xref: /netbsd-src/sys/dev/ic/iha.c (revision b1c86f5f087524e68db12794ee9c3e3da1ab17a0)
1 /*	$NetBSD: iha.c,v 1.40 2008/05/14 13:29:28 tsutsui Exp $ */
2 
3 /*-
4  * Copyright (c) 2001, 2002 Izumi Tsutsui
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /*-
28  * Device driver for the INI-9XXXU/UW or INIC-940/950 PCI SCSI Controller.
29  *
30  *  Written for 386bsd and FreeBSD by
31  *	Winston Hung		<winstonh@initio.com>
32  *
33  * Copyright (c) 1997-1999 Initio Corp.
34  * Copyright (c) 2000, 2001 Ken Westerback
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer,
42  *    without modification, immediately at the beginning of the file.
43  * 2. The name of the author may not be used to endorse or promote products
44  *    derived from this software without specific prior written permission.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
47  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
48  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
49  * IN NO EVENT SHALL THE AUTHOR OR HIS RELATIVES BE LIABLE FOR ANY DIRECT,
50  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
51  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
52  * SERVICES; LOSS OF MIND, USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
54  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
55  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
56  * THE POSSIBILITY OF SUCH DAMAGE.
57  */
58 
59 /*
60  * Ported to NetBSD by Izumi Tsutsui <tsutsui@NetBSD.org> from OpenBSD:
61  * $OpenBSD: iha.c,v 1.3 2001/02/20 00:47:33 krw Exp $
62  */
63 
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: iha.c,v 1.40 2008/05/14 13:29:28 tsutsui Exp $");
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/kernel.h>
70 #include <sys/buf.h>
71 #include <sys/device.h>
72 #include <sys/malloc.h>
73 
74 #include <uvm/uvm_extern.h>
75 
76 #include <sys/bus.h>
77 #include <sys/intr.h>
78 
79 #include <dev/scsipi/scsi_spc.h>
80 #include <dev/scsipi/scsi_all.h>
81 #include <dev/scsipi/scsipi_all.h>
82 #include <dev/scsipi/scsiconf.h>
83 #include <dev/scsipi/scsi_message.h>
84 
85 #include <dev/ic/ihareg.h>
86 #include <dev/ic/ihavar.h>
87 
88 /*
89  * SCSI Rate Table, indexed by FLAG_SCSI_RATE field of
90  * tcs flags.
91  */
92 static const uint8_t iha_rate_tbl[] = {
93 	/* fast 20		  */
94 	/* nanosecond divide by 4 */
95 	12,	/* 50ns,  20M	  */
96 	18,	/* 75ns,  13.3M	  */
97 	25,	/* 100ns, 10M	  */
98 	31,	/* 125ns, 8M	  */
99 	37,	/* 150ns, 6.6M	  */
100 	43,	/* 175ns, 5.7M	  */
101 	50,	/* 200ns, 5M	  */
102 	62	/* 250ns, 4M	  */
103 };
104 #define IHA_MAX_PERIOD	62
105 
106 #ifdef notused
107 static uint16_t eeprom_default[EEPROM_SIZE] = {
108 	/* -- Header ------------------------------------ */
109 	/* signature */
110 	EEP_SIGNATURE,
111 	/* size, revision */
112 	EEP_WORD(EEPROM_SIZE * 2, 0x01),
113 	/* -- Host Adapter Structure -------------------- */
114 	/* model */
115 	0x0095,
116 	/* model info, number of channel */
117 	EEP_WORD(0x00, 1),
118 	/* BIOS config */
119 	EEP_BIOSCFG_DEFAULT,
120 	/* host adapter config */
121 	0,
122 
123 	/* -- eeprom_adapter[0] ------------------------------- */
124 	/* ID, adapter config 1 */
125 	EEP_WORD(7, CFG_DEFAULT),
126 	/* adapter config 2, number of targets */
127 	EEP_WORD(0x00, 8),
128 	/* target flags */
129 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
130 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
131 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
132 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
133 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
134 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
135 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
136 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
137 
138 	/* -- eeprom_adapter[1] ------------------------------- */
139 	/* ID, adapter config 1 */
140 	EEP_WORD(7, CFG_DEFAULT),
141 	/* adapter config 2, number of targets */
142 	EEP_WORD(0x00, 8),
143 	/* target flags */
144 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
145 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
146 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
147 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
148 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
149 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
150 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
151 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
152 	/* reserved[5] */
153 	0, 0, 0, 0, 0,
154 	/* checksum */
155 	0
156 };
157 #endif
158 
159 static void iha_append_free_scb(struct iha_softc *, struct iha_scb *);
160 static void iha_append_done_scb(struct iha_softc *, struct iha_scb *, uint8_t);
161 static inline struct iha_scb *iha_pop_done_scb(struct iha_softc *);
162 
163 static struct iha_scb *iha_find_pend_scb(struct iha_softc *);
164 static inline void iha_append_pend_scb(struct iha_softc *, struct iha_scb *);
165 static inline void iha_push_pend_scb(struct iha_softc *, struct iha_scb *);
166 static inline void iha_del_pend_scb(struct iha_softc *, struct iha_scb *);
167 static inline void iha_mark_busy_scb(struct iha_scb *);
168 
169 static inline void iha_set_ssig(struct iha_softc *, uint8_t, uint8_t);
170 
171 static int iha_alloc_sglist(struct iha_softc *);
172 
173 static void iha_scsipi_request(struct scsipi_channel *, scsipi_adapter_req_t,
174     void *);
175 static void iha_update_xfer_mode(struct iha_softc *, int);
176 
177 static void iha_reset_scsi_bus(struct iha_softc *);
178 static void iha_reset_chip(struct iha_softc *);
179 static void iha_reset_dma(struct iha_softc *);
180 static void iha_reset_tcs(struct tcs *, uint8_t);
181 
182 static void iha_main(struct iha_softc *);
183 static void iha_scsi(struct iha_softc *);
184 static void iha_select(struct iha_softc *, struct iha_scb *, uint8_t);
185 static int iha_wait(struct iha_softc *, uint8_t);
186 
187 static void iha_exec_scb(struct iha_softc *, struct iha_scb *);
188 static void iha_done_scb(struct iha_softc *, struct iha_scb *);
189 static int iha_push_sense_request(struct iha_softc *, struct iha_scb *);
190 
191 static void iha_timeout(void *);
192 static void iha_abort_xs(struct iha_softc *, struct scsipi_xfer *, uint8_t);
193 static uint8_t iha_data_over_run(struct iha_scb *);
194 
195 static int iha_next_state(struct iha_softc *);
196 static int iha_state_1(struct iha_softc *);
197 static int iha_state_2(struct iha_softc *);
198 static int iha_state_3(struct iha_softc *);
199 static int iha_state_4(struct iha_softc *);
200 static int iha_state_5(struct iha_softc *);
201 static int iha_state_6(struct iha_softc *);
202 static int iha_state_8(struct iha_softc *);
203 
204 static int iha_xfer_data(struct iha_softc *, struct iha_scb *, int);
205 static int iha_xpad_in(struct iha_softc *);
206 static int iha_xpad_out(struct iha_softc *);
207 
208 static int iha_status_msg(struct iha_softc *);
209 static void iha_busfree(struct iha_softc *);
210 static int iha_resel(struct iha_softc *);
211 
212 static int iha_msgin(struct iha_softc *);
213 static int iha_msgin_extended(struct iha_softc *);
214 static int iha_msgin_sdtr(struct iha_softc *);
215 static int iha_msgin_ignore_wid_resid(struct iha_softc *);
216 
217 static int  iha_msgout(struct iha_softc *, uint8_t);
218 static void iha_msgout_abort(struct iha_softc *, uint8_t);
219 static int  iha_msgout_reject(struct iha_softc *);
220 static int  iha_msgout_extended(struct iha_softc *);
221 static int  iha_msgout_wdtr(struct iha_softc *);
222 static int  iha_msgout_sdtr(struct iha_softc *);
223 
224 static void iha_wide_done(struct iha_softc *);
225 static void iha_sync_done(struct iha_softc *);
226 
227 static void iha_bad_seq(struct iha_softc *);
228 
229 static void iha_read_eeprom(struct iha_softc *, struct iha_eeprom *);
230 static int iha_se2_rd_all(struct iha_softc *, uint16_t *);
231 static void iha_se2_instr(struct iha_softc *, int);
232 static uint16_t iha_se2_rd(struct iha_softc *, int);
233 #ifdef notused
234 static void iha_se2_update_all(struct iha_softc *);
235 static void iha_se2_wr(struct iha_softc *, int, uint16_t);
236 #endif
237 
238 /*
239  * iha_append_free_scb - append the supplied SCB to the tail of the
240  *			 sc_freescb queue after clearing and resetting
241  *			 everything possible.
242  */
243 static void
244 iha_append_free_scb(struct iha_softc *sc, struct iha_scb *scb)
245 {
246 	int s;
247 
248 	s = splbio();
249 
250 	if (scb == sc->sc_actscb)
251 		sc->sc_actscb = NULL;
252 
253 	scb->status = STATUS_QUEUED;
254 	scb->ha_stat = HOST_OK;
255 	scb->ta_stat = SCSI_OK;
256 
257 	scb->nextstat = 0;
258 	scb->scb_tagmsg = 0;
259 
260 	scb->xs = NULL;
261 	scb->tcs = NULL;
262 
263 	/*
264 	 * scb_tagid, sg_addr, sglist
265 	 * SCB_SensePtr are set at initialization
266 	 * and never change
267 	 */
268 
269 	TAILQ_INSERT_TAIL(&sc->sc_freescb, scb, chain);
270 
271 	splx(s);
272 }
273 
274 static void
275 iha_append_done_scb(struct iha_softc *sc, struct iha_scb *scb, uint8_t hastat)
276 {
277 	struct tcs *tcs;
278 	int s;
279 
280 	s = splbio();
281 
282 	if (scb->xs != NULL)
283 		callout_stop(&scb->xs->xs_callout);
284 
285 	if (scb == sc->sc_actscb)
286 		sc->sc_actscb = NULL;
287 
288 	tcs = scb->tcs;
289 
290 	if (scb->scb_tagmsg != 0) {
291 		if (tcs->tagcnt)
292 			tcs->tagcnt--;
293 	} else if (tcs->ntagscb == scb)
294 		tcs->ntagscb = NULL;
295 
296 	scb->status = STATUS_QUEUED;
297 	scb->ha_stat = hastat;
298 
299 	TAILQ_INSERT_TAIL(&sc->sc_donescb, scb, chain);
300 
301 	splx(s);
302 }
303 
304 static inline struct iha_scb *
305 iha_pop_done_scb(struct iha_softc *sc)
306 {
307 	struct iha_scb *scb;
308 	int s;
309 
310 	s = splbio();
311 
312 	scb = TAILQ_FIRST(&sc->sc_donescb);
313 
314 	if (scb != NULL) {
315 		scb->status = STATUS_RENT;
316 		TAILQ_REMOVE(&sc->sc_donescb, scb, chain);
317 	}
318 
319 	splx(s);
320 
321 	return (scb);
322 }
323 
324 /*
325  * iha_find_pend_scb - scan the pending queue for a SCB that can be
326  *		       processed immediately. Return NULL if none found
327  *		       and a pointer to the SCB if one is found. If there
328  *		       is an active SCB, return NULL!
329  */
330 static struct iha_scb *
331 iha_find_pend_scb(struct iha_softc *sc)
332 {
333 	struct iha_scb *scb;
334 	struct tcs *tcs;
335 	int s;
336 
337 	s = splbio();
338 
339 	if (sc->sc_actscb != NULL)
340 		scb = NULL;
341 
342 	else
343 		TAILQ_FOREACH(scb, &sc->sc_pendscb, chain) {
344 			if ((scb->xs->xs_control & XS_CTL_RESET) != 0)
345 				/* ALWAYS willing to reset a device */
346 				break;
347 
348 			tcs = scb->tcs;
349 
350 			if ((scb->scb_tagmsg) != 0) {
351 				/*
352 				 * A Tagged I/O. OK to start If no
353 				 * non-tagged I/O is active on the same
354 				 * target
355 				 */
356 				if (tcs->ntagscb == NULL)
357 					break;
358 
359 			} else	if (scb->cmd[0] == SCSI_REQUEST_SENSE) {
360 				/*
361 				 * OK to do a non-tagged request sense
362 				 * even if a non-tagged I/O has been
363 				 * started, 'cuz we don't allow any
364 				 * disconnect during a request sense op
365 				 */
366 				break;
367 
368 			} else	if (tcs->tagcnt == 0) {
369 				/*
370 				 * No tagged I/O active on this target,
371 				 * ok to start a non-tagged one if one
372 				 * is not already active
373 				 */
374 				if (tcs->ntagscb == NULL)
375 					break;
376 			}
377 		}
378 
379 	splx(s);
380 
381 	return (scb);
382 }
383 
384 static inline void
385 iha_append_pend_scb(struct iha_softc *sc, struct iha_scb *scb)
386 {
387 	/* ASSUMPTION: only called within a splbio()/splx() pair */
388 
389 	if (scb == sc->sc_actscb)
390 		sc->sc_actscb = NULL;
391 
392 	scb->status = STATUS_QUEUED;
393 
394 	TAILQ_INSERT_TAIL(&sc->sc_pendscb, scb, chain);
395 }
396 
397 static inline void
398 iha_push_pend_scb(struct iha_softc *sc, struct iha_scb *scb)
399 {
400 	int s;
401 
402 	s = splbio();
403 
404 	if (scb == sc->sc_actscb)
405 		sc->sc_actscb = NULL;
406 
407 	scb->status = STATUS_QUEUED;
408 
409 	TAILQ_INSERT_HEAD(&sc->sc_pendscb, scb, chain);
410 
411 	splx(s);
412 }
413 
414 /*
415  * iha_del_pend_scb - remove scb from sc_pendscb
416  */
417 static inline void
418 iha_del_pend_scb(struct iha_softc *sc, struct iha_scb *scb)
419 {
420 	int s;
421 
422 	s = splbio();
423 
424 	TAILQ_REMOVE(&sc->sc_pendscb, scb, chain);
425 
426 	splx(s);
427 }
428 
429 static inline void
430 iha_mark_busy_scb(struct iha_scb *scb)
431 {
432 	int  s;
433 
434 	s = splbio();
435 
436 	scb->status = STATUS_BUSY;
437 
438 	if (scb->scb_tagmsg == 0)
439 		scb->tcs->ntagscb = scb;
440 	else
441 		scb->tcs->tagcnt++;
442 
443 	splx(s);
444 }
445 
446 /*
447  * iha_set_ssig - read the current scsi signal mask, then write a new
448  *		  one which turns off/on the specified signals.
449  */
450 static inline void
451 iha_set_ssig(struct iha_softc *sc, uint8_t offsigs, uint8_t onsigs)
452 {
453 	bus_space_tag_t iot = sc->sc_iot;
454 	bus_space_handle_t ioh = sc->sc_ioh;
455 	uint8_t currsigs;
456 
457 	currsigs = bus_space_read_1(iot, ioh, TUL_SSIGI);
458 	bus_space_write_1(iot, ioh, TUL_SSIGO, (currsigs & ~offsigs) | onsigs);
459 }
460 
461 /*
462  * iha_intr - the interrupt service routine for the iha driver
463  */
464 int
465 iha_intr(void *arg)
466 {
467 	bus_space_tag_t iot;
468 	bus_space_handle_t ioh;
469 	struct iha_softc *sc;
470 	int s;
471 
472 	sc  = (struct iha_softc *)arg;
473 	iot = sc->sc_iot;
474 	ioh = sc->sc_ioh;
475 
476 	if ((bus_space_read_1(iot, ioh, TUL_STAT0) & INTPD) == 0)
477 		return (0);
478 
479 	s = splbio(); /* XXX - Or are interrupts off when ISR's are called? */
480 
481 	if (sc->sc_semaph != SEMAPH_IN_MAIN) {
482 		/* XXX - need these inside a splbio()/splx()? */
483 		bus_space_write_1(iot, ioh, TUL_IMSK, MASK_ALL);
484 		sc->sc_semaph = SEMAPH_IN_MAIN;
485 
486 		iha_main(sc);
487 
488 		sc->sc_semaph = ~SEMAPH_IN_MAIN;
489 		bus_space_write_1(iot, ioh, TUL_IMSK, (MASK_ALL & ~MSCMP));
490 	}
491 
492 	splx(s);
493 
494 	return (1);
495 }
496 
497 void
498 iha_attach(struct iha_softc *sc)
499 {
500 	bus_space_tag_t iot = sc->sc_iot;
501 	bus_space_handle_t ioh = sc->sc_ioh;
502 	struct iha_scb *scb;
503 	struct iha_eeprom eeprom;
504 	struct eeprom_adapter *conf;
505 	int i, error, reg;
506 
507 	iha_read_eeprom(sc, &eeprom);
508 
509 	conf = &eeprom.adapter[0];
510 
511 	/*
512 	 * fill in the rest of the iha_softc fields
513 	 */
514 	sc->sc_id = CFG_ID(conf->config1);
515 	sc->sc_semaph = ~SEMAPH_IN_MAIN;
516 	sc->sc_status0 = 0;
517 	sc->sc_actscb = NULL;
518 
519 	TAILQ_INIT(&sc->sc_freescb);
520 	TAILQ_INIT(&sc->sc_pendscb);
521 	TAILQ_INIT(&sc->sc_donescb);
522 	error = iha_alloc_sglist(sc);
523 	if (error != 0) {
524 		aprint_error_dev(sc->sc_dev, "cannot allocate sglist\n");
525 		return;
526 	}
527 
528 	sc->sc_scb = malloc(sizeof(struct iha_scb) * IHA_MAX_SCB,
529 	    M_DEVBUF, M_NOWAIT|M_ZERO);
530 	if (sc->sc_scb == NULL) {
531 		aprint_error_dev(sc->sc_dev, "cannot allocate SCB\n");
532 		return;
533 	}
534 
535 	for (i = 0, scb = sc->sc_scb; i < IHA_MAX_SCB; i++, scb++) {
536 		scb->scb_tagid = i;
537 		scb->sgoffset = IHA_SG_SIZE * i;
538 		scb->sglist = sc->sc_sglist + IHA_MAX_SG_ENTRIES * i;
539 		scb->sg_addr =
540 		    sc->sc_dmamap->dm_segs[0].ds_addr + scb->sgoffset;
541 
542 		error = bus_dmamap_create(sc->sc_dmat,
543 		    MAXPHYS, IHA_MAX_SG_ENTRIES, MAXPHYS, 0,
544 		    BUS_DMA_NOWAIT, &scb->dmap);
545 
546 		if (error != 0) {
547 			aprint_error_dev(sc->sc_dev,
548 			    "couldn't create SCB DMA map, error = %d\n",
549 			    error);
550 			return;
551 		}
552 		TAILQ_INSERT_TAIL(&sc->sc_freescb, scb, chain);
553 	}
554 
555 	/* Mask all the interrupts */
556 	bus_space_write_1(iot, ioh, TUL_IMSK, MASK_ALL);
557 
558 	/* Stop any I/O and reset the scsi module */
559 	iha_reset_dma(sc);
560 	bus_space_write_1(iot, ioh, TUL_SCTRL0, RSMOD);
561 
562 	/* Program HBA's SCSI ID */
563 	bus_space_write_1(iot, ioh, TUL_SID, sc->sc_id << 4);
564 
565 	/*
566 	 * Configure the channel as requested by the NVRAM settings read
567 	 * by iha_read_eeprom() above.
568 	 */
569 
570 	sc->sc_sconf1 = SCONFIG0DEFAULT;
571 	if ((conf->config1 & CFG_EN_PAR) != 0)
572 		sc->sc_sconf1 |= SPCHK;
573 	bus_space_write_1(iot, ioh, TUL_SCONFIG0, sc->sc_sconf1);
574 
575 	/* set selection time out 250 ms */
576 	bus_space_write_1(iot, ioh, TUL_STIMO, STIMO_250MS);
577 
578 	/* Enable desired SCSI termination configuration read from eeprom */
579 	reg = 0;
580 	if (conf->config1 & CFG_ACT_TERM1)
581 		reg |= ENTMW;
582 	if (conf->config1 & CFG_ACT_TERM2)
583 		reg |= ENTM;
584 	bus_space_write_1(iot, ioh, TUL_DCTRL0, reg);
585 
586 	reg = bus_space_read_1(iot, ioh, TUL_GCTRL1) & ~ATDEN;
587 	if (conf->config1 & CFG_AUTO_TERM)
588 		reg |= ATDEN;
589 	bus_space_write_1(iot, ioh, TUL_GCTRL1, reg);
590 
591 	for (i = 0; i < IHA_MAX_TARGETS / 2; i++) {
592 		sc->sc_tcs[i * 2    ].flags = EEP_LBYTE(conf->tflags[i]);
593 		sc->sc_tcs[i * 2 + 1].flags = EEP_HBYTE(conf->tflags[i]);
594 		iha_reset_tcs(&sc->sc_tcs[i * 2    ], sc->sc_sconf1);
595 		iha_reset_tcs(&sc->sc_tcs[i * 2 + 1], sc->sc_sconf1);
596 	}
597 
598 	iha_reset_chip(sc);
599 	bus_space_write_1(iot, ioh, TUL_SIEN, ALL_INTERRUPTS);
600 
601 	/*
602 	 * fill in the adapter.
603 	 */
604 	sc->sc_adapter.adapt_dev = sc->sc_dev;
605 	sc->sc_adapter.adapt_nchannels = 1;
606 	sc->sc_adapter.adapt_openings = IHA_MAX_SCB;
607 	sc->sc_adapter.adapt_max_periph = IHA_MAX_SCB;
608 	sc->sc_adapter.adapt_ioctl = NULL;
609 	sc->sc_adapter.adapt_minphys = minphys;
610 	sc->sc_adapter.adapt_request = iha_scsipi_request;
611 
612 	/*
613 	 * fill in the channel.
614 	 */
615 	sc->sc_channel.chan_adapter = &sc->sc_adapter;
616 	sc->sc_channel.chan_bustype = &scsi_bustype;
617 	sc->sc_channel.chan_channel = 0;
618 	sc->sc_channel.chan_ntargets = CFG_TARGET(conf->config2);
619 	sc->sc_channel.chan_nluns = 8;
620 	sc->sc_channel.chan_id = sc->sc_id;
621 
622 	/*
623 	 * Now try to attach all the sub devices.
624 	 */
625 	config_found(sc->sc_dev, &sc->sc_channel, scsiprint);
626 }
627 
628 /*
629  * iha_alloc_sglist - allocate and map sglist for SCB's
630  */
631 static int
632 iha_alloc_sglist(struct iha_softc *sc)
633 {
634 	bus_dma_segment_t seg;
635 	int error, rseg;
636 
637 	/*
638 	 * Allocate DMA-safe memory for the SCB's sglist
639 	 */
640 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
641 	    IHA_SG_SIZE * IHA_MAX_SCB,
642 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
643 		printf(": unable to allocate sglist, error = %d\n", error);
644 		return (error);
645 	}
646 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
647 	    IHA_SG_SIZE * IHA_MAX_SCB, (void **)&sc->sc_sglist,
648 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
649 		printf(": unable to map sglist, error = %d\n", error);
650 		return (error);
651 	}
652 
653 	/*
654 	 * Create and load the DMA map used for the SCBs
655 	 */
656 	if ((error = bus_dmamap_create(sc->sc_dmat,
657 	    IHA_SG_SIZE * IHA_MAX_SCB, 1, IHA_SG_SIZE * IHA_MAX_SCB,
658 	    0, BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
659 		printf(": unable to create control DMA map, error = %d\n",
660 		    error);
661 		return (error);
662 	}
663 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
664 	    sc->sc_sglist, IHA_SG_SIZE * IHA_MAX_SCB,
665 	    NULL, BUS_DMA_NOWAIT)) != 0) {
666 		printf(": unable to load control DMA map, error = %d\n", error);
667 		return (error);
668 	}
669 
670 	memset(sc->sc_sglist, 0, IHA_SG_SIZE * IHA_MAX_SCB);
671 
672 	return (0);
673 }
674 
675 void
676 iha_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req,
677     void *arg)
678 {
679 	struct scsipi_xfer *xs;
680 	struct scsipi_periph *periph;
681 	struct iha_scb *scb;
682 	struct iha_softc *sc;
683 	int error, s;
684 
685 	sc = device_private(chan->chan_adapter->adapt_dev);
686 
687 	switch (req) {
688 	case ADAPTER_REQ_RUN_XFER:
689 		xs = arg;
690 		periph = xs->xs_periph;
691 
692 		/* XXX This size isn't actually a hardware restriction. */
693 		if (xs->cmdlen > sizeof(scb->cmd) ||
694 		    periph->periph_target >= IHA_MAX_TARGETS) {
695 			xs->error = XS_DRIVER_STUFFUP;
696 			scsipi_done(xs);
697 			return;
698 		}
699 
700 		s = splbio();
701 		scb = TAILQ_FIRST(&sc->sc_freescb);
702 		if (scb != NULL) {
703 			scb->status = STATUS_RENT;
704 			TAILQ_REMOVE(&sc->sc_freescb, scb, chain);
705 		}
706 		else {
707 			printf("unable to allocate scb\n");
708 #ifdef DIAGNOSTIC
709 			scsipi_printaddr(periph);
710 			panic("iha_scsipi_request");
711 #else
712 			splx(s);
713 			return;
714 #endif
715 		}
716 		splx(s);
717 
718 		scb->target = periph->periph_target;
719 		scb->lun = periph->periph_lun;
720 		scb->tcs = &sc->sc_tcs[scb->target];
721 		scb->scb_id = MSG_IDENTIFY(periph->periph_lun,
722 		    (xs->xs_control & XS_CTL_REQSENSE) == 0);
723 
724 		scb->xs = xs;
725 		scb->cmdlen = xs->cmdlen;
726 		memcpy(&scb->cmd, xs->cmd, xs->cmdlen);
727 		scb->buflen = xs->datalen;
728 		scb->flags = 0;
729 		if (xs->xs_control & XS_CTL_DATA_OUT)
730 			scb->flags |= FLAG_DATAOUT;
731 		if (xs->xs_control & XS_CTL_DATA_IN)
732 			scb->flags |= FLAG_DATAIN;
733 
734 		if (scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) {
735 			error = bus_dmamap_load(sc->sc_dmat, scb->dmap,
736 			    xs->data, scb->buflen, NULL,
737 			    ((xs->xs_control & XS_CTL_NOSLEEP) ?
738 			     BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
739 			    BUS_DMA_STREAMING |
740 			    ((scb->flags & FLAG_DATAIN) ?
741 			     BUS_DMA_READ : BUS_DMA_WRITE));
742 
743 			if (error) {
744 				printf("%s: error %d loading DMA map\n",
745 				    device_xname(sc->sc_dev), error);
746 				iha_append_free_scb(sc, scb);
747 				xs->error = XS_DRIVER_STUFFUP;
748 				scsipi_done(xs);
749 				return;
750 			}
751 			bus_dmamap_sync(sc->sc_dmat, scb->dmap,
752 			    0, scb->dmap->dm_mapsize,
753 			    (scb->flags & FLAG_DATAIN) ?
754 			    BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
755 		}
756 
757 		iha_exec_scb(sc, scb);
758 		return;
759 
760 	case ADAPTER_REQ_GROW_RESOURCES:
761 		return; /* XXX */
762 
763 	case ADAPTER_REQ_SET_XFER_MODE:
764 		{
765 			struct tcs *tcs;
766 			struct scsipi_xfer_mode *xm = arg;
767 
768 			tcs = &sc->sc_tcs[xm->xm_target];
769 
770 			if ((xm->xm_mode & PERIPH_CAP_WIDE16) != 0 &&
771 			    (tcs->flags & FLAG_NO_WIDE) == 0)
772 				tcs->flags &= ~(FLAG_WIDE_DONE|FLAG_SYNC_DONE);
773 
774 			if ((xm->xm_mode & PERIPH_CAP_SYNC) != 0 &&
775 			    (tcs->flags & FLAG_NO_SYNC) == 0)
776 				tcs->flags &= ~FLAG_SYNC_DONE;
777 
778 			/*
779 			 * If we're not going to negotiate, send the
780 			 * notification now, since it won't happen later.
781 			 */
782 			if ((tcs->flags & (FLAG_WIDE_DONE|FLAG_SYNC_DONE)) ==
783 			    (FLAG_WIDE_DONE|FLAG_SYNC_DONE))
784 				iha_update_xfer_mode(sc, xm->xm_target);
785 
786 			return;
787 		}
788 	}
789 }
790 
791 void
792 iha_update_xfer_mode(struct iha_softc *sc, int target)
793 {
794 	struct tcs *tcs = &sc->sc_tcs[target];
795 	struct scsipi_xfer_mode xm;
796 
797 	xm.xm_target = target;
798 	xm.xm_mode = 0;
799 	xm.xm_period = 0;
800 	xm.xm_offset = 0;
801 
802 	if (tcs->syncm & PERIOD_WIDE_SCSI)
803 		xm.xm_mode |= PERIPH_CAP_WIDE16;
804 
805 	if (tcs->period) {
806 		xm.xm_mode |= PERIPH_CAP_SYNC;
807 		xm.xm_period = tcs->period;
808 		xm.xm_offset = tcs->offset;
809 	}
810 
811 	scsipi_async_event(&sc->sc_channel, ASYNC_EVENT_XFER_MODE, &xm);
812 }
813 
814 static void
815 iha_reset_scsi_bus(struct iha_softc *sc)
816 {
817 	struct iha_scb *scb;
818 	struct tcs *tcs;
819 	int i, s;
820 
821 	s = splbio();
822 
823 	iha_reset_dma(sc);
824 
825 	for (i = 0, scb = sc->sc_scb; i < IHA_MAX_SCB; i++, scb++)
826 		switch (scb->status) {
827 		case STATUS_BUSY:
828 			iha_append_done_scb(sc, scb, HOST_SCSI_RST);
829 			break;
830 
831 		case STATUS_SELECT:
832 			iha_push_pend_scb(sc, scb);
833 			break;
834 
835 		default:
836 			break;
837 		}
838 
839 	for (i = 0, tcs = sc->sc_tcs; i < IHA_MAX_TARGETS; i++, tcs++)
840 		iha_reset_tcs(tcs, sc->sc_sconf1);
841 
842 	splx(s);
843 }
844 
845 void
846 iha_reset_chip(struct iha_softc *sc)
847 {
848 	bus_space_tag_t iot = sc->sc_iot;
849 	bus_space_handle_t ioh = sc->sc_ioh;
850 
851 	/* reset tulip chip */
852 
853 	bus_space_write_1(iot, ioh, TUL_SCTRL0, RSCSI);
854 
855 	do {
856 		sc->sc_sistat = bus_space_read_1(iot, ioh, TUL_SISTAT);
857 	} while ((sc->sc_sistat & SRSTD) == 0);
858 
859 	iha_set_ssig(sc, 0, 0);
860 
861 	/* Clear any active interrupt*/
862 	(void)bus_space_read_1(iot, ioh, TUL_SISTAT);
863 }
864 
865 /*
866  * iha_reset_dma - abort any active DMA xfer, reset tulip FIFO.
867  */
868 static void
869 iha_reset_dma(struct iha_softc *sc)
870 {
871 	bus_space_tag_t iot = sc->sc_iot;
872 	bus_space_handle_t ioh = sc->sc_ioh;
873 
874 	if ((bus_space_read_1(iot, ioh, TUL_ISTUS1) & XPEND) != 0) {
875 		/* if DMA xfer is pending, abort DMA xfer */
876 		bus_space_write_1(iot, ioh, TUL_DCMD, ABTXFR);
877 		/* wait Abort DMA xfer done */
878 		while ((bus_space_read_1(iot, ioh, TUL_ISTUS0) & DABT) == 0)
879 			;
880 	}
881 
882 	bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
883 }
884 
885 /*
886  * iha_reset_tcs - reset the target control structure pointed
887  *		   to by tcs to default values. tcs flags
888  *		   only has the negotiation done bits reset as
889  *		   the other bits are fixed at initialization.
890  */
891 static void
892 iha_reset_tcs(struct tcs *tcs, uint8_t config0)
893 {
894 
895 	tcs->flags &= ~(FLAG_SYNC_DONE | FLAG_WIDE_DONE);
896 	tcs->period = 0;
897 	tcs->offset = 0;
898 	tcs->tagcnt = 0;
899 	tcs->ntagscb  = NULL;
900 	tcs->syncm = 0;
901 	tcs->sconfig0 = config0;
902 }
903 
904 /*
905  * iha_main - process the active SCB, taking one off pending and making it
906  *	      active if necessary, and any done SCB's created as
907  *	      a result until there are no interrupts pending and no pending
908  *	      SCB's that can be started.
909  */
910 static void
911 iha_main(struct iha_softc *sc)
912 {
913 	bus_space_tag_t iot = sc->sc_iot;
914 	bus_space_handle_t ioh =sc->sc_ioh;
915 	struct iha_scb *scb;
916 
917 	for (;;) {
918 		iha_scsi(sc);
919 
920 		while ((scb = iha_pop_done_scb(sc)) != NULL)
921 			iha_done_scb(sc, scb);
922 
923 		/*
924 		 * If there are no interrupts pending, or we can't start
925 		 * a pending sc, break out of the for(;;). Otherwise
926 		 * continue the good work with another call to
927 		 * iha_scsi().
928 		 */
929 		if (((bus_space_read_1(iot, ioh, TUL_STAT0) & INTPD) == 0)
930 		    && (iha_find_pend_scb(sc) == NULL))
931 			break;
932 	}
933 }
934 
935 /*
936  * iha_scsi - service any outstanding interrupts. If there are none, try to
937  *            start another SCB currently in the pending queue.
938  */
939 static void
940 iha_scsi(struct iha_softc *sc)
941 {
942 	bus_space_tag_t iot = sc->sc_iot;
943 	bus_space_handle_t ioh = sc->sc_ioh;
944 	struct iha_scb *scb;
945 	struct tcs *tcs;
946 	uint8_t stat;
947 
948 	/* service pending interrupts asap */
949 
950 	stat = bus_space_read_1(iot, ioh, TUL_STAT0);
951 	if ((stat & INTPD) != 0) {
952 		sc->sc_status0 = stat;
953 		sc->sc_status1 = bus_space_read_1(iot, ioh, TUL_STAT1);
954 		sc->sc_sistat = bus_space_read_1(iot, ioh, TUL_SISTAT);
955 
956 		sc->sc_phase = sc->sc_status0 & PH_MASK;
957 
958 		if ((sc->sc_sistat & SRSTD) != 0) {
959 			iha_reset_scsi_bus(sc);
960 			return;
961 		}
962 
963 		if ((sc->sc_sistat & RSELED) != 0) {
964 			iha_resel(sc);
965 			return;
966 		}
967 
968 		if ((sc->sc_sistat & (STIMEO | DISCD)) != 0) {
969 			iha_busfree(sc);
970 			return;
971 		}
972 
973 		if ((sc->sc_sistat & (SCMDN | SBSRV)) != 0) {
974 			iha_next_state(sc);
975 			return;
976 		}
977 
978 		if ((sc->sc_sistat & SELED) != 0)
979 			iha_set_ssig(sc, 0, 0);
980 	}
981 
982 	/*
983 	 * There were no interrupts pending which required action elsewhere, so
984 	 * see if it is possible to start the selection phase on a pending SCB
985 	 */
986 	if ((scb = iha_find_pend_scb(sc)) == NULL)
987 		return;
988 
989 	tcs = scb->tcs;
990 
991 	/* program HBA's SCSI ID & target SCSI ID */
992 	bus_space_write_1(iot, ioh, TUL_SID, (sc->sc_id << 4) | scb->target);
993 
994 	if ((scb->xs->xs_control & XS_CTL_RESET) == 0) {
995 		bus_space_write_1(iot, ioh, TUL_SYNCM, tcs->syncm);
996 
997 		if ((tcs->flags & FLAG_NO_NEG_SYNC) == 0 ||
998 		    (tcs->flags & FLAG_NO_NEG_WIDE) == 0)
999 			iha_select(sc, scb, SELATNSTOP);
1000 
1001 		else if (scb->scb_tagmsg != 0)
1002 			iha_select(sc, scb, SEL_ATN3);
1003 
1004 		else
1005 			iha_select(sc, scb, SEL_ATN);
1006 
1007 	} else {
1008 		iha_select(sc, scb, SELATNSTOP);
1009 		scb->nextstat = 8;
1010 	}
1011 
1012 	if ((scb->xs->xs_control & XS_CTL_POLL) != 0) {
1013 		int timeout;
1014 		for (timeout = scb->xs->timeout; timeout > 0; timeout--) {
1015 			if (iha_wait(sc, NO_OP) == -1)
1016 				break;
1017 			if (iha_next_state(sc) == -1)
1018 				break;
1019 			delay(1000); /* Only happens in boot, so it's ok */
1020 		}
1021 
1022 		/*
1023 		 * Since done queue processing not done until AFTER this
1024 		 * function returns, scb is on the done queue, not
1025 		 * the free queue at this point and still has valid data
1026 		 *
1027 		 * Conversely, xs->error has not been set yet
1028 		 */
1029 		if (timeout == 0)
1030 			iha_timeout(scb);
1031 	}
1032 }
1033 
1034 static void
1035 iha_select(struct iha_softc *sc, struct iha_scb *scb, uint8_t select_type)
1036 {
1037 	bus_space_tag_t iot = sc->sc_iot;
1038 	bus_space_handle_t ioh = sc->sc_ioh;
1039 
1040 	switch (select_type) {
1041 	case SEL_ATN:
1042 		bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_id);
1043 		bus_space_write_multi_1(iot, ioh, TUL_SFIFO,
1044 		    scb->cmd, scb->cmdlen);
1045 
1046 		scb->nextstat = 2;
1047 		break;
1048 
1049 	case SELATNSTOP:
1050 		scb->nextstat = 1;
1051 		break;
1052 
1053 	case SEL_ATN3:
1054 		bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_id);
1055 		bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_tagmsg);
1056 		bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_tagid);
1057 
1058 		bus_space_write_multi_1(iot, ioh, TUL_SFIFO, scb->cmd,
1059 		    scb->cmdlen);
1060 
1061 		scb->nextstat = 2;
1062 		break;
1063 
1064 	default:
1065 		printf("[debug] iha_select() - unknown select type = 0x%02x\n",
1066 		    select_type);
1067 		return;
1068 	}
1069 
1070 	iha_del_pend_scb(sc, scb);
1071 	scb->status = STATUS_SELECT;
1072 
1073 	sc->sc_actscb = scb;
1074 
1075 	bus_space_write_1(iot, ioh, TUL_SCMD, select_type);
1076 }
1077 
1078 /*
1079  * iha_wait - wait for an interrupt to service or a SCSI bus phase change
1080  *            after writing the supplied command to the tulip chip. If
1081  *            the command is NO_OP, skip the command writing.
1082  */
1083 static int
1084 iha_wait(struct iha_softc *sc, uint8_t cmd)
1085 {
1086 	bus_space_tag_t iot = sc->sc_iot;
1087 	bus_space_handle_t ioh = sc->sc_ioh;
1088 
1089 	if (cmd != NO_OP)
1090 		bus_space_write_1(iot, ioh, TUL_SCMD, cmd);
1091 
1092 	/*
1093 	 * Have to do this here, in addition to in iha_isr, because
1094 	 * interrupts might be turned off when we get here.
1095 	 */
1096 	do {
1097 		sc->sc_status0 = bus_space_read_1(iot, ioh, TUL_STAT0);
1098 	} while ((sc->sc_status0 & INTPD) == 0);
1099 
1100 	sc->sc_status1 = bus_space_read_1(iot, ioh, TUL_STAT1);
1101 	sc->sc_sistat = bus_space_read_1(iot, ioh, TUL_SISTAT);
1102 
1103 	sc->sc_phase = sc->sc_status0 & PH_MASK;
1104 
1105 	if ((sc->sc_sistat & SRSTD) != 0) {
1106 		/* SCSI bus reset interrupt */
1107 		iha_reset_scsi_bus(sc);
1108 		return (-1);
1109 	}
1110 
1111 	if ((sc->sc_sistat & RSELED) != 0)
1112 		/* Reselection interrupt */
1113 		return (iha_resel(sc));
1114 
1115 	if ((sc->sc_sistat & STIMEO) != 0) {
1116 		/* selected/reselected timeout interrupt */
1117 		iha_busfree(sc);
1118 		return (-1);
1119 	}
1120 
1121 	if ((sc->sc_sistat & DISCD) != 0) {
1122 		/* BUS disconnection interrupt */
1123 		if ((sc->sc_flags & FLAG_EXPECT_DONE_DISC) != 0) {
1124 			bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
1125 			bus_space_write_1(iot, ioh, TUL_SCONFIG0,
1126 			    SCONFIG0DEFAULT);
1127 			bus_space_write_1(iot, ioh, TUL_SCTRL1, EHRSL);
1128 			iha_append_done_scb(sc, sc->sc_actscb, HOST_OK);
1129 			sc->sc_flags &= ~FLAG_EXPECT_DONE_DISC;
1130 
1131 		} else if ((sc->sc_flags & FLAG_EXPECT_DISC) != 0) {
1132 			bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
1133 			bus_space_write_1(iot, ioh, TUL_SCONFIG0,
1134 			    SCONFIG0DEFAULT);
1135 			bus_space_write_1(iot, ioh, TUL_SCTRL1, EHRSL);
1136 			sc->sc_actscb = NULL;
1137 			sc->sc_flags &= ~FLAG_EXPECT_DISC;
1138 
1139 		} else
1140 			iha_busfree(sc);
1141 
1142 		return (-1);
1143 	}
1144 
1145 	return (sc->sc_phase);
1146 }
1147 
1148 static void
1149 iha_exec_scb(struct iha_softc *sc, struct iha_scb *scb)
1150 {
1151 	bus_space_tag_t iot;
1152 	bus_space_handle_t ioh;
1153 	bus_dmamap_t dm;
1154 	struct scsipi_xfer *xs = scb->xs;
1155 	int nseg, s;
1156 
1157 	dm = scb->dmap;
1158 	nseg = dm->dm_nsegs;
1159 
1160 	if (nseg > 1) {
1161 		struct iha_sg_element *sg = scb->sglist;
1162 		int i;
1163 
1164 		for (i = 0; i < nseg; i++) {
1165 			sg[i].sg_len = htole32(dm->dm_segs[i].ds_len);
1166 			sg[i].sg_addr = htole32(dm->dm_segs[i].ds_addr);
1167 		}
1168 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1169 		    scb->sgoffset, IHA_SG_SIZE,
1170 		    BUS_DMASYNC_PREWRITE);
1171 
1172 		scb->flags |= FLAG_SG;
1173 		scb->sg_size = scb->sg_max = nseg;
1174 		scb->sg_index = 0;
1175 
1176 		scb->bufaddr = scb->sg_addr;
1177 	} else
1178 		scb->bufaddr = dm->dm_segs[0].ds_addr;
1179 
1180 	if ((xs->xs_control & XS_CTL_POLL) == 0) {
1181 		int timeout = mstohz(xs->timeout);
1182 		if (timeout == 0)
1183 			timeout = 1;
1184 		callout_reset(&xs->xs_callout, timeout, iha_timeout, scb);
1185 	}
1186 
1187 	s = splbio();
1188 
1189 	if (((scb->xs->xs_control & XS_RESET) != 0) ||
1190 	    (scb->cmd[0] == SCSI_REQUEST_SENSE))
1191 		iha_push_pend_scb(sc, scb);   /* Insert SCB at head of Pend */
1192 	else
1193 		iha_append_pend_scb(sc, scb); /* Append SCB to tail of Pend */
1194 
1195 	/*
1196 	 * Run through iha_main() to ensure something is active, if
1197 	 * only this new SCB.
1198 	 */
1199 	if (sc->sc_semaph != SEMAPH_IN_MAIN) {
1200 		iot = sc->sc_iot;
1201 		ioh = sc->sc_ioh;
1202 
1203 		bus_space_write_1(iot, ioh, TUL_IMSK, MASK_ALL);
1204 		sc->sc_semaph = SEMAPH_IN_MAIN;
1205 
1206 		splx(s);
1207 		iha_main(sc);
1208 		s = splbio();
1209 
1210 		sc->sc_semaph = ~SEMAPH_IN_MAIN;
1211 		bus_space_write_1(iot, ioh, TUL_IMSK, (MASK_ALL & ~MSCMP));
1212 	}
1213 
1214 	splx(s);
1215 }
1216 
1217 /*
1218  * iha_done_scb - We have a scb which has been processed by the
1219  *                adaptor, now we look to see how the operation went.
1220  */
1221 static void
1222 iha_done_scb(struct iha_softc *sc, struct iha_scb *scb)
1223 {
1224 	struct scsipi_xfer *xs = scb->xs;
1225 
1226 	if (xs != NULL) {
1227 		/* Cancel the timeout. */
1228 		callout_stop(&xs->xs_callout);
1229 
1230 		if (scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) {
1231 			bus_dmamap_sync(sc->sc_dmat, scb->dmap,
1232 			    0, scb->dmap->dm_mapsize,
1233 			    (scb->flags & FLAG_DATAIN) ?
1234 			    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1235 			bus_dmamap_unload(sc->sc_dmat, scb->dmap);
1236 		}
1237 
1238 		xs->status = scb->ta_stat;
1239 
1240 		switch (scb->ha_stat) {
1241 		case HOST_OK:
1242 			switch (scb->ta_stat) {
1243 			case SCSI_OK:
1244 			case SCSI_CONDITION_MET:
1245 			case SCSI_INTERM:
1246 			case SCSI_INTERM_COND_MET:
1247 				xs->resid = scb->buflen;
1248 				xs->error = XS_NOERROR;
1249 				if ((scb->flags & FLAG_RSENS) != 0)
1250 					xs->error = XS_SENSE;
1251 				break;
1252 
1253 			case SCSI_RESV_CONFLICT:
1254 			case SCSI_BUSY:
1255 			case SCSI_QUEUE_FULL:
1256 				xs->error = XS_BUSY;
1257 				break;
1258 
1259 			case SCSI_TERMINATED:
1260 			case SCSI_ACA_ACTIVE:
1261 			case SCSI_CHECK:
1262 				scb->tcs->flags &=
1263 				    ~(FLAG_SYNC_DONE | FLAG_WIDE_DONE);
1264 
1265 				if ((scb->flags & FLAG_RSENS) != 0 ||
1266 				    iha_push_sense_request(sc, scb) != 0) {
1267 					scb->flags &= ~FLAG_RSENS;
1268 					printf("%s: request sense failed\n",
1269 					    device_xname(sc->sc_dev));
1270 					xs->error = XS_DRIVER_STUFFUP;
1271 					break;
1272 				}
1273 
1274 				xs->error = XS_SENSE;
1275 				return;
1276 
1277 			default:
1278 				xs->error = XS_DRIVER_STUFFUP;
1279 				break;
1280 			}
1281 			break;
1282 
1283 		case HOST_SEL_TOUT:
1284 			xs->error = XS_SELTIMEOUT;
1285 			break;
1286 
1287 		case HOST_SCSI_RST:
1288 		case HOST_DEV_RST:
1289 			xs->error = XS_RESET;
1290 			break;
1291 
1292 		case HOST_SPERR:
1293 			printf("%s: SCSI Parity error detected\n",
1294 			    device_xname(sc->sc_dev));
1295 			xs->error = XS_DRIVER_STUFFUP;
1296 			break;
1297 
1298 		case HOST_TIMED_OUT:
1299 			xs->error = XS_TIMEOUT;
1300 			break;
1301 
1302 		case HOST_DO_DU:
1303 		case HOST_BAD_PHAS:
1304 		default:
1305 			xs->error = XS_DRIVER_STUFFUP;
1306 			break;
1307 		}
1308 
1309 		scsipi_done(xs);
1310 	}
1311 
1312 	iha_append_free_scb(sc, scb);
1313 }
1314 
1315 /*
1316  * iha_push_sense_request - obtain auto sense data by pushing the
1317  *			    SCB needing it back onto the pending
1318  *			    queue with a REQUEST_SENSE CDB.
1319  */
1320 static int
1321 iha_push_sense_request(struct iha_softc *sc, struct iha_scb *scb)
1322 {
1323 	struct scsipi_xfer *xs = scb->xs;
1324 	struct scsipi_periph *periph = xs->xs_periph;
1325 	struct scsi_request_sense *ss = (struct scsi_request_sense *)scb->cmd;
1326 	int lun = periph->periph_lun;
1327 	int err;
1328 
1329 	memset(ss, 0, sizeof(*ss));
1330 	ss->opcode = SCSI_REQUEST_SENSE;
1331 	ss->byte2 = lun << SCSI_CMD_LUN_SHIFT;
1332 	ss->length = sizeof(struct scsi_sense_data);
1333 
1334 	scb->flags = FLAG_RSENS | FLAG_DATAIN;
1335 
1336 	scb->scb_id &= ~MSG_IDENTIFY_DISCFLAG;
1337 
1338 	scb->scb_tagmsg = 0;
1339 	scb->ta_stat = SCSI_OK;
1340 
1341 	scb->cmdlen = sizeof(struct scsi_request_sense);
1342 	scb->buflen = ss->length;
1343 
1344 	err = bus_dmamap_load(sc->sc_dmat, scb->dmap,
1345 	    &xs->sense.scsi_sense, scb->buflen, NULL,
1346 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1347 	if (err != 0) {
1348 		printf("iha_push_sense_request: cannot bus_dmamap_load()\n");
1349 		xs->error = XS_DRIVER_STUFFUP;
1350 		return 1;
1351 	}
1352 	bus_dmamap_sync(sc->sc_dmat, scb->dmap,
1353 	    0, scb->buflen, BUS_DMASYNC_PREREAD);
1354 
1355 	/* XXX What about queued command? */
1356 	iha_exec_scb(sc, scb);
1357 
1358 	return 0;
1359 }
1360 
1361 static void
1362 iha_timeout(void *arg)
1363 {
1364 	struct iha_scb *scb = (struct iha_scb *)arg;
1365 	struct scsipi_xfer *xs = scb->xs;
1366 	struct scsipi_periph *periph;
1367 	struct iha_softc *sc;
1368 
1369 	if (xs == NULL) {
1370 		printf("[debug] iha_timeout called with xs == NULL\n");
1371 		return;
1372 	}
1373 
1374 	periph = xs->xs_periph;
1375 
1376 	sc = device_private(periph->periph_channel->chan_adapter->adapt_dev);
1377 
1378 	scsipi_printaddr(periph);
1379 	printf("SCSI OpCode 0x%02x timed out\n", xs->cmd->opcode);
1380 	iha_abort_xs(sc, xs, HOST_TIMED_OUT);
1381 }
1382 
1383 /*
1384  * iha_abort_xs - find the SCB associated with the supplied xs and
1385  *                stop all processing on it, moving it to the done
1386  *                queue with the supplied host status value.
1387  */
1388 static void
1389 iha_abort_xs(struct iha_softc *sc, struct scsipi_xfer *xs, uint8_t hastat)
1390 {
1391 	struct iha_scb *scb;
1392 	int i, s;
1393 
1394 	s = splbio();
1395 
1396 	/* Check the pending queue for the SCB pointing to xs */
1397 
1398 	TAILQ_FOREACH(scb, &sc->sc_pendscb, chain)
1399 		if (scb->xs == xs) {
1400 			iha_del_pend_scb(sc, scb);
1401 			iha_append_done_scb(sc, scb, hastat);
1402 			splx(s);
1403 			return;
1404 		}
1405 
1406 	/*
1407 	 * If that didn't work, check all BUSY/SELECTING SCB's for one
1408 	 * pointing to xs
1409 	 */
1410 
1411 	for (i = 0, scb = sc->sc_scb; i < IHA_MAX_SCB; i++, scb++)
1412 		switch (scb->status) {
1413 		case STATUS_BUSY:
1414 		case STATUS_SELECT:
1415 			if (scb->xs == xs) {
1416 				iha_append_done_scb(sc, scb, hastat);
1417 				splx(s);
1418 				return;
1419 			}
1420 			break;
1421 		default:
1422 			break;
1423 		}
1424 
1425 	splx(s);
1426 }
1427 
1428 /*
1429  * iha_data_over_run - return HOST_OK for all SCSI opcodes where BufLen
1430  *		       is an 'Allocation Length'. All other SCSI opcodes
1431  *		       get HOST_DO_DU as they SHOULD have xferred all the
1432  *		       data requested.
1433  *
1434  *		       The list of opcodes using 'Allocation Length' was
1435  *		       found by scanning all the SCSI-3 T10 drafts. See
1436  *		       www.t10.org for the curious with a .pdf reader.
1437  */
1438 static uint8_t
1439 iha_data_over_run(struct iha_scb *scb)
1440 {
1441 	switch (scb->cmd[0]) {
1442 	case 0x03: /* Request Sense                   SPC-2 */
1443 	case 0x12: /* Inquiry                         SPC-2 */
1444 	case 0x1a: /* Mode Sense (6 byte version)     SPC-2 */
1445 	case 0x1c: /* Receive Diagnostic Results      SPC-2 */
1446 	case 0x23: /* Read Format Capacities          MMC-2 */
1447 	case 0x29: /* Read Generation                 SBC   */
1448 	case 0x34: /* Read Position                   SSC-2 */
1449 	case 0x37: /* Read Defect Data                SBC   */
1450 	case 0x3c: /* Read Buffer                     SPC-2 */
1451 	case 0x42: /* Read Sub Channel                MMC-2 */
1452 	case 0x43: /* Read TOC/PMA/ATIP               MMC   */
1453 
1454 	/* XXX - 2 with same opcode of 0x44? */
1455 	case 0x44: /* Read Header/Read Density Suprt  MMC/SSC*/
1456 
1457 	case 0x46: /* Get Configuration               MMC-2 */
1458 	case 0x4a: /* Get Event/Status Notification   MMC-2 */
1459 	case 0x4d: /* Log Sense                       SPC-2 */
1460 	case 0x51: /* Read Disc Information           MMC   */
1461 	case 0x52: /* Read Track Information          MMC   */
1462 	case 0x59: /* Read Master CUE                 MMC   */
1463 	case 0x5a: /* Mode Sense (10 byte version)    SPC-2 */
1464 	case 0x5c: /* Read Buffer Capacity            MMC   */
1465 	case 0x5e: /* Persistent Reserve In           SPC-2 */
1466 	case 0x84: /* Receive Copy Results            SPC-2 */
1467 	case 0xa0: /* Report LUNs                     SPC-2 */
1468 	case 0xa3: /* Various Report requests         SBC-2/SCC-2*/
1469 	case 0xa4: /* Report Key                      MMC-2 */
1470 	case 0xad: /* Read DVD Structure              MMC-2 */
1471 	case 0xb4: /* Read Element Status (Attached)  SMC   */
1472 	case 0xb5: /* Request Volume Element Address  SMC   */
1473 	case 0xb7: /* Read Defect Data (12 byte ver.) SBC   */
1474 	case 0xb8: /* Read Element Status (Independ.) SMC   */
1475 	case 0xba: /* Report Redundancy               SCC-2 */
1476 	case 0xbd: /* Mechanism Status                MMC   */
1477 	case 0xbe: /* Report Basic Redundancy         SCC-2 */
1478 
1479 		return (HOST_OK);
1480 
1481 	default:
1482 		return (HOST_DO_DU);
1483 	}
1484 }
1485 
1486 /*
1487  * iha_next_state - process the current SCB as requested in its
1488  *                  nextstat member.
1489  */
1490 static int
1491 iha_next_state(struct iha_softc *sc)
1492 {
1493 
1494 	if (sc->sc_actscb == NULL)
1495 		return (-1);
1496 
1497 	switch (sc->sc_actscb->nextstat) {
1498 	case 1:
1499 		if (iha_state_1(sc) == 3)
1500 			goto state_3;
1501 		break;
1502 
1503 	case 2:
1504 		switch (iha_state_2(sc)) {
1505 		case 3:
1506 			goto state_3;
1507 		case 4:
1508 			goto state_4;
1509 		default:
1510 			break;
1511 		}
1512 		break;
1513 
1514 	case 3:
1515 	state_3:
1516 		if (iha_state_3(sc) == 4)
1517 			goto state_4;
1518 		break;
1519 
1520 	case 4:
1521 	state_4:
1522 		switch (iha_state_4(sc)) {
1523 		case 0:
1524 			return (0);
1525 		case 6:
1526 			goto state_6;
1527 		default:
1528 			break;
1529 		}
1530 		break;
1531 
1532 	case 5:
1533 		switch (iha_state_5(sc)) {
1534 		case 4:
1535 			goto state_4;
1536 		case 6:
1537 			goto state_6;
1538 		default:
1539 			break;
1540 		}
1541 		break;
1542 
1543 	case 6:
1544 	state_6:
1545 		iha_state_6(sc);
1546 		break;
1547 
1548 	case 8:
1549 		iha_state_8(sc);
1550 		break;
1551 
1552 	default:
1553 #ifdef IHA_DEBUG_STATE
1554 		printf("[debug] -unknown state: %i-\n",
1555 		    sc->sc_actscb->nextstat);
1556 #endif
1557 		iha_bad_seq(sc);
1558 		break;
1559 	}
1560 
1561 	return (-1);
1562 }
1563 
1564 /*
1565  * iha_state_1 - selection is complete after a SELATNSTOP. If the target
1566  *               has put the bus into MSG_OUT phase start wide/sync
1567  *               negotiation. Otherwise clear the FIFO and go to state 3,
1568  *	    	 which will send the SCSI CDB to the target.
1569  */
1570 static int
1571 iha_state_1(struct iha_softc *sc)
1572 {
1573 	bus_space_tag_t iot = sc->sc_iot;
1574 	bus_space_handle_t ioh = sc->sc_ioh;
1575 	struct iha_scb *scb = sc->sc_actscb;
1576 	struct tcs *tcs;
1577 	int flags;
1578 
1579 	iha_mark_busy_scb(scb);
1580 
1581 	tcs = scb->tcs;
1582 
1583 	bus_space_write_1(iot, ioh, TUL_SCONFIG0, tcs->sconfig0);
1584 
1585 	/*
1586 	 * If we are in PHASE_MSG_OUT, send
1587 	 *     a) IDENT message (with tags if appropriate)
1588 	 *     b) WDTR if the target is configured to negotiate wide xfers
1589 	 *     ** OR **
1590 	 *     c) SDTR if the target is configured to negotiate sync xfers
1591 	 *	  but not wide ones
1592 	 *
1593 	 * If we are NOT, then the target is not asking for anything but
1594 	 * the data/command, so go straight to state 3.
1595 	 */
1596 	if (sc->sc_phase == PHASE_MSG_OUT) {
1597 		bus_space_write_1(iot, ioh, TUL_SCTRL1, (ESBUSIN | EHRSL));
1598 		bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_id);
1599 
1600 		if (scb->scb_tagmsg != 0) {
1601 			bus_space_write_1(iot, ioh, TUL_SFIFO,
1602 			    scb->scb_tagmsg);
1603 			bus_space_write_1(iot, ioh, TUL_SFIFO,
1604 			    scb->scb_tagid);
1605 		}
1606 
1607 		flags = tcs->flags;
1608 		if ((flags & FLAG_NO_NEG_WIDE) == 0) {
1609 			if (iha_msgout_wdtr(sc) == -1)
1610 				return (-1);
1611 		} else if ((flags & FLAG_NO_NEG_SYNC) == 0) {
1612 			if (iha_msgout_sdtr(sc) == -1)
1613 				return (-1);
1614 		}
1615 
1616 	} else {
1617 		bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
1618 		iha_set_ssig(sc, REQ | BSY | SEL | ATN, 0);
1619 	}
1620 
1621 	return (3);
1622 }
1623 
1624 /*
1625  * iha_state_2 - selection is complete after a SEL_ATN or SEL_ATN3. If the SCSI
1626  *		 CDB has already been send, go to state 4 to start the data
1627  *		 xfer. Otherwise reset the FIFO and go to state 3, sending
1628  *		 the SCSI CDB.
1629  */
1630 static int
1631 iha_state_2(struct iha_softc *sc)
1632 {
1633 	bus_space_tag_t iot = sc->sc_iot;
1634 	bus_space_handle_t ioh = sc->sc_ioh;
1635 	struct iha_scb *scb = sc->sc_actscb;
1636 
1637 	iha_mark_busy_scb(scb);
1638 
1639 	bus_space_write_1(iot, ioh, TUL_SCONFIG0, scb->tcs->sconfig0);
1640 
1641 	if ((sc->sc_status1 & CPDNE) != 0)
1642 		return (4);
1643 
1644 	bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
1645 
1646 	iha_set_ssig(sc, REQ | BSY | SEL | ATN, 0);
1647 
1648 	return (3);
1649 }
1650 
1651 /*
1652  * iha_state_3 - send the SCSI CDB to the target, processing any status
1653  *		 or other messages received until that is done or
1654  *		 abandoned.
1655  */
1656 static int
1657 iha_state_3(struct iha_softc *sc)
1658 {
1659 	bus_space_tag_t iot = sc->sc_iot;
1660 	bus_space_handle_t ioh = sc->sc_ioh;
1661 	struct iha_scb *scb = sc->sc_actscb;
1662 	int flags;
1663 
1664 	for (;;) {
1665 		switch (sc->sc_phase) {
1666 		case PHASE_CMD_OUT:
1667 			bus_space_write_multi_1(iot, ioh, TUL_SFIFO,
1668 			    scb->cmd, scb->cmdlen);
1669 			if (iha_wait(sc, XF_FIFO_OUT) == -1)
1670 				return (-1);
1671 			else if (sc->sc_phase == PHASE_CMD_OUT) {
1672 				iha_bad_seq(sc);
1673 				return (-1);
1674 			} else
1675 				return (4);
1676 
1677 		case PHASE_MSG_IN:
1678 			scb->nextstat = 3;
1679 			if (iha_msgin(sc) == -1)
1680 				return (-1);
1681 			break;
1682 
1683 		case PHASE_STATUS_IN:
1684 			if (iha_status_msg(sc) == -1)
1685 				return (-1);
1686 			break;
1687 
1688 		case PHASE_MSG_OUT:
1689 			flags = scb->tcs->flags;
1690 			if ((flags & FLAG_NO_NEG_SYNC) != 0) {
1691 				if (iha_msgout(sc, MSG_NOOP) == -1)
1692 					return (-1);
1693 			} else if (iha_msgout_sdtr(sc) == -1)
1694 				return (-1);
1695 			break;
1696 
1697 		default:
1698 			printf("[debug] -s3- bad phase = %d\n", sc->sc_phase);
1699 			iha_bad_seq(sc);
1700 			return (-1);
1701 		}
1702 	}
1703 }
1704 
1705 /*
1706  * iha_state_4 - start a data xfer. Handle any bus state
1707  *               transitions until PHASE_DATA_IN/_OUT
1708  *               or the attempt is abandoned. If there is
1709  *               no data to xfer, go to state 6 and finish
1710  *               processing the current SCB.
1711  */
1712 static int
1713 iha_state_4(struct iha_softc *sc)
1714 {
1715 	struct iha_scb *scb = sc->sc_actscb;
1716 
1717 	if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) ==
1718 	    (FLAG_DATAIN | FLAG_DATAOUT))
1719 		return (6); /* Both dir flags set => NO xfer was requested */
1720 
1721 	for (;;) {
1722 		if (scb->buflen == 0)
1723 			return (6);
1724 
1725 		switch (sc->sc_phase) {
1726 		case PHASE_STATUS_IN:
1727 			if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) != 0)
1728 				scb->ha_stat = iha_data_over_run(scb);
1729 			if ((iha_status_msg(sc)) == -1)
1730 				return (-1);
1731 			break;
1732 
1733 		case PHASE_MSG_IN:
1734 			scb->nextstat = 4;
1735 			if (iha_msgin(sc) == -1)
1736 				return (-1);
1737 			break;
1738 
1739 		case PHASE_MSG_OUT:
1740 			if ((sc->sc_status0 & SPERR) != 0) {
1741 				scb->buflen = 0;
1742 				scb->ha_stat = HOST_SPERR;
1743 				if (iha_msgout(sc, MSG_INITIATOR_DET_ERR) == -1)
1744 					return (-1);
1745 				else
1746 					return (6);
1747 			} else {
1748 				if (iha_msgout(sc, MSG_NOOP) == -1)
1749 					return (-1);
1750 			}
1751 			break;
1752 
1753 		case PHASE_DATA_IN:
1754 			return (iha_xfer_data(sc, scb, FLAG_DATAIN));
1755 
1756 		case PHASE_DATA_OUT:
1757 			return (iha_xfer_data(sc, scb, FLAG_DATAOUT));
1758 
1759 		default:
1760 			iha_bad_seq(sc);
1761 			return (-1);
1762 		}
1763 	}
1764 }
1765 
1766 /*
1767  * iha_state_5 - handle the partial or final completion of the current
1768  *		 data xfer. If DMA is still active stop it. If there is
1769  *		 more data to xfer, go to state 4 and start the xfer.
1770  *		 If not go to state 6 and finish the SCB.
1771  */
1772 static int
1773 iha_state_5(struct iha_softc *sc)
1774 {
1775 	bus_space_tag_t iot = sc->sc_iot;
1776 	bus_space_handle_t ioh = sc->sc_ioh;
1777 	struct iha_scb *scb = sc->sc_actscb;
1778 	struct iha_sg_element *sg;
1779 	uint32_t cnt;
1780 	uint8_t period, stat;
1781 	long xcnt;  /* cannot use unsigned!! see code: if (xcnt < 0) */
1782 	int i;
1783 
1784 	cnt = bus_space_read_4(iot, ioh, TUL_STCNT0) & TCNT;
1785 
1786 	/*
1787 	 * Stop any pending DMA activity and check for parity error.
1788 	 */
1789 
1790 	if ((bus_space_read_1(iot, ioh, TUL_DCMD) & XDIR) != 0) {
1791 		/* Input Operation */
1792 		if ((sc->sc_status0 & SPERR) != 0)
1793 			scb->ha_stat = HOST_SPERR;
1794 
1795 		if ((bus_space_read_1(iot, ioh, TUL_ISTUS1) & XPEND) != 0) {
1796 			bus_space_write_1(iot, ioh, TUL_DCTRL0,
1797 			    bus_space_read_1(iot, ioh, TUL_DCTRL0) | SXSTP);
1798 			while (bus_space_read_1(iot, ioh, TUL_ISTUS1) & XPEND)
1799 				;
1800 		}
1801 
1802 	} else {
1803 		/* Output Operation */
1804 		if ((sc->sc_status1 & SXCMP) == 0) {
1805 			period = scb->tcs->syncm;
1806 			if ((period & PERIOD_WIDE_SCSI) != 0)
1807 				cnt += (bus_space_read_1(iot, ioh,
1808 				    TUL_SFIFOCNT) & FIFOC) * 2;
1809 			else
1810 				cnt += bus_space_read_1(iot, ioh,
1811 				    TUL_SFIFOCNT) & FIFOC;
1812 		}
1813 
1814 		if ((bus_space_read_1(iot, ioh, TUL_ISTUS1) & XPEND) != 0) {
1815 			bus_space_write_1(iot, ioh, TUL_DCMD, ABTXFR);
1816 			do
1817 				stat = bus_space_read_1(iot, ioh, TUL_ISTUS0);
1818 			while ((stat & DABT) == 0);
1819 		}
1820 
1821 		if ((cnt == 1) && (sc->sc_phase == PHASE_DATA_OUT)) {
1822 			if (iha_wait(sc, XF_FIFO_OUT) == -1)
1823 				return (-1);
1824 			cnt = 0;
1825 
1826 		} else if ((sc->sc_status1 & SXCMP) == 0)
1827 			bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
1828 	}
1829 
1830 	if (cnt == 0) {
1831 		scb->buflen = 0;
1832 		return (6);
1833 	}
1834 
1835 	/* Update active data pointer and restart the I/O at the new point */
1836 
1837 	xcnt = scb->buflen - cnt;	/* xcnt == bytes xferred */
1838 	scb->buflen = cnt;	  	/* cnt  == bytes left    */
1839 
1840 	if ((scb->flags & FLAG_SG) != 0) {
1841 		sg = &scb->sglist[scb->sg_index];
1842 		for (i = scb->sg_index; i < scb->sg_max; sg++, i++) {
1843 			xcnt -= le32toh(sg->sg_len);
1844 			if (xcnt < 0) {
1845 				xcnt += le32toh(sg->sg_len);
1846 
1847 				sg->sg_addr =
1848 				    htole32(le32toh(sg->sg_addr) + xcnt);
1849 				sg->sg_len =
1850 				    htole32(le32toh(sg->sg_len) - xcnt);
1851 				bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1852 				    scb->sgoffset, IHA_SG_SIZE,
1853 				    BUS_DMASYNC_PREWRITE);
1854 
1855 				scb->bufaddr += (i - scb->sg_index) *
1856 				    sizeof(struct iha_sg_element);
1857 				scb->sg_size = scb->sg_max - i;
1858 				scb->sg_index = i;
1859 
1860 				return (4);
1861 			}
1862 		}
1863 		return (6);
1864 
1865 	} else
1866 		scb->bufaddr += xcnt;
1867 
1868 	return (4);
1869 }
1870 
1871 /*
1872  * iha_state_6 - finish off the active scb (may require several
1873  *		 iterations if PHASE_MSG_IN) and return -1 to indicate
1874  *		 the bus is free.
1875  */
1876 static int
1877 iha_state_6(struct iha_softc *sc)
1878 {
1879 
1880 	for (;;) {
1881 		switch (sc->sc_phase) {
1882 		case PHASE_STATUS_IN:
1883 			if (iha_status_msg(sc) == -1)
1884 				return (-1);
1885 			break;
1886 
1887 		case PHASE_MSG_IN:
1888 			sc->sc_actscb->nextstat = 6;
1889 			if ((iha_msgin(sc)) == -1)
1890 				return (-1);
1891 			break;
1892 
1893 		case PHASE_MSG_OUT:
1894 			if ((iha_msgout(sc, MSG_NOOP)) == -1)
1895 				return (-1);
1896 			break;
1897 
1898 		case PHASE_DATA_IN:
1899 			if (iha_xpad_in(sc) == -1)
1900 				return (-1);
1901 			break;
1902 
1903 		case PHASE_DATA_OUT:
1904 			if (iha_xpad_out(sc) == -1)
1905 				return (-1);
1906 			break;
1907 
1908 		default:
1909 			iha_bad_seq(sc);
1910 			return (-1);
1911 		}
1912 	}
1913 }
1914 
1915 /*
1916  * iha_state_8 - reset the active device and all busy SCBs using it
1917  */
1918 static int
1919 iha_state_8(struct iha_softc *sc)
1920 {
1921 	bus_space_tag_t iot = sc->sc_iot;
1922 	bus_space_handle_t ioh = sc->sc_ioh;
1923 	struct iha_scb *scb;
1924 	int i;
1925 	uint8_t tar;
1926 
1927 	if (sc->sc_phase == PHASE_MSG_OUT) {
1928 		bus_space_write_1(iot, ioh, TUL_SFIFO, MSG_BUS_DEV_RESET);
1929 
1930 		scb = sc->sc_actscb;
1931 
1932 		/* This SCB finished correctly -- resetting the device */
1933 		iha_append_done_scb(sc, scb, HOST_OK);
1934 
1935 		iha_reset_tcs(scb->tcs, sc->sc_sconf1);
1936 
1937 		tar = scb->target;
1938 		for (i = 0, scb = sc->sc_scb; i < IHA_MAX_SCB; i++, scb++)
1939 			if (scb->target == tar)
1940 				switch (scb->status) {
1941 				case STATUS_BUSY:
1942 					iha_append_done_scb(sc,
1943 					    scb, HOST_DEV_RST);
1944 					break;
1945 
1946 				case STATUS_SELECT:
1947 					iha_push_pend_scb(sc, scb);
1948 					break;
1949 
1950 				default:
1951 					break;
1952 				}
1953 
1954 		sc->sc_flags |= FLAG_EXPECT_DISC;
1955 
1956 		if (iha_wait(sc, XF_FIFO_OUT) == -1)
1957 			return (-1);
1958 	}
1959 
1960 	iha_bad_seq(sc);
1961 	return (-1);
1962 }
1963 
1964 /*
1965  * iha_xfer_data - initiate the DMA xfer of the data
1966  */
1967 static int
1968 iha_xfer_data(struct iha_softc *sc, struct iha_scb *scb, int direction)
1969 {
1970 	bus_space_tag_t iot = sc->sc_iot;
1971 	bus_space_handle_t ioh = sc->sc_ioh;
1972 	uint32_t xferlen;
1973 	uint8_t xfercmd;
1974 
1975 	if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) != direction)
1976 		return (6); /* wrong direction, abandon I/O */
1977 
1978 	bus_space_write_4(iot, ioh, TUL_STCNT0, scb->buflen);
1979 
1980 	xfercmd = STRXFR;
1981 	if (direction == FLAG_DATAIN)
1982 		xfercmd |= XDIR;
1983 
1984 	if (scb->flags & FLAG_SG) {
1985 		xferlen = scb->sg_size * sizeof(struct iha_sg_element);
1986 		xfercmd |= SGXFR;
1987 	} else
1988 		xferlen = scb->buflen;
1989 
1990 	bus_space_write_4(iot, ioh, TUL_DXC,  xferlen);
1991 	bus_space_write_4(iot, ioh, TUL_DXPA, scb->bufaddr);
1992 	bus_space_write_1(iot, ioh, TUL_DCMD, xfercmd);
1993 
1994 	bus_space_write_1(iot, ioh, TUL_SCMD,
1995 	    (direction == FLAG_DATAIN) ? XF_DMA_IN : XF_DMA_OUT);
1996 
1997 	scb->nextstat = 5;
1998 
1999 	return (0);
2000 }
2001 
2002 static int
2003 iha_xpad_in(struct iha_softc *sc)
2004 {
2005 	bus_space_tag_t iot = sc->sc_iot;
2006 	bus_space_handle_t ioh = sc->sc_ioh;
2007 	struct iha_scb *scb = sc->sc_actscb;
2008 
2009 	if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) != 0)
2010 		scb->ha_stat = HOST_DO_DU;
2011 
2012 	for (;;) {
2013 		if ((scb->tcs->syncm & PERIOD_WIDE_SCSI) != 0)
2014 			bus_space_write_4(iot, ioh, TUL_STCNT0, 2);
2015 		else
2016 			bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
2017 
2018 		switch (iha_wait(sc, XF_FIFO_IN)) {
2019 		case -1:
2020 			return (-1);
2021 
2022 		case PHASE_DATA_IN:
2023 			(void)bus_space_read_1(iot, ioh, TUL_SFIFO);
2024 			break;
2025 
2026 		default:
2027 			bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2028 			return (6);
2029 		}
2030 	}
2031 }
2032 
2033 static int
2034 iha_xpad_out(struct iha_softc *sc)
2035 {
2036 	bus_space_tag_t iot = sc->sc_iot;
2037 	bus_space_handle_t ioh = sc->sc_ioh;
2038 	struct iha_scb *scb = sc->sc_actscb;
2039 
2040 	if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) != 0)
2041 		scb->ha_stat = HOST_DO_DU;
2042 
2043 	for (;;) {
2044 		if ((scb->tcs->syncm & PERIOD_WIDE_SCSI) != 0)
2045 			bus_space_write_4(iot, ioh, TUL_STCNT0, 2);
2046 		else
2047 			bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
2048 
2049 		bus_space_write_1(iot, ioh, TUL_SFIFO, 0);
2050 
2051 		switch (iha_wait(sc, XF_FIFO_OUT)) {
2052 		case -1:
2053 			return (-1);
2054 
2055 		case PHASE_DATA_OUT:
2056 			break;
2057 
2058 		default:
2059 			/* Disable wide CPU to allow read 16 bits */
2060 			bus_space_write_1(iot, ioh, TUL_SCTRL1, EHRSL);
2061 			bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2062 			return (6);
2063 		}
2064 	}
2065 }
2066 
2067 static int
2068 iha_status_msg(struct iha_softc *sc)
2069 {
2070 	bus_space_tag_t iot = sc->sc_iot;
2071 	bus_space_handle_t ioh = sc->sc_ioh;
2072 	struct iha_scb *scb;
2073 	uint8_t msg;
2074 	int phase;
2075 
2076 	if ((phase = iha_wait(sc, CMD_COMP)) == -1)
2077 		return (-1);
2078 
2079 	scb = sc->sc_actscb;
2080 
2081 	scb->ta_stat = bus_space_read_1(iot, ioh, TUL_SFIFO);
2082 
2083 	if (phase == PHASE_MSG_OUT) {
2084 		if ((sc->sc_status0 & SPERR) == 0)
2085 			bus_space_write_1(iot, ioh, TUL_SFIFO, MSG_NOOP);
2086 		else
2087 			bus_space_write_1(iot, ioh, TUL_SFIFO,
2088 			    MSG_PARITY_ERROR);
2089 
2090 		return (iha_wait(sc, XF_FIFO_OUT));
2091 
2092 	} else if (phase == PHASE_MSG_IN) {
2093 		msg = bus_space_read_1(iot, ioh, TUL_SFIFO);
2094 
2095 		if ((sc->sc_status0 & SPERR) != 0)
2096 			switch (iha_wait(sc, MSG_ACCEPT)) {
2097 			case -1:
2098 				return (-1);
2099 			case PHASE_MSG_OUT:
2100 				bus_space_write_1(iot, ioh, TUL_SFIFO,
2101 				    MSG_PARITY_ERROR);
2102 				return (iha_wait(sc, XF_FIFO_OUT));
2103 			default:
2104 				iha_bad_seq(sc);
2105 				return (-1);
2106 			}
2107 
2108 		if (msg == MSG_CMDCOMPLETE) {
2109 			if ((scb->ta_stat &
2110 			    (SCSI_INTERM | SCSI_BUSY)) == SCSI_INTERM) {
2111 				iha_bad_seq(sc);
2112 				return (-1);
2113 			}
2114 			sc->sc_flags |= FLAG_EXPECT_DONE_DISC;
2115 			bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2116 			return (iha_wait(sc, MSG_ACCEPT));
2117 		}
2118 
2119 		if ((msg == MSG_LINK_CMD_COMPLETE)
2120 		    || (msg == MSG_LINK_CMD_COMPLETEF)) {
2121 			if ((scb->ta_stat &
2122 			    (SCSI_INTERM | SCSI_BUSY)) == SCSI_INTERM)
2123 				return (iha_wait(sc, MSG_ACCEPT));
2124 		}
2125 	}
2126 
2127 	iha_bad_seq(sc);
2128 	return (-1);
2129 }
2130 
2131 /*
2132  * iha_busfree - SCSI bus free detected as a result of a TIMEOUT or
2133  *		 DISCONNECT interrupt. Reset the tulip FIFO and
2134  *		 SCONFIG0 and enable hardware reselect. Move any active
2135  *		 SCB to sc_donescb list. Return an appropriate host status
2136  *		 if an I/O was active.
2137  */
2138 static void
2139 iha_busfree(struct iha_softc *sc)
2140 {
2141 	bus_space_tag_t iot = sc->sc_iot;
2142 	bus_space_handle_t ioh = sc->sc_ioh;
2143 	struct iha_scb *scb;
2144 
2145 	bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2146 	bus_space_write_1(iot, ioh, TUL_SCONFIG0, SCONFIG0DEFAULT);
2147 	bus_space_write_1(iot, ioh, TUL_SCTRL1, EHRSL);
2148 
2149 	scb = sc->sc_actscb;
2150 
2151 	if (scb != NULL) {
2152 		if (scb->status == STATUS_SELECT)
2153 			/* selection timeout   */
2154 			iha_append_done_scb(sc, scb, HOST_SEL_TOUT);
2155 		else
2156 			/* Unexpected bus free */
2157 			iha_append_done_scb(sc, scb, HOST_BAD_PHAS);
2158 	}
2159 }
2160 
2161 /*
2162  * iha_resel - handle a detected SCSI bus reselection request.
2163  */
2164 static int
2165 iha_resel(struct iha_softc *sc)
2166 {
2167 	bus_space_tag_t iot = sc->sc_iot;
2168 	bus_space_handle_t ioh = sc->sc_ioh;
2169 	struct iha_scb *scb;
2170 	struct tcs *tcs;
2171 	uint8_t tag, target, lun, msg, abortmsg;
2172 
2173 	if (sc->sc_actscb != NULL) {
2174 		if ((sc->sc_actscb->status == STATUS_SELECT))
2175 			iha_push_pend_scb(sc, sc->sc_actscb);
2176 		sc->sc_actscb = NULL;
2177 	}
2178 
2179 	target = bus_space_read_1(iot, ioh, TUL_SBID);
2180 	lun = bus_space_read_1(iot, ioh, TUL_SALVC) & IHA_MSG_IDENTIFY_LUNMASK;
2181 
2182 	tcs = &sc->sc_tcs[target];
2183 
2184 	bus_space_write_1(iot, ioh, TUL_SCONFIG0, tcs->sconfig0);
2185 	bus_space_write_1(iot, ioh, TUL_SYNCM, tcs->syncm);
2186 
2187 	abortmsg = MSG_ABORT; /* until a valid tag has been obtained */
2188 
2189 	if (tcs->ntagscb != NULL)
2190 		/* There is a non-tagged I/O active on the target */
2191 		scb = tcs->ntagscb;
2192 
2193 	else {
2194 		/*
2195 		 * Since there is no active non-tagged operation
2196 		 * read the tag type, the tag itself, and find
2197 		 * the appropriate scb by indexing sc_scb with
2198 		 * the tag.
2199 		 */
2200 
2201 		switch (iha_wait(sc, MSG_ACCEPT)) {
2202 		case -1:
2203 			return (-1);
2204 		case PHASE_MSG_IN:
2205 			bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
2206 			if ((iha_wait(sc, XF_FIFO_IN)) == -1)
2207 				return (-1);
2208 			break;
2209 		default:
2210 			goto abort;
2211 		}
2212 
2213 		msg = bus_space_read_1(iot, ioh, TUL_SFIFO); /* Read Tag Msg */
2214 
2215 		if ((msg < MSG_SIMPLE_Q_TAG) || (msg > MSG_ORDERED_Q_TAG))
2216 			goto abort;
2217 
2218 		switch (iha_wait(sc, MSG_ACCEPT)) {
2219 		case -1:
2220 			return (-1);
2221 		case PHASE_MSG_IN:
2222 			bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
2223 			if ((iha_wait(sc, XF_FIFO_IN)) == -1)
2224 				return (-1);
2225 			break;
2226 		default:
2227 			goto abort;
2228 		}
2229 
2230 		tag  = bus_space_read_1(iot, ioh, TUL_SFIFO); /* Read Tag ID */
2231 		scb = &sc->sc_scb[tag];
2232 
2233 		abortmsg = MSG_ABORT_TAG; /* Now that we have valdid tag! */
2234 	}
2235 
2236 	if ((scb->target != target)
2237 	    || (scb->lun != lun)
2238 	    || (scb->status != STATUS_BUSY)) {
2239  abort:
2240 		iha_msgout_abort(sc, abortmsg);
2241 		return (-1);
2242 	}
2243 
2244 	sc->sc_actscb = scb;
2245 
2246 	if (iha_wait(sc, MSG_ACCEPT) == -1)
2247 		return (-1);
2248 
2249 	return (iha_next_state(sc));
2250 }
2251 
2252 static int
2253 iha_msgin(struct iha_softc *sc)
2254 {
2255 	bus_space_tag_t iot = sc->sc_iot;
2256 	bus_space_handle_t ioh = sc->sc_ioh;
2257 	int flags;
2258 	int phase;
2259 	uint8_t msg;
2260 
2261 	for (;;) {
2262 		if ((bus_space_read_1(iot, ioh, TUL_SFIFOCNT) & FIFOC) > 0)
2263 			bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2264 
2265 		bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
2266 
2267 		phase = iha_wait(sc, XF_FIFO_IN);
2268 		msg = bus_space_read_1(iot, ioh, TUL_SFIFO);
2269 
2270 		switch (msg) {
2271 		case MSG_DISCONNECT:
2272 			sc->sc_flags |= FLAG_EXPECT_DISC;
2273 			if (iha_wait(sc, MSG_ACCEPT) != -1)
2274 				iha_bad_seq(sc);
2275 			phase = -1;
2276 			break;
2277 		case MSG_SAVEDATAPOINTER:
2278 		case MSG_RESTOREPOINTERS:
2279 		case MSG_NOOP:
2280 			phase = iha_wait(sc, MSG_ACCEPT);
2281 			break;
2282 		case MSG_MESSAGE_REJECT:
2283 			/* XXX - need to clear FIFO like other 'Clear ATN'?*/
2284 			iha_set_ssig(sc, REQ | BSY | SEL | ATN, 0);
2285 			flags = sc->sc_actscb->tcs->flags;
2286 			if ((flags & FLAG_NO_NEG_SYNC) == 0)
2287 				iha_set_ssig(sc, REQ | BSY | SEL, ATN);
2288 			phase = iha_wait(sc, MSG_ACCEPT);
2289 			break;
2290 		case MSG_EXTENDED:
2291 			phase = iha_msgin_extended(sc);
2292 			break;
2293 		case MSG_IGN_WIDE_RESIDUE:
2294 			phase = iha_msgin_ignore_wid_resid(sc);
2295 			break;
2296 		case MSG_CMDCOMPLETE:
2297 			sc->sc_flags |= FLAG_EXPECT_DONE_DISC;
2298 			bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2299 			phase = iha_wait(sc, MSG_ACCEPT);
2300 			if (phase != -1) {
2301 				iha_bad_seq(sc);
2302 				return (-1);
2303 			}
2304 			break;
2305 		default:
2306 			printf("[debug] iha_msgin: bad msg type: %d\n", msg);
2307 			phase = iha_msgout_reject(sc);
2308 			break;
2309 		}
2310 
2311 		if (phase != PHASE_MSG_IN)
2312 			return (phase);
2313 	}
2314 	/* NOTREACHED */
2315 }
2316 
2317 static int
2318 iha_msgin_extended(struct iha_softc *sc)
2319 {
2320 	bus_space_tag_t iot = sc->sc_iot;
2321 	bus_space_handle_t ioh = sc->sc_ioh;
2322 	int flags, i, phase, msglen, msgcode;
2323 
2324 	/*
2325 	 * XXX - can we just stop reading and reject, or do we have to
2326 	 *	 read all input, discarding the excess, and then reject
2327 	 */
2328 	for (i = 0; i < IHA_MAX_EXTENDED_MSG; i++) {
2329 		phase = iha_wait(sc, MSG_ACCEPT);
2330 
2331 		if (phase != PHASE_MSG_IN)
2332 			return (phase);
2333 
2334 		bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
2335 
2336 		if (iha_wait(sc, XF_FIFO_IN) == -1)
2337 			return (-1);
2338 
2339 		sc->sc_msg[i] = bus_space_read_1(iot, ioh, TUL_SFIFO);
2340 
2341 		if (sc->sc_msg[0] == i)
2342 			break;
2343 	}
2344 
2345 	msglen	= sc->sc_msg[0];
2346 	msgcode = sc->sc_msg[1];
2347 
2348 	if ((msglen == MSG_EXT_SDTR_LEN) && (msgcode == MSG_EXT_SDTR)) {
2349 		if (iha_msgin_sdtr(sc) == 0) {
2350 			iha_sync_done(sc);
2351 			return (iha_wait(sc, MSG_ACCEPT));
2352 		}
2353 
2354 		iha_set_ssig(sc, REQ | BSY | SEL, ATN);
2355 
2356 		phase = iha_wait(sc, MSG_ACCEPT);
2357 		if (phase != PHASE_MSG_OUT)
2358 			return (phase);
2359 
2360 		/* Clear FIFO for important message - final SYNC offer */
2361 		bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2362 
2363 		iha_sync_done(sc); /* This is our final offer */
2364 
2365 	} else if ((msglen == MSG_EXT_WDTR_LEN) && (msgcode == MSG_EXT_WDTR)) {
2366 
2367 		flags = sc->sc_actscb->tcs->flags;
2368 
2369 		if ((flags & FLAG_NO_WIDE) != 0)
2370 			/* Offer 8bit xfers only */
2371 			sc->sc_msg[2] = MSG_EXT_WDTR_BUS_8_BIT;
2372 
2373 		else if (sc->sc_msg[2] > MSG_EXT_WDTR_BUS_32_BIT)
2374 			/* BAD MSG */
2375 			return (iha_msgout_reject(sc));
2376 
2377 		else if (sc->sc_msg[2] == MSG_EXT_WDTR_BUS_32_BIT)
2378 			/* Offer 16bit instead */
2379 			sc->sc_msg[2] = MSG_EXT_WDTR_BUS_16_BIT;
2380 
2381 		else {
2382 			iha_wide_done(sc);
2383 			if ((flags & FLAG_NO_NEG_SYNC) == 0)
2384 				iha_set_ssig(sc, REQ | BSY | SEL, ATN);
2385 			return (iha_wait(sc, MSG_ACCEPT));
2386 		}
2387 
2388 		iha_set_ssig(sc, REQ | BSY | SEL, ATN);
2389 
2390 		phase = iha_wait(sc, MSG_ACCEPT);
2391 		if (phase != PHASE_MSG_OUT)
2392 			return (phase);
2393 	} else
2394 		return (iha_msgout_reject(sc));
2395 
2396 	return (iha_msgout_extended(sc));
2397 }
2398 
2399 /*
2400  * iha_msgin_sdtr - check SDTR msg in sc_msg. If the offer is
2401  *		    acceptable leave sc_msg as is and return 0.
2402  *		    If the negotiation must continue, modify sc_msg
2403  *		    as needed and return 1. Else return 0.
2404  */
2405 static int
2406 iha_msgin_sdtr(struct iha_softc *sc)
2407 {
2408 	int flags;
2409 	int newoffer;
2410 	uint8_t default_period;
2411 
2412 	flags = sc->sc_actscb->tcs->flags;
2413 
2414 	default_period = iha_rate_tbl[flags & FLAG_SCSI_RATE];
2415 
2416 	if (sc->sc_msg[3] == 0)
2417 		/* target offered async only. Accept it. */
2418 		return (0);
2419 
2420 	newoffer = 0;
2421 
2422 	if ((flags & FLAG_NO_SYNC) != 0) {
2423 		sc->sc_msg[3] = 0;
2424 		newoffer = 1;
2425 	}
2426 
2427 	if (sc->sc_msg[3] > IHA_MAX_OFFSET) {
2428 		sc->sc_msg[3] = IHA_MAX_OFFSET;
2429 		newoffer = 1;
2430 	}
2431 
2432 	if (sc->sc_msg[2] < default_period) {
2433 		sc->sc_msg[2] = default_period;
2434 		newoffer = 1;
2435 	}
2436 
2437 	if (sc->sc_msg[2] > IHA_MAX_PERIOD) {
2438 		/* Use async */
2439 		sc->sc_msg[3] = 0;
2440 		newoffer = 1;
2441 	}
2442 
2443 	return (newoffer);
2444 }
2445 
2446 static int
2447 iha_msgin_ignore_wid_resid(struct iha_softc *sc)
2448 {
2449 	bus_space_tag_t iot = sc->sc_iot;
2450 	bus_space_handle_t ioh = sc->sc_ioh;
2451 	int phase;
2452 
2453 	phase = iha_wait(sc, MSG_ACCEPT);
2454 
2455 	if (phase == PHASE_MSG_IN) {
2456 		phase = iha_wait(sc, XF_FIFO_IN);
2457 
2458 		if (phase != -1) {
2459 			bus_space_write_1(iot, ioh, TUL_SFIFO, 0);
2460 			(void)bus_space_read_1(iot, ioh, TUL_SFIFO);
2461 			(void)bus_space_read_1(iot, ioh, TUL_SFIFO);
2462 
2463 			phase = iha_wait(sc, MSG_ACCEPT);
2464 		}
2465 	}
2466 
2467 	return (phase);
2468 }
2469 
2470 static int
2471 iha_msgout(struct iha_softc *sc, uint8_t msg)
2472 {
2473 
2474 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, TUL_SFIFO, msg);
2475 
2476 	return (iha_wait(sc, XF_FIFO_OUT));
2477 }
2478 
2479 static void
2480 iha_msgout_abort(struct iha_softc *sc, uint8_t aborttype)
2481 {
2482 
2483 	iha_set_ssig(sc, REQ | BSY | SEL, ATN);
2484 
2485 	switch (iha_wait(sc, MSG_ACCEPT)) {
2486 	case -1:
2487 		break;
2488 
2489 	case PHASE_MSG_OUT:
2490 		sc->sc_flags |= FLAG_EXPECT_DISC;
2491 		if (iha_msgout(sc, aborttype) != -1)
2492 			iha_bad_seq(sc);
2493 		break;
2494 
2495 	default:
2496 		iha_bad_seq(sc);
2497 		break;
2498 	}
2499 }
2500 
2501 static int
2502 iha_msgout_reject(struct iha_softc *sc)
2503 {
2504 
2505 	iha_set_ssig(sc, REQ | BSY | SEL, ATN);
2506 
2507 	if (iha_wait(sc, MSG_ACCEPT) == PHASE_MSG_OUT)
2508 		return (iha_msgout(sc, MSG_MESSAGE_REJECT));
2509 
2510 	return (-1);
2511 }
2512 
2513 static int
2514 iha_msgout_extended(struct iha_softc *sc)
2515 {
2516 	bus_space_tag_t iot = sc->sc_iot;
2517 	bus_space_handle_t ioh = sc->sc_ioh;
2518 	int phase;
2519 
2520 	bus_space_write_1(iot, ioh, TUL_SFIFO, MSG_EXTENDED);
2521 
2522 	bus_space_write_multi_1(iot, ioh, TUL_SFIFO,
2523 	    sc->sc_msg, sc->sc_msg[0] + 1);
2524 
2525 	phase = iha_wait(sc, XF_FIFO_OUT);
2526 
2527 	bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2528 	iha_set_ssig(sc, REQ | BSY | SEL | ATN, 0);
2529 
2530 	return (phase);
2531 }
2532 
2533 static int
2534 iha_msgout_wdtr(struct iha_softc *sc)
2535 {
2536 
2537 	sc->sc_actscb->tcs->flags |= FLAG_WIDE_DONE;
2538 
2539 	sc->sc_msg[0] = MSG_EXT_WDTR_LEN;
2540 	sc->sc_msg[1] = MSG_EXT_WDTR;
2541 	sc->sc_msg[2] = MSG_EXT_WDTR_BUS_16_BIT;
2542 
2543 	return (iha_msgout_extended(sc));
2544 }
2545 
2546 static int
2547 iha_msgout_sdtr(struct iha_softc *sc)
2548 {
2549 	struct tcs *tcs = sc->sc_actscb->tcs;
2550 
2551 	tcs->flags |= FLAG_SYNC_DONE;
2552 
2553 	sc->sc_msg[0] = MSG_EXT_SDTR_LEN;
2554 	sc->sc_msg[1] = MSG_EXT_SDTR;
2555 	sc->sc_msg[2] = iha_rate_tbl[tcs->flags & FLAG_SCSI_RATE];
2556 	sc->sc_msg[3] = IHA_MAX_OFFSET; /* REQ/ACK */
2557 
2558 	return (iha_msgout_extended(sc));
2559 }
2560 
2561 static void
2562 iha_wide_done(struct iha_softc *sc)
2563 {
2564 	bus_space_tag_t iot = sc->sc_iot;
2565 	bus_space_handle_t ioh = sc->sc_ioh;
2566 	struct tcs *tcs = sc->sc_actscb->tcs;
2567 
2568 	tcs->syncm = 0;
2569 	tcs->period = 0;
2570 	tcs->offset = 0;
2571 
2572 	if (sc->sc_msg[2] != 0)
2573 		tcs->syncm |= PERIOD_WIDE_SCSI;
2574 
2575 	tcs->sconfig0 &= ~ALTPD;
2576 	tcs->flags &= ~FLAG_SYNC_DONE;
2577 	tcs->flags |=  FLAG_WIDE_DONE;
2578 
2579 	iha_update_xfer_mode(sc, sc->sc_actscb->target);
2580 
2581 	bus_space_write_1(iot, ioh, TUL_SCONFIG0, tcs->sconfig0);
2582 	bus_space_write_1(iot, ioh, TUL_SYNCM, tcs->syncm);
2583 }
2584 
2585 static void
2586 iha_sync_done(struct iha_softc *sc)
2587 {
2588 	bus_space_tag_t iot = sc->sc_iot;
2589 	bus_space_handle_t ioh = sc->sc_ioh;
2590 	struct tcs *tcs = sc->sc_actscb->tcs;
2591 	int i;
2592 
2593 	tcs->period = sc->sc_msg[2];
2594 	tcs->offset = sc->sc_msg[3];
2595 	if (tcs->offset != 0) {
2596 		tcs->syncm |= tcs->offset;
2597 
2598 		/* pick the highest possible rate */
2599 		for (i = 0; i < sizeof(iha_rate_tbl); i++)
2600 			if (iha_rate_tbl[i] >= tcs->period)
2601 				break;
2602 
2603 		tcs->syncm |= (i << 4);
2604 		tcs->sconfig0 |= ALTPD;
2605 	}
2606 
2607 	tcs->flags |= FLAG_SYNC_DONE;
2608 
2609 	iha_update_xfer_mode(sc, sc->sc_actscb->target);
2610 
2611 	bus_space_write_1(iot, ioh, TUL_SCONFIG0, tcs->sconfig0);
2612 	bus_space_write_1(iot, ioh, TUL_SYNCM, tcs->syncm);
2613 }
2614 
2615 /*
2616  * iha_bad_seq - a SCSI bus phase was encountered out of the
2617  *               correct/expected sequence. Reset the SCSI bus.
2618  */
2619 static void
2620 iha_bad_seq(struct iha_softc *sc)
2621 {
2622 	struct iha_scb *scb = sc->sc_actscb;
2623 
2624 	if (scb != NULL)
2625 		iha_append_done_scb(sc, scb, HOST_BAD_PHAS);
2626 
2627 	iha_reset_scsi_bus(sc);
2628 	iha_reset_chip(sc);
2629 }
2630 
2631 /*
2632  * iha_read_eeprom - read Serial EEPROM value & set to defaults
2633  *		     if required. XXX - Writing does NOT work!
2634  */
2635 static void
2636 iha_read_eeprom(struct iha_softc *sc, struct iha_eeprom *eeprom)
2637 {
2638 	bus_space_tag_t iot = sc->sc_iot;
2639 	bus_space_handle_t ioh = sc->sc_ioh;
2640 	uint16_t *tbuf = (uint16_t *)eeprom;
2641 	uint8_t gctrl;
2642 
2643 	/* Enable EEProm programming */
2644 	gctrl = bus_space_read_1(iot, ioh, TUL_GCTRL0) | EEPRG;
2645 	bus_space_write_1(iot, ioh, TUL_GCTRL0, gctrl);
2646 
2647 	/* Read EEProm */
2648 	if (iha_se2_rd_all(sc, tbuf) == 0)
2649 		panic("%s: cannot read EEPROM", device_xname(sc->sc_dev));
2650 
2651 	/* Disable EEProm programming */
2652 	gctrl = bus_space_read_1(iot, ioh, TUL_GCTRL0) & ~EEPRG;
2653 	bus_space_write_1(iot, ioh, TUL_GCTRL0, gctrl);
2654 }
2655 
2656 #ifdef notused
2657 /*
2658  * iha_se2_update_all - Update SCSI H/A configuration parameters from
2659  *			serial EEPROM Setup default pattern. Only
2660  *			change those values different from the values
2661  *			in iha_eeprom.
2662  */
2663 static void
2664 iha_se2_update_all(struct iha_softc *sc)
2665 {
2666 	bus_space_tag_t iot = sc->sc_iot;
2667 	bus_space_handle_t ioh = sc->sc_ioh;
2668 	uint16_t *np;
2669 	uint32_t chksum;
2670 	int i;
2671 
2672 	/* Enable erase/write state of EEPROM */
2673 	iha_se2_instr(sc, ENABLE_ERASE);
2674 	bus_space_write_1(iot, ioh, TUL_NVRAM, 0);
2675 	EEP_WAIT();
2676 
2677 	np = (uint16_t *)&eeprom_default;
2678 
2679 	for (i = 0, chksum = 0; i < EEPROM_SIZE - 1; i++) {
2680 		iha_se2_wr(sc, i, *np);
2681 		chksum += *np++;
2682 	}
2683 
2684 	chksum &= 0x0000ffff;
2685 	iha_se2_wr(sc, 31, chksum);
2686 
2687 	/* Disable erase/write state of EEPROM */
2688 	iha_se2_instr(sc, 0);
2689 	bus_space_write_1(iot, ioh, TUL_NVRAM, 0);
2690 	EEP_WAIT();
2691 }
2692 
2693 /*
2694  * iha_se2_wr - write the given 16 bit value into the Serial EEPROM
2695  *		at the specified offset
2696  */
2697 static void
2698 iha_se2_wr(struct iha_softc *sc, int addr, uint16_t writeword)
2699 {
2700 	bus_space_tag_t iot = sc->sc_iot;
2701 	bus_space_handle_t ioh = sc->sc_ioh;
2702 	int i, bit;
2703 
2704 	/* send 'WRITE' Instruction == address | WRITE bit */
2705 	iha_se2_instr(sc, addr | WRITE);
2706 
2707 	for (i = 16; i > 0; i--) {
2708 		if (writeword & (1 << (i - 1)))
2709 			bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS | NVRDO);
2710 		else
2711 			bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
2712 		EEP_WAIT();
2713 		bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS | NVRCK);
2714 		EEP_WAIT();
2715 	}
2716 
2717 	bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
2718 	EEP_WAIT();
2719 	bus_space_write_1(iot, ioh, TUL_NVRAM, 0);
2720 	EEP_WAIT();
2721 	bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
2722 	EEP_WAIT();
2723 
2724 	for (;;) {
2725 		bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS | NVRCK);
2726 		EEP_WAIT();
2727 		bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
2728 		EEP_WAIT();
2729 		bit = bus_space_read_1(iot, ioh, TUL_NVRAM) & NVRDI;
2730 		EEP_WAIT();
2731 		if (bit != 0)
2732 			break; /* write complete */
2733 	}
2734 
2735 	bus_space_write_1(iot, ioh, TUL_NVRAM, 0);
2736 }
2737 #endif
2738 
2739 /*
2740  * iha_se2_rd - read & return the 16 bit value at the specified
2741  *		offset in the Serial E2PROM
2742  *
2743  */
2744 static uint16_t
2745 iha_se2_rd(struct iha_softc *sc, int addr)
2746 {
2747 	bus_space_tag_t iot = sc->sc_iot;
2748 	bus_space_handle_t ioh = sc->sc_ioh;
2749 	int i, bit;
2750 	uint16_t readword;
2751 
2752 	/* Send 'READ' instruction == address | READ bit */
2753 	iha_se2_instr(sc, addr | READ);
2754 
2755 	readword = 0;
2756 	for (i = 16; i > 0; i--) {
2757 		bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS | NVRCK);
2758 		EEP_WAIT();
2759 		bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
2760 		EEP_WAIT();
2761 		/* sample data after the following edge of clock     */
2762 		bit = bus_space_read_1(iot, ioh, TUL_NVRAM) & NVRDI ? 1 : 0;
2763 		EEP_WAIT();
2764 
2765 		readword |= bit << (i - 1);
2766 	}
2767 
2768 	bus_space_write_1(iot, ioh, TUL_NVRAM, 0);
2769 
2770 	return (readword);
2771 }
2772 
2773 /*
2774  * iha_se2_rd_all - Read SCSI H/A config parameters from serial EEPROM
2775  */
2776 static int
2777 iha_se2_rd_all(struct iha_softc *sc, uint16_t *tbuf)
2778 {
2779 	struct iha_eeprom *eeprom = (struct iha_eeprom *)tbuf;
2780 	uint32_t chksum;
2781 	int i;
2782 
2783 	for (i = 0, chksum = 0; i < EEPROM_SIZE - 1; i++) {
2784 		*tbuf = iha_se2_rd(sc, i);
2785 		chksum += *tbuf++;
2786 	}
2787 	*tbuf = iha_se2_rd(sc, 31); /* read checksum from EEPROM */
2788 
2789 	chksum &= 0x0000ffff; /* lower 16 bits */
2790 
2791 	return (eeprom->signature == EEP_SIGNATURE) &&
2792 	    (eeprom->checksum == chksum);
2793 }
2794 
2795 /*
2796  * iha_se2_instr - write an octet to serial E2PROM one bit at a time
2797  */
2798 static void
2799 iha_se2_instr(struct iha_softc *sc, int instr)
2800 {
2801 	bus_space_tag_t iot = sc->sc_iot;
2802 	bus_space_handle_t ioh = sc->sc_ioh;
2803 	int b, i;
2804 
2805 	b = NVRCS | NVRDO; /* Write the start bit (== 1) */
2806 
2807 	bus_space_write_1(iot, ioh, TUL_NVRAM, b);
2808 	EEP_WAIT();
2809 	bus_space_write_1(iot, ioh, TUL_NVRAM, b | NVRCK);
2810 	EEP_WAIT();
2811 
2812 	for (i = 8; i > 0; i--) {
2813 		if (instr & (1 << (i - 1)))
2814 			b = NVRCS | NVRDO; /* Write a 1 bit */
2815 		else
2816 			b = NVRCS;	   /* Write a 0 bit */
2817 
2818 		bus_space_write_1(iot, ioh, TUL_NVRAM, b);
2819 		EEP_WAIT();
2820 		bus_space_write_1(iot, ioh, TUL_NVRAM, b | NVRCK);
2821 		EEP_WAIT();
2822 	}
2823 
2824 	bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
2825 }
2826