6); 1767 } else { 1768 if (iha_msgout(sc, MSG_NOOP) == -1) 1769 return (-1); 1770 } 1771 break; 1772 1773 case PHASE_DATA_IN: 1774 return (iha_xfer_data(sc, scb, FLAG_DATAIN)); 1775 1776 case PHASE_DATA_OUT: 1777 return (iha_xfer_data(sc, scb, FLAG_DATAOUT)); 1778 1779 default: 1780 iha_bad_seq(sc); 1781 return (-1); 1782 } 1783 } 1784 } 1785 1786 /* 1787 * iha_state_5 - handle the partial or final completion of the current 1788 * data xfer. If DMA is still active stop it. If there is 1789 * more data to xfer, go to state 4 and start the xfer. 1790 * If not go to state 6 and finish the SCB. 1791 */ 1792 static int 1793 iha_state_5(sc) 1794 struct iha_softc *sc; 1795 { 1796 bus_space_tag_t iot = sc->sc_iot; 1797 bus_space_handle_t ioh = sc->sc_ioh; 1798 struct iha_scb *scb = sc->sc_actscb; 1799 struct iha_sg_element *sg; 1800 u_int32_t cnt; 1801 u_int8_t period, stat; 1802 long xcnt; /* cannot use unsigned!! see code: if (xcnt < 0) */ 1803 int i; 1804 1805 cnt = bus_space_read_4(iot, ioh, TUL_STCNT0) & TCNT; 1806 1807 /* 1808 * Stop any pending DMA activity and check for parity error. 1809 */ 1810 1811 if ((bus_space_read_1(iot, ioh, TUL_DCMD) & XDIR) != 0) { 1812 /* Input Operation */ 1813 if ((sc->sc_status0 & SPERR) != 0) 1814 scb->ha_stat = HOST_SPERR; 1815 1816 if ((bus_space_read_1(iot, ioh, TUL_ISTUS1) & XPEND) != 0) { 1817 bus_space_write_1(iot, ioh, TUL_DCTRL0, 1818 bus_space_read_1(iot, ioh, TUL_DCTRL0) | SXSTP); 1819 while (bus_space_read_1(iot, ioh, TUL_ISTUS1) & XPEND) 1820 ; 1821 } 1822 1823 } else { 1824 /* Output Operation */ 1825 if ((sc->sc_status1 & SXCMP) == 0) { 1826 period = scb->tcs->syncm; 1827 if ((period & PERIOD_WIDE_SCSI) != 0) 1828 cnt += (bus_space_read_1(iot, ioh, 1829 TUL_SFIFOCNT) & FIFOC) * 2; 1830 else 1831 cnt += bus_space_read_1(iot, ioh, 1832 TUL_SFIFOCNT) & FIFOC; 1833 } 1834 1835 if ((bus_space_read_1(iot, ioh, TUL_ISTUS1) & XPEND) != 0) { 1836 bus_space_write_1(iot, ioh, TUL_DCMD, ABTXFR); 1837 do 1838 stat = bus_space_read_1(iot, ioh, TUL_ISTUS0); 1839 while ((stat & DABT) == 0); 1840 } 1841 1842 if ((cnt == 1) && (sc->sc_phase == PHASE_DATA_OUT)) { 1843 if (iha_wait(sc, XF_FIFO_OUT) == -1) 1844 return (-1); 1845 cnt = 0; 1846 1847 } else if ((sc->sc_status1 & SXCMP) == 0) 1848 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO); 1849 } 1850 1851 if (cnt == 0) { 1852 scb->buflen = 0; 1853 return (6); 1854 } 1855 1856 /* Update active data pointer and restart the I/O at the new point */ 1857 1858 xcnt = scb->buflen - cnt; /* xcnt == bytes xferred */ 1859 scb->buflen = cnt; /* cnt == bytes left */ 1860 1861 if ((scb->flags & FLAG_SG) != 0) { 1862 sg = &scb->sglist[scb->sg_index]; 1863 for (i = scb->sg_index; i < scb->sg_max; sg++, i++) { 1864 xcnt -= le32toh(sg->sg_len); 1865 if (xcnt < 0) { 1866 xcnt += le32toh(sg->sg_len); 1867 1868 sg->sg_addr = 1869 htole32(le32toh(sg->sg_addr) + xcnt); 1870 sg->sg_len = 1871 htole32(le32toh(sg->sg_len) - xcnt); 1872 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap, 1873 scb->sgoffset, IHA_SG_SIZE, 1874 BUS_DMASYNC_PREWRITE); 1875 1876 scb->bufaddr += (i - scb->sg_index) * 1877 sizeof(struct iha_sg_element); 1878 scb->sg_size = scb->sg_max - i; 1879 scb->sg_index = i; 1880 1881 return (4); 1882 } 1883 } 1884 return (6); 1885 1886 } else 1887 scb->bufaddr += xcnt; 1888 1889 return (4); 1890 } 1891 1892 /* 1893 * iha_state_6 - finish off the active scb (may require several 1894 * iterations if PHASE_MSG_IN) and return -1 to indicate 1895 * the bus is free. 1896 */ 1897 static int 1898 iha_state_6(sc) 1899 struct iha_softc *sc; 1900 { 1901 1902 for (;;) { 1903 switch (sc->sc_phase) { 1904 case PHASE_STATUS_IN: 1905 if (iha_status_msg(sc) == -1) 1906 return (-1); 1907 break; 1908 1909 case PHASE_MSG_IN: 1910 sc->sc_actscb->nextstat = 6; 1911 if ((iha_msgin(sc)) == -1) 1912 return (-1); 1913 break; 1914 1915 case PHASE_MSG_OUT: 1916 if ((iha_msgout(sc, MSG_NOOP)) == -1) 1917 return (-1); 1918 break; 1919 1920 case PHASE_DATA_IN: 1921 if (iha_xpad_in(sc) == -1) 1922 return (-1); 1923 break; 1924 1925 case PHASE_DATA_OUT: 1926 if (iha_xpad_out(sc) == -1) 1927 return (-1); 1928 break; 1929 1930 default: 1931 iha_bad_seq(sc); 1932 return (-1); 1933 } 1934 } 1935 } 1936 1937 /* 1938 * iha_state_8 - reset the active device and all busy SCBs using it 1939 */ 1940 static int 1941 iha_state_8(sc) 1942 struct iha_softc *sc; 1943 { 1944 bus_space_tag_t iot = sc->sc_iot; 1945 bus_space_handle_t ioh = sc->sc_ioh; 1946 struct iha_scb *scb; 1947 int i; 1948 u_int8_t tar; 1949 1950 if (sc->sc_phase == PHASE_MSG_OUT) { 1951 bus_space_write_1(iot, ioh, TUL_SFIFO, MSG_BUS_DEV_RESET); 1952 1953 scb = sc->sc_actscb; 1954 1955 /* This SCB finished correctly -- resetting the device */ 1956 iha_append_done_scb(sc, scb, HOST_OK); 1957 1958 iha_reset_tcs(scb->tcs, sc->sc_sconf1); 1959 1960 tar = scb->target; 1961 for (i = 0, scb = sc->sc_scb; i < IHA_MAX_SCB; i++, scb++) 1962 if (scb->target == tar) 1963 switch (scb->status) { 1964 case STATUS_BUSY: 1965 iha_append_done_scb(sc, 1966 scb, HOST_DEV_RST); 1967 break; 1968 1969 case STATUS_SELECT: 1970 iha_push_pend_scb(sc, scb); 1971 break; 1972 1973 default: 1974 break; 1975 } 1976 1977 sc->sc_flags |= FLAG_EXPECT_DISC; 1978 1979 if (iha_wait(sc, XF_FIFO_OUT) == -1) 1980 return (-1); 1981 } 1982 1983 iha_bad_seq(sc); 1984 return (-1); 1985 } 1986 1987 /* 1988 * iha_xfer_data - initiate the DMA xfer of the data 1989 */ 1990 static int 1991 iha_xfer_data(sc, scb, direction) 1992 struct iha_softc *sc; 1993 struct iha_scb *scb; 1994 int direction; 1995 { 1996 bus_space_tag_t iot = sc->sc_iot; 1997 bus_space_handle_t ioh = sc->sc_ioh; 1998 u_int32_t xferlen; 1999 u_int8_t xfercmd; 2000 2001 if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) != direction) 2002 return (6); /* wrong direction, abandon I/O */ 2003 2004 bus_space_write_4(iot, ioh, TUL_STCNT0, scb->buflen); 2005 2006 xfercmd = STRXFR; 2007 if (direction == FLAG_DATAIN) 2008 xfercmd |= XDIR; 2009 2010 if (scb->flags & FLAG_SG) { 2011 xferlen = scb->sg_size * sizeof(struct iha_sg_element); 2012 xfercmd |= SGXFR; 2013 } else 2014 xferlen = scb->buflen; 2015 2016 bus_space_write_4(iot, ioh, TUL_DXC, xferlen); 2017 bus_space_write_4(iot, ioh, TUL_DXPA, scb->bufaddr); 2018 bus_space_write_1(iot, ioh, TUL_DCMD, xfercmd); 2019 2020 bus_space_write_1(iot, ioh, TUL_SCMD, 2021 (direction == FLAG_DATAIN) ? XF_DMA_IN : XF_DMA_OUT); 2022 2023 scb->nextstat = 5; 2024 2025 return (0); 2026 } 2027 2028 static int 2029 iha_xpad_in(sc) 2030 struct iha_softc *sc; 2031 { 2032 bus_space_tag_t iot = sc->sc_iot; 2033 bus_space_handle_t ioh = sc->sc_ioh; 2034 struct iha_scb *scb = sc->sc_actscb; 2035 2036 if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) != 0) 2037 scb->ha_stat = HOST_DO_DU; 2038 2039 for (;;) { 2040 if ((scb->tcs->syncm & PERIOD_WIDE_SCSI) != 0) 2041 bus_space_write_4(iot, ioh, TUL_STCNT0, 2); 2042 else 2043 bus_space_write_4(iot, ioh, TUL_STCNT0, 1); 2044 2045 switch (iha_wait(sc, XF_FIFO_IN)) { 2046 case -1: 2047 return (-1); 2048 2049 case PHASE_DATA_IN: 2050 bus_space_read_1(iot, ioh, TUL_SFIFO); 2051 break; 2052 2053 default: 2054 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO); 2055 return (6); 2056 } 2057 } 2058 } 2059 2060 static int 2061 iha_xpad_out(sc) 2062 struct iha_softc *sc; 2063 { 2064 bus_space_tag_t iot = sc->sc_iot; 2065 bus_space_handle_t ioh = sc->sc_ioh; 2066 struct iha_scb *scb = sc->sc_actscb; 2067 2068 if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) != 0) 2069 scb->ha_stat = HOST_DO_DU; 2070 2071 for (;;) { 2072 if ((scb->tcs->syncm & PERIOD_WIDE_SCSI) != 0) 2073 bus_space_write_4(iot, ioh, TUL_STCNT0, 2); 2074 else 2075 bus_space_write_4(iot, ioh, TUL_STCNT0, 1); 2076 2077 bus_space_write_1(iot, ioh, TUL_SFIFO, 0); 2078 2079 switch (iha_wait(sc, XF_FIFO_OUT)) { 2080 case -1: 2081 return (-1); 2082 2083 case PHASE_DATA_OUT: 2084 break; 2085 2086 default: 2087 /* Disable wide CPU to allow read 16 bits */ 2088 bus_space_write_1(iot, ioh, TUL_SCTRL1, EHRSL); 2089 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO); 2090 return (6); 2091 } 2092 } 2093 } 2094 2095 static int 2096 iha_status_msg(sc) 2097 struct iha_softc *sc; 2098 { 2099 bus_space_tag_t iot = sc->sc_iot; 2100 bus_space_handle_t ioh = sc->sc_ioh; 2101 struct iha_scb *scb; 2102 u_int8_t msg; 2103 int phase; 2104 2105 if ((phase = iha_wait(sc, CMD_COMP)) == -1) 2106 return (-1); 2107 2108 scb = sc->sc_actscb; 2109 2110 scb->ta_stat = bus_space_read_1(iot, ioh, TUL_SFIFO); 2111 2112 if (phase == PHASE_MSG_OUT) { 2113 if ((sc->sc_status0 & SPERR) == 0) 2114 bus_space_write_1(iot, ioh, TUL_SFIFO, MSG_NOOP); 2115 else 2116 bus_space_write_1(iot, ioh, TUL_SFIFO, 2117 MSG_PARITY_ERROR); 2118 2119 return (iha_wait(sc, XF_FIFO_OUT)); 2120 2121 } else if (phase == PHASE_MSG_IN) { 2122 msg = bus_space_read_1(iot, ioh, TUL_SFIFO); 2123 2124 if ((sc->sc_status0 & SPERR) != 0) 2125 switch (iha_wait(sc, MSG_ACCEPT)) { 2126 case -1: 2127 return (-1); 2128 case PHASE_MSG_OUT: 2129 bus_space_write_1(iot, ioh, TUL_SFIFO, 2130 MSG_PARITY_ERROR); 2131 return (iha_wait(sc, XF_FIFO_OUT)); 2132 default: 2133 iha_bad_seq(sc); 2134 return (-1); 2135 } 2136 2137 if (msg == MSG_CMDCOMPLETE) { 2138 if ((scb->ta_stat & 2139 (SCSI_INTERM | SCSI_BUSY)) == SCSI_INTERM) { 2140 iha_bad_seq(sc); 2141 return (-1); 2142 } 2143 sc->sc_flags |= FLAG_EXPECT_DONE_DISC; 2144 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO); 2145 return (iha_wait(sc, MSG_ACCEPT)); 2146 } 2147 2148 if ((msg == MSG_LINK_CMD_COMPLETE) 2149 || (msg == MSG_LINK_CMD_COMPLETEF)) { 2150 if ((scb->ta_stat & 2151 (SCSI_INTERM | SCSI_BUSY)) == SCSI_INTERM) 2152 return (iha_wait(sc, MSG_ACCEPT)); 2153 } 2154 } 2155 2156 iha_bad_seq(sc); 2157 return (-1); 2158 } 2159 2160 /* 2161 * iha_busfree - SCSI bus free detected as a result of a TIMEOUT or 2162 * DISCONNECT interrupt. Reset the tulip FIFO and 2163 * SCONFIG0 and enable hardware reselect. Move any active 2164 * SCB to sc_donescb list. Return an appropriate host status 2165 * if an I/O was active. 2166 */ 2167 static void 2168 iha_busfree(sc) 2169 struct iha_softc *sc; 2170 { 2171 bus_space_tag_t iot = sc->sc_iot; 2172 bus_space_handle_t ioh = sc->sc_ioh; 2173 struct iha_scb *scb; 2174 2175 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO); 2176 bus_space_write_1(iot, ioh, TUL_SCONFIG0, SCONFIG0DEFAULT); 2177 bus_space_write_1(iot, ioh, TUL_SCTRL1, EHRSL); 2178 2179 scb = sc->sc_actscb; 2180 2181 if (scb != NULL) { 2182 if (scb->status == STATUS_SELECT) 2183 /* selection timeout */ 2184 iha_append_done_scb(sc, scb, HOST_SEL_TOUT); 2185 else 2186 /* Unexpected bus free */ 2187 iha_append_done_scb(sc, scb, HOST_BAD_PHAS); 2188 } 2189 } 2190 2191 /* 2192 * iha_resel - handle a detected SCSI bus reselection request. 2193 */ 2194 static int 2195 iha_resel(sc) 2196 struct iha_softc *sc; 2197 { 2198 bus_space_tag_t iot = sc->sc_iot; 2199 bus_space_handle_t ioh = sc->sc_ioh; 2200 struct iha_scb *scb; 2201 struct tcs *tcs; 2202 u_int8_t tag, target, lun, msg, abortmsg; 2203 2204 if (sc->sc_actscb != NULL) { 2205 if ((sc->sc_actscb->status == STATUS_SELECT)) 2206 iha_push_pend_scb(sc, sc->sc_actscb); 2207 sc->sc_actscb = NULL; 2208 } 2209 2210 target = bus_space_read_1(iot, ioh, TUL_SBID); 2211 lun = bus_space_read_1(iot, ioh, TUL_SALVC) & IHA_MSG_IDENTIFY_LUNMASK; 2212 2213 tcs = &sc->sc_tcs[target]; 2214 2215 bus_space_write_1(iot, ioh, TUL_SCONFIG0, tcs->sconfig0); 2216 bus_space_write_1(iot, ioh, TUL_SYNCM, tcs->syncm); 2217 2218 abortmsg = MSG_ABORT; /* until a valid tag has been obtained */ 2219 2220 if (tcs->ntagscb != NULL) 2221 /* There is a non-tagged I/O active on the target */ 2222 scb = tcs->ntagscb; 2223 2224 else { 2225 /* 2226 * Since there is no active non-tagged operation 2227 * read the tag type, the tag itself, and find 2228 * the appropriate scb by indexing sc_scb with 2229 * the tag. 2230 */ 2231 2232 switch (iha_wait(sc, MSG_ACCEPT)) { 2233 case -1: 2234 return (-1); 2235 case PHASE_MSG_IN: 2236 bus_space_write_4(iot, ioh, TUL_STCNT0, 1); 2237 if ((iha_wait(sc, XF_FIFO_IN)) == -1) 2238 return (-1); 2239 break; 2240 default: 2241 goto abort; 2242 } 2243 2244 msg = bus_space_read_1(iot, ioh, TUL_SFIFO); /* Read Tag Msg */ 2245 2246 if ((msg < MSG_SIMPLE_Q_TAG) || (msg > MSG_ORDERED_Q_TAG)) 2247 goto abort; 2248 2249 switch (iha_wait(sc, MSG_ACCEPT)) { 2250 case -1: 2251 return (-1); 2252 case PHASE_MSG_IN: 2253 bus_space_write_4(iot, ioh, TUL_STCNT0, 1); 2254 if ((iha_wait(sc, XF_FIFO_IN)) == -1) 2255 return (-1); 2256 break; 2257 default: 2258 goto abort; 2259 } 2260 2261 tag = bus_space_read_1(iot, ioh, TUL_SFIFO); /* Read Tag ID */ 2262 scb = &sc->sc_scb[tag]; 2263 2264 abortmsg = MSG_ABORT_TAG; /* Now that we have valdid tag! */ 2265 } 2266 2267 if ((scb->target != target) 2268 || (scb->lun != lun) 2269 || (scb->status != STATUS_BUSY)) { 2270 abort: 2271 iha_msgout_abort(sc, abortmsg); 2272 return (-1); 2273 } 2274 2275 sc->sc_actscb = scb; 2276 2277 if (iha_wait(sc, MSG_ACCEPT) == -1) 2278 return (-1); 2279 2280 return (iha_next_state(sc)); 2281 } 2282 2283 static int 2284 iha_msgin(sc) 2285 struct iha_softc *sc; 2286 { 2287 bus_space_tag_t iot = sc->sc_iot; 2288 bus_space_handle_t ioh = sc->sc_ioh; 2289 int flags; 2290 int phase; 2291 u_int8_t msg; 2292 2293 for (;;) { 2294 if ((bus_space_read_1(iot, ioh, TUL_SFIFOCNT) & FIFOC) > 0) 2295 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO); 2296 2297 bus_space_write_4(iot, ioh, TUL_STCNT0, 1); 2298 2299 phase = iha_wait(sc, XF_FIFO_IN); 2300 msg = bus_space_read_1(iot, ioh, TUL_SFIFO); 2301 2302 switch (msg) { 2303 case MSG_DISCONNECT: 2304 sc->sc_flags |= FLAG_EXPECT_DISC; 2305 if (iha_wait(sc, MSG_ACCEPT) != -1) 2306 iha_bad_seq(sc); 2307 phase = -1; 2308 break; 2309 case MSG_SAVEDATAPOINTER: 2310 case MSG_RESTOREPOINTERS: 2311 case MSG_NOOP: 2312 phase = iha_wait(sc, MSG_ACCEPT); 2313 break; 2314 case MSG_MESSAGE_REJECT: 2315 /* XXX - need to clear FIFO like other 'Clear ATN'?*/ 2316 iha_set_ssig(sc, REQ | BSY | SEL | ATN, 0); 2317 flags = sc->sc_actscb->tcs->flags; 2318 if ((flags & FLAG_NO_NEG_SYNC) == 0) 2319 iha_set_ssig(sc, REQ | BSY | SEL, ATN); 2320 phase = iha_wait(sc, MSG_ACCEPT); 2321 break; 2322 case MSG_EXTENDED: 2323 phase = iha_msgin_extended(sc); 2324 break; 2325 case MSG_IGN_WIDE_RESIDUE: 2326 phase = iha_msgin_ignore_wid_resid(sc); 2327 break; 2328 case MSG_CMDCOMPLETE: 2329 sc->sc_flags |= FLAG_EXPECT_DONE_DISC; 2330 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO); 2331 phase = iha_wait(sc, MSG_ACCEPT); 2332 if (phase != -1) { 2333 iha_bad_seq(sc); 2334 return (-1); 2335 } 2336 break; 2337 default: 2338 printf("[debug] iha_msgin: bad msg type: %d\n", msg); 2339 phase = iha_msgout_reject(sc); 2340 break; 2341 } 2342 2343 if (phase != PHASE_MSG_IN) 2344 return (phase); 2345 } 2346 /* NOTREACHED */ 2347 } 2348 2349 static int 2350 iha_msgin_extended(sc) 2351 struct iha_softc *sc; 2352 { 2353 bus_space_tag_t iot = sc->sc_iot; 2354 bus_space_handle_t ioh = sc->sc_ioh; 2355 int flags, i, phase, msglen, msgcode; 2356 2357 /* 2358 * XXX - can we just stop reading and reject, or do we have to 2359 * read all input, discarding the excess, and then reject 2360 */ 2361 for (i = 0; i < IHA_MAX_EXTENDED_MSG; i++) { 2362 phase = iha_wait(sc, MSG_ACCEPT); 2363 2364 if (phase != PHASE_MSG_IN) 2365 return (phase); 2366 2367 bus_space_write_4(iot, ioh, TUL_STCNT0, 1); 2368 2369 if (iha_wait(sc, XF_FIFO_IN) == -1) 2370 return (-1); 2371 2372 sc->sc_msg[i] = bus_space_read_1(iot, ioh, TUL_SFIFO); 2373 2374 if (sc->sc_msg[0] == i) 2375 break; 2376 } 2377 2378 msglen = sc->sc_msg[0]; 2379 msgcode = sc->sc_msg[1]; 2380 2381 if ((msglen == MSG_EXT_SDTR_LEN) && (msgcode == MSG_EXT_SDTR)) { 2382 if (iha_msgin_sdtr(sc) == 0) { 2383 iha_sync_done(sc); 2384 return (iha_wait(sc, MSG_ACCEPT)); 2385 } 2386 2387 iha_set_ssig(sc, REQ | BSY | SEL, ATN); 2388 2389 phase = iha_wait(sc, MSG_ACCEPT); 2390 if (phase != PHASE_MSG_OUT) 2391 return (phase); 2392 2393 /* Clear FIFO for important message - final SYNC offer */ 2394 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO); 2395 2396 iha_sync_done(sc); /* This is our final offer */ 2397 2398 } else if ((msglen == MSG_EXT_WDTR_LEN) && (msgcode == MSG_EXT_WDTR)) { 2399 2400 flags = sc->sc_actscb->tcs->flags; 2401 2402 if ((flags & FLAG_NO_WIDE) != 0) 2403 /* Offer 8bit xfers only */ 2404 sc->sc_msg[2] = MSG_EXT_WDTR_BUS_8_BIT; 2405 2406 else if (sc->sc_msg[2] > MSG_EXT_WDTR_BUS_32_BIT) 2407 /* BAD MSG */ 2408 return (iha_msgout_reject(sc)); 2409 2410 else if (sc->sc_msg[2] == MSG_EXT_WDTR_BUS_32_BIT) 2411 /* Offer 16bit instead */ 2412 sc->sc_msg[2] = MSG_EXT_WDTR_BUS_16_BIT; 2413 2414 else { 2415 iha_wide_done(sc); 2416 if ((flags & FLAG_NO_NEG_SYNC) == 0) 2417 iha_set_ssig(sc, REQ | BSY | SEL, ATN); 2418 return (iha_wait(sc, MSG_ACCEPT)); 2419 } 2420 2421 iha_set_ssig(sc, REQ | BSY | SEL, ATN); 2422 2423 phase = iha_wait(sc, MSG_ACCEPT); 2424 if (phase != PHASE_MSG_OUT) 2425 return (phase); 2426 } else 2427 return (iha_msgout_reject(sc)); 2428 2429 return (iha_msgout_extended(sc)); 2430 } 2431 2432 /* 2433 * iha_msgin_sdtr - check SDTR msg in sc_msg. If the offer is 2434 * acceptable leave sc_msg as is and return 0. 2435 * If the negotiation must continue, modify sc_msg 2436 * as needed and return 1. Else return 0. 2437 */ 2438 static int 2439 iha_msgin_sdtr(sc) 2440 struct iha_softc *sc; 2441 { 2442 int flags; 2443 int newoffer; 2444 u_int8_t default_period; 2445 2446 flags = sc->sc_actscb->tcs->flags; 2447 2448 default_period = iha_rate_tbl[flags & FLAG_SCSI_RATE]; 2449 2450 if (sc->sc_msg[3] == 0) 2451 /* target offered async only. Accept it. */ 2452 return (0); 2453 2454 newoffer = 0; 2455 2456 if ((flags & FLAG_NO_SYNC) != 0) { 2457 sc->sc_msg[3] = 0; 2458 newoffer = 1; 2459 } 2460 2461 if (sc->sc_msg[3] > IHA_MAX_OFFSET) { 2462 sc->sc_msg[3] = IHA_MAX_OFFSET; 2463 newoffer = 1; 2464 } 2465 2466 if (sc->sc_msg[2] < default_period) { 2467 sc->sc_msg[2] = default_period; 2468 newoffer = 1; 2469 } 2470 2471 if (sc->sc_msg[2] > IHA_MAX_PERIOD) { 2472 /* Use async */ 2473 sc->sc_msg[3] = 0; 2474 newoffer = 1; 2475 } 2476 2477 return (newoffer); 2478 } 2479 2480 static int 2481 iha_msgin_ignore_wid_resid(sc) 2482 struct iha_softc *sc; 2483 { 2484 bus_space_tag_t iot = sc->sc_iot; 2485 bus_space_handle_t ioh = sc->sc_ioh; 2486 int phase; 2487 2488 phase = iha_wait(sc, MSG_ACCEPT); 2489 2490 if (phase == PHASE_MSG_IN) { 2491 phase = iha_wait(sc, XF_FIFO_IN); 2492 2493 if (phase != -1) { 2494 bus_space_write_1(iot, ioh, TUL_SFIFO, 0); 2495 bus_space_read_1(iot, ioh, TUL_SFIFO); 2496 bus_space_read_1(iot, ioh, TUL_SFIFO); 2497 2498 phase = iha_wait(sc, MSG_ACCEPT); 2499 } 2500 } 2501 2502 return (phase); 2503 } 2504 2505 static int 2506 iha_msgout(sc, msg) 2507 struct iha_softc *sc; 2508 u_int8_t msg; 2509 { 2510 2511 bus_space_write_1(sc->sc_iot, sc->sc_ioh, TUL_SFIFO, msg); 2512 2513 return (iha_wait(sc, XF_FIFO_OUT)); 2514 } 2515 2516 static void 2517 iha_msgout_abort(sc, aborttype) 2518 struct iha_softc *sc; 2519 u_int8_t aborttype; 2520 { 2521 2522 iha_set_ssig(sc, REQ | BSY | SEL, ATN); 2523 2524 switch (iha_wait(sc, MSG_ACCEPT)) { 2525 case -1: 2526 break; 2527 2528 case PHASE_MSG_OUT: 2529 sc->sc_flags |= FLAG_EXPECT_DISC; 2530 if (iha_msgout(sc, aborttype) != -1) 2531 iha_bad_seq(sc); 2532 break; 2533 2534 default: 2535 iha_bad_seq(sc); 2536 break; 2537 } 2538 } 2539 2540 static int 2541 iha_msgout_reject(sc) 2542 struct iha_softc *sc; 2543 { 2544 2545 iha_set_ssig(sc, REQ | BSY | SEL, ATN); 2546 2547 if (iha_wait(sc, MSG_ACCEPT) == PHASE_MSG_OUT) 2548 return (iha_msgout(sc, MSG_MESSAGE_REJECT)); 2549 2550 return (-1); 2551 } 2552 2553 static int 2554 iha_msgout_extended(sc) 2555 struct iha_softc *sc; 2556 { 2557 bus_space_tag_t iot = sc->sc_iot; 2558 bus_space_handle_t ioh = sc->sc_ioh; 2559 int phase; 2560 2561 bus_space_write_1(iot, ioh, TUL_SFIFO, MSG_EXTENDED); 2562 2563 bus_space_write_multi_1(iot, ioh, TUL_SFIFO, 2564 sc->sc_msg, sc->sc_msg[0] + 1); 2565 2566 phase = iha_wait(sc, XF_FIFO_OUT); 2567 2568 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO); 2569 iha_set_ssig(sc, REQ | BSY | SEL | ATN, 0); 2570 2571 return (phase); 2572 } 2573 2574 static int 2575 iha_msgout_wdtr(sc) 2576 struct iha_softc *sc; 2577 { 2578 2579 sc->sc_actscb->tcs->flags |= FLAG_WIDE_DONE; 2580 2581 sc->sc_msg[0] = MSG_EXT_WDTR_LEN; 2582 sc->sc_msg[1] = MSG_EXT_WDTR; 2583 sc->sc_msg[2] = MSG_EXT_WDTR_BUS_16_BIT; 2584 2585 return (iha_msgout_extended(sc)); 2586 } 2587 2588 static int 2589 iha_msgout_sdtr(sc) 2590 struct iha_softc *sc; 2591 { 2592 struct tcs *tcs = sc->sc_actscb->tcs; 2593 2594 tcs->flags |= FLAG_SYNC_DONE; 2595 2596 sc->sc_msg[0] = MSG_EXT_SDTR_LEN; 2597 sc->sc_msg[1] = MSG_EXT_SDTR; 2598 sc->sc_msg[2] = iha_rate_tbl[tcs->flags & FLAG_SCSI_RATE]; 2599 sc->sc_msg[3] = IHA_MAX_OFFSET; /* REQ/ACK */ 2600 2601 return (iha_msgout_extended(sc)); 2602 } 2603 2604 static void 2605 iha_wide_done(sc) 2606 struct iha_softc *sc; 2607 { 2608 bus_space_tag_t iot = sc->sc_iot; 2609 bus_space_handle_t ioh = sc->sc_ioh; 2610 struct tcs *tcs = sc->sc_actscb->tcs; 2611 2612 tcs->syncm = 0; 2613 tcs->period = 0; 2614 tcs->offset = 0; 2615 2616 if (sc->sc_msg[2] != 0) 2617 tcs->syncm |= PERIOD_WIDE_SCSI; 2618 2619 tcs->sconfig0 &= ~ALTPD; 2620 tcs->flags &= ~FLAG_SYNC_DONE; 2621 tcs->flags |= FLAG_WIDE_DONE; 2622 2623 iha_update_xfer_mode(sc, sc->sc_actscb->target); 2624 2625 bus_space_write_1(iot, ioh, TUL_SCONFIG0, tcs->sconfig0); 2626 bus_space_write_1(iot, ioh, TUL_SYNCM, tcs->syncm); 2627 } 2628 2629 static void 2630 iha_sync_done(sc) 2631 struct iha_softc *sc; 2632 { 2633 bus_space_tag_t iot = sc->sc_iot; 2634 bus_space_handle_t ioh = sc->sc_ioh; 2635 struct tcs *tcs = sc->sc_actscb->tcs; 2636 int i; 2637 2638 tcs->period = sc->sc_msg[2]; 2639 tcs->offset = sc->sc_msg[3]; 2640 if (tcs->offset != 0) { 2641 tcs->syncm |= tcs->offset; 2642 2643 /* pick the highest possible rate */ 2644 for (i = 0; i < sizeof(iha_rate_tbl); i++) 2645 if (iha_rate_tbl[i] >= tcs->period) 2646 break; 2647 2648 tcs->syncm |= (i << 4); 2649 tcs->sconfig0 |= ALTPD; 2650 } 2651 2652 tcs->flags |= FLAG_SYNC_DONE; 2653 2654 iha_update_xfer_mode(sc, sc->sc_actscb->target); 2655 2656 bus_space_write_1(iot, ioh, TUL_SCONFIG0, tcs->sconfig0); 2657 bus_space_write_1(iot, ioh, TUL_SYNCM, tcs->syncm); 2658 } 2659 2660 /* 2661 * iha_bad_seq - a SCSI bus phase was encountered out of the 2662 * correct/expected sequence. Reset the SCSI bus. 2663 */ 2664 static void 2665 iha_bad_seq(sc) 2666 struct iha_softc *sc; 2667 { 2668 struct iha_scb *scb = sc->sc_actscb; 2669 2670 if (scb != NULL) 2671 iha_append_done_scb(sc, scb, HOST_BAD_PHAS); 2672 2673 iha_reset_scsi_bus(sc); 2674 iha_reset_chip(sc); 2675 } 2676 2677 /* 2678 * iha_read_eeprom - read Serial EEPROM value & set to defaults 2679 * if required. XXX - Writing does NOT work! 2680 */ 2681 static void 2682 iha_read_eeprom(sc, eeprom) 2683 struct iha_softc *sc; 2684 struct iha_eeprom *eeprom; 2685 { 2686 bus_space_tag_t iot = sc->sc_iot; 2687 bus_space_handle_t ioh = sc->sc_ioh; 2688 u_int16_t *buf = (u_int16_t *)eeprom; 2689 u_int8_t gctrl; 2690 2691 /* Enable EEProm programming */ 2692 gctrl = bus_space_read_1(iot, ioh, TUL_GCTRL0) | EEPRG; 2693 bus_space_write_1(iot, ioh, TUL_GCTRL0, gctrl); 2694 2695 /* Read EEProm */ 2696 if (iha_se2_rd_all(sc, buf) == 0) 2697 panic("%s: cannot read EEPROM", sc->sc_dev.dv_xname); 2698 2699 /* Disable EEProm programming */ 2700 gctrl = bus_space_read_1(iot, ioh, TUL_GCTRL0) & ~EEPRG; 2701 bus_space_write_1(iot, ioh, TUL_GCTRL0, gctrl); 2702 } 2703 2704 #ifdef notused 2705 /* 2706 * iha_se2_update_all - Update SCSI H/A configuration parameters from 2707 * serial EEPROM Setup default pattern. Only 2708 * change those values different from the values 2709 * in iha_eeprom. 2710 */ 2711 static void 2712 iha_se2_update_all(sc) 2713 struct iha_softc *sc; 2714 { 2715 bus_space_tag_t iot = sc->sc_iot; 2716 bus_space_handle_t ioh = sc->sc_ioh; 2717 u_int16_t *np; 2718 u_int32_t chksum; 2719 int i; 2720 2721 /* Enable erase/write state of EEPROM */ 2722 iha_se2_instr(sc, ENABLE_ERASE); 2723 bus_space_write_1(iot, ioh, TUL_NVRAM, 0); 2724 EEP_WAIT(); 2725 2726 np = (u_int16_t *)&eeprom_default; 2727 2728 for (i = 0, chksum = 0; i < EEPROM_SIZE - 1; i++) { 2729 iha_se2_wr(sc, i, *np); 2730 chksum += *np++; 2731 } 2732 2733 chksum &= 0x0000ffff; 2734 iha_se2_wr(sc, 31, chksum); 2735 2736 /* Disable erase/write state of EEPROM */ 2737 iha_se2_instr(sc, 0); 2738 bus_space_write_1(iot, ioh, TUL_NVRAM, 0); 2739 EEP_WAIT(); 2740 } 2741 2742 /* 2743 * iha_se2_wr - write the given 16 bit value into the Serial EEPROM 2744 * at the specified offset 2745 */ 2746 static void 2747 iha_se2_wr(sc, addr, writeword) 2748 struct iha_softc *sc; 2749 int addr; 2750 u_int16_t writeword; 2751 { 2752 bus_space_tag_t iot = sc->sc_iot; 2753 bus_space_handle_t ioh = sc->sc_ioh; 2754 int i, bit; 2755 2756 /* send 'WRITE' Instruction == address | WRITE bit */ 2757 iha_se2_instr(sc, addr | WRITE); 2758 2759 for (i = 16; i > 0; i--) { 2760 if (writeword & (1 << (i - 1))) 2761 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS | NVRDO); 2762 else 2763 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS); 2764 EEP_WAIT(); 2765 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS | NVRCK); 2766 EEP_WAIT(); 2767 } 2768 2769 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS); 2770 EEP_WAIT(); 2771 bus_space_write_1(iot, ioh, TUL_NVRAM, 0); 2772 EEP_WAIT(); 2773 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS); 2774 EEP_WAIT(); 2775 2776 for (;;) { 2777 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS | NVRCK); 2778 EEP_WAIT(); 2779 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS); 2780 EEP_WAIT(); 2781 bit = bus_space_read_1(iot, ioh, TUL_NVRAM) & NVRDI; 2782 EEP_WAIT(); 2783 if (bit != 0) 2784 break; /* write complete */ 2785 } 2786 2787 bus_space_write_1(iot, ioh, TUL_NVRAM, 0); 2788 } 2789 #endif 2790 2791 /* 2792 * iha_se2_rd - read & return the 16 bit value at the specified 2793 * offset in the Serial E2PROM 2794 * 2795 */ 2796 static u_int16_t 2797 iha_se2_rd(sc, addr) 2798 struct iha_softc *sc; 2799 int addr; 2800 { 2801 bus_space_tag_t iot = sc->sc_iot; 2802 bus_space_handle_t ioh = sc->sc_ioh; 2803 int i, bit; 2804 u_int16_t readword; 2805 2806 /* Send 'READ' instruction == address | READ bit */ 2807 iha_se2_instr(sc, addr | READ); 2808 2809 readword = 0; 2810 for (i = 16; i > 0; i--) { 2811 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS | NVRCK); 2812 EEP_WAIT(); 2813 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS); 2814 EEP_WAIT(); 2815 /* sample data after the following edge of clock */ 2816 bit = bus_space_read_1(iot, ioh, TUL_NVRAM) & NVRDI ? 1 : 0; 2817 EEP_WAIT(); 2818 2819 readword |= bit << (i - 1); 2820 } 2821 2822 bus_space_write_1(iot, ioh, TUL_NVRAM, 0); 2823 2824 return (readword); 2825 } 2826 2827 /* 2828 * iha_se2_rd_all - Read SCSI H/A config parameters from serial EEPROM 2829 */ 2830 static int 2831 iha_se2_rd_all(sc, buf) 2832 struct iha_softc *sc; 2833 u_int16_t *buf; 2834 { 2835 struct iha_eeprom *eeprom = (struct iha_eeprom *)buf; 2836 u_int32_t chksum; 2837 int i; 2838 2839 for (i = 0, chksum = 0; i < EEPROM_SIZE - 1; i++) { 2840 *buf = iha_se2_rd(sc, i); 2841 chksum += *buf++; 2842 } 2843 *buf = iha_se2_rd(sc, 31); /* read checksum from EEPROM */ 2844 2845 chksum &= 0x0000ffff; /* lower 16 bits */ 2846 2847 return (eeprom->signature == EEP_SIGNATURE) && 2848 (eeprom->checksum == chksum); 2849 } 2850 2851 /* 2852 * iha_se2_instr - write an octet to serial E2PROM one bit at a time 2853 */ 2854 static void 2855 iha_se2_instr(sc, instr) 2856 struct iha_softc *sc; 2857 int instr; 2858 { 2859 bus_space_tag_t iot = sc->sc_iot; 2860 bus_space_handle_t ioh = sc->sc_ioh; 2861 int b, i; 2862 2863 b = NVRCS | NVRDO; /* Write the start bit (== 1) */ 2864 2865 bus_space_write_1(iot, ioh, TUL_NVRAM, b); 2866 EEP_WAIT(); 2867 bus_space_write_1(iot, ioh, TUL_NVRAM, b | NVRCK); 2868 EEP_WAIT(); 2869 2870 for (i = 8; i > 0; i--) { 2871 if (instr & (1 << (i - 1))) 2872 b = NVRCS | NVRDO; /* Write a 1 bit */ 2873 else 2874 b = NVRCS; /* Write a 0 bit */ 2875 2876 bus_space_write_1(iot, ioh, TUL_NVRAM, b); 2877 EEP_WAIT(); 2878 bus_space_write_1(iot, ioh, TUL_NVRAM, b | NVRCK); 2879 EEP_WAIT(); 2880 } 2881 2882 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS); 2883 } 2884