xref: /netbsd-src/sys/dev/ic/iha.c (revision 0dd5877adce57db949b16ae963e5a6831cccdfb6)
1 /*	$NetBSD: iha.c,v 1.15 2002/02/09 15:13:00 tsutsui Exp $ */
2 /*
3  * Initio INI-9xxxU/UW SCSI Device Driver
4  *
5  * Copyright (c) 2000 Ken Westerback
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR OR HIS RELATIVES BE LIABLE FOR ANY DIRECT,
21  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
22  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
23  * SERVICES; LOSS OF MIND, USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
25  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
26  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  *-------------------------------------------------------------------------
30  *
31  * Ported from i91u.c, provided by Initio Corporation, which credits:
32  *
33  * Device driver for the INI-9XXXU/UW or INIC-940/950 PCI SCSI Controller.
34  *
35  * FreeBSD
36  *
37  *  Written for 386bsd and FreeBSD by
38  *	Winston Hung		<winstonh@initio.com>
39  *
40  * Copyright (c) 1997-99 Initio Corp.  All rights reserved.
41  *
42  *-------------------------------------------------------------------------
43  */
44 
45 /*
46  * Ported to NetBSD by Izumi Tsutsui <tsutsui@ceres.dti.ne.jp> from OpenBSD:
47  * $OpenBSD: iha.c,v 1.3 2001/02/20 00:47:33 krw Exp $
48  */
49 
50 #include <sys/cdefs.h>
51 __KERNEL_RCSID(0, "$NetBSD: iha.c,v 1.15 2002/02/09 15:13:00 tsutsui Exp $");
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/buf.h>
57 #include <sys/device.h>
58 #include <sys/malloc.h>
59 
60 #include <uvm/uvm_extern.h>
61 
62 #include <machine/bus.h>
63 #include <machine/intr.h>
64 
65 #include <dev/scsipi/scsi_all.h>
66 #include <dev/scsipi/scsipi_all.h>
67 #include <dev/scsipi/scsiconf.h>
68 #include <dev/scsipi/scsi_message.h>
69 
70 #include <dev/ic/ihareg.h>
71 #include <dev/ic/ihavar.h>
72 
73 /*
74  * SCSI Rate Table, indexed by FLAG_SCSI_RATE field of
75  * tcs flags.
76  */
77 static const u_int8_t iha_rate_tbl[] = {
78 	/* fast 20		  */
79 	/* nanosecond divide by 4 */
80 	12,	/* 50ns,  20M	  */
81 	18,	/* 75ns,  13.3M	  */
82 	25,	/* 100ns, 10M	  */
83 	31,	/* 125ns, 8M	  */
84 	37,	/* 150ns, 6.6M	  */
85 	43,	/* 175ns, 5.7M	  */
86 	50,	/* 200ns, 5M	  */
87 	62	/* 250ns, 4M	  */
88 };
89 #define IHA_MAX_PERIOD	62
90 
91 #ifdef notused
92 static u_int16_t eeprom_default[EEPROM_SIZE] = {
93 	/* -- Header ------------------------------------ */
94 	/* signature */
95 	EEP_SIGNATURE,
96 	/* size, revision */
97 	EEP_WORD(EEPROM_SIZE * 2, 0x01),
98 	/* -- Host Adapter Structure -------------------- */
99 	/* model */
100 	0x0095,
101 	/* model info, number of channel */
102 	EEP_WORD(0x00, 1),
103 	/* BIOS config */
104 	EEP_BIOSCFG_DEFAULT,
105 	/* host adapter config */
106 	0,
107 
108 	/* -- eeprom_adapter[0] ------------------------------- */
109 	/* ID, adapter config 1 */
110 	EEP_WORD(7, CFG_DEFAULT),
111 	/* adapter config 2, number of targets */
112 	EEP_WORD(0x00, 8),
113 	/* target flags */
114 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
115 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
116 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
117 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
118 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
119 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
120 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
121 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
122 
123 	/* -- eeprom_adapter[1] ------------------------------- */
124 	/* ID, adapter config 1 */
125 	EEP_WORD(7, CFG_DEFAULT),
126 	/* adapter config 2, number of targets */
127 	EEP_WORD(0x00, 8),
128 	/* target flags */
129 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
130 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
131 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
132 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
133 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
134 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
135 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
136 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
137 	/* reserved[5] */
138 	0, 0, 0, 0, 0,
139 	/* checksum */
140 	0
141 };
142 #endif
143 
144 static void iha_append_free_scb(struct iha_softc *, struct iha_scb *);
145 static void iha_append_done_scb(struct iha_softc *, struct iha_scb *, u_int8_t);
146 static __inline struct iha_scb *iha_pop_done_scb(struct iha_softc *);
147 
148 static struct iha_scb *iha_find_pend_scb(struct iha_softc *);
149 static __inline void iha_append_pend_scb(struct iha_softc *, struct iha_scb *);
150 static __inline void iha_push_pend_scb(struct iha_softc *, struct iha_scb *);
151 static __inline void iha_del_pend_scb(struct iha_softc *, struct iha_scb *);
152 static __inline void iha_mark_busy_scb(struct iha_scb *);
153 
154 static __inline void iha_set_ssig(struct iha_softc *, u_int8_t, u_int8_t);
155 
156 static int iha_alloc_sglist(struct iha_softc *);
157 
158 static void iha_scsipi_request(struct scsipi_channel *, scsipi_adapter_req_t,
159     void *arg);
160 static void iha_update_xfer_mode(struct iha_softc *, int);
161 
162 static void iha_reset_scsi_bus(struct iha_softc *);
163 static void iha_reset_chip(struct iha_softc *);
164 static void iha_reset_dma(struct iha_softc *);
165 static void iha_reset_tcs(struct tcs *, u_int8_t);
166 
167 static void iha_main(struct iha_softc *);
168 static void iha_scsi(struct iha_softc *);
169 static void iha_select(struct iha_softc *, struct iha_scb *, u_int8_t);
170 static int iha_wait(struct iha_softc *, u_int8_t);
171 
172 static void iha_exec_scb(struct iha_softc *, struct iha_scb *);
173 static void iha_done_scb(struct iha_softc *, struct iha_scb *);
174 static int iha_push_sense_request(struct iha_softc *, struct iha_scb *);
175 
176 static void iha_timeout(void *);
177 static void iha_abort_xs(struct iha_softc *, struct scsipi_xfer *, u_int8_t);
178 static u_int8_t iha_data_over_run(struct iha_scb *);
179 
180 static int iha_next_state(struct iha_softc *);
181 static int iha_state_1(struct iha_softc *);
182 static int iha_state_2(struct iha_softc *);
183 static int iha_state_3(struct iha_softc *);
184 static int iha_state_4(struct iha_softc *);
185 static int iha_state_5(struct iha_softc *);
186 static int iha_state_6(struct iha_softc *);
187 static int iha_state_8(struct iha_softc *);
188 
189 static int iha_xfer_data(struct iha_softc *, struct iha_scb *, int);
190 static int iha_xpad_in(struct iha_softc *);
191 static int iha_xpad_out(struct iha_softc *);
192 
193 static int iha_status_msg(struct iha_softc *);
194 static void iha_busfree(struct iha_softc *);
195 static int iha_resel(struct iha_softc *);
196 
197 static int iha_msgin(struct iha_softc *);
198 static int iha_msgin_extended(struct iha_softc *);
199 static int iha_msgin_sdtr(struct iha_softc *);
200 static int iha_msgin_ignore_wid_resid(struct iha_softc *);
201 
202 static int  iha_msgout(struct iha_softc *, u_int8_t);
203 static void iha_msgout_abort(struct iha_softc *, u_int8_t);
204 static int  iha_msgout_reject(struct iha_softc *);
205 static int  iha_msgout_extended(struct iha_softc *);
206 static int  iha_msgout_wdtr(struct iha_softc *);
207 static int  iha_msgout_sdtr(struct iha_softc *);
208 
209 static void iha_wide_done(struct iha_softc *);
210 static void iha_sync_done(struct iha_softc *);
211 
212 static void iha_bad_seq(struct iha_softc *);
213 
214 static void iha_read_eeprom(struct iha_softc *, struct iha_eeprom *);
215 static int iha_se2_rd_all(struct iha_softc *, u_int16_t *);
216 static void iha_se2_instr(struct iha_softc *, int);
217 static u_int16_t iha_se2_rd(struct iha_softc *, int);
218 #ifdef notused
219 static void iha_se2_update_all(struct iha_softc *);
220 static void iha_se2_wr(struct iha_softc *, int, u_int16_t);
221 #endif
222 
223 /*
224  * iha_append_free_scb - append the supplied SCB to the tail of the
225  *			 sc_freescb queue after clearing and resetting
226  *			 everything possible.
227  */
228 static void
229 iha_append_free_scb(sc, scb)
230 	struct iha_softc *sc;
231 	struct iha_scb *scb;
232 {
233 	int s;
234 
235 	s = splbio();
236 
237 	if (scb == sc->sc_actscb)
238 		sc->sc_actscb = NULL;
239 
240 	scb->status = STATUS_QUEUED;
241 	scb->ha_stat = HOST_OK;
242 	scb->ta_stat = SCSI_OK;
243 
244 	scb->nextstat = 0;
245 	scb->scb_tagmsg = 0;
246 
247 	scb->xs = NULL;
248 	scb->tcs = NULL;
249 
250 	/*
251 	 * scb_tagid, sg_addr, sglist
252 	 * SCB_SensePtr are set at initialization
253 	 * and never change
254 	 */
255 
256 	TAILQ_INSERT_TAIL(&sc->sc_freescb, scb, chain);
257 
258 	splx(s);
259 }
260 
261 static void
262 iha_append_done_scb(sc, scb, hastat)
263 	struct iha_softc *sc;
264 	struct iha_scb *scb;
265 	u_int8_t hastat;
266 {
267 	struct tcs *tcs;
268 	int s;
269 
270 	s = splbio();
271 
272 	if (scb->xs != NULL)
273 		callout_stop(&scb->xs->xs_callout);
274 
275 	if (scb == sc->sc_actscb)
276 		sc->sc_actscb = NULL;
277 
278 	tcs = scb->tcs;
279 
280 	if (scb->scb_tagmsg != 0) {
281 		if (tcs->tagcnt)
282 			tcs->tagcnt--;
283 	} else if (tcs->ntagscb == scb)
284 		tcs->ntagscb = NULL;
285 
286 	scb->status = STATUS_QUEUED;
287 	scb->ha_stat = hastat;
288 
289 	TAILQ_INSERT_TAIL(&sc->sc_donescb, scb, chain);
290 
291 	splx(s);
292 }
293 
294 static __inline struct iha_scb *
295 iha_pop_done_scb(sc)
296 	struct iha_softc *sc;
297 {
298 	struct iha_scb *scb;
299 	int s;
300 
301 	s = splbio();
302 
303 	scb = TAILQ_FIRST(&sc->sc_donescb);
304 
305 	if (scb != NULL) {
306 		scb->status = STATUS_RENT;
307 		TAILQ_REMOVE(&sc->sc_donescb, scb, chain);
308 	}
309 
310 	splx(s);
311 
312 	return (scb);
313 }
314 
315 /*
316  * iha_find_pend_scb - scan the pending queue for a SCB that can be
317  *		       processed immediately. Return NULL if none found
318  *		       and a pointer to the SCB if one is found. If there
319  *		       is an active SCB, return NULL!
320  */
321 static struct iha_scb *
322 iha_find_pend_scb(sc)
323 	struct iha_softc *sc;
324 {
325 	struct iha_scb *scb;
326 	struct tcs *tcs;
327 	int s;
328 
329 	s = splbio();
330 
331 	if (sc->sc_actscb != NULL)
332 		scb = NULL;
333 
334 	else
335 		TAILQ_FOREACH(scb, &sc->sc_pendscb, chain) {
336 			if ((scb->xs->xs_control & XS_CTL_RESET) != 0)
337 				/* ALWAYS willing to reset a device */
338 				break;
339 
340 			tcs = scb->tcs;
341 
342 			if ((scb->scb_tagmsg) != 0) {
343 				/*
344 				 * A Tagged I/O. OK to start If no
345 				 * non-tagged I/O is active on the same
346 				 * target
347 				 */
348 				if (tcs->ntagscb == NULL)
349 					break;
350 
351 			} else	if (scb->cmd[0] == REQUEST_SENSE) {
352 				/*
353 				 * OK to do a non-tagged request sense
354 				 * even if a non-tagged I/O has been
355 				 * started, 'cuz we don't allow any
356 				 * disconnect during a request sense op
357 				 */
358 				break;
359 
360 			} else	if (tcs->tagcnt == 0) {
361 				/*
362 				 * No tagged I/O active on this target,
363 				 * ok to start a non-tagged one if one
364 				 * is not already active
365 				 */
366 				if (tcs->ntagscb == NULL)
367 					break;
368 			}
369 		}
370 
371 	splx(s);
372 
373 	return (scb);
374 }
375 
376 static __inline void
377 iha_append_pend_scb(sc, scb)
378 	struct iha_softc *sc;
379 	struct iha_scb *scb;
380 {
381 	/* ASSUMPTION: only called within a splbio()/splx() pair */
382 
383 	if (scb == sc->sc_actscb)
384 		sc->sc_actscb = NULL;
385 
386 	scb->status = STATUS_QUEUED;
387 
388 	TAILQ_INSERT_TAIL(&sc->sc_pendscb, scb, chain);
389 }
390 
391 static __inline void
392 iha_push_pend_scb(sc, scb)
393 	struct iha_softc *sc;
394 	struct iha_scb *scb;
395 {
396 	int s;
397 
398 	s = splbio();
399 
400 	if (scb == sc->sc_actscb)
401 		sc->sc_actscb = NULL;
402 
403 	scb->status = STATUS_QUEUED;
404 
405 	TAILQ_INSERT_HEAD(&sc->sc_pendscb, scb, chain);
406 
407 	splx(s);
408 }
409 
410 /*
411  * iha_del_pend_scb - remove scb from sc_pendscb
412  */
413 static __inline void
414 iha_del_pend_scb(sc, scb)
415 	struct iha_softc *sc;
416 	struct iha_scb *scb;
417 {
418 	int s;
419 
420 	s = splbio();
421 
422 	TAILQ_REMOVE(&sc->sc_pendscb, scb, chain);
423 
424 	splx(s);
425 }
426 
427 static __inline void
428 iha_mark_busy_scb(scb)
429 	struct iha_scb *scb;
430 {
431 	int  s;
432 
433 	s = splbio();
434 
435 	scb->status = STATUS_BUSY;
436 
437 	if (scb->scb_tagmsg == 0)
438 		scb->tcs->ntagscb = scb;
439 	else
440 		scb->tcs->tagcnt++;
441 
442 	splx(s);
443 }
444 
445 /*
446  * iha_set_ssig - read the current scsi signal mask, then write a new
447  *		  one which turns off/on the specified signals.
448  */
449 static __inline void
450 iha_set_ssig(sc, offsigs, onsigs)
451 	struct iha_softc *sc;
452 	u_int8_t offsigs, onsigs;
453 {
454 	bus_space_tag_t iot = sc->sc_iot;
455 	bus_space_handle_t ioh = sc->sc_ioh;
456 	u_int8_t currsigs;
457 
458 	currsigs = bus_space_read_1(iot, ioh, TUL_SSIGI);
459 	bus_space_write_1(iot, ioh, TUL_SSIGO, (currsigs & ~offsigs) | onsigs);
460 }
461 
462 /*
463  * iha_intr - the interrupt service routine for the iha driver
464  */
465 int
466 iha_intr(arg)
467 	void *arg;
468 {
469 	bus_space_tag_t iot;
470 	bus_space_handle_t ioh;
471 	struct iha_softc *sc;
472 	int s;
473 
474 	sc  = (struct iha_softc *)arg;
475 	iot = sc->sc_iot;
476 	ioh = sc->sc_ioh;
477 
478 	if ((bus_space_read_1(iot, ioh, TUL_STAT0) & INTPD) == 0)
479 		return (0);
480 
481 	s = splbio(); /* XXX - Or are interrupts off when ISR's are called? */
482 
483 	if (sc->sc_semaph != SEMAPH_IN_MAIN) {
484 		/* XXX - need these inside a splbio()/splx()? */
485 		bus_space_write_1(iot, ioh, TUL_IMSK, MASK_ALL);
486 		sc->sc_semaph = SEMAPH_IN_MAIN;
487 
488 		iha_main(sc);
489 
490 		sc->sc_semaph = ~SEMAPH_IN_MAIN;
491 		bus_space_write_1(iot, ioh, TUL_IMSK, (MASK_ALL & ~MSCMP));
492 	}
493 
494 	splx(s);
495 
496 	return (1);
497 }
498 
499 void
500 iha_attach(sc)
501 	struct iha_softc *sc;
502 {
503 	bus_space_tag_t iot = sc->sc_iot;
504 	bus_space_handle_t ioh = sc->sc_ioh;
505 	struct iha_scb *scb;
506 	struct iha_eeprom eeprom;
507 	struct eeprom_adapter *conf;
508 	int i, error, reg;
509 
510 	iha_read_eeprom(sc, &eeprom);
511 
512 	conf = &eeprom.adapter[0];
513 
514 	/*
515 	 * fill in the rest of the iha_softc fields
516 	 */
517 	sc->sc_id = CFG_ID(conf->config1);
518 	sc->sc_semaph = ~SEMAPH_IN_MAIN;
519 	sc->sc_status0 = 0;
520 	sc->sc_actscb = NULL;
521 
522 	TAILQ_INIT(&sc->sc_freescb);
523 	TAILQ_INIT(&sc->sc_pendscb);
524 	TAILQ_INIT(&sc->sc_donescb);
525 	error = iha_alloc_sglist(sc);
526 	if (error != 0) {
527 		printf(": cannot allocate sglist\n");
528 		return;
529 	}
530 
531 	sc->sc_scb = malloc(sizeof(struct iha_scb) * IHA_MAX_SCB,
532 	    M_DEVBUF, M_NOWAIT|M_ZERO);
533 	if (sc->sc_scb == NULL) {
534 		printf(": cannot allocate SCB\n");
535 		return;
536 	}
537 
538 	for (i = 0, scb = sc->sc_scb; i < IHA_MAX_SCB; i++, scb++) {
539 		scb->scb_tagid = i;
540 		scb->sgoffset = IHA_SG_SIZE * i;
541 		scb->sglist = sc->sc_sglist + IHA_MAX_SG_ENTRIES * i;
542 		scb->sg_addr =
543 		    sc->sc_dmamap->dm_segs[0].ds_addr + scb->sgoffset;
544 
545 		error = bus_dmamap_create(sc->sc_dmat,
546 		    MAXPHYS, IHA_MAX_SG_ENTRIES, MAXPHYS, 0,
547 		    BUS_DMA_NOWAIT, &scb->dmap);
548 
549 		if (error != 0) {
550 			printf(": couldn't create SCB DMA map, error = %d\n",
551 			    error);
552 			return;
553 		}
554 		TAILQ_INSERT_TAIL(&sc->sc_freescb, scb, chain);
555 	}
556 
557 	/* Mask all the interrupts */
558 	bus_space_write_1(iot, ioh, TUL_IMSK, MASK_ALL);
559 
560 	/* Stop any I/O and reset the scsi module */
561 	iha_reset_dma(sc);
562 	bus_space_write_1(iot, ioh, TUL_SCTRL0, RSMOD);
563 
564 	/* Program HBA's SCSI ID */
565 	bus_space_write_1(iot, ioh, TUL_SID, sc->sc_id << 4);
566 
567 	/*
568 	 * Configure the channel as requested by the NVRAM settings read
569 	 * by iha_read_eeprom() above.
570 	 */
571 
572 	sc->sc_sconf1 = SCONFIG0DEFAULT;
573 	if ((conf->config1 & CFG_EN_PAR) != 0)
574 		sc->sc_sconf1 |= SPCHK;
575 	bus_space_write_1(iot, ioh, TUL_SCONFIG0, sc->sc_sconf1);
576 
577 	/* set selection time out 250 ms */
578 	bus_space_write_1(iot, ioh, TUL_STIMO, STIMO_250MS);
579 
580 	/* Enable desired SCSI termination configuration read from eeprom */
581 	reg = 0;
582 	if (conf->config1 & CFG_ACT_TERM1)
583 		reg |= ENTMW;
584 	if (conf->config1 & CFG_ACT_TERM2)
585 		reg |= ENTM;
586 	bus_space_write_1(iot, ioh, TUL_DCTRL0, reg);
587 
588 	reg = bus_space_read_1(iot, ioh, TUL_GCTRL1) & ~ATDEN;
589 	if (conf->config1 & CFG_AUTO_TERM)
590 		reg |= ATDEN;
591 	bus_space_write_1(iot, ioh, TUL_GCTRL1, reg);
592 
593 	for (i = 0; i < IHA_MAX_TARGETS / 2; i++) {
594 		sc->sc_tcs[i * 2    ].flags = EEP_LBYTE(conf->tflags[i]);
595 		sc->sc_tcs[i * 2 + 1].flags = EEP_HBYTE(conf->tflags[i]);
596 		iha_reset_tcs(&sc->sc_tcs[i * 2    ], sc->sc_sconf1);
597 		iha_reset_tcs(&sc->sc_tcs[i * 2 + 1], sc->sc_sconf1);
598 	}
599 
600 	iha_reset_chip(sc);
601 	bus_space_write_1(iot, ioh, TUL_SIEN, ALL_INTERRUPTS);
602 
603 	/*
604 	 * fill in the adapter.
605 	 */
606 	sc->sc_adapter.adapt_dev = &sc->sc_dev;
607 	sc->sc_adapter.adapt_nchannels = 1;
608 	sc->sc_adapter.adapt_openings = IHA_MAX_SCB;
609 	sc->sc_adapter.adapt_max_periph = IHA_MAX_SCB;
610 	sc->sc_adapter.adapt_ioctl = NULL;
611 	sc->sc_adapter.adapt_minphys = minphys;
612 	sc->sc_adapter.adapt_request = iha_scsipi_request;
613 
614 	/*
615 	 * fill in the channel.
616 	 */
617 	sc->sc_channel.chan_adapter = &sc->sc_adapter;
618 	sc->sc_channel.chan_bustype = &scsi_bustype;
619 	sc->sc_channel.chan_channel = 0;
620 	sc->sc_channel.chan_ntargets = CFG_TARGET(conf->config2);
621 	sc->sc_channel.chan_nluns = 8;
622 	sc->sc_channel.chan_id = sc->sc_id;
623 
624 	/*
625 	 * Now try to attach all the sub devices.
626 	 */
627 	config_found(&sc->sc_dev, &sc->sc_channel, scsiprint);
628 }
629 
630 /*
631  * iha_alloc_sglist - allocate and map sglist for SCB's
632  */
633 static int
634 iha_alloc_sglist(sc)
635 	struct iha_softc *sc;
636 {
637 	bus_dma_segment_t seg;
638 	int error, rseg;
639 
640 	/*
641 	 * Allocate dma-safe memory for the SCB's sglist
642 	 */
643 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
644 	    IHA_SG_SIZE * IHA_MAX_SCB,
645 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
646 		printf(": unable to allocate sglist, error = %d\n", error);
647 		return (error);
648 	}
649 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
650 	    IHA_SG_SIZE * IHA_MAX_SCB, (caddr_t *)&sc->sc_sglist,
651 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
652 		printf(": unable to map sglist, error = %d\n", error);
653 		return (error);
654 	}
655 
656 	/*
657 	 * Create and load the DMA map used for the SCBs
658 	 */
659 	if ((error = bus_dmamap_create(sc->sc_dmat,
660 	    IHA_SG_SIZE * IHA_MAX_SCB, 1, IHA_SG_SIZE * IHA_MAX_SCB,
661 	    0, BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
662 		printf(": unable to create control DMA map, error = %d\n",
663 		    error);
664 		return (error);
665 	}
666 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
667 	    sc->sc_sglist, IHA_SG_SIZE * IHA_MAX_SCB,
668 	    NULL, BUS_DMA_NOWAIT)) != 0) {
669 		printf(": unable to load control DMA map, error = %d\n", error);
670 		return (error);
671 	}
672 
673 	memset(sc->sc_sglist, 0, IHA_SG_SIZE * IHA_MAX_SCB);
674 
675 	return (0);
676 }
677 
678 void
679 iha_scsipi_request(chan, req, arg)
680 	struct scsipi_channel *chan;
681 	scsipi_adapter_req_t req;
682 	void *arg;
683 {
684 	struct scsipi_xfer *xs;
685 	struct scsipi_periph *periph;
686 	struct iha_scb *scb;
687 	struct iha_softc *sc;
688 	int error, s;
689 
690 	sc = (struct iha_softc *)chan->chan_adapter->adapt_dev;
691 
692 	switch (req) {
693 	case ADAPTER_REQ_RUN_XFER:
694 		xs = arg;
695 		periph = xs->xs_periph;
696 
697 		if (xs->cmdlen > sizeof(struct scsi_generic) ||
698 		    periph->periph_target >= IHA_MAX_TARGETS) {
699 			xs->error = XS_DRIVER_STUFFUP;
700 			return;
701 		}
702 
703 		s = splbio();
704 		scb = TAILQ_FIRST(&sc->sc_freescb);
705 		if (scb != NULL) {
706 			scb->status = STATUS_RENT;
707 			TAILQ_REMOVE(&sc->sc_freescb, scb, chain);
708 		}
709 #ifdef DIAGNOSTIC
710 		else {
711 			scsipi_printaddr(periph);
712 			printf("unable to allocate scb\n");
713 			panic("iha_scsipi_request");
714 		}
715 #endif
716 		splx(s);
717 
718 		scb->target = periph->periph_target;
719 		scb->lun = periph->periph_lun;
720 		scb->tcs = &sc->sc_tcs[scb->target];
721 		scb->scb_id = MSG_IDENTIFY(periph->periph_lun,
722 		    (xs->xs_control & XS_CTL_REQSENSE) == 0);
723 
724 		scb->xs = xs;
725 		scb->cmdlen = xs->cmdlen;
726 		memcpy(&scb->cmd, xs->cmd, xs->cmdlen);
727 		scb->buflen = xs->datalen;
728 		scb->flags = 0;
729 		if (xs->xs_control & XS_CTL_DATA_OUT)
730 			scb->flags |= FLAG_DATAOUT;
731 		if (xs->xs_control & XS_CTL_DATA_IN)
732 			scb->flags |= FLAG_DATAIN;
733 
734 		if (scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) {
735 			error = bus_dmamap_load(sc->sc_dmat, scb->dmap,
736 			    xs->data, scb->buflen, NULL,
737 			    ((xs->xs_control & XS_CTL_NOSLEEP) ?
738 			     BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
739 			    BUS_DMA_STREAMING |
740 			    ((scb->flags & FLAG_DATAIN) ?
741 			     BUS_DMA_READ : BUS_DMA_WRITE));
742 
743 			if (error) {
744 				printf("%s: error %d loading dma map\n",
745 				    sc->sc_dev.dv_xname, error);
746 				iha_append_free_scb(sc, scb);
747 				xs->error = XS_DRIVER_STUFFUP;
748 				scsipi_done(xs);
749 				return;
750 			}
751 			bus_dmamap_sync(sc->sc_dmat, scb->dmap,
752 			    0, scb->dmap->dm_mapsize,
753 			    (scb->flags & FLAG_DATAIN) ?
754 			    BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
755 		}
756 
757 		iha_exec_scb(sc, scb);
758 		return;
759 
760 	case ADAPTER_REQ_GROW_RESOURCES:
761 		return; /* XXX */
762 
763 	case ADAPTER_REQ_SET_XFER_MODE:
764 		{
765 			struct tcs *tcs;
766 			struct scsipi_xfer_mode *xm = arg;
767 
768 			tcs = &sc->sc_tcs[xm->xm_target];
769 
770 			if ((xm->xm_mode & PERIPH_CAP_WIDE16) != 0 &&
771 			    (tcs->flags & FLAG_NO_WIDE) == 0)
772 				tcs->flags &= ~(FLAG_WIDE_DONE|FLAG_SYNC_DONE);
773 
774 			if ((xm->xm_mode & PERIPH_CAP_SYNC) != 0 &&
775 			    (tcs->flags & FLAG_NO_SYNC) == 0)
776 				tcs->flags &= ~FLAG_SYNC_DONE;
777 
778 			/*
779 			 * If we're not going to negotiate, send the
780 			 * notification now, since it won't happen later.
781 			 */
782 			if ((tcs->flags & (FLAG_WIDE_DONE|FLAG_SYNC_DONE)) ==
783 			    (FLAG_WIDE_DONE|FLAG_SYNC_DONE))
784 				iha_update_xfer_mode(sc, xm->xm_target);
785 
786 			return;
787 		}
788 	}
789 }
790 
791 void
792 iha_update_xfer_mode(sc, target)
793 	struct iha_softc *sc;
794 	int target;
795 {
796 	struct tcs *tcs = &sc->sc_tcs[target];
797 	struct scsipi_xfer_mode xm;
798 
799 	xm.xm_target = target;
800 	xm.xm_mode = 0;
801 	xm.xm_period = 0;
802 	xm.xm_offset = 0;
803 
804 	if (tcs->syncm & PERIOD_WIDE_SCSI)
805 		xm.xm_mode |= PERIPH_CAP_WIDE16;
806 
807 	if (tcs->period) {
808 		xm.xm_mode |= PERIPH_CAP_SYNC;
809 		xm.xm_period = tcs->period;
810 		xm.xm_offset = tcs->offset;
811 	}
812 
813 	scsipi_async_event(&sc->sc_channel, ASYNC_EVENT_XFER_MODE, &xm);
814 }
815 
816 static void
817 iha_reset_scsi_bus(sc)
818 	struct iha_softc *sc;
819 {
820 	struct iha_scb *scb;
821 	struct tcs *tcs;
822 	int i, s;
823 
824 	s = splbio();
825 
826 	iha_reset_dma(sc);
827 
828 	for (i = 0, scb = sc->sc_scb; i < IHA_MAX_SCB; i++, scb++)
829 		switch (scb->status) {
830 		case STATUS_BUSY:
831 			iha_append_done_scb(sc, scb, HOST_SCSI_RST);
832 			break;
833 
834 		case STATUS_SELECT:
835 			iha_push_pend_scb(sc, scb);
836 			break;
837 
838 		default:
839 			break;
840 		}
841 
842 	for (i = 0, tcs = sc->sc_tcs; i < IHA_MAX_TARGETS; i++, tcs++)
843 		iha_reset_tcs(tcs, sc->sc_sconf1);
844 
845 	splx(s);
846 }
847 
848 void
849 iha_reset_chip(sc)
850 	struct iha_softc *sc;
851 {
852 	bus_space_tag_t iot = sc->sc_iot;
853 	bus_space_handle_t ioh = sc->sc_ioh;
854 
855 	/* reset tulip chip */
856 
857 	bus_space_write_1(iot, ioh, TUL_SCTRL0, RSCSI);
858 
859 	do {
860 		sc->sc_sistat = bus_space_read_1(iot, ioh, TUL_SISTAT);
861 	} while ((sc->sc_sistat & SRSTD) == 0);
862 
863 	iha_set_ssig(sc, 0, 0);
864 
865 	bus_space_read_1(iot, ioh, TUL_SISTAT); /* Clear any active interrupt*/
866 }
867 
868 /*
869  * iha_reset_dma - abort any active DMA xfer, reset tulip FIFO.
870  */
871 static void
872 iha_reset_dma(sc)
873 	struct iha_softc *sc;
874 {
875 	bus_space_tag_t iot = sc->sc_iot;
876 	bus_space_handle_t ioh = sc->sc_ioh;
877 
878 	if ((bus_space_read_1(iot, ioh, TUL_ISTUS1) & XPEND) != 0) {
879 		/* if DMA xfer is pending, abort DMA xfer */
880 		bus_space_write_1(iot, ioh, TUL_DCMD, ABTXFR);
881 		/* wait Abort DMA xfer done */
882 		while ((bus_space_read_1(iot, ioh, TUL_ISTUS0) & DABT) == 0)
883 			;
884 	}
885 
886 	bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
887 }
888 
889 /*
890  * iha_reset_tcs - reset the target control structure pointed
891  *		   to by tcs to default values. tcs flags
892  *		   only has the negotiation done bits reset as
893  *		   the other bits are fixed at initialization.
894  */
895 static void
896 iha_reset_tcs(tcs, config0)
897 	struct tcs *tcs;
898 	u_int8_t config0;
899 {
900 
901 	tcs->flags &= ~(FLAG_SYNC_DONE | FLAG_WIDE_DONE);
902 	tcs->period = 0;
903 	tcs->offset = 0;
904 	tcs->tagcnt = 0;
905 	tcs->ntagscb  = NULL;
906 	tcs->syncm = 0;
907 	tcs->sconfig0 = config0;
908 }
909 
910 /*
911  * iha_main - process the active SCB, taking one off pending and making it
912  *	      active if necessary, and any done SCB's created as
913  *	      a result until there are no interrupts pending and no pending
914  *	      SCB's that can be started.
915  */
916 static void
917 iha_main(sc)
918 	struct iha_softc *sc;
919 {
920 	bus_space_tag_t iot = sc->sc_iot;
921 	bus_space_handle_t ioh =sc->sc_ioh;
922 	struct iha_scb *scb;
923 
924 	for (;;) {
925 		iha_scsi(sc);
926 
927 		while ((scb = iha_pop_done_scb(sc)) != NULL)
928 			iha_done_scb(sc, scb);
929 
930 		/*
931 		 * If there are no interrupts pending, or we can't start
932 		 * a pending sc, break out of the for(;;). Otherwise
933 		 * continue the good work with another call to
934 		 * iha_scsi().
935 		 */
936 		if (((bus_space_read_1(iot, ioh, TUL_STAT0) & INTPD) == 0)
937 		    && (iha_find_pend_scb(sc) == NULL))
938 			break;
939 	}
940 }
941 
942 /*
943  * iha_scsi - service any outstanding interrupts. If there are none, try to
944  *            start another SCB currently in the pending queue.
945  */
946 static void
947 iha_scsi(sc)
948 	struct iha_softc *sc;
949 {
950 	bus_space_tag_t iot = sc->sc_iot;
951 	bus_space_handle_t ioh = sc->sc_ioh;
952 	struct iha_scb *scb;
953 	struct tcs *tcs;
954 	u_int8_t stat;
955 
956 	/* service pending interrupts asap */
957 
958 	stat = bus_space_read_1(iot, ioh, TUL_STAT0);
959 	if ((stat & INTPD) != 0) {
960 		sc->sc_status0 = stat;
961 		sc->sc_status1 = bus_space_read_1(iot, ioh, TUL_STAT1);
962 		sc->sc_sistat = bus_space_read_1(iot, ioh, TUL_SISTAT);
963 
964 		sc->sc_phase = sc->sc_status0 & PH_MASK;
965 
966 		if ((sc->sc_sistat & SRSTD) != 0) {
967 			iha_reset_scsi_bus(sc);
968 			return;
969 		}
970 
971 		if ((sc->sc_sistat & RSELED) != 0) {
972 			iha_resel(sc);
973 			return;
974 		}
975 
976 		if ((sc->sc_sistat & (STIMEO | DISCD)) != 0) {
977 			iha_busfree(sc);
978 			return;
979 		}
980 
981 		if ((sc->sc_sistat & (SCMDN | SBSRV)) != 0) {
982 			iha_next_state(sc);
983 			return;
984 		}
985 
986 		if ((sc->sc_sistat & SELED) != 0)
987 			iha_set_ssig(sc, 0, 0);
988 	}
989 
990 	/*
991 	 * There were no interrupts pending which required action elsewhere, so
992 	 * see if it is possible to start the selection phase on a pending SCB
993 	 */
994 	if ((scb = iha_find_pend_scb(sc)) == NULL)
995 		return;
996 
997 	tcs = scb->tcs;
998 
999 	/* program HBA's SCSI ID & target SCSI ID */
1000 	bus_space_write_1(iot, ioh, TUL_SID, (sc->sc_id << 4) | scb->target);
1001 
1002 	if ((scb->xs->xs_control & XS_CTL_RESET) == 0) {
1003 		bus_space_write_1(iot, ioh, TUL_SYNCM, tcs->syncm);
1004 
1005 		if ((tcs->flags & FLAG_NO_NEG_SYNC) == 0 ||
1006 		    (tcs->flags & FLAG_NO_NEG_WIDE) == 0)
1007 			iha_select(sc, scb, SELATNSTOP);
1008 
1009 		else if (scb->scb_tagmsg != 0)
1010 			iha_select(sc, scb, SEL_ATN3);
1011 
1012 		else
1013 			iha_select(sc, scb, SEL_ATN);
1014 
1015 	} else {
1016 		iha_select(sc, scb, SELATNSTOP);
1017 		scb->nextstat = 8;
1018 	}
1019 
1020 	if ((scb->xs->xs_control & XS_CTL_POLL) != 0) {
1021 		int timeout;
1022 		for (timeout = scb->xs->timeout; timeout > 0; timeout--) {
1023 			if (iha_wait(sc, NO_OP) == -1)
1024 				break;
1025 			if (iha_next_state(sc) == -1)
1026 				break;
1027 			delay(1000); /* Only happens in boot, so it's ok */
1028 		}
1029 
1030 		/*
1031 		 * Since done queue processing not done until AFTER this
1032 		 * function returns, scb is on the done queue, not
1033 		 * the free queue at this point and still has valid data
1034 		 *
1035 		 * Conversely, xs->error has not been set yet
1036 		 */
1037 		if (timeout == 0)
1038 			iha_timeout(scb);
1039 	}
1040 }
1041 
1042 static void
1043 iha_select(sc, scb, select_type)
1044 	struct iha_softc *sc;
1045 	struct iha_scb *scb;
1046 	u_int8_t select_type;
1047 {
1048 	bus_space_tag_t iot = sc->sc_iot;
1049 	bus_space_handle_t ioh = sc->sc_ioh;
1050 
1051 	switch (select_type) {
1052 	case SEL_ATN:
1053 		bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_id);
1054 		bus_space_write_multi_1(iot, ioh, TUL_SFIFO,
1055 		    scb->cmd, scb->cmdlen);
1056 
1057 		scb->nextstat = 2;
1058 		break;
1059 
1060 	case SELATNSTOP:
1061 		scb->nextstat = 1;
1062 		break;
1063 
1064 	case SEL_ATN3:
1065 		bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_id);
1066 		bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_tagmsg);
1067 		bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_tagid);
1068 
1069 		bus_space_write_multi_1(iot, ioh, TUL_SFIFO, scb->cmd,
1070 		    scb->cmdlen);
1071 
1072 		scb->nextstat = 2;
1073 		break;
1074 
1075 	default:
1076 		printf("[debug] iha_select() - unknown select type = 0x%02x\n",
1077 		    select_type);
1078 		return;
1079 	}
1080 
1081 	iha_del_pend_scb(sc, scb);
1082 	scb->status = STATUS_SELECT;
1083 
1084 	sc->sc_actscb = scb;
1085 
1086 	bus_space_write_1(iot, ioh, TUL_SCMD, select_type);
1087 }
1088 
1089 /*
1090  * iha_wait - wait for an interrupt to service or a SCSI bus phase change
1091  *            after writing the supplied command to the tulip chip. If
1092  *            the command is NO_OP, skip the command writing.
1093  */
1094 static int
1095 iha_wait(sc, cmd)
1096 	struct iha_softc *sc;
1097 	u_int8_t cmd;
1098 {
1099 	bus_space_tag_t iot = sc->sc_iot;
1100 	bus_space_handle_t ioh = sc->sc_ioh;
1101 
1102 	if (cmd != NO_OP)
1103 		bus_space_write_1(iot, ioh, TUL_SCMD, cmd);
1104 
1105 	/*
1106 	 * Have to do this here, in addition to in iha_isr, because
1107 	 * interrupts might be turned off when we get here.
1108 	 */
1109 	do {
1110 		sc->sc_status0 = bus_space_read_1(iot, ioh, TUL_STAT0);
1111 	} while ((sc->sc_status0 & INTPD) == 0);
1112 
1113 	sc->sc_status1 = bus_space_read_1(iot, ioh, TUL_STAT1);
1114 	sc->sc_sistat = bus_space_read_1(iot, ioh, TUL_SISTAT);
1115 
1116 	sc->sc_phase = sc->sc_status0 & PH_MASK;
1117 
1118 	if ((sc->sc_sistat & SRSTD) != 0) {
1119 		/* SCSI bus reset interrupt */
1120 		iha_reset_scsi_bus(sc);
1121 		return (-1);
1122 	}
1123 
1124 	if ((sc->sc_sistat & RSELED) != 0)
1125 		/* Reselection interrupt */
1126 		return (iha_resel(sc));
1127 
1128 	if ((sc->sc_sistat & STIMEO) != 0) {
1129 		/* selected/reselected timeout interrupt */
1130 		iha_busfree(sc);
1131 		return (-1);
1132 	}
1133 
1134 	if ((sc->sc_sistat & DISCD) != 0) {
1135 		/* BUS disconnection interrupt */
1136 		if ((sc->sc_flags & FLAG_EXPECT_DONE_DISC) != 0) {
1137 			bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
1138 			bus_space_write_1(iot, ioh, TUL_SCONFIG0,
1139 			    SCONFIG0DEFAULT);
1140 			bus_space_write_1(iot, ioh, TUL_SCTRL1, EHRSL);
1141 			iha_append_done_scb(sc, sc->sc_actscb, HOST_OK);
1142 			sc->sc_flags &= ~FLAG_EXPECT_DONE_DISC;
1143 
1144 		} else if ((sc->sc_flags & FLAG_EXPECT_DISC) != 0) {
1145 			bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
1146 			bus_space_write_1(iot, ioh, TUL_SCONFIG0,
1147 			    SCONFIG0DEFAULT);
1148 			bus_space_write_1(iot, ioh, TUL_SCTRL1, EHRSL);
1149 			sc->sc_actscb = NULL;
1150 			sc->sc_flags &= ~FLAG_EXPECT_DISC;
1151 
1152 		} else
1153 			iha_busfree(sc);
1154 
1155 		return (-1);
1156 	}
1157 
1158 	return (sc->sc_phase);
1159 }
1160 
1161 static void
1162 iha_exec_scb(sc, scb)
1163 	struct iha_softc *sc;
1164 	struct iha_scb *scb;
1165 {
1166 	bus_space_tag_t iot;
1167 	bus_space_handle_t ioh;
1168 	bus_dmamap_t dm;
1169 	struct scsipi_xfer *xs = scb->xs;
1170 	int nseg, s;
1171 
1172 	dm = scb->dmap;
1173 	nseg = dm->dm_nsegs;
1174 
1175 	if (nseg > 1) {
1176 		struct iha_sg_element *sg = scb->sglist;
1177 		int i;
1178 
1179 		for (i = 0; i < nseg; i++) {
1180 			sg[i].sg_len = htole32(dm->dm_segs[i].ds_len);
1181 			sg[i].sg_addr = htole32(dm->dm_segs[i].ds_addr);
1182 		}
1183 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1184 		    scb->sgoffset, IHA_SG_SIZE,
1185 		    BUS_DMASYNC_PREWRITE);
1186 
1187 		scb->flags |= FLAG_SG;
1188 		scb->sg_size = scb->sg_max = nseg;
1189 		scb->sg_index = 0;
1190 
1191 		scb->bufaddr = scb->sg_addr;
1192 	} else
1193 		scb->bufaddr = dm->dm_segs[0].ds_addr;
1194 
1195 	if ((xs->xs_control & XS_CTL_POLL) == 0) {
1196 		int timeout = xs->timeout;
1197 		timeout = (timeout > 100000) ?
1198 		    timeout / 1000 * hz : timeout * hz / 1000;
1199 		if (timeout == 0)
1200 			timeout = 1;
1201 		callout_reset(&xs->xs_callout, timeout, iha_timeout, scb);
1202 	}
1203 
1204 	s = splbio();
1205 
1206 	if (((scb->xs->xs_control & XS_RESET) != 0) ||
1207 	    (scb->cmd[0] == REQUEST_SENSE))
1208 		iha_push_pend_scb(sc, scb);   /* Insert SCB at head of Pend */
1209 	else
1210 		iha_append_pend_scb(sc, scb); /* Append SCB to tail of Pend */
1211 
1212 	/*
1213 	 * Run through iha_main() to ensure something is active, if
1214 	 * only this new SCB.
1215 	 */
1216 	if (sc->sc_semaph != SEMAPH_IN_MAIN) {
1217 		iot = sc->sc_iot;
1218 		ioh = sc->sc_ioh;
1219 
1220 		bus_space_write_1(iot, ioh, TUL_IMSK, MASK_ALL);
1221 		sc->sc_semaph = SEMAPH_IN_MAIN;;
1222 
1223 		splx(s);
1224 		iha_main(sc);
1225 		s = splbio();
1226 
1227 		sc->sc_semaph = ~SEMAPH_IN_MAIN;;
1228 		bus_space_write_1(iot, ioh, TUL_IMSK, (MASK_ALL & ~MSCMP));
1229 	}
1230 
1231 	splx(s);
1232 }
1233 
1234 /*
1235  * iha_done_scb - We have a scb which has been processed by the
1236  *                adaptor, now we look to see how the operation went.
1237  */
1238 static void
1239 iha_done_scb(sc, scb)
1240 	struct iha_softc *sc;
1241 	struct iha_scb *scb;
1242 {
1243 	struct scsipi_xfer *xs = scb->xs;
1244 
1245 	if (xs != NULL) {
1246 		/* Cancel the timeout. */
1247 		callout_stop(&xs->xs_callout);
1248 
1249 		if (scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) {
1250 			bus_dmamap_sync(sc->sc_dmat, scb->dmap,
1251 			    0, scb->dmap->dm_mapsize,
1252 			    (scb->flags & FLAG_DATAIN) ?
1253 			    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1254 			bus_dmamap_unload(sc->sc_dmat, scb->dmap);
1255 		}
1256 
1257 		xs->status = scb->ta_stat;
1258 
1259 		switch (scb->ha_stat) {
1260 		case HOST_OK:
1261 			switch (scb->ta_stat) {
1262 			case SCSI_OK:
1263 			case SCSI_CONDITION_MET:
1264 			case SCSI_INTERM:
1265 			case SCSI_INTERM_COND_MET:
1266 				xs->resid = scb->buflen;
1267 				xs->error = XS_NOERROR;
1268 				if ((scb->flags & FLAG_RSENS) != 0)
1269 					xs->error = XS_SENSE;
1270 				break;
1271 
1272 			case SCSI_RESV_CONFLICT:
1273 			case SCSI_BUSY:
1274 			case SCSI_QUEUE_FULL:
1275 				xs->error = XS_BUSY;
1276 				break;
1277 
1278 			case SCSI_TERMINATED:
1279 			case SCSI_ACA_ACTIVE:
1280 			case SCSI_CHECK:
1281 				scb->tcs->flags &=
1282 				    ~(FLAG_SYNC_DONE | FLAG_WIDE_DONE);
1283 
1284 				if ((scb->flags & FLAG_RSENS) != 0 ||
1285 				    iha_push_sense_request(sc, scb) != 0) {
1286 					scb->flags &= ~FLAG_RSENS;
1287 					printf("%s: request sense failed\n",
1288 					    sc->sc_dev.dv_xname);
1289 					xs->error = XS_DRIVER_STUFFUP;
1290 					break;
1291 				}
1292 
1293 				xs->error = XS_SENSE;
1294 				return;
1295 
1296 			default:
1297 				xs->error = XS_DRIVER_STUFFUP;
1298 				break;
1299 			}
1300 			break;
1301 
1302 		case HOST_SEL_TOUT:
1303 			xs->error = XS_SELTIMEOUT;
1304 			break;
1305 
1306 		case HOST_SCSI_RST:
1307 		case HOST_DEV_RST:
1308 			xs->error = XS_RESET;
1309 			break;
1310 
1311 		case HOST_SPERR:
1312 			printf("%s: SCSI Parity error detected\n",
1313 			    sc->sc_dev.dv_xname);
1314 			xs->error = XS_DRIVER_STUFFUP;
1315 			break;
1316 
1317 		case HOST_TIMED_OUT:
1318 			xs->error = XS_TIMEOUT;
1319 			break;
1320 
1321 		case HOST_DO_DU:
1322 		case HOST_BAD_PHAS:
1323 		default:
1324 			xs->error = XS_DRIVER_STUFFUP;
1325 			break;
1326 		}
1327 
1328 		scsipi_done(xs);
1329 	}
1330 
1331 	iha_append_free_scb(sc, scb);
1332 }
1333 
1334 /*
1335  * iha_push_sense_request - obtain auto sense data by pushing the
1336  *			    SCB needing it back onto the pending
1337  *			    queue with a REQUEST_SENSE CDB.
1338  */
1339 static int
1340 iha_push_sense_request(sc, scb)
1341 	struct iha_softc *sc;
1342 	struct iha_scb *scb;
1343 {
1344 	struct scsipi_xfer *xs = scb->xs;
1345 	struct scsipi_periph *periph = xs->xs_periph;
1346 	struct scsipi_sense *ss = (struct scsipi_sense *)scb->cmd;
1347 	int lun = periph->periph_lun;
1348 	int err;
1349 
1350 	ss->opcode = REQUEST_SENSE;
1351 	ss->byte2 = lun << SCSI_CMD_LUN_SHIFT;
1352 	ss->unused[0] = ss->unused[1] = 0;
1353 	ss->length = sizeof(struct scsipi_sense_data);
1354 	ss->control = 0;
1355 
1356 	scb->flags = FLAG_RSENS | FLAG_DATAIN;
1357 
1358 	scb->scb_id &= ~MSG_IDENTIFY_DISCFLAG;
1359 
1360 	scb->scb_tagmsg = 0;
1361 	scb->ta_stat = SCSI_OK;
1362 
1363 	scb->cmdlen = sizeof(struct scsipi_sense);
1364 	scb->buflen = ss->length;
1365 
1366 	err = bus_dmamap_load(sc->sc_dmat, scb->dmap,
1367 	    &xs->sense.scsi_sense, scb->buflen, NULL,
1368 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1369 	if (err != 0) {
1370 		printf("iha_push_sense_request: cannot bus_dmamap_load()\n");
1371 		xs->error = XS_DRIVER_STUFFUP;
1372 		return 1;
1373 	}
1374 	bus_dmamap_sync(sc->sc_dmat, scb->dmap,
1375 	    0, scb->buflen, BUS_DMASYNC_PREREAD);
1376 
1377 	/* XXX What about queued command? */
1378 	iha_exec_scb(sc, scb);
1379 
1380 	return 0;
1381 }
1382 
1383 static void
1384 iha_timeout(arg)
1385 	void *arg;
1386 {
1387 	struct iha_scb *scb = (struct iha_scb *)arg;
1388 	struct scsipi_xfer *xs = scb->xs;
1389 	struct scsipi_periph *periph = xs->xs_periph;
1390 	struct iha_softc *sc;
1391 
1392 	sc = (void *)periph->periph_channel->chan_adapter->adapt_dev;
1393 
1394 	if (xs == NULL)
1395 		printf("[debug] iha_timeout called with xs == NULL\n");
1396 
1397 	else {
1398 		scsipi_printaddr(periph);
1399 		printf("SCSI OpCode 0x%02x timed out\n", xs->cmd->opcode);
1400 
1401 		iha_abort_xs(sc, xs, HOST_TIMED_OUT);
1402 	}
1403 }
1404 
1405 /*
1406  * iha_abort_xs - find the SCB associated with the supplied xs and
1407  *                stop all processing on it, moving it to the done
1408  *                queue with the supplied host status value.
1409  */
1410 static void
1411 iha_abort_xs(sc, xs, hastat)
1412 	struct iha_softc *sc;
1413 	struct scsipi_xfer *xs;
1414 	u_int8_t hastat;
1415 {
1416 	struct iha_scb *scb;
1417 	int i, s;
1418 
1419 	s = splbio();
1420 
1421 	/* Check the pending queue for the SCB pointing to xs */
1422 
1423 	TAILQ_FOREACH(scb, &sc->sc_pendscb, chain)
1424 		if (scb->xs == xs) {
1425 			iha_del_pend_scb(sc, scb);
1426 			iha_append_done_scb(sc, scb, hastat);
1427 			splx(s);
1428 			return;
1429 		}
1430 
1431 	/*
1432 	 * If that didn't work, check all BUSY/SELECTING SCB's for one
1433 	 * pointing to xs
1434 	 */
1435 
1436 	for (i = 0, scb = sc->sc_scb; i < IHA_MAX_SCB; i++, scb++)
1437 		switch (scb->status) {
1438 		case STATUS_BUSY:
1439 		case STATUS_SELECT:
1440 			if (scb->xs == xs) {
1441 				iha_append_done_scb(sc, scb, hastat);
1442 				splx(s);
1443 				return;
1444 			}
1445 			break;
1446 		default:
1447 			break;
1448 		}
1449 
1450 	splx(s);
1451 }
1452 
1453 /*
1454  * iha_data_over_run - return HOST_OK for all SCSI opcodes where BufLen
1455  *		       is an 'Allocation Length'. All other SCSI opcodes
1456  *		       get HOST_DO_DU as they SHOULD have xferred all the
1457  *		       data requested.
1458  *
1459  *		       The list of opcodes using 'Allocation Length' was
1460  *		       found by scanning all the SCSI-3 T10 drafts. See
1461  *		       www.t10.org for the curious with a .pdf reader.
1462  */
1463 static u_int8_t
1464 iha_data_over_run(scb)
1465 	struct iha_scb *scb;
1466 {
1467 	switch (scb->cmd[0]) {
1468 	case 0x03: /* Request Sense                   SPC-2 */
1469 	case 0x12: /* Inquiry                         SPC-2 */
1470 	case 0x1a: /* Mode Sense (6 byte version)     SPC-2 */
1471 	case 0x1c: /* Receive Diagnostic Results      SPC-2 */
1472 	case 0x23: /* Read Format Capacities          MMC-2 */
1473 	case 0x29: /* Read Generation                 SBC   */
1474 	case 0x34: /* Read Position                   SSC-2 */
1475 	case 0x37: /* Read Defect Data                SBC   */
1476 	case 0x3c: /* Read Buffer                     SPC-2 */
1477 	case 0x42: /* Read Sub Channel                MMC-2 */
1478 	case 0x43: /* Read TOC/PMA/ATIP               MMC   */
1479 
1480 	/* XXX - 2 with same opcode of 0x44? */
1481 	case 0x44: /* Read Header/Read Density Suprt  MMC/SSC*/
1482 
1483 	case 0x46: /* Get Configuration               MMC-2 */
1484 	case 0x4a: /* Get Event/Status Notification   MMC-2 */
1485 	case 0x4d: /* Log Sense                       SPC-2 */
1486 	case 0x51: /* Read Disc Information           MMC   */
1487 	case 0x52: /* Read Track Information          MMC   */
1488 	case 0x59: /* Read Master CUE                 MMC   */
1489 	case 0x5a: /* Mode Sense (10 byte version)    SPC-2 */
1490 	case 0x5c: /* Read Buffer Capacity            MMC   */
1491 	case 0x5e: /* Persistant Reserve In           SPC-2 */
1492 	case 0x84: /* Receive Copy Results            SPC-2 */
1493 	case 0xa0: /* Report LUNs                     SPC-2 */
1494 	case 0xa3: /* Various Report requests         SBC-2/SCC-2*/
1495 	case 0xa4: /* Report Key                      MMC-2 */
1496 	case 0xad: /* Read DVD Structure              MMC-2 */
1497 	case 0xb4: /* Read Element Status (Attached)  SMC   */
1498 	case 0xb5: /* Request Volume Element Address  SMC   */
1499 	case 0xb7: /* Read Defect Data (12 byte ver.) SBC   */
1500 	case 0xb8: /* Read Element Status (Independ.) SMC   */
1501 	case 0xba: /* Report Redundancy               SCC-2 */
1502 	case 0xbd: /* Mechanism Status                MMC   */
1503 	case 0xbe: /* Report Basic Redundancy         SCC-2 */
1504 
1505 		return (HOST_OK);
1506 		break;
1507 
1508 	default:
1509 		return (HOST_DO_DU);
1510 		break;
1511 	}
1512 }
1513 
1514 /*
1515  * iha_next_state - prcess the current SCB as requested in it's
1516  *                  nextstat member.
1517  */
1518 static int
1519 iha_next_state(sc)
1520 	struct iha_softc *sc;
1521 {
1522 
1523 	if (sc->sc_actscb == NULL)
1524 		return (-1);
1525 
1526 	switch (sc->sc_actscb->nextstat) {
1527 	case 1:
1528 		if (iha_state_1(sc) == 3)
1529 			goto state_3;
1530 		break;
1531 
1532 	case 2:
1533 		switch (iha_state_2(sc)) {
1534 		case 3:
1535 			goto state_3;
1536 		case 4:
1537 			goto state_4;
1538 		default:
1539 			break;
1540 		}
1541 		break;
1542 
1543 	case 3:
1544 	state_3:
1545 		if (iha_state_3(sc) == 4)
1546 			goto state_4;
1547 		break;
1548 
1549 	case 4:
1550 	state_4:
1551 		switch (iha_state_4(sc)) {
1552 		case 0:
1553 			return (0);
1554 		case 6:
1555 			goto state_6;
1556 		default:
1557 			break;
1558 		}
1559 		break;
1560 
1561 	case 5:
1562 		switch (iha_state_5(sc)) {
1563 		case 4:
1564 			goto state_4;
1565 		case 6:
1566 			goto state_6;
1567 		default:
1568 			break;
1569 		}
1570 		break;
1571 
1572 	case 6:
1573 	state_6:
1574 		iha_state_6(sc);
1575 		break;
1576 
1577 	case 8:
1578 		iha_state_8(sc);
1579 		break;
1580 
1581 	default:
1582 #ifdef IHA_DEBUG_STATE
1583 		printf("[debug] -unknown state: %i-\n",
1584 		    sc->sc_actscb->nextstat);
1585 #endif
1586 		iha_bad_seq(sc);
1587 		break;
1588 	}
1589 
1590 	return (-1);
1591 }
1592 
1593 /*
1594  * iha_state_1 - selection is complete after a SELATNSTOP. If the target
1595  *               has put the bus into MSG_OUT phase start wide/sync
1596  *               negotiation. Otherwise clear the FIFO and go to state 3,
1597  *	    	 which will send the SCSI CDB to the target.
1598  */
1599 static int
1600 iha_state_1(sc)
1601 	struct iha_softc *sc;
1602 {
1603 	bus_space_tag_t iot = sc->sc_iot;
1604 	bus_space_handle_t ioh = sc->sc_ioh;
1605 	struct iha_scb *scb = sc->sc_actscb;
1606 	struct tcs *tcs;
1607 	int flags;
1608 
1609 	iha_mark_busy_scb(scb);
1610 
1611 	tcs = scb->tcs;
1612 
1613 	bus_space_write_1(iot, ioh, TUL_SCONFIG0, tcs->sconfig0);
1614 
1615 	/*
1616 	 * If we are in PHASE_MSG_OUT, send
1617 	 *     a) IDENT message (with tags if appropriate)
1618 	 *     b) WDTR if the target is configured to negotiate wide xfers
1619 	 *     ** OR **
1620 	 *     c) SDTR if the target is configured to negotiate sync xfers
1621 	 *	  but not wide ones
1622 	 *
1623 	 * If we are NOT, then the target is not asking for anything but
1624 	 * the data/command, so go straight to state 3.
1625 	 */
1626 	if (sc->sc_phase == PHASE_MSG_OUT) {
1627 		bus_space_write_1(iot, ioh, TUL_SCTRL1, (ESBUSIN | EHRSL));
1628 		bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_id);
1629 
1630 		if (scb->scb_tagmsg != 0) {
1631 			bus_space_write_1(iot, ioh, TUL_SFIFO,
1632 			    scb->scb_tagmsg);
1633 			bus_space_write_1(iot, ioh, TUL_SFIFO,
1634 			    scb->scb_tagid);
1635 		}
1636 
1637 		flags = tcs->flags;
1638 		if ((flags & FLAG_NO_NEG_WIDE) == 0) {
1639 			if (iha_msgout_wdtr(sc) == -1)
1640 				return (-1);
1641 		} else if ((flags & FLAG_NO_NEG_SYNC) == 0) {
1642 			if (iha_msgout_sdtr(sc) == -1)
1643 				return (-1);
1644 		}
1645 
1646 	} else {
1647 		bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
1648 		iha_set_ssig(sc, REQ | BSY | SEL | ATN, 0);
1649 	}
1650 
1651 	return (3);
1652 }
1653 
1654 /*
1655  * iha_state_2 - selection is complete after a SEL_ATN or SEL_ATN3. If the SCSI
1656  *		 CDB has already been send, go to state 4 to start the data
1657  *		 xfer. Otherwise reset the FIFO and go to state 3, sending
1658  *		 the SCSI CDB.
1659  */
1660 static int
1661 iha_state_2(sc)
1662 	struct iha_softc *sc;
1663 {
1664 	bus_space_tag_t iot = sc->sc_iot;
1665 	bus_space_handle_t ioh = sc->sc_ioh;
1666 	struct iha_scb *scb = sc->sc_actscb;
1667 
1668 	iha_mark_busy_scb(scb);
1669 
1670 	bus_space_write_1(iot, ioh, TUL_SCONFIG0, scb->tcs->sconfig0);
1671 
1672 	if ((sc->sc_status1 & CPDNE) != 0)
1673 		return (4);
1674 
1675 	bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
1676 
1677 	iha_set_ssig(sc, REQ | BSY | SEL | ATN, 0);
1678 
1679 	return (3);
1680 }
1681 
1682 /*
1683  * iha_state_3 - send the SCSI CDB to the target, processing any status
1684  *		 or other messages received until that is done or
1685  *		 abandoned.
1686  */
1687 static int
1688 iha_state_3(sc)
1689 	struct iha_softc *sc;
1690 {
1691 	bus_space_tag_t iot = sc->sc_iot;
1692 	bus_space_handle_t ioh = sc->sc_ioh;
1693 	struct iha_scb *scb = sc->sc_actscb;
1694 	int flags;
1695 
1696 	for (;;) {
1697 		switch (sc->sc_phase) {
1698 		case PHASE_CMD_OUT:
1699 			bus_space_write_multi_1(iot, ioh, TUL_SFIFO,
1700 			    scb->cmd, scb->cmdlen);
1701 			if (iha_wait(sc, XF_FIFO_OUT) == -1)
1702 				return (-1);
1703 			else if (sc->sc_phase == PHASE_CMD_OUT) {
1704 				iha_bad_seq(sc);
1705 				return (-1);
1706 			} else
1707 				return (4);
1708 
1709 		case PHASE_MSG_IN:
1710 			scb->nextstat = 3;
1711 			if (iha_msgin(sc) == -1)
1712 				return (-1);
1713 			break;
1714 
1715 		case PHASE_STATUS_IN:
1716 			if (iha_status_msg(sc) == -1)
1717 				return (-1);
1718 			break;
1719 
1720 		case PHASE_MSG_OUT:
1721 			flags = scb->tcs->flags;
1722 			if ((flags & FLAG_NO_NEG_SYNC) != 0) {
1723 				if (iha_msgout(sc, MSG_NOOP) == -1)
1724 					return (-1);
1725 			} else if (iha_msgout_sdtr(sc) == -1)
1726 				return (-1);
1727 			break;
1728 
1729 		default:
1730 			printf("[debug] -s3- bad phase = %d\n", sc->sc_phase);
1731 			iha_bad_seq(sc);
1732 			return (-1);
1733 		}
1734 	}
1735 }
1736 
1737 /*
1738  * iha_state_4 - start a data xfer. Handle any bus state
1739  *               transitions until PHASE_DATA_IN/_OUT
1740  *               or the attempt is abandoned. If there is
1741  *               no data to xfer, go to state 6 and finish
1742  *               processing the current SCB.
1743  */
1744 static int
1745 iha_state_4(sc)
1746 	struct iha_softc *sc;
1747 {
1748 	struct iha_scb *scb = sc->sc_actscb;
1749 
1750 	if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) ==
1751 	    (FLAG_DATAIN | FLAG_DATAOUT))
1752 		return (6); /* Both dir flags set => NO xfer was requested */
1753 
1754 	for (;;) {
1755 		if (scb->buflen == 0)
1756 			return (6);
1757 
1758 		switch (sc->sc_phase) {
1759 		case PHASE_STATUS_IN:
1760 			if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) != 0)
1761 				scb->ha_stat = iha_data_over_run(scb);
1762 			if ((iha_status_msg(sc)) == -1)
1763 				return (-1);
1764 			break;
1765 
1766 		case PHASE_MSG_IN:
1767 			scb->nextstat = 4;
1768 			if (iha_msgin(sc) == -1)
1769 				return (-1);
1770 			break;
1771 
1772 		case PHASE_MSG_OUT:
1773 			if ((sc->sc_status0 & SPERR) != 0) {
1774 				scb->buflen = 0;
1775 				scb->ha_stat = HOST_SPERR;
1776 				if (iha_msgout(sc, MSG_INITIATOR_DET_ERR) == -1)
1777 					return (-1);
1778 				else
1779 					return (6);
1780 			} else {
1781 				if (iha_msgout(sc, MSG_NOOP) == -1)
1782 					return (-1);
1783 			}
1784 			break;
1785 
1786 		case PHASE_DATA_IN:
1787 			return (iha_xfer_data(sc, scb, FLAG_DATAIN));
1788 
1789 		case PHASE_DATA_OUT:
1790 			return (iha_xfer_data(sc, scb, FLAG_DATAOUT));
1791 
1792 		default:
1793 			iha_bad_seq(sc);
1794 			return (-1);
1795 		}
1796 	}
1797 }
1798 
1799 /*
1800  * iha_state_5 - handle the partial or final completion of the current
1801  *		 data xfer. If DMA is still active stop it. If there is
1802  *		 more data to xfer, go to state 4 and start the xfer.
1803  *		 If not go to state 6 and finish the SCB.
1804  */
1805 static int
1806 iha_state_5(sc)
1807 	struct iha_softc *sc;
1808 {
1809 	bus_space_tag_t iot = sc->sc_iot;
1810 	bus_space_handle_t ioh = sc->sc_ioh;
1811 	struct iha_scb *scb = sc->sc_actscb;
1812 	struct iha_sg_element *sg;
1813 	u_int32_t cnt;
1814 	u_int8_t period, stat;
1815 	long xcnt;  /* cannot use unsigned!! see code: if (xcnt < 0) */
1816 	int i;
1817 
1818 	cnt = bus_space_read_4(iot, ioh, TUL_STCNT0) & TCNT;
1819 
1820 	/*
1821 	 * Stop any pending DMA activity and check for parity error.
1822 	 */
1823 
1824 	if ((bus_space_read_1(iot, ioh, TUL_DCMD) & XDIR) != 0) {
1825 		/* Input Operation */
1826 		if ((sc->sc_status0 & SPERR) != 0)
1827 			scb->ha_stat = HOST_SPERR;
1828 
1829 		if ((bus_space_read_1(iot, ioh, TUL_ISTUS1) & XPEND) != 0) {
1830 			bus_space_write_1(iot, ioh, TUL_DCTRL0,
1831 			    bus_space_read_1(iot, ioh, TUL_DCTRL0) | SXSTP);
1832 			while (bus_space_read_1(iot, ioh, TUL_ISTUS1) & XPEND)
1833 				;
1834 		}
1835 
1836 	} else {
1837 		/* Output Operation */
1838 		if ((sc->sc_status1 & SXCMP) == 0) {
1839 			period = scb->tcs->syncm;
1840 			if ((period & PERIOD_WIDE_SCSI) != 0)
1841 				cnt += (bus_space_read_1(iot, ioh,
1842 				    TUL_SFIFOCNT) & FIFOC) * 2;
1843 			else
1844 				cnt += bus_space_read_1(iot, ioh,
1845 				    TUL_SFIFOCNT) & FIFOC;
1846 		}
1847 
1848 		if ((bus_space_read_1(iot, ioh, TUL_ISTUS1) & XPEND) != 0) {
1849 			bus_space_write_1(iot, ioh, TUL_DCMD, ABTXFR);
1850 			do
1851 				stat = bus_space_read_1(iot, ioh, TUL_ISTUS0);
1852 			while ((stat & DABT) == 0);
1853 		}
1854 
1855 		if ((cnt == 1) && (sc->sc_phase == PHASE_DATA_OUT)) {
1856 			if (iha_wait(sc, XF_FIFO_OUT) == -1)
1857 				return (-1);
1858 			cnt = 0;
1859 
1860 		} else if ((sc->sc_status1 & SXCMP) == 0)
1861 			bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
1862 	}
1863 
1864 	if (cnt == 0) {
1865 		scb->buflen = 0;
1866 		return (6);
1867 	}
1868 
1869 	/* Update active data pointer and restart the I/O at the new point */
1870 
1871 	xcnt = scb->buflen - cnt;	/* xcnt == bytes xferred */
1872 	scb->buflen = cnt;	  	/* cnt  == bytes left    */
1873 
1874 	if ((scb->flags & FLAG_SG) != 0) {
1875 		sg = &scb->sglist[scb->sg_index];
1876 		for (i = scb->sg_index; i < scb->sg_max; sg++, i++) {
1877 			xcnt -= le32toh(sg->sg_len);
1878 			if (xcnt < 0) {
1879 				xcnt += le32toh(sg->sg_len);
1880 
1881 				sg->sg_addr =
1882 				    htole32(le32toh(sg->sg_addr) + xcnt);
1883 				sg->sg_len =
1884 				    htole32(le32toh(sg->sg_len) - xcnt);
1885 				bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1886 				    scb->sgoffset, IHA_SG_SIZE,
1887 				    BUS_DMASYNC_PREWRITE);
1888 
1889 				scb->bufaddr += (i - scb->sg_index) *
1890 				    sizeof(struct iha_sg_element);
1891 				scb->sg_size = scb->sg_max - i;
1892 				scb->sg_index = i;
1893 
1894 				return (4);
1895 			}
1896 		}
1897 		return (6);
1898 
1899 	} else
1900 		scb->bufaddr += xcnt;
1901 
1902 	return (4);
1903 }
1904 
1905 /*
1906  * iha_state_6 - finish off the active scb (may require several
1907  *		 iterations if PHASE_MSG_IN) and return -1 to indicate
1908  *		 the bus is free.
1909  */
1910 static int
1911 iha_state_6(sc)
1912 	struct iha_softc *sc;
1913 {
1914 
1915 	for (;;) {
1916 		switch (sc->sc_phase) {
1917 		case PHASE_STATUS_IN:
1918 			if (iha_status_msg(sc) == -1)
1919 				return (-1);
1920 			break;
1921 
1922 		case PHASE_MSG_IN:
1923 			sc->sc_actscb->nextstat = 6;
1924 			if ((iha_msgin(sc)) == -1)
1925 				return (-1);
1926 			break;
1927 
1928 		case PHASE_MSG_OUT:
1929 			if ((iha_msgout(sc, MSG_NOOP)) == -1)
1930 				return (-1);
1931 			break;
1932 
1933 		case PHASE_DATA_IN:
1934 			if (iha_xpad_in(sc) == -1)
1935 				return (-1);
1936 			break;
1937 
1938 		case PHASE_DATA_OUT:
1939 			if (iha_xpad_out(sc) == -1)
1940 				return (-1);
1941 			break;
1942 
1943 		default:
1944 			iha_bad_seq(sc);
1945 			return (-1);
1946 		}
1947 	}
1948 }
1949 
1950 /*
1951  * iha_state_8 - reset the active device and all busy SCBs using it
1952  */
1953 static int
1954 iha_state_8(sc)
1955 	struct iha_softc *sc;
1956 {
1957 	bus_space_tag_t iot = sc->sc_iot;
1958 	bus_space_handle_t ioh = sc->sc_ioh;
1959 	struct iha_scb *scb;
1960 	int i;
1961 	u_int8_t tar;
1962 
1963 	if (sc->sc_phase == PHASE_MSG_OUT) {
1964 		bus_space_write_1(iot, ioh, TUL_SFIFO, MSG_BUS_DEV_RESET);
1965 
1966 		scb = sc->sc_actscb;
1967 
1968 		/* This SCB finished correctly -- resetting the device */
1969 		iha_append_done_scb(sc, scb, HOST_OK);
1970 
1971 		iha_reset_tcs(scb->tcs, sc->sc_sconf1);
1972 
1973 		tar = scb->target;
1974 		for (i = 0, scb = sc->sc_scb; i < IHA_MAX_SCB; i++, scb++)
1975 			if (scb->target == tar)
1976 				switch (scb->status) {
1977 				case STATUS_BUSY:
1978 					iha_append_done_scb(sc,
1979 					    scb, HOST_DEV_RST);
1980 					break;
1981 
1982 				case STATUS_SELECT:
1983 					iha_push_pend_scb(sc, scb);
1984 					break;
1985 
1986 				default:
1987 					break;
1988 				}
1989 
1990 		sc->sc_flags |= FLAG_EXPECT_DISC;
1991 
1992 		if (iha_wait(sc, XF_FIFO_OUT) == -1)
1993 			return (-1);
1994 	}
1995 
1996 	iha_bad_seq(sc);
1997 	return (-1);
1998 }
1999 
2000 /*
2001  * iha_xfer_data - initiate the DMA xfer of the data
2002  */
2003 static int
2004 iha_xfer_data(sc, scb, direction)
2005 	struct iha_softc *sc;
2006 	struct iha_scb *scb;
2007 	int direction;
2008 {
2009 	bus_space_tag_t iot = sc->sc_iot;
2010 	bus_space_handle_t ioh = sc->sc_ioh;
2011 	u_int32_t xferlen;
2012 	u_int8_t xfercmd;
2013 
2014 	if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) != direction)
2015 		return (6); /* wrong direction, abandon I/O */
2016 
2017 	bus_space_write_4(iot, ioh, TUL_STCNT0, scb->buflen);
2018 
2019 	xfercmd = STRXFR;
2020 	if (direction == FLAG_DATAIN)
2021 		xfercmd |= XDIR;
2022 
2023 	if (scb->flags & FLAG_SG) {
2024 		xferlen = scb->sg_size * sizeof(struct iha_sg_element);
2025 		xfercmd |= SGXFR;
2026 	} else
2027 		xferlen = scb->buflen;
2028 
2029 	bus_space_write_4(iot, ioh, TUL_DXC,  xferlen);
2030 	bus_space_write_4(iot, ioh, TUL_DXPA, scb->bufaddr);
2031 	bus_space_write_1(iot, ioh, TUL_DCMD, xfercmd);
2032 
2033 	bus_space_write_1(iot, ioh, TUL_SCMD,
2034 	    (direction == FLAG_DATAIN) ? XF_DMA_IN : XF_DMA_OUT);
2035 
2036 	scb->nextstat = 5;
2037 
2038 	return (0);
2039 }
2040 
2041 static int
2042 iha_xpad_in(sc)
2043 	struct iha_softc *sc;
2044 {
2045 	bus_space_tag_t iot = sc->sc_iot;
2046 	bus_space_handle_t ioh = sc->sc_ioh;
2047 	struct iha_scb *scb = sc->sc_actscb;
2048 
2049 	if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) != 0)
2050 		scb->ha_stat = HOST_DO_DU;
2051 
2052 	for (;;) {
2053 		if ((scb->tcs->syncm & PERIOD_WIDE_SCSI) != 0)
2054 			bus_space_write_4(iot, ioh, TUL_STCNT0, 2);
2055 		else
2056 			bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
2057 
2058 		switch (iha_wait(sc, XF_FIFO_IN)) {
2059 		case -1:
2060 			return (-1);
2061 
2062 		case PHASE_DATA_IN:
2063 			bus_space_read_1(iot, ioh, TUL_SFIFO);
2064 			break;
2065 
2066 		default:
2067 			bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2068 			return (6);
2069 		}
2070 	}
2071 }
2072 
2073 static int
2074 iha_xpad_out(sc)
2075 	struct iha_softc *sc;
2076 {
2077 	bus_space_tag_t iot = sc->sc_iot;
2078 	bus_space_handle_t ioh = sc->sc_ioh;
2079 	struct iha_scb *scb = sc->sc_actscb;
2080 
2081 	if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) != 0)
2082 		scb->ha_stat = HOST_DO_DU;
2083 
2084 	for (;;) {
2085 		if ((scb->tcs->syncm & PERIOD_WIDE_SCSI) != 0)
2086 			bus_space_write_4(iot, ioh, TUL_STCNT0, 2);
2087 		else
2088 			bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
2089 
2090 		bus_space_write_1(iot, ioh, TUL_SFIFO, 0);
2091 
2092 		switch (iha_wait(sc, XF_FIFO_OUT)) {
2093 		case -1:
2094 			return (-1);
2095 
2096 		case PHASE_DATA_OUT:
2097 			break;
2098 
2099 		default:
2100 			/* Disable wide CPU to allow read 16 bits */
2101 			bus_space_write_1(iot, ioh, TUL_SCTRL1, EHRSL);
2102 			bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2103 			return (6);
2104 		}
2105 	}
2106 }
2107 
2108 static int
2109 iha_status_msg(sc)
2110 	struct iha_softc *sc;
2111 {
2112 	bus_space_tag_t iot = sc->sc_iot;
2113 	bus_space_handle_t ioh = sc->sc_ioh;
2114 	struct iha_scb *scb;
2115 	u_int8_t msg;
2116 	int phase;
2117 
2118 	if ((phase = iha_wait(sc, CMD_COMP)) == -1)
2119 		return (-1);
2120 
2121 	scb = sc->sc_actscb;
2122 
2123 	scb->ta_stat = bus_space_read_1(iot, ioh, TUL_SFIFO);
2124 
2125 	if (phase == PHASE_MSG_OUT) {
2126 		if ((sc->sc_status0 & SPERR) == 0)
2127 			bus_space_write_1(iot, ioh, TUL_SFIFO, MSG_NOOP);
2128 		else
2129 			bus_space_write_1(iot, ioh, TUL_SFIFO,
2130 			    MSG_PARITY_ERROR);
2131 
2132 		return (iha_wait(sc, XF_FIFO_OUT));
2133 
2134 	} else if (phase == PHASE_MSG_IN) {
2135 		msg = bus_space_read_1(iot, ioh, TUL_SFIFO);
2136 
2137 		if ((sc->sc_status0 & SPERR) != 0)
2138 			switch (iha_wait(sc, MSG_ACCEPT)) {
2139 			case -1:
2140 				return (-1);
2141 			case PHASE_MSG_OUT:
2142 				bus_space_write_1(iot, ioh, TUL_SFIFO,
2143 				    MSG_PARITY_ERROR);
2144 				return (iha_wait(sc, XF_FIFO_OUT));
2145 			default:
2146 				iha_bad_seq(sc);
2147 				return (-1);
2148 			}
2149 
2150 		if (msg == MSG_CMDCOMPLETE) {
2151 			if ((scb->ta_stat &
2152 			    (SCSI_INTERM | SCSI_BUSY)) == SCSI_INTERM) {
2153 				iha_bad_seq(sc);
2154 				return (-1);
2155 			}
2156 			sc->sc_flags |= FLAG_EXPECT_DONE_DISC;
2157 			bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2158 			return (iha_wait(sc, MSG_ACCEPT));
2159 		}
2160 
2161 		if ((msg == MSG_LINK_CMD_COMPLETE)
2162 		    || (msg == MSG_LINK_CMD_COMPLETEF)) {
2163 			if ((scb->ta_stat &
2164 			    (SCSI_INTERM | SCSI_BUSY)) == SCSI_INTERM)
2165 				return (iha_wait(sc, MSG_ACCEPT));
2166 		}
2167 	}
2168 
2169 	iha_bad_seq(sc);
2170 	return (-1);
2171 }
2172 
2173 /*
2174  * iha_busfree - SCSI bus free detected as a result of a TIMEOUT or
2175  *		 DISCONNECT interrupt. Reset the tulip FIFO and
2176  *		 SCONFIG0 and enable hardware reselect. Move any active
2177  *		 SCB to sc_donescb list. Return an appropriate host status
2178  *		 if an I/O was active.
2179  */
2180 static void
2181 iha_busfree(sc)
2182 	struct iha_softc *sc;
2183 {
2184 	bus_space_tag_t iot = sc->sc_iot;
2185 	bus_space_handle_t ioh = sc->sc_ioh;
2186 	struct iha_scb *scb;
2187 
2188 	bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2189 	bus_space_write_1(iot, ioh, TUL_SCONFIG0, SCONFIG0DEFAULT);
2190 	bus_space_write_1(iot, ioh, TUL_SCTRL1, EHRSL);
2191 
2192 	scb = sc->sc_actscb;
2193 
2194 	if (scb != NULL) {
2195 		if (scb->status == STATUS_SELECT)
2196 			/* selection timeout   */
2197 			iha_append_done_scb(sc, scb, HOST_SEL_TOUT);
2198 		else
2199 			/* Unexpected bus free */
2200 			iha_append_done_scb(sc, scb, HOST_BAD_PHAS);
2201 	}
2202 }
2203 
2204 /*
2205  * iha_resel - handle a detected SCSI bus reselection request.
2206  */
2207 static int
2208 iha_resel(sc)
2209 	struct iha_softc *sc;
2210 {
2211 	bus_space_tag_t iot = sc->sc_iot;
2212 	bus_space_handle_t ioh = sc->sc_ioh;
2213 	struct iha_scb *scb;
2214 	struct tcs *tcs;
2215 	u_int8_t tag, target, lun, msg, abortmsg;
2216 
2217 	if (sc->sc_actscb != NULL) {
2218 		if ((sc->sc_actscb->status == STATUS_SELECT))
2219 			iha_push_pend_scb(sc, sc->sc_actscb);
2220 		sc->sc_actscb = NULL;
2221 	}
2222 
2223 	target = bus_space_read_1(iot, ioh, TUL_SBID);
2224 	lun = bus_space_read_1(iot, ioh, TUL_SALVC) & MSG_IDENTIFY_LUNMASK;
2225 
2226 	tcs = &sc->sc_tcs[target];
2227 
2228 	bus_space_write_1(iot, ioh, TUL_SCONFIG0, tcs->sconfig0);
2229 	bus_space_write_1(iot, ioh, TUL_SYNCM, tcs->syncm);
2230 
2231 	abortmsg = MSG_ABORT; /* until a valid tag has been obtained */
2232 
2233 	if (tcs->ntagscb != NULL)
2234 		/* There is a non-tagged I/O active on the target */
2235 		scb = tcs->ntagscb;
2236 
2237 	else {
2238 		/*
2239 		 * Since there is no active non-tagged operation
2240 		 * read the tag type, the tag itself, and find
2241 		 * the appropriate scb by indexing sc_scb with
2242 		 * the tag.
2243 		 */
2244 
2245 		switch (iha_wait(sc, MSG_ACCEPT)) {
2246 		case -1:
2247 			return (-1);
2248 		case PHASE_MSG_IN:
2249 			bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
2250 			if ((iha_wait(sc, XF_FIFO_IN)) == -1)
2251 				return (-1);
2252 			break;
2253 		default:
2254 			goto abort;
2255 		}
2256 
2257 		msg = bus_space_read_1(iot, ioh, TUL_SFIFO); /* Read Tag Msg */
2258 
2259 		if ((msg < MSG_SIMPLE_Q_TAG) || (msg > MSG_ORDERED_Q_TAG))
2260 			goto abort;
2261 
2262 		switch (iha_wait(sc, MSG_ACCEPT)) {
2263 		case -1:
2264 			return (-1);
2265 		case PHASE_MSG_IN:
2266 			bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
2267 			if ((iha_wait(sc, XF_FIFO_IN)) == -1)
2268 				return (-1);
2269 			break;
2270 		default:
2271 			goto abort;
2272 		}
2273 
2274 		tag  = bus_space_read_1(iot, ioh, TUL_SFIFO); /* Read Tag ID */
2275 		scb = &sc->sc_scb[tag];
2276 
2277 		abortmsg = MSG_ABORT_TAG; /* Now that we have valdid tag! */
2278 	}
2279 
2280 	if ((scb->target != target)
2281 	    || (scb->lun != lun)
2282 	    || (scb->status != STATUS_BUSY)) {
2283  abort:
2284 		iha_msgout_abort(sc, abortmsg);
2285 		return (-1);
2286 	}
2287 
2288 	sc->sc_actscb = scb;
2289 
2290 	if (iha_wait(sc, MSG_ACCEPT) == -1)
2291 		return (-1);
2292 
2293 	return (iha_next_state(sc));
2294 }
2295 
2296 static int
2297 iha_msgin(sc)
2298 	struct iha_softc *sc;
2299 {
2300 	bus_space_tag_t iot = sc->sc_iot;
2301 	bus_space_handle_t ioh = sc->sc_ioh;
2302 	int flags;
2303 	int phase;
2304 	u_int8_t msg;
2305 
2306 	for (;;) {
2307 		if ((bus_space_read_1(iot, ioh, TUL_SFIFOCNT) & FIFOC) > 0)
2308 			bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2309 
2310 		bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
2311 
2312 		phase = iha_wait(sc, XF_FIFO_IN);
2313 		msg = bus_space_read_1(iot, ioh, TUL_SFIFO);
2314 
2315 		switch (msg) {
2316 		case MSG_DISCONNECT:
2317 			sc->sc_flags |= FLAG_EXPECT_DISC;
2318 			if (iha_wait(sc, MSG_ACCEPT) != -1)
2319 				iha_bad_seq(sc);
2320 			phase = -1;
2321 			break;
2322 		case MSG_SAVEDATAPOINTER:
2323 		case MSG_RESTOREPOINTERS:
2324 		case MSG_NOOP:
2325 			phase = iha_wait(sc, MSG_ACCEPT);
2326 			break;
2327 		case MSG_MESSAGE_REJECT:
2328 			/* XXX - need to clear FIFO like other 'Clear ATN'?*/
2329 			iha_set_ssig(sc, REQ | BSY | SEL | ATN, 0);
2330 			flags = sc->sc_actscb->tcs->flags;
2331 			if ((flags & FLAG_NO_NEG_SYNC) == 0)
2332 				iha_set_ssig(sc, REQ | BSY | SEL, ATN);
2333 			phase = iha_wait(sc, MSG_ACCEPT);
2334 			break;
2335 		case MSG_EXTENDED:
2336 			phase = iha_msgin_extended(sc);
2337 			break;
2338 		case MSG_IGN_WIDE_RESIDUE:
2339 			phase = iha_msgin_ignore_wid_resid(sc);
2340 			break;
2341 		case MSG_CMDCOMPLETE:
2342 			sc->sc_flags |= FLAG_EXPECT_DONE_DISC;
2343 			bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2344 			phase = iha_wait(sc, MSG_ACCEPT);
2345 			if (phase != -1) {
2346 				iha_bad_seq(sc);
2347 				return (-1);
2348 			}
2349 			break;
2350 		default:
2351 			printf("[debug] iha_msgin: bad msg type: %d\n", msg);
2352 			phase = iha_msgout_reject(sc);
2353 			break;
2354 		}
2355 
2356 		if (phase != PHASE_MSG_IN)
2357 			return (phase);
2358 	}
2359 	/* NOTREACHED */
2360 }
2361 
2362 static int
2363 iha_msgin_extended(sc)
2364 	struct iha_softc *sc;
2365 {
2366 	bus_space_tag_t iot = sc->sc_iot;
2367 	bus_space_handle_t ioh = sc->sc_ioh;
2368 	int flags, i, phase, msglen, msgcode;
2369 
2370 	/*
2371 	 * XXX - can we just stop reading and reject, or do we have to
2372 	 *	 read all input, discarding the excess, and then reject
2373 	 */
2374 	for (i = 0; i < IHA_MAX_EXTENDED_MSG; i++) {
2375 		phase = iha_wait(sc, MSG_ACCEPT);
2376 
2377 		if (phase != PHASE_MSG_IN)
2378 			return (phase);
2379 
2380 		bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
2381 
2382 		if (iha_wait(sc, XF_FIFO_IN) == -1)
2383 			return (-1);
2384 
2385 		sc->sc_msg[i] = bus_space_read_1(iot, ioh, TUL_SFIFO);
2386 
2387 		if (sc->sc_msg[0] == i)
2388 			break;
2389 	}
2390 
2391 	msglen	= sc->sc_msg[0];
2392 	msgcode = sc->sc_msg[1];
2393 
2394 	if ((msglen == MSG_EXT_SDTR_LEN) && (msgcode == MSG_EXT_SDTR)) {
2395 		if (iha_msgin_sdtr(sc) == 0) {
2396 			iha_sync_done(sc);
2397 			return (iha_wait(sc, MSG_ACCEPT));
2398 		}
2399 
2400 		iha_set_ssig(sc, REQ | BSY | SEL, ATN);
2401 
2402 		phase = iha_wait(sc, MSG_ACCEPT);
2403 		if (phase != PHASE_MSG_OUT)
2404 			return (phase);
2405 
2406 		/* Clear FIFO for important message - final SYNC offer */
2407 		bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2408 
2409 		iha_sync_done(sc); /* This is our final offer */
2410 
2411 	} else if ((msglen == MSG_EXT_WDTR_LEN) && (msgcode == MSG_EXT_WDTR)) {
2412 
2413 		flags = sc->sc_actscb->tcs->flags;
2414 
2415 		if ((flags & FLAG_NO_WIDE) != 0)
2416 			/* Offer 8bit xfers only */
2417 			sc->sc_msg[2] = MSG_EXT_WDTR_BUS_8_BIT;
2418 
2419 		else if (sc->sc_msg[2] > MSG_EXT_WDTR_BUS_32_BIT)
2420 			/* BAD MSG */
2421 			return (iha_msgout_reject(sc));
2422 
2423 		else if (sc->sc_msg[2] == MSG_EXT_WDTR_BUS_32_BIT)
2424 			/* Offer 16bit instead */
2425 			sc->sc_msg[2] = MSG_EXT_WDTR_BUS_16_BIT;
2426 
2427 		else {
2428 			iha_wide_done(sc);
2429 			if ((flags & FLAG_NO_NEG_SYNC) == 0)
2430 				iha_set_ssig(sc, REQ | BSY | SEL, ATN);
2431 			return (iha_wait(sc, MSG_ACCEPT));
2432 		}
2433 
2434 		iha_set_ssig(sc, REQ | BSY | SEL, ATN);
2435 
2436 		phase = iha_wait(sc, MSG_ACCEPT);
2437 		if (phase != PHASE_MSG_OUT)
2438 			return (phase);
2439 	} else
2440 		return (iha_msgout_reject(sc));
2441 
2442 	return (iha_msgout_extended(sc));
2443 }
2444 
2445 /*
2446  * iha_msgin_sdtr - check SDTR msg in sc_msg. If the offer is
2447  *		    acceptable leave sc_msg as is and return 0.
2448  *		    If the negotiation must continue, modify sc_msg
2449  *		    as needed and return 1. Else return 0.
2450  */
2451 static int
2452 iha_msgin_sdtr(sc)
2453 	struct iha_softc *sc;
2454 {
2455 	int flags;
2456 	int newoffer;
2457 	u_int8_t default_period;
2458 
2459 	flags = sc->sc_actscb->tcs->flags;
2460 
2461 	default_period = iha_rate_tbl[flags & FLAG_SCSI_RATE];
2462 
2463 	if (sc->sc_msg[3] == 0)
2464 		/* target offered async only. Accept it. */
2465 		return (0);
2466 
2467 	newoffer = 0;
2468 
2469 	if ((flags & FLAG_NO_SYNC) != 0) {
2470 		sc->sc_msg[3] = 0;
2471 		newoffer = 1;
2472 	}
2473 
2474 	if (sc->sc_msg[3] > IHA_MAX_OFFSET) {
2475 		sc->sc_msg[3] = IHA_MAX_OFFSET;
2476 		newoffer = 1;
2477 	}
2478 
2479 	if (sc->sc_msg[2] < default_period) {
2480 		sc->sc_msg[2] = default_period;
2481 		newoffer = 1;
2482 	}
2483 
2484 	if (sc->sc_msg[2] > IHA_MAX_PERIOD) {
2485 		/* Use async */
2486 		sc->sc_msg[3] = 0;
2487 		newoffer = 1;
2488 	}
2489 
2490 	return (newoffer);
2491 }
2492 
2493 static int
2494 iha_msgin_ignore_wid_resid(sc)
2495 	struct iha_softc *sc;
2496 {
2497 	bus_space_tag_t iot = sc->sc_iot;
2498 	bus_space_handle_t ioh = sc->sc_ioh;
2499 	int phase;
2500 
2501 	phase = iha_wait(sc, MSG_ACCEPT);
2502 
2503 	if (phase == PHASE_MSG_IN) {
2504 		phase = iha_wait(sc, XF_FIFO_IN);
2505 
2506 		if (phase != -1) {
2507 			bus_space_write_1(iot, ioh, TUL_SFIFO, 0);
2508 			bus_space_read_1(iot, ioh, TUL_SFIFO);
2509 			bus_space_read_1(iot, ioh, TUL_SFIFO);
2510 
2511 			phase = iha_wait(sc, MSG_ACCEPT);
2512 		}
2513 	}
2514 
2515 	return (phase);
2516 }
2517 
2518 static int
2519 iha_msgout(sc, msg)
2520 	struct iha_softc *sc;
2521 	u_int8_t msg;
2522 {
2523 
2524 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, TUL_SFIFO, msg);
2525 
2526 	return (iha_wait(sc, XF_FIFO_OUT));
2527 }
2528 
2529 static void
2530 iha_msgout_abort(sc, aborttype)
2531 	struct iha_softc *sc;
2532 	u_int8_t aborttype;
2533 {
2534 
2535 	iha_set_ssig(sc, REQ | BSY | SEL, ATN);
2536 
2537 	switch (iha_wait(sc, MSG_ACCEPT)) {
2538 	case -1:
2539 		break;
2540 
2541 	case PHASE_MSG_OUT:
2542 		sc->sc_flags |= FLAG_EXPECT_DISC;
2543 		if (iha_msgout(sc, aborttype) != -1)
2544 			iha_bad_seq(sc);
2545 		break;
2546 
2547 	default:
2548 		iha_bad_seq(sc);
2549 		break;
2550 	}
2551 }
2552 
2553 static int
2554 iha_msgout_reject(sc)
2555 	struct iha_softc *sc;
2556 {
2557 
2558 	iha_set_ssig(sc, REQ | BSY | SEL, ATN);
2559 
2560 	if (iha_wait(sc, MSG_ACCEPT) == PHASE_MSG_OUT)
2561 		return (iha_msgout(sc, MSG_MESSAGE_REJECT));
2562 
2563 	return (-1);
2564 }
2565 
2566 static int
2567 iha_msgout_extended(sc)
2568 	struct iha_softc *sc;
2569 {
2570 	bus_space_tag_t iot = sc->sc_iot;
2571 	bus_space_handle_t ioh = sc->sc_ioh;
2572 	int phase;
2573 
2574 	bus_space_write_1(iot, ioh, TUL_SFIFO, MSG_EXTENDED);
2575 
2576 	bus_space_write_multi_1(iot, ioh, TUL_SFIFO,
2577 	    sc->sc_msg, sc->sc_msg[0] + 1);
2578 
2579 	phase = iha_wait(sc, XF_FIFO_OUT);
2580 
2581 	bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2582 	iha_set_ssig(sc, REQ | BSY | SEL | ATN, 0);
2583 
2584 	return (phase);
2585 }
2586 
2587 static int
2588 iha_msgout_wdtr(sc)
2589 	struct iha_softc *sc;
2590 {
2591 
2592 	sc->sc_actscb->tcs->flags |= FLAG_WIDE_DONE;
2593 
2594 	sc->sc_msg[0] = MSG_EXT_WDTR_LEN;
2595 	sc->sc_msg[1] = MSG_EXT_WDTR;
2596 	sc->sc_msg[2] = MSG_EXT_WDTR_BUS_16_BIT;
2597 
2598 	return (iha_msgout_extended(sc));
2599 }
2600 
2601 static int
2602 iha_msgout_sdtr(sc)
2603 	struct iha_softc *sc;
2604 {
2605 	struct tcs *tcs = sc->sc_actscb->tcs;
2606 
2607 	tcs->flags |= FLAG_SYNC_DONE;
2608 
2609 	sc->sc_msg[0] = MSG_EXT_SDTR_LEN;
2610 	sc->sc_msg[1] = MSG_EXT_SDTR;
2611 	sc->sc_msg[2] = iha_rate_tbl[tcs->flags & FLAG_SCSI_RATE];
2612 	sc->sc_msg[3] = IHA_MAX_OFFSET; /* REQ/ACK */
2613 
2614 	return (iha_msgout_extended(sc));
2615 }
2616 
2617 static void
2618 iha_wide_done(sc)
2619 	struct iha_softc *sc;
2620 {
2621 	bus_space_tag_t iot = sc->sc_iot;
2622 	bus_space_handle_t ioh = sc->sc_ioh;
2623 	struct tcs *tcs = sc->sc_actscb->tcs;
2624 
2625 	tcs->syncm = 0;
2626 	tcs->period = 0;
2627 	tcs->offset = 0;
2628 
2629 	if (sc->sc_msg[2] != 0)
2630 		tcs->syncm |= PERIOD_WIDE_SCSI;
2631 
2632 	tcs->sconfig0 &= ~ALTPD;
2633 	tcs->flags &= ~FLAG_SYNC_DONE;
2634 	tcs->flags |=  FLAG_WIDE_DONE;
2635 
2636 	iha_update_xfer_mode(sc, sc->sc_actscb->target);
2637 
2638 	bus_space_write_1(iot, ioh, TUL_SCONFIG0, tcs->sconfig0);
2639 	bus_space_write_1(iot, ioh, TUL_SYNCM, tcs->syncm);
2640 }
2641 
2642 static void
2643 iha_sync_done(sc)
2644 	struct iha_softc *sc;
2645 {
2646 	bus_space_tag_t iot = sc->sc_iot;
2647 	bus_space_handle_t ioh = sc->sc_ioh;
2648 	struct tcs *tcs = sc->sc_actscb->tcs;
2649 	int i;
2650 
2651 	tcs->period = sc->sc_msg[2];
2652 	tcs->offset = sc->sc_msg[3];
2653 	if (tcs->offset != 0) {
2654 		tcs->syncm |= tcs->offset;
2655 
2656 		/* pick the highest possible rate */
2657 		for (i = 0; i < sizeof(iha_rate_tbl); i++)
2658 			if (iha_rate_tbl[i] >= tcs->period)
2659 				break;
2660 
2661 		tcs->syncm |= (i << 4);
2662 		tcs->sconfig0 |= ALTPD;
2663 	}
2664 
2665 	tcs->flags |= FLAG_SYNC_DONE;
2666 
2667 	iha_update_xfer_mode(sc, sc->sc_actscb->target);
2668 
2669 	bus_space_write_1(iot, ioh, TUL_SCONFIG0, tcs->sconfig0);
2670 	bus_space_write_1(iot, ioh, TUL_SYNCM, tcs->syncm);
2671 }
2672 
2673 /*
2674  * iha_bad_seq - a SCSI bus phase was encountered out of the
2675  *               correct/expected sequence. Reset the SCSI bus.
2676  */
2677 static void
2678 iha_bad_seq(sc)
2679 	struct iha_softc *sc;
2680 {
2681 	struct iha_scb *scb = sc->sc_actscb;
2682 
2683 	if (scb != NULL)
2684 		iha_append_done_scb(sc, scb, HOST_BAD_PHAS);
2685 
2686 	iha_reset_scsi_bus(sc);
2687 	iha_reset_chip(sc);
2688 }
2689 
2690 /*
2691  * iha_read_eeprom - read Serial EEPROM value & set to defaults
2692  *		     if required. XXX - Writing does NOT work!
2693  */
2694 static void
2695 iha_read_eeprom(sc, eeprom)
2696 	struct iha_softc *sc;
2697 	struct iha_eeprom *eeprom;
2698 {
2699 	bus_space_tag_t iot = sc->sc_iot;
2700 	bus_space_handle_t ioh = sc->sc_ioh;
2701 	u_int16_t *buf = (u_int16_t *)eeprom;
2702 	u_int8_t gctrl;
2703 
2704 	/* Enable EEProm programming */
2705 	gctrl = bus_space_read_1(iot, ioh, TUL_GCTRL0) | EEPRG;
2706 	bus_space_write_1(iot, ioh, TUL_GCTRL0, gctrl);
2707 
2708 	/* Read EEProm */
2709 	if (iha_se2_rd_all(sc, buf) == 0)
2710 		panic("%s: cannot read EEPROM\n", sc->sc_dev.dv_xname);
2711 
2712 	/* Disable EEProm programming */
2713 	gctrl = bus_space_read_1(iot, ioh, TUL_GCTRL0) & ~EEPRG;
2714 	bus_space_write_1(iot, ioh, TUL_GCTRL0, gctrl);
2715 }
2716 
2717 #ifdef notused
2718 /*
2719  * iha_se2_update_all - Update SCSI H/A configuration parameters from
2720  *			serial EEPROM Setup default pattern. Only
2721  *			change those values different from the values
2722  *			in iha_eeprom.
2723  */
2724 static void
2725 iha_se2_update_all(sc)
2726 	struct iha_softc *sc;
2727 {
2728 	bus_space_tag_t iot = sc->sc_iot;
2729 	bus_space_handle_t ioh = sc->sc_ioh;
2730 	u_int16_t *np;
2731 	u_int32_t chksum;
2732 	int i;
2733 
2734 	/* Enable erase/write state of EEPROM */
2735 	iha_se2_instr(sc, ENABLE_ERASE);
2736 	bus_space_write_1(iot, ioh, TUL_NVRAM, 0);
2737 	EEP_WAIT();
2738 
2739 	np = (u_int16_t *)&eeprom_default;
2740 
2741 	for (i = 0, chksum = 0; i < EEPROM_SIZE - 1; i++) {
2742 		iha_se2_wr(sc, i, *np);
2743 		chksum += *np++;
2744 	}
2745 
2746 	chksum &= 0x0000ffff;
2747 	iha_se2_wr(sc, 31, chksum);
2748 
2749 	/* Disable erase/write state of EEPROM */
2750 	iha_se2_instr(sc, 0);
2751 	bus_space_write_1(iot, ioh, TUL_NVRAM, 0);
2752 	EEP_WAIT();
2753 }
2754 
2755 /*
2756  * iha_se2_wr - write the given 16 bit value into the Serial EEPROM
2757  *		at the specified offset
2758  */
2759 static void
2760 iha_se2_wr(sc, addr, writeword)
2761 	struct iha_softc *sc;
2762 	int addr;
2763 	u_int16_t writeword;
2764 {
2765 	bus_space_tag_t iot = sc->sc_iot;
2766 	bus_space_handle_t ioh = sc->sc_ioh;
2767 	int i, bit;
2768 
2769 	/* send 'WRITE' Instruction == address | WRITE bit */
2770 	iha_se2_instr(sc, addr | WRITE);
2771 
2772 	for (i = 16; i > 0; i--) {
2773 		if (writeword & (1 << (i - 1)))
2774 			bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS | NVRDO);
2775 		else
2776 			bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
2777 		EEP_WAIT();
2778 		bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS | NVRCK);
2779 		EEP_WAIT();
2780 	}
2781 
2782 	bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
2783 	EEP_WAIT();
2784 	bus_space_write_1(iot, ioh, TUL_NVRAM, 0);
2785 	EEP_WAIT();
2786 	bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
2787 	EEP_WAIT();
2788 
2789 	for (;;) {
2790 		bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS | NVRCK);
2791 		EEP_WAIT();
2792 		bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
2793 		EEP_WAIT();
2794 		bit = bus_space_read_1(iot, ioh, TUL_NVRAM) & NVRDI;
2795 		EEP_WAIT();
2796 		if (bit != 0)
2797 			break; /* write complete */
2798 	}
2799 
2800 	bus_space_write_1(iot, ioh, TUL_NVRAM, 0);
2801 }
2802 #endif
2803 
2804 /*
2805  * iha_se2_rd - read & return the 16 bit value at the specified
2806  *		offset in the Serial E2PROM
2807  *
2808  */
2809 static u_int16_t
2810 iha_se2_rd(sc, addr)
2811 	struct iha_softc *sc;
2812 	int addr;
2813 {
2814 	bus_space_tag_t iot = sc->sc_iot;
2815 	bus_space_handle_t ioh = sc->sc_ioh;
2816 	int i, bit;
2817 	u_int16_t readword;
2818 
2819 	/* Send 'READ' instruction == address | READ bit */
2820 	iha_se2_instr(sc, addr | READ);
2821 
2822 	readword = 0;
2823 	for (i = 16; i > 0; i--) {
2824 		bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS | NVRCK);
2825 		EEP_WAIT();
2826 		bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
2827 		EEP_WAIT();
2828 		/* sample data after the following edge of clock     */
2829 		bit = bus_space_read_1(iot, ioh, TUL_NVRAM) & NVRDI ? 1 : 0;
2830 		EEP_WAIT();
2831 
2832 		readword |= bit << (i - 1);
2833 	}
2834 
2835 	bus_space_write_1(iot, ioh, TUL_NVRAM, 0);
2836 
2837 	return (readword);
2838 }
2839 
2840 /*
2841  * iha_se2_rd_all - Read SCSI H/A config parameters from serial EEPROM
2842  */
2843 static int
2844 iha_se2_rd_all(sc, buf)
2845 	struct iha_softc *sc;
2846 	u_int16_t *buf;
2847 {
2848 	struct iha_eeprom *eeprom = (struct iha_eeprom *)buf;
2849 	u_int32_t chksum;
2850 	int i;
2851 
2852 	for (i = 0, chksum = 0; i < EEPROM_SIZE - 1; i++) {
2853 		*buf = iha_se2_rd(sc, i);
2854 		chksum += *buf++;
2855 	}
2856 	*buf = iha_se2_rd(sc, 31); /* read checksum from EEPROM */
2857 
2858 	chksum &= 0x0000ffff; /* lower 16 bits */
2859 
2860 	return (eeprom->signature == EEP_SIGNATURE) &&
2861 	    (eeprom->checksum == chksum);
2862 }
2863 
2864 /*
2865  * iha_se2_instr - write an octet to serial E2PROM one bit at a time
2866  */
2867 static void
2868 iha_se2_instr(sc, instr)
2869 	struct iha_softc *sc;
2870 	int instr;
2871 {
2872 	bus_space_tag_t iot = sc->sc_iot;
2873 	bus_space_handle_t ioh = sc->sc_ioh;
2874 	int b, i;
2875 
2876 	b = NVRCS | NVRDO; /* Write the start bit (== 1) */
2877 
2878 	bus_space_write_1(iot, ioh, TUL_NVRAM, b);
2879 	EEP_WAIT();
2880 	bus_space_write_1(iot, ioh, TUL_NVRAM, b | NVRCK);
2881 	EEP_WAIT();
2882 
2883 	for (i = 8; i > 0; i--) {
2884 		if (instr & (1 << (i - 1)))
2885 			b = NVRCS | NVRDO; /* Write a 1 bit */
2886 		else
2887 			b = NVRCS;	   /* Write a 0 bit */
2888 
2889 		bus_space_write_1(iot, ioh, TUL_NVRAM, b);
2890 		EEP_WAIT();
2891 		bus_space_write_1(iot, ioh, TUL_NVRAM, b | NVRCK);
2892 		EEP_WAIT();
2893 	}
2894 
2895 	bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
2896 }
2897