xref: /netbsd-src/sys/dev/ic/i82557.c (revision c2f76ff004a2cb67efe5b12d97bd3ef7fe89e18d)
1 /*	$NetBSD: i82557.c,v 1.136 2010/11/13 08:55:13 uebayasi Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1995, David Greenman
35  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
36  * All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice unmodified, this list of conditions, and the following
43  *    disclaimer.
44  * 2. Redistributions in binary form must reproduce the above copyright
45  *    notice, this list of conditions and the following disclaimer in the
46  *    documentation and/or other materials provided with the distribution.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  *
60  *	Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
61  */
62 
63 /*
64  * Device driver for the Intel i82557 fast Ethernet controller,
65  * and its successors, the i82558 and i82559.
66  */
67 
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.136 2010/11/13 08:55:13 uebayasi Exp $");
70 
71 #include "rnd.h"
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/callout.h>
76 #include <sys/mbuf.h>
77 #include <sys/malloc.h>
78 #include <sys/kernel.h>
79 #include <sys/socket.h>
80 #include <sys/ioctl.h>
81 #include <sys/errno.h>
82 #include <sys/device.h>
83 #include <sys/syslog.h>
84 #include <sys/proc.h>
85 
86 #include <machine/endian.h>
87 
88 #if NRND > 0
89 #include <sys/rnd.h>
90 #endif
91 
92 #include <net/if.h>
93 #include <net/if_dl.h>
94 #include <net/if_media.h>
95 #include <net/if_ether.h>
96 
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/ip.h>
100 #include <netinet/tcp.h>
101 #include <netinet/udp.h>
102 
103 #include <net/bpf.h>
104 
105 #include <sys/bus.h>
106 #include <sys/intr.h>
107 
108 #include <dev/mii/miivar.h>
109 
110 #include <dev/ic/i82557reg.h>
111 #include <dev/ic/i82557var.h>
112 
113 #include <dev/microcode/i8255x/rcvbundl.h>
114 
115 /*
116  * NOTE!  On the Alpha, we have an alignment constraint.  The
117  * card DMAs the packet immediately following the RFA.  However,
118  * the first thing in the packet is a 14-byte Ethernet header.
119  * This means that the packet is misaligned.  To compensate,
120  * we actually offset the RFA 2 bytes into the cluster.  This
121  * alignes the packet after the Ethernet header at a 32-bit
122  * boundary.  HOWEVER!  This means that the RFA is misaligned!
123  */
124 #define	RFA_ALIGNMENT_FUDGE	2
125 
126 /*
127  * The configuration byte map has several undefined fields which
128  * must be one or must be zero.  Set up a template for these bits
129  * only (assuming an i82557 chip), leaving the actual configuration
130  * for fxp_init().
131  *
132  * See the definition of struct fxp_cb_config for the bit definitions.
133  */
134 const uint8_t fxp_cb_config_template[] = {
135 	0x0, 0x0,		/* cb_status */
136 	0x0, 0x0,		/* cb_command */
137 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
138 	0x0,	/*  0 */
139 	0x0,	/*  1 */
140 	0x0,	/*  2 */
141 	0x0,	/*  3 */
142 	0x0,	/*  4 */
143 	0x0,	/*  5 */
144 	0x32,	/*  6 */
145 	0x0,	/*  7 */
146 	0x0,	/*  8 */
147 	0x0,	/*  9 */
148 	0x6,	/* 10 */
149 	0x0,	/* 11 */
150 	0x0,	/* 12 */
151 	0x0,	/* 13 */
152 	0xf2,	/* 14 */
153 	0x48,	/* 15 */
154 	0x0,	/* 16 */
155 	0x40,	/* 17 */
156 	0xf0,	/* 18 */
157 	0x0,	/* 19 */
158 	0x3f,	/* 20 */
159 	0x5,	/* 21 */
160 	0x0,	/* 22 */
161 	0x0,	/* 23 */
162 	0x0,	/* 24 */
163 	0x0,	/* 25 */
164 	0x0,	/* 26 */
165 	0x0,	/* 27 */
166 	0x0,	/* 28 */
167 	0x0,	/* 29 */
168 	0x0,	/* 30 */
169 	0x0,	/* 31 */
170 };
171 
172 void	fxp_mii_initmedia(struct fxp_softc *);
173 void	fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
174 
175 void	fxp_80c24_initmedia(struct fxp_softc *);
176 int	fxp_80c24_mediachange(struct ifnet *);
177 void	fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
178 
179 void	fxp_start(struct ifnet *);
180 int	fxp_ioctl(struct ifnet *, u_long, void *);
181 void	fxp_watchdog(struct ifnet *);
182 int	fxp_init(struct ifnet *);
183 void	fxp_stop(struct ifnet *, int);
184 
185 void	fxp_txintr(struct fxp_softc *);
186 int	fxp_rxintr(struct fxp_softc *);
187 
188 void	fxp_rx_hwcksum(struct fxp_softc *,struct mbuf *,
189 	    const struct fxp_rfa *, u_int);
190 
191 void	fxp_rxdrain(struct fxp_softc *);
192 int	fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
193 int	fxp_mdi_read(device_t, int, int);
194 void	fxp_statchg(device_t);
195 void	fxp_mdi_write(device_t, int, int, int);
196 void	fxp_autosize_eeprom(struct fxp_softc*);
197 void	fxp_read_eeprom(struct fxp_softc *, uint16_t *, int, int);
198 void	fxp_write_eeprom(struct fxp_softc *, uint16_t *, int, int);
199 void	fxp_eeprom_update_cksum(struct fxp_softc *);
200 void	fxp_get_info(struct fxp_softc *, uint8_t *);
201 void	fxp_tick(void *);
202 void	fxp_mc_setup(struct fxp_softc *);
203 void	fxp_load_ucode(struct fxp_softc *);
204 
205 int	fxp_copy_small = 0;
206 
207 /*
208  * Variables for interrupt mitigating microcode.
209  */
210 int	fxp_int_delay = 1000;		/* usec */
211 int	fxp_bundle_max = 6;		/* packets */
212 
213 struct fxp_phytype {
214 	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
215 	void	(*fp_init)(struct fxp_softc *);
216 } fxp_phytype_table[] = {
217 	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
218 	{ -1,				fxp_mii_initmedia },
219 };
220 
221 /*
222  * Set initial transmit threshold at 64 (512 bytes). This is
223  * increased by 64 (512 bytes) at a time, to maximum of 192
224  * (1536 bytes), if an underrun occurs.
225  */
226 static int tx_threshold = 64;
227 
228 /*
229  * Wait for the previous command to be accepted (but not necessarily
230  * completed).
231  */
232 static inline void
233 fxp_scb_wait(struct fxp_softc *sc)
234 {
235 	int i = 10000;
236 
237 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
238 		delay(2);
239 	if (i == 0)
240 		log(LOG_WARNING,
241 		    "%s: WARNING: SCB timed out!\n", device_xname(sc->sc_dev));
242 }
243 
244 /*
245  * Submit a command to the i82557.
246  */
247 static inline void
248 fxp_scb_cmd(struct fxp_softc *sc, uint8_t cmd)
249 {
250 
251 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
252 }
253 
254 /*
255  * Finish attaching an i82557 interface.  Called by bus-specific front-end.
256  */
257 void
258 fxp_attach(struct fxp_softc *sc)
259 {
260 	uint8_t enaddr[ETHER_ADDR_LEN];
261 	struct ifnet *ifp;
262 	bus_dma_segment_t seg;
263 	int rseg, i, error;
264 	struct fxp_phytype *fp;
265 
266 	callout_init(&sc->sc_callout, 0);
267 
268         /*
269 	 * Enable use of extended RFDs and IPCBs for 82550 and later chips.
270 	 * Note: to use IPCB we need extended TXCB support too, and
271 	 *       these feature flags should be set in each bus attachment.
272 	 */
273 	if (sc->sc_flags & FXPF_EXT_RFA) {
274 		sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
275 		sc->sc_rfa_size = RFA_EXT_SIZE;
276 	} else {
277 		sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
278 		sc->sc_rfa_size = RFA_SIZE;
279 	}
280 
281 	/*
282 	 * Allocate the control data structures, and create and load the
283 	 * DMA map for it.
284 	 */
285 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
286 	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
287 	    0)) != 0) {
288 		aprint_error_dev(sc->sc_dev,
289 		    "unable to allocate control data, error = %d\n",
290 		    error);
291 		goto fail_0;
292 	}
293 
294 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
295 	    sizeof(struct fxp_control_data), (void **)&sc->sc_control_data,
296 	    BUS_DMA_COHERENT)) != 0) {
297 		aprint_error_dev(sc->sc_dev,
298 		    "unable to map control data, error = %d\n", error);
299 		goto fail_1;
300 	}
301 	sc->sc_cdseg = seg;
302 	sc->sc_cdnseg = rseg;
303 
304 	memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
305 
306 	if ((error = bus_dmamap_create(sc->sc_dmat,
307 	    sizeof(struct fxp_control_data), 1,
308 	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
309 		aprint_error_dev(sc->sc_dev,
310 		    "unable to create control data DMA map, error = %d\n",
311 		    error);
312 		goto fail_2;
313 	}
314 
315 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
316 	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
317 	    0)) != 0) {
318 		aprint_error_dev(sc->sc_dev,
319 		    "can't load control data DMA map, error = %d\n",
320 		    error);
321 		goto fail_3;
322 	}
323 
324 	/*
325 	 * Create the transmit buffer DMA maps.
326 	 */
327 	for (i = 0; i < FXP_NTXCB; i++) {
328 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
329 		    (sc->sc_flags & FXPF_EXT_RFA) ?
330 		    FXP_IPCB_NTXSEG : FXP_NTXSEG,
331 		    MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
332 			aprint_error_dev(sc->sc_dev,
333 			    "unable to create tx DMA map %d, error = %d\n",
334 			    i, error);
335 			goto fail_4;
336 		}
337 	}
338 
339 	/*
340 	 * Create the receive buffer DMA maps.
341 	 */
342 	for (i = 0; i < FXP_NRFABUFS; i++) {
343 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
344 		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
345 			aprint_error_dev(sc->sc_dev,
346 			    "unable to create rx DMA map %d, error = %d\n",
347 			    i, error);
348 			goto fail_5;
349 		}
350 	}
351 
352 	/* Initialize MAC address and media structures. */
353 	fxp_get_info(sc, enaddr);
354 
355 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
356 	    ether_sprintf(enaddr));
357 
358 	ifp = &sc->sc_ethercom.ec_if;
359 
360 	/*
361 	 * Get info about our media interface, and initialize it.  Note
362 	 * the table terminates itself with a phy of -1, indicating
363 	 * that we're using MII.
364 	 */
365 	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
366 		if (fp->fp_phy == sc->phy_primary_device)
367 			break;
368 	(*fp->fp_init)(sc);
369 
370 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
371 	ifp->if_softc = sc;
372 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
373 	ifp->if_ioctl = fxp_ioctl;
374 	ifp->if_start = fxp_start;
375 	ifp->if_watchdog = fxp_watchdog;
376 	ifp->if_init = fxp_init;
377 	ifp->if_stop = fxp_stop;
378 	IFQ_SET_READY(&ifp->if_snd);
379 
380 	if (sc->sc_flags & FXPF_EXT_RFA) {
381 		/*
382 		 * Enable hardware cksum support by EXT_RFA and IPCB.
383 		 *
384 		 * IFCAP_CSUM_IPv4_Tx seems to have a problem,
385 		 * at least, on i82550 rev.12.
386 		 * specifically, it doesn't set ipv4 checksum properly
387 		 * when sending UDP (and probably TCP) packets with
388 		 * 20 byte ipv4 header + 1 or 2 byte data,
389 		 * though ICMP packets seem working.
390 		 * FreeBSD driver has related comments.
391 		 * We've added a workaround to handle the bug by padding
392 		 * such packets manually.
393 		 */
394 		ifp->if_capabilities =
395 		    IFCAP_CSUM_IPv4_Tx  | IFCAP_CSUM_IPv4_Rx  |
396 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
397 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
398 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
399 	} else if (sc->sc_flags & FXPF_82559_RXCSUM) {
400 		ifp->if_capabilities =
401 		    IFCAP_CSUM_TCPv4_Rx |
402 		    IFCAP_CSUM_UDPv4_Rx;
403 	}
404 
405 	/*
406 	 * We can support 802.1Q VLAN-sized frames.
407 	 */
408 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
409 
410 	/*
411 	 * Attach the interface.
412 	 */
413 	if_attach(ifp);
414 	ether_ifattach(ifp, enaddr);
415 #if NRND > 0
416 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
417 	    RND_TYPE_NET, 0);
418 #endif
419 
420 #ifdef FXP_EVENT_COUNTERS
421 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
422 	    NULL, device_xname(sc->sc_dev), "txstall");
423 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
424 	    NULL, device_xname(sc->sc_dev), "txintr");
425 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
426 	    NULL, device_xname(sc->sc_dev), "rxintr");
427 	if (sc->sc_flags & FXPF_FC) {
428 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
429 		    NULL, device_xname(sc->sc_dev), "txpause");
430 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
431 		    NULL, device_xname(sc->sc_dev), "rxpause");
432 	}
433 #endif /* FXP_EVENT_COUNTERS */
434 
435 	/* The attach is successful. */
436 	sc->sc_flags |= FXPF_ATTACHED;
437 
438 	return;
439 
440 	/*
441 	 * Free any resources we've allocated during the failed attach
442 	 * attempt.  Do this in reverse order and fall though.
443 	 */
444  fail_5:
445 	for (i = 0; i < FXP_NRFABUFS; i++) {
446 		if (sc->sc_rxmaps[i] != NULL)
447 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
448 	}
449  fail_4:
450 	for (i = 0; i < FXP_NTXCB; i++) {
451 		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
452 			bus_dmamap_destroy(sc->sc_dmat,
453 			    FXP_DSTX(sc, i)->txs_dmamap);
454 	}
455 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
456  fail_3:
457 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
458  fail_2:
459 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
460 	    sizeof(struct fxp_control_data));
461  fail_1:
462 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
463  fail_0:
464 	return;
465 }
466 
467 void
468 fxp_mii_initmedia(struct fxp_softc *sc)
469 {
470 	int flags;
471 
472 	sc->sc_flags |= FXPF_MII;
473 
474 	sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
475 	sc->sc_mii.mii_readreg = fxp_mdi_read;
476 	sc->sc_mii.mii_writereg = fxp_mdi_write;
477 	sc->sc_mii.mii_statchg = fxp_statchg;
478 
479 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
480 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
481 	    fxp_mii_mediastatus);
482 
483 	flags = MIIF_NOISOLATE;
484 	if (sc->sc_flags & FXPF_FC)
485 		flags |= MIIF_FORCEANEG|MIIF_DOPAUSE;
486 	/*
487 	 * The i82557 wedges if all of its PHYs are isolated!
488 	 */
489 	mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
490 	    MII_OFFSET_ANY, flags);
491 	if (LIST_EMPTY(&sc->sc_mii.mii_phys)) {
492 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
493 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
494 	} else
495 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
496 }
497 
498 void
499 fxp_80c24_initmedia(struct fxp_softc *sc)
500 {
501 
502 	/*
503 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
504 	 * doesn't have a programming interface of any sort.  The
505 	 * media is sensed automatically based on how the link partner
506 	 * is configured.  This is, in essence, manual configuration.
507 	 */
508 	aprint_normal_dev(sc->sc_dev,
509 	    "Seeq 80c24 AutoDUPLEX media interface present\n");
510 	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
511 	    fxp_80c24_mediastatus);
512 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
513 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
514 }
515 
516 /*
517  * Initialize the interface media.
518  */
519 void
520 fxp_get_info(struct fxp_softc *sc, uint8_t *enaddr)
521 {
522 	uint16_t data, myea[ETHER_ADDR_LEN / 2];
523 
524 	/*
525 	 * Reset to a stable state.
526 	 */
527 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
528 	DELAY(100);
529 
530 	sc->sc_eeprom_size = 0;
531 	fxp_autosize_eeprom(sc);
532 	if (sc->sc_eeprom_size == 0) {
533 		aprint_error_dev(sc->sc_dev, "failed to detect EEPROM size\n");
534 		sc->sc_eeprom_size = 6; /* XXX panic here? */
535 	}
536 #ifdef DEBUG
537 	aprint_debug_dev(sc->sc_dev, "detected %d word EEPROM\n",
538 	    1 << sc->sc_eeprom_size);
539 #endif
540 
541 	/*
542 	 * Get info about the primary PHY
543 	 */
544 	fxp_read_eeprom(sc, &data, 6, 1);
545 	sc->phy_primary_device =
546 	    (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
547 
548 	/*
549 	 * Read MAC address.
550 	 */
551 	fxp_read_eeprom(sc, myea, 0, 3);
552 	enaddr[0] = myea[0] & 0xff;
553 	enaddr[1] = myea[0] >> 8;
554 	enaddr[2] = myea[1] & 0xff;
555 	enaddr[3] = myea[1] >> 8;
556 	enaddr[4] = myea[2] & 0xff;
557 	enaddr[5] = myea[2] >> 8;
558 
559 	/*
560 	 * Systems based on the ICH2/ICH2-M chip from Intel, as well
561 	 * as some i82559 designs, have a defect where the chip can
562 	 * cause a PCI protocol violation if it receives a CU_RESUME
563 	 * command when it is entering the IDLE state.
564 	 *
565 	 * The work-around is to disable Dynamic Standby Mode, so that
566 	 * the chip never deasserts #CLKRUN, and always remains in the
567 	 * active state.
568 	 *
569 	 * Unfortunately, the only way to disable Dynamic Standby is
570 	 * to frob an EEPROM setting and reboot (the EEPROM setting
571 	 * is only consulted when the PCI bus comes out of reset).
572 	 *
573 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
574 	 */
575 	if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
576 		fxp_read_eeprom(sc, &data, 10, 1);
577 		if (data & 0x02) {		/* STB enable */
578 			aprint_error_dev(sc->sc_dev, "WARNING: "
579 			    "Disabling dynamic standby mode in EEPROM "
580 			    "to work around a\n");
581 			aprint_normal_dev(sc->sc_dev,
582 			    "WARNING: hardware bug.  You must reset "
583 			    "the system before using this\n");
584 			aprint_normal_dev(sc->sc_dev, "WARNING: interface.\n");
585 			data &= ~0x02;
586 			fxp_write_eeprom(sc, &data, 10, 1);
587 			aprint_normal_dev(sc->sc_dev, "new EEPROM ID: 0x%04x\n",
588 			    data);
589 			fxp_eeprom_update_cksum(sc);
590 		}
591 	}
592 
593 	/* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
594 	/* Due to false positives we make it conditional on setting link1 */
595 	fxp_read_eeprom(sc, &data, 3, 1);
596 	if ((data & 0x03) != 0x03) {
597 		aprint_verbose_dev(sc->sc_dev,
598 		    "May need receiver lock-up workaround\n");
599 	}
600 }
601 
602 static void
603 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
604 {
605 	uint16_t reg;
606 	int x;
607 
608 	for (x = 1 << (len - 1); x != 0; x >>= 1) {
609 		DELAY(40);
610 		if (data & x)
611 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
612 		else
613 			reg = FXP_EEPROM_EECS;
614 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
615 		DELAY(40);
616 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
617 		    reg | FXP_EEPROM_EESK);
618 		DELAY(40);
619 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
620 	}
621 	DELAY(40);
622 }
623 
624 /*
625  * Figure out EEPROM size.
626  *
627  * 559's can have either 64-word or 256-word EEPROMs, the 558
628  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
629  * talks about the existence of 16 to 256 word EEPROMs.
630  *
631  * The only known sizes are 64 and 256, where the 256 version is used
632  * by CardBus cards to store CIS information.
633  *
634  * The address is shifted in msb-to-lsb, and after the last
635  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
636  * after which follows the actual data. We try to detect this zero, by
637  * probing the data-out bit in the EEPROM control register just after
638  * having shifted in a bit. If the bit is zero, we assume we've
639  * shifted enough address bits. The data-out should be tri-state,
640  * before this, which should translate to a logical one.
641  *
642  * Other ways to do this would be to try to read a register with known
643  * contents with a varying number of address bits, but no such
644  * register seem to be available. The high bits of register 10 are 01
645  * on the 558 and 559, but apparently not on the 557.
646  *
647  * The Linux driver computes a checksum on the EEPROM data, but the
648  * value of this checksum is not very well documented.
649  */
650 
651 void
652 fxp_autosize_eeprom(struct fxp_softc *sc)
653 {
654 	int x;
655 
656 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
657 	DELAY(40);
658 
659 	/* Shift in read opcode. */
660 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
661 
662 	/*
663 	 * Shift in address, wait for the dummy zero following a correct
664 	 * address shift.
665 	 */
666 	for (x = 1; x <= 8; x++) {
667 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
668 		DELAY(40);
669 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
670 		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
671 		DELAY(40);
672 		if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
673 		    FXP_EEPROM_EEDO) == 0)
674 			break;
675 		DELAY(40);
676 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
677 		DELAY(40);
678 	}
679 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
680 	DELAY(40);
681 	if (x != 6 && x != 8) {
682 #ifdef DEBUG
683 		printf("%s: strange EEPROM size (%d)\n",
684 		    device_xname(sc->sc_dev), 1 << x);
685 #endif
686 	} else
687 		sc->sc_eeprom_size = x;
688 }
689 
690 /*
691  * Read from the serial EEPROM. Basically, you manually shift in
692  * the read opcode (one bit at a time) and then shift in the address,
693  * and then you shift out the data (all of this one bit at a time).
694  * The word size is 16 bits, so you have to provide the address for
695  * every 16 bits of data.
696  */
697 void
698 fxp_read_eeprom(struct fxp_softc *sc, uint16_t *data, int offset, int words)
699 {
700 	uint16_t reg;
701 	int i, x;
702 
703 	for (i = 0; i < words; i++) {
704 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
705 
706 		/* Shift in read opcode. */
707 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
708 
709 		/* Shift in address. */
710 		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
711 
712 		reg = FXP_EEPROM_EECS;
713 		data[i] = 0;
714 
715 		/* Shift out data. */
716 		for (x = 16; x > 0; x--) {
717 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
718 			    reg | FXP_EEPROM_EESK);
719 			DELAY(40);
720 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
721 			    FXP_EEPROM_EEDO)
722 				data[i] |= (1 << (x - 1));
723 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
724 			DELAY(40);
725 		}
726 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
727 		DELAY(40);
728 	}
729 }
730 
731 /*
732  * Write data to the serial EEPROM.
733  */
734 void
735 fxp_write_eeprom(struct fxp_softc *sc, uint16_t *data, int offset, int words)
736 {
737 	int i, j;
738 
739 	for (i = 0; i < words; i++) {
740 		/* Erase/write enable. */
741 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
742 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
743 		fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
744 		    sc->sc_eeprom_size);
745 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
746 		DELAY(4);
747 
748 		/* Shift in write opcode, address, data. */
749 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
750 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
751 		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
752 		fxp_eeprom_shiftin(sc, data[i], 16);
753 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
754 		DELAY(4);
755 
756 		/* Wait for the EEPROM to finish up. */
757 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
758 		DELAY(4);
759 		for (j = 0; j < 1000; j++) {
760 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
761 			    FXP_EEPROM_EEDO)
762 				break;
763 			DELAY(50);
764 		}
765 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
766 		DELAY(4);
767 
768 		/* Erase/write disable. */
769 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
770 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
771 		fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
772 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
773 		DELAY(4);
774 	}
775 }
776 
777 /*
778  * Update the checksum of the EEPROM.
779  */
780 void
781 fxp_eeprom_update_cksum(struct fxp_softc *sc)
782 {
783 	int i;
784 	uint16_t data, cksum;
785 
786 	cksum = 0;
787 	for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
788 		fxp_read_eeprom(sc, &data, i, 1);
789 		cksum += data;
790 	}
791 	i = (1 << sc->sc_eeprom_size) - 1;
792 	cksum = 0xbaba - cksum;
793 	fxp_read_eeprom(sc, &data, i, 1);
794 	fxp_write_eeprom(sc, &cksum, i, 1);
795 	log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
796 	    device_xname(sc->sc_dev), i, data, cksum);
797 }
798 
799 /*
800  * Start packet transmission on the interface.
801  */
802 void
803 fxp_start(struct ifnet *ifp)
804 {
805 	struct fxp_softc *sc = ifp->if_softc;
806 	struct mbuf *m0, *m;
807 	struct fxp_txdesc *txd;
808 	struct fxp_txsoft *txs;
809 	bus_dmamap_t dmamap;
810 	int error, lasttx, nexttx, opending, seg, nsegs, len;
811 
812 	/*
813 	 * If we want a re-init, bail out now.
814 	 */
815 	if (sc->sc_flags & FXPF_WANTINIT) {
816 		ifp->if_flags |= IFF_OACTIVE;
817 		return;
818 	}
819 
820 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
821 		return;
822 
823 	/*
824 	 * Remember the previous txpending and the current lasttx.
825 	 */
826 	opending = sc->sc_txpending;
827 	lasttx = sc->sc_txlast;
828 
829 	/*
830 	 * Loop through the send queue, setting up transmit descriptors
831 	 * until we drain the queue, or use up all available transmit
832 	 * descriptors.
833 	 */
834 	for (;;) {
835 		struct fxp_tbd *tbdp;
836 		int csum_flags;
837 
838 		/*
839 		 * Grab a packet off the queue.
840 		 */
841 		IFQ_POLL(&ifp->if_snd, m0);
842 		if (m0 == NULL)
843 			break;
844 		m = NULL;
845 
846 		if (sc->sc_txpending == FXP_NTXCB - 1) {
847 			FXP_EVCNT_INCR(&sc->sc_ev_txstall);
848 			break;
849 		}
850 
851 		/*
852 		 * Get the next available transmit descriptor.
853 		 */
854 		nexttx = FXP_NEXTTX(sc->sc_txlast);
855 		txd = FXP_CDTX(sc, nexttx);
856 		txs = FXP_DSTX(sc, nexttx);
857 		dmamap = txs->txs_dmamap;
858 
859 		/*
860 		 * Load the DMA map.  If this fails, the packet either
861 		 * didn't fit in the allotted number of frags, or we were
862 		 * short on resources.  In this case, we'll copy and try
863 		 * again.
864 		 */
865 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
866 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
867 			MGETHDR(m, M_DONTWAIT, MT_DATA);
868 			if (m == NULL) {
869 				log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
870 				    device_xname(sc->sc_dev));
871 				break;
872 			}
873 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
874 			if (m0->m_pkthdr.len > MHLEN) {
875 				MCLGET(m, M_DONTWAIT);
876 				if ((m->m_flags & M_EXT) == 0) {
877 					log(LOG_ERR, "%s: unable to allocate "
878 					    "Tx cluster\n",
879 					    device_xname(sc->sc_dev));
880 					m_freem(m);
881 					break;
882 				}
883 			}
884 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
885 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
886 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
887 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
888 			if (error) {
889 				log(LOG_ERR, "%s: unable to load Tx buffer, "
890 				    "error = %d\n",
891 				    device_xname(sc->sc_dev), error);
892 				break;
893 			}
894 		}
895 
896 		IFQ_DEQUEUE(&ifp->if_snd, m0);
897 		csum_flags = m0->m_pkthdr.csum_flags;
898 		if (m != NULL) {
899 			m_freem(m0);
900 			m0 = m;
901 		}
902 
903 		/* Initialize the fraglist. */
904 		tbdp = txd->txd_tbd;
905 		len = m0->m_pkthdr.len;
906 		nsegs = dmamap->dm_nsegs;
907 		if (sc->sc_flags & FXPF_EXT_RFA)
908 			tbdp++;
909 		for (seg = 0; seg < nsegs; seg++) {
910 			tbdp[seg].tb_addr =
911 			    htole32(dmamap->dm_segs[seg].ds_addr);
912 			tbdp[seg].tb_size =
913 			    htole32(dmamap->dm_segs[seg].ds_len);
914 		}
915 		if (__predict_false(len <= FXP_IP4CSUMTX_PADLEN &&
916 		    (csum_flags & M_CSUM_IPv4) != 0)) {
917 			/*
918 			 * Pad short packets to avoid ip4csum-tx bug.
919 			 *
920 			 * XXX Should we still consider if such short
921 			 *     (36 bytes or less) packets might already
922 			 *     occupy FXP_IPCB_NTXSEG (15) fragments here?
923 			 */
924 			KASSERT(nsegs < FXP_IPCB_NTXSEG);
925 			nsegs++;
926 			tbdp[seg].tb_addr = htole32(FXP_CDTXPADADDR(sc));
927 			tbdp[seg].tb_size =
928 			    htole32(FXP_IP4CSUMTX_PADLEN + 1 - len);
929 		}
930 
931 		/* Sync the DMA map. */
932 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
933 		    BUS_DMASYNC_PREWRITE);
934 
935 		/*
936 		 * Store a pointer to the packet so we can free it later.
937 		 */
938 		txs->txs_mbuf = m0;
939 
940 		/*
941 		 * Initialize the transmit descriptor.
942 		 */
943 		/* BIG_ENDIAN: no need to swap to store 0 */
944 		txd->txd_txcb.cb_status = 0;
945 		txd->txd_txcb.cb_command =
946 		    sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
947 		txd->txd_txcb.tx_threshold = tx_threshold;
948 		txd->txd_txcb.tbd_number = nsegs;
949 
950 		KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
951 		if (sc->sc_flags & FXPF_EXT_RFA) {
952 			struct m_tag *vtag;
953 			struct fxp_ipcb *ipcb;
954 			/*
955 			 * Deal with TCP/IP checksum offload. Note that
956 			 * in order for TCP checksum offload to work,
957 			 * the pseudo header checksum must have already
958 			 * been computed and stored in the checksum field
959 			 * in the TCP header. The stack should have
960 			 * already done this for us.
961 			 */
962 			ipcb = &txd->txd_u.txdu_ipcb;
963 			memset(ipcb, 0, sizeof(*ipcb));
964 			/*
965 			 * always do hardware parsing.
966 			 */
967 			ipcb->ipcb_ip_activation_high =
968 			    FXP_IPCB_HARDWAREPARSING_ENABLE;
969 			/*
970 			 * ip checksum offloading.
971 			 */
972 			if (csum_flags & M_CSUM_IPv4) {
973 				ipcb->ipcb_ip_schedule |=
974 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
975 			}
976 			/*
977 			 * TCP/UDP checksum offloading.
978 			 */
979 			if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
980 				ipcb->ipcb_ip_schedule |=
981 				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
982 			}
983 
984 			/*
985 			 * request VLAN tag insertion if needed.
986 			 */
987 			vtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
988 			if (vtag) {
989 				ipcb->ipcb_vlan_id =
990 				    htobe16(*(u_int *)(vtag + 1));
991 				ipcb->ipcb_ip_activation_high |=
992 				    FXP_IPCB_INSERTVLAN_ENABLE;
993 			}
994 		} else {
995 			KASSERT((csum_flags &
996 			    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
997 		}
998 
999 		FXP_CDTXSYNC(sc, nexttx,
1000 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1001 
1002 		/* Advance the tx pointer. */
1003 		sc->sc_txpending++;
1004 		sc->sc_txlast = nexttx;
1005 
1006 		/*
1007 		 * Pass packet to bpf if there is a listener.
1008 		 */
1009 		bpf_mtap(ifp, m0);
1010 	}
1011 
1012 	if (sc->sc_txpending == FXP_NTXCB - 1) {
1013 		/* No more slots; notify upper layer. */
1014 		ifp->if_flags |= IFF_OACTIVE;
1015 	}
1016 
1017 	if (sc->sc_txpending != opending) {
1018 		/*
1019 		 * We enqueued packets.  If the transmitter was idle,
1020 		 * reset the txdirty pointer.
1021 		 */
1022 		if (opending == 0)
1023 			sc->sc_txdirty = FXP_NEXTTX(lasttx);
1024 
1025 		/*
1026 		 * Cause the chip to interrupt and suspend command
1027 		 * processing once the last packet we've enqueued
1028 		 * has been transmitted.
1029 		 *
1030 		 * To avoid a race between updating status bits
1031 		 * by the fxp chip and clearing command bits
1032 		 * by this function on machines which don't have
1033 		 * atomic methods to clear/set bits in memory
1034 		 * smaller than 32bits (both cb_status and cb_command
1035 		 * members are uint16_t and in the same 32bit word),
1036 		 * we have to prepare a dummy TX descriptor which has
1037 		 * NOP command and just causes a TX completion interrupt.
1038 		 */
1039 		sc->sc_txpending++;
1040 		sc->sc_txlast = FXP_NEXTTX(sc->sc_txlast);
1041 		txd = FXP_CDTX(sc, sc->sc_txlast);
1042 		/* BIG_ENDIAN: no need to swap to store 0 */
1043 		txd->txd_txcb.cb_status = 0;
1044 		txd->txd_txcb.cb_command = htole16(FXP_CB_COMMAND_NOP |
1045 		    FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
1046 		FXP_CDTXSYNC(sc, sc->sc_txlast,
1047 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1048 
1049 		/*
1050 		 * The entire packet chain is set up.  Clear the suspend bit
1051 		 * on the command prior to the first packet we set up.
1052 		 */
1053 		FXP_CDTXSYNC(sc, lasttx,
1054 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1055 		FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
1056 		    htole16(~FXP_CB_COMMAND_S);
1057 		FXP_CDTXSYNC(sc, lasttx,
1058 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1059 
1060 		/*
1061 		 * Issue a Resume command in case the chip was suspended.
1062 		 */
1063 		fxp_scb_wait(sc);
1064 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1065 
1066 		/* Set a watchdog timer in case the chip flakes out. */
1067 		ifp->if_timer = 5;
1068 	}
1069 }
1070 
1071 /*
1072  * Process interface interrupts.
1073  */
1074 int
1075 fxp_intr(void *arg)
1076 {
1077 	struct fxp_softc *sc = arg;
1078 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1079 	bus_dmamap_t rxmap;
1080 	int claimed = 0, rnr;
1081 	uint8_t statack;
1082 
1083 	if (!device_is_active(sc->sc_dev) || sc->sc_enabled == 0)
1084 		return (0);
1085 	/*
1086 	 * If the interface isn't running, don't try to
1087 	 * service the interrupt.. just ack it and bail.
1088 	 */
1089 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
1090 		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1091 		if (statack) {
1092 			claimed = 1;
1093 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1094 		}
1095 		return (claimed);
1096 	}
1097 
1098 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1099 		claimed = 1;
1100 
1101 		/*
1102 		 * First ACK all the interrupts in this pass.
1103 		 */
1104 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1105 
1106 		/*
1107 		 * Process receiver interrupts. If a no-resource (RNR)
1108 		 * condition exists, get whatever packets we can and
1109 		 * re-start the receiver.
1110 		 */
1111 		rnr = (statack & (FXP_SCB_STATACK_RNR | FXP_SCB_STATACK_SWI)) ?
1112 		    1 : 0;
1113 		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR |
1114 		    FXP_SCB_STATACK_SWI)) {
1115 			FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1116 			rnr |= fxp_rxintr(sc);
1117 		}
1118 
1119 		/*
1120 		 * Free any finished transmit mbuf chains.
1121 		 */
1122 		if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1123 			FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1124 			fxp_txintr(sc);
1125 
1126 			/*
1127 			 * Try to get more packets going.
1128 			 */
1129 			fxp_start(ifp);
1130 
1131 			if (sc->sc_txpending == 0) {
1132 				/*
1133 				 * Tell them that they can re-init now.
1134 				 */
1135 				if (sc->sc_flags & FXPF_WANTINIT)
1136 					wakeup(sc);
1137 			}
1138 		}
1139 
1140 		if (rnr) {
1141 			fxp_scb_wait(sc);
1142 			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
1143 			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1144 			fxp_scb_wait(sc);
1145 			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1146 			    rxmap->dm_segs[0].ds_addr +
1147 			    RFA_ALIGNMENT_FUDGE);
1148 			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1149 		}
1150 	}
1151 
1152 #if NRND > 0
1153 	if (claimed)
1154 		rnd_add_uint32(&sc->rnd_source, statack);
1155 #endif
1156 	return (claimed);
1157 }
1158 
1159 /*
1160  * Handle transmit completion interrupts.
1161  */
1162 void
1163 fxp_txintr(struct fxp_softc *sc)
1164 {
1165 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1166 	struct fxp_txdesc *txd;
1167 	struct fxp_txsoft *txs;
1168 	int i;
1169 	uint16_t txstat;
1170 
1171 	ifp->if_flags &= ~IFF_OACTIVE;
1172 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1173 	    i = FXP_NEXTTX(i), sc->sc_txpending--) {
1174 		txd = FXP_CDTX(sc, i);
1175 		txs = FXP_DSTX(sc, i);
1176 
1177 		FXP_CDTXSYNC(sc, i,
1178 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1179 
1180 		/* skip dummy NOP TX descriptor */
1181 		if ((le16toh(txd->txd_txcb.cb_command) & FXP_CB_COMMAND_CMD)
1182 		    == FXP_CB_COMMAND_NOP)
1183 			continue;
1184 
1185 		txstat = le16toh(txd->txd_txcb.cb_status);
1186 
1187 		if ((txstat & FXP_CB_STATUS_C) == 0)
1188 			break;
1189 
1190 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1191 		    0, txs->txs_dmamap->dm_mapsize,
1192 		    BUS_DMASYNC_POSTWRITE);
1193 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1194 		m_freem(txs->txs_mbuf);
1195 		txs->txs_mbuf = NULL;
1196 	}
1197 
1198 	/* Update the dirty transmit buffer pointer. */
1199 	sc->sc_txdirty = i;
1200 
1201 	/*
1202 	 * Cancel the watchdog timer if there are no pending
1203 	 * transmissions.
1204 	 */
1205 	if (sc->sc_txpending == 0)
1206 		ifp->if_timer = 0;
1207 }
1208 
1209 /*
1210  * fxp_rx_hwcksum: check status of H/W offloading for received packets.
1211  */
1212 
1213 void
1214 fxp_rx_hwcksum(struct fxp_softc *sc, struct mbuf *m, const struct fxp_rfa *rfa,
1215     u_int len)
1216 {
1217 	uint32_t csum_data;
1218 	int csum_flags;
1219 
1220 	/*
1221 	 * check H/W Checksumming.
1222 	 */
1223 
1224 	csum_flags = 0;
1225 	csum_data = 0;
1226 
1227 	if ((sc->sc_flags & FXPF_EXT_RFA) != 0) {
1228 		uint8_t rxparsestat;
1229 		uint8_t csum_stat;
1230 
1231 		csum_stat = rfa->cksum_stat;
1232 		rxparsestat = rfa->rx_parse_stat;
1233 		if ((rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)) == 0)
1234 			goto out;
1235 
1236 		if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
1237 			csum_flags = M_CSUM_IPv4;
1238 			if ((csum_stat & FXP_RFDX_CS_IP_CSUM_VALID) == 0)
1239 				csum_flags |= M_CSUM_IPv4_BAD;
1240 		}
1241 
1242 		if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
1243 			csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
1244 			if ((csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID) == 0)
1245 				csum_flags |= M_CSUM_TCP_UDP_BAD;
1246 		}
1247 
1248 	} else if ((sc->sc_flags & FXPF_82559_RXCSUM) != 0) {
1249 		struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1250 		struct ether_header *eh;
1251 		struct ip *ip;
1252 		struct udphdr *uh;
1253 		u_int hlen, pktlen;
1254 
1255 		if (len < ETHER_HDR_LEN + sizeof(struct ip))
1256 			goto out;
1257 		pktlen = len - ETHER_HDR_LEN;
1258 		eh = mtod(m, struct ether_header *);
1259 		if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1260 			goto out;
1261 		ip = (struct ip *)((uint8_t *)eh + ETHER_HDR_LEN);
1262 		if (ip->ip_v != IPVERSION)
1263 			goto out;
1264 
1265 		hlen = ip->ip_hl << 2;
1266 		if (hlen < sizeof(struct ip))
1267 			goto out;
1268 
1269 		/*
1270 		 * Bail if too short, has random trailing garbage, truncated,
1271 		 * fragment, or has ethernet pad.
1272 		 */
1273 		if (ntohs(ip->ip_len) < hlen ||
1274 		    ntohs(ip->ip_len) != pktlen ||
1275 		    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
1276 			goto out;
1277 
1278 		switch (ip->ip_p) {
1279 		case IPPROTO_TCP:
1280 			if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0 ||
1281 			    pktlen < (hlen + sizeof(struct tcphdr)))
1282 				goto out;
1283 			csum_flags =
1284 			    M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
1285 			break;
1286 		case IPPROTO_UDP:
1287 			if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0 ||
1288 			    pktlen < (hlen + sizeof(struct udphdr)))
1289 				goto out;
1290 			uh = (struct udphdr *)((uint8_t *)ip + hlen);
1291 			if (uh->uh_sum == 0)
1292 				goto out;	/* no checksum */
1293 			csum_flags =
1294 			    M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
1295 			break;
1296 		default:
1297 			goto out;
1298 		}
1299 
1300 		/* Extract computed checksum. */
1301 		csum_data = be16dec(mtod(m, uint8_t *) + len);
1302 
1303 		/*
1304 		 * The computed checksum includes IP headers,
1305 		 * so we have to deduct them.
1306 		 */
1307 #if 0
1308 		/*
1309 		 * But in TCP/UDP layer we can assume the IP header is valid,
1310 		 * i.e. a sum of the whole IP header should be 0xffff,
1311 		 * so we don't have to bother to deduct it.
1312 		 */
1313 		if (hlen > 0) {
1314 			uint32_t hsum;
1315 			const uint16_t *iphdr;
1316 			hsum = 0;
1317 			iphdr = (uint16_t *)ip;
1318 
1319 			while (hlen > 1) {
1320 				hsum += ntohs(*iphdr++);
1321 				hlen -= sizeof(uint16_t);
1322 			}
1323 			while (hsum >> 16)
1324 				hsum = (hsum >> 16) + (hsum & 0xffff);
1325 
1326 			csum_data += (uint16_t)~hsum;
1327 
1328 			while (csum_data >> 16)
1329 				csum_data =
1330 				    (csum_data >> 16) + (csum_data & 0xffff);
1331 		}
1332 #endif
1333 	}
1334  out:
1335 	m->m_pkthdr.csum_flags = csum_flags;
1336 	m->m_pkthdr.csum_data = csum_data;
1337 }
1338 
1339 /*
1340  * Handle receive interrupts.
1341  */
1342 int
1343 fxp_rxintr(struct fxp_softc *sc)
1344 {
1345 	struct ethercom *ec = &sc->sc_ethercom;
1346 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1347 	struct mbuf *m, *m0;
1348 	bus_dmamap_t rxmap;
1349 	struct fxp_rfa *rfa;
1350 	int rnr;
1351 	uint16_t len, rxstat;
1352 
1353 	rnr = 0;
1354 
1355 	for (;;) {
1356 		m = sc->sc_rxq.ifq_head;
1357 		rfa = FXP_MTORFA(m);
1358 		rxmap = M_GETCTX(m, bus_dmamap_t);
1359 
1360 		FXP_RFASYNC(sc, m,
1361 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1362 
1363 		rxstat = le16toh(rfa->rfa_status);
1364 
1365 		if ((rxstat & FXP_RFA_STATUS_RNR) != 0)
1366 			rnr = 1;
1367 
1368 		if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1369 			/*
1370 			 * We have processed all of the
1371 			 * receive buffers.
1372 			 */
1373 			FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1374 			return rnr;
1375 		}
1376 
1377 		IF_DEQUEUE(&sc->sc_rxq, m);
1378 
1379 		FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1380 
1381 		len = le16toh(rfa->actual_size) &
1382 		    (m->m_ext.ext_size - 1);
1383 		if ((sc->sc_flags & FXPF_82559_RXCSUM) != 0) {
1384 			/* Adjust for appended checksum bytes. */
1385 			len -= sizeof(uint16_t);
1386 		}
1387 
1388 		if (len < sizeof(struct ether_header)) {
1389 			/*
1390 			 * Runt packet; drop it now.
1391 			 */
1392 			FXP_INIT_RFABUF(sc, m);
1393 			continue;
1394 		}
1395 
1396 		/*
1397 		 * If support for 802.1Q VLAN sized frames is
1398 		 * enabled, we need to do some additional error
1399 		 * checking (as we are saving bad frames, in
1400 		 * order to receive the larger ones).
1401 		 */
1402 		if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1403 		    (rxstat & (FXP_RFA_STATUS_OVERRUN|
1404 			       FXP_RFA_STATUS_RNR|
1405 			       FXP_RFA_STATUS_ALIGN|
1406 			       FXP_RFA_STATUS_CRC)) != 0) {
1407 			FXP_INIT_RFABUF(sc, m);
1408 			continue;
1409 		}
1410 
1411 		/*
1412 		 * check VLAN tag stripping.
1413 		 */
1414 		if ((sc->sc_flags & FXPF_EXT_RFA) != 0 &&
1415 		    (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) != 0) {
1416 			struct m_tag *vtag;
1417 
1418 			vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
1419 			    M_NOWAIT);
1420 			if (vtag == NULL)
1421 				goto dropit;
1422 			*(u_int *)(vtag + 1) = be16toh(rfa->vlan_id);
1423 			m_tag_prepend(m, vtag);
1424 		}
1425 
1426 		/* Do checksum checking. */
1427 		if ((ifp->if_csum_flags_rx & (M_CSUM_TCPv4|M_CSUM_UDPv4)) != 0)
1428 			fxp_rx_hwcksum(sc, m, rfa, len);
1429 
1430 		/*
1431 		 * If the packet is small enough to fit in a
1432 		 * single header mbuf, allocate one and copy
1433 		 * the data into it.  This greatly reduces
1434 		 * memory consumption when we receive lots
1435 		 * of small packets.
1436 		 *
1437 		 * Otherwise, we add a new buffer to the receive
1438 		 * chain.  If this fails, we drop the packet and
1439 		 * recycle the old buffer.
1440 		 */
1441 		if (fxp_copy_small != 0 && len <= MHLEN) {
1442 			MGETHDR(m0, M_DONTWAIT, MT_DATA);
1443 			if (m0 == NULL)
1444 				goto dropit;
1445 			MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
1446 			memcpy(mtod(m0, void *),
1447 			    mtod(m, void *), len);
1448 			m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
1449 			m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
1450 			FXP_INIT_RFABUF(sc, m);
1451 			m = m0;
1452 		} else {
1453 			if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1454  dropit:
1455 				ifp->if_ierrors++;
1456 				FXP_INIT_RFABUF(sc, m);
1457 				continue;
1458 			}
1459 		}
1460 
1461 		m->m_pkthdr.rcvif = ifp;
1462 		m->m_pkthdr.len = m->m_len = len;
1463 
1464 		/*
1465 		 * Pass this up to any BPF listeners, but only
1466 		 * pass it up the stack if it's for us.
1467 		 */
1468 		bpf_mtap(ifp, m);
1469 
1470 		/* Pass it on. */
1471 		(*ifp->if_input)(ifp, m);
1472 	}
1473 }
1474 
1475 /*
1476  * Update packet in/out/collision statistics. The i82557 doesn't
1477  * allow you to access these counters without doing a fairly
1478  * expensive DMA to get _all_ of the statistics it maintains, so
1479  * we do this operation here only once per second. The statistics
1480  * counters in the kernel are updated from the previous dump-stats
1481  * DMA and then a new dump-stats DMA is started. The on-chip
1482  * counters are zeroed when the DMA completes. If we can't start
1483  * the DMA immediately, we don't wait - we just prepare to read
1484  * them again next time.
1485  */
1486 void
1487 fxp_tick(void *arg)
1488 {
1489 	struct fxp_softc *sc = arg;
1490 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1491 	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1492 	int s;
1493 
1494 	if (!device_is_active(sc->sc_dev))
1495 		return;
1496 
1497 	s = splnet();
1498 
1499 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1500 
1501 	ifp->if_opackets += le32toh(sp->tx_good);
1502 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1503 	if (sp->rx_good) {
1504 		ifp->if_ipackets += le32toh(sp->rx_good);
1505 		sc->sc_rxidle = 0;
1506 	} else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
1507 		sc->sc_rxidle++;
1508 	}
1509 	ifp->if_ierrors +=
1510 	    le32toh(sp->rx_crc_errors) +
1511 	    le32toh(sp->rx_alignment_errors) +
1512 	    le32toh(sp->rx_rnr_errors) +
1513 	    le32toh(sp->rx_overrun_errors);
1514 	/*
1515 	 * If any transmit underruns occurred, bump up the transmit
1516 	 * threshold by another 512 bytes (64 * 8).
1517 	 */
1518 	if (sp->tx_underruns) {
1519 		ifp->if_oerrors += le32toh(sp->tx_underruns);
1520 		if (tx_threshold < 192)
1521 			tx_threshold += 64;
1522 	}
1523 #ifdef FXP_EVENT_COUNTERS
1524 	if (sc->sc_flags & FXPF_FC) {
1525 		sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
1526 		sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
1527 	}
1528 #endif
1529 
1530 	/*
1531 	 * If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
1532 	 * then assume the receiver has locked up and attempt to clear
1533 	 * the condition by reprogramming the multicast filter (actually,
1534 	 * resetting the interface). This is a work-around for a bug in
1535 	 * the 82557 where the receiver locks up if it gets certain types
1536 	 * of garbage in the synchronization bits prior to the packet header.
1537 	 * This bug is supposed to only occur in 10Mbps mode, but has been
1538 	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1539 	 * speed transition).
1540 	 */
1541 	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1542 		(void) fxp_init(ifp);
1543 		splx(s);
1544 		return;
1545 	}
1546 	/*
1547 	 * If there is no pending command, start another stats
1548 	 * dump. Otherwise punt for now.
1549 	 */
1550 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1551 		/*
1552 		 * Start another stats dump.
1553 		 */
1554 		FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1555 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1556 	} else {
1557 		/*
1558 		 * A previous command is still waiting to be accepted.
1559 		 * Just zero our copy of the stats and wait for the
1560 		 * next timer event to update them.
1561 		 */
1562 		/* BIG_ENDIAN: no swap required to store 0 */
1563 		sp->tx_good = 0;
1564 		sp->tx_underruns = 0;
1565 		sp->tx_total_collisions = 0;
1566 
1567 		sp->rx_good = 0;
1568 		sp->rx_crc_errors = 0;
1569 		sp->rx_alignment_errors = 0;
1570 		sp->rx_rnr_errors = 0;
1571 		sp->rx_overrun_errors = 0;
1572 		if (sc->sc_flags & FXPF_FC) {
1573 			sp->tx_pauseframes = 0;
1574 			sp->rx_pauseframes = 0;
1575 		}
1576 	}
1577 
1578 	if (sc->sc_flags & FXPF_MII) {
1579 		/* Tick the MII clock. */
1580 		mii_tick(&sc->sc_mii);
1581 	}
1582 
1583 	splx(s);
1584 
1585 	/*
1586 	 * Schedule another timeout one second from now.
1587 	 */
1588 	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1589 }
1590 
1591 /*
1592  * Drain the receive queue.
1593  */
1594 void
1595 fxp_rxdrain(struct fxp_softc *sc)
1596 {
1597 	bus_dmamap_t rxmap;
1598 	struct mbuf *m;
1599 
1600 	for (;;) {
1601 		IF_DEQUEUE(&sc->sc_rxq, m);
1602 		if (m == NULL)
1603 			break;
1604 		rxmap = M_GETCTX(m, bus_dmamap_t);
1605 		bus_dmamap_unload(sc->sc_dmat, rxmap);
1606 		FXP_RXMAP_PUT(sc, rxmap);
1607 		m_freem(m);
1608 	}
1609 }
1610 
1611 /*
1612  * Stop the interface. Cancels the statistics updater and resets
1613  * the interface.
1614  */
1615 void
1616 fxp_stop(struct ifnet *ifp, int disable)
1617 {
1618 	struct fxp_softc *sc = ifp->if_softc;
1619 	struct fxp_txsoft *txs;
1620 	int i;
1621 
1622 	/*
1623 	 * Turn down interface (done early to avoid bad interactions
1624 	 * between panics, shutdown hooks, and the watchdog timer)
1625 	 */
1626 	ifp->if_timer = 0;
1627 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1628 
1629 	/*
1630 	 * Cancel stats updater.
1631 	 */
1632 	callout_stop(&sc->sc_callout);
1633 	if (sc->sc_flags & FXPF_MII) {
1634 		/* Down the MII. */
1635 		mii_down(&sc->sc_mii);
1636 	}
1637 
1638 	/*
1639 	 * Issue software reset.  This unloads any microcode that
1640 	 * might already be loaded.
1641 	 */
1642 	sc->sc_flags &= ~FXPF_UCODE_LOADED;
1643 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1644 	DELAY(50);
1645 
1646 	/*
1647 	 * Release any xmit buffers.
1648 	 */
1649 	for (i = 0; i < FXP_NTXCB; i++) {
1650 		txs = FXP_DSTX(sc, i);
1651 		if (txs->txs_mbuf != NULL) {
1652 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1653 			m_freem(txs->txs_mbuf);
1654 			txs->txs_mbuf = NULL;
1655 		}
1656 	}
1657 	sc->sc_txpending = 0;
1658 
1659 	if (disable) {
1660 		fxp_rxdrain(sc);
1661 		fxp_disable(sc);
1662 	}
1663 
1664 }
1665 
1666 /*
1667  * Watchdog/transmission transmit timeout handler. Called when a
1668  * transmission is started on the interface, but no interrupt is
1669  * received before the timeout. This usually indicates that the
1670  * card has wedged for some reason.
1671  */
1672 void
1673 fxp_watchdog(struct ifnet *ifp)
1674 {
1675 	struct fxp_softc *sc = ifp->if_softc;
1676 
1677 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1678 	ifp->if_oerrors++;
1679 
1680 	(void) fxp_init(ifp);
1681 }
1682 
1683 /*
1684  * Initialize the interface.  Must be called at splnet().
1685  */
1686 int
1687 fxp_init(struct ifnet *ifp)
1688 {
1689 	struct fxp_softc *sc = ifp->if_softc;
1690 	struct fxp_cb_config *cbp;
1691 	struct fxp_cb_ias *cb_ias;
1692 	struct fxp_txdesc *txd;
1693 	bus_dmamap_t rxmap;
1694 	int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
1695 	uint16_t status;
1696 
1697 	if ((error = fxp_enable(sc)) != 0)
1698 		goto out;
1699 
1700 	/*
1701 	 * Cancel any pending I/O
1702 	 */
1703 	fxp_stop(ifp, 0);
1704 
1705 	/*
1706 	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1707 	 * flag, and this prevents the MII from detaching resulting in
1708 	 * a panic. The flags field should perhaps be split in runtime
1709 	 * flags and more static information. For now, just clear the
1710 	 * only other flag set.
1711 	 */
1712 
1713 	sc->sc_flags &= ~FXPF_WANTINIT;
1714 
1715 	/*
1716 	 * Initialize base of CBL and RFA memory. Loading with zero
1717 	 * sets it up for regular linear addressing.
1718 	 */
1719 	fxp_scb_wait(sc);
1720 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1721 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1722 
1723 	fxp_scb_wait(sc);
1724 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1725 
1726 	/*
1727 	 * Initialize the multicast filter.  Do this now, since we might
1728 	 * have to setup the config block differently.
1729 	 */
1730 	fxp_mc_setup(sc);
1731 
1732 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1733 	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1734 
1735 	/*
1736 	 * In order to support receiving 802.1Q VLAN frames, we have to
1737 	 * enable "save bad frames", since they are 4 bytes larger than
1738 	 * the normal Ethernet maximum frame length.  On i82558 and later,
1739 	 * we have a better mechanism for this.
1740 	 */
1741 	save_bf = 0;
1742 	lrxen = 0;
1743 	vlan_drop = 0;
1744 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1745 		if (sc->sc_rev < FXP_REV_82558_A4)
1746 			save_bf = 1;
1747 		else
1748 			lrxen = 1;
1749 		if (sc->sc_rev >= FXP_REV_82550)
1750 			vlan_drop = 1;
1751 	}
1752 
1753 	/*
1754 	 * Initialize base of dump-stats buffer.
1755 	 */
1756 	fxp_scb_wait(sc);
1757 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1758 	    sc->sc_cddma + FXP_CDSTATSOFF);
1759 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1760 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1761 
1762 	cbp = &sc->sc_control_data->fcd_configcb;
1763 	memset(cbp, 0, sizeof(struct fxp_cb_config));
1764 
1765 	/*
1766 	 * Load microcode for this controller.
1767 	 */
1768 	fxp_load_ucode(sc);
1769 
1770 	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
1771 		sc->sc_flags |= FXPF_RECV_WORKAROUND;
1772 	else
1773 		sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
1774 
1775 	/*
1776 	 * This copy is kind of disgusting, but there are a bunch of must be
1777 	 * zero and must be one bits in this structure and this is the easiest
1778 	 * way to initialize them all to proper values.
1779 	 */
1780 	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1781 
1782 	/* BIG_ENDIAN: no need to swap to store 0 */
1783 	cbp->cb_status =	0;
1784 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
1785 				    FXP_CB_COMMAND_EL);
1786 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1787 	cbp->link_addr =	0xffffffff; /* (no) next command */
1788 					/* bytes in config block */
1789 	cbp->byte_count =	(sc->sc_flags & FXPF_EXT_RFA) ?
1790 				FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
1791 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1792 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1793 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1794 	cbp->mwi_enable =	(sc->sc_flags & FXPF_MWI) ? 1 : 0;
1795 	cbp->type_enable =	0;	/* actually reserved */
1796 	cbp->read_align_en =	(sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1797 	cbp->end_wr_on_cl =	(sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1798 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1799 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1800 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1801 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1802 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1803 	cbp->ci_int =		1;	/* interrupt on CU idle */
1804 	cbp->ext_txcb_dis =	(sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1805 	cbp->ext_stats_dis =	1;	/* disable extended counters */
1806 	cbp->keep_overrun_rx =	0;	/* don't pass overrun frames to host */
1807 	cbp->save_bf =		save_bf;/* save bad frames */
1808 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1809 	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
1810 	cbp->ext_rfa =		(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1811 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1812 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1813 					/* interface mode */
1814 	cbp->mediatype =	(sc->sc_flags & FXPF_MII) ? 1 : 0;
1815 	cbp->csma_dis =		0;	/* (don't) disable link */
1816 	cbp->tcp_udp_cksum =	(sc->sc_flags & FXPF_82559_RXCSUM) ? 1 : 0;
1817 					/* (don't) enable RX checksum */
1818 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1819 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1820 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1821 	cbp->mc_wake_en =	0;	/* (don't) assert PME# on mcmatch */
1822 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1823 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1824 	cbp->loopback =		0;	/* (don't) loopback */
1825 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1826 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1827 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1828 	cbp->promiscuous =	prm;	/* promiscuous mode */
1829 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1830 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1831 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1832 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1833 	cbp->crscdt =		(sc->sc_flags & FXPF_MII) ? 0 : 1;
1834 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1835 	cbp->padding =		1;	/* (do) pad short tx packets */
1836 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1837 	cbp->long_rx_en =	lrxen;	/* long packet receive enable */
1838 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1839 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1840 					/* must set wake_en in PMCSR also */
1841 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1842 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1843 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1844 	cbp->mc_all =		allm;	/* accept all multicasts */
1845 	cbp->ext_rx_mode =	(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1846 	cbp->vlan_drop_en =	vlan_drop;
1847 
1848 	if (!(sc->sc_flags & FXPF_FC)) {
1849 		/*
1850 		 * The i82557 has no hardware flow control, the values
1851 		 * here are the defaults for the chip.
1852 		 */
1853 		cbp->fc_delay_lsb =	0;
1854 		cbp->fc_delay_msb =	0x40;
1855 		cbp->pri_fc_thresh =	3;
1856 		cbp->tx_fc_dis =	0;
1857 		cbp->rx_fc_restop =	0;
1858 		cbp->rx_fc_restart =	0;
1859 		cbp->fc_filter =	0;
1860 		cbp->pri_fc_loc =	1;
1861 	} else {
1862 		cbp->fc_delay_lsb =	0x1f;
1863 		cbp->fc_delay_msb =	0x01;
1864 		cbp->pri_fc_thresh =	3;
1865 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1866 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1867 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1868 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1869 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1870 		cbp->ext_stats_dis =	0;	/* enable extended stats */
1871 	}
1872 
1873 	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1874 
1875 	/*
1876 	 * Start the config command/DMA.
1877 	 */
1878 	fxp_scb_wait(sc);
1879 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1880 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1881 	/* ...and wait for it to complete. */
1882 	for (i = 1000; i > 0; i--) {
1883 		FXP_CDCONFIGSYNC(sc,
1884 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1885 		status = le16toh(cbp->cb_status);
1886 		FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD);
1887 		if ((status & FXP_CB_STATUS_C) != 0)
1888 			break;
1889 		DELAY(1);
1890 	}
1891 	if (i == 0) {
1892 		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1893 		    device_xname(sc->sc_dev), __LINE__);
1894 		return (ETIMEDOUT);
1895 	}
1896 
1897 	/*
1898 	 * Initialize the station address.
1899 	 */
1900 	cb_ias = &sc->sc_control_data->fcd_iascb;
1901 	/* BIG_ENDIAN: no need to swap to store 0 */
1902 	cb_ias->cb_status = 0;
1903 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1904 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1905 	cb_ias->link_addr = 0xffffffff;
1906 	memcpy(cb_ias->macaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1907 
1908 	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1909 
1910 	/*
1911 	 * Start the IAS (Individual Address Setup) command/DMA.
1912 	 */
1913 	fxp_scb_wait(sc);
1914 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1915 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1916 	/* ...and wait for it to complete. */
1917 	for (i = 1000; i > 0; i++) {
1918 		FXP_CDIASSYNC(sc,
1919 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1920 		status = le16toh(cb_ias->cb_status);
1921 		FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD);
1922 		if ((status & FXP_CB_STATUS_C) != 0)
1923 			break;
1924 		DELAY(1);
1925 	}
1926 	if (i == 0) {
1927 		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1928 		    device_xname(sc->sc_dev), __LINE__);
1929 		return (ETIMEDOUT);
1930 	}
1931 
1932 	/*
1933 	 * Initialize the transmit descriptor ring.  txlast is initialized
1934 	 * to the end of the list so that it will wrap around to the first
1935 	 * descriptor when the first packet is transmitted.
1936 	 */
1937 	for (i = 0; i < FXP_NTXCB; i++) {
1938 		txd = FXP_CDTX(sc, i);
1939 		memset(txd, 0, sizeof(*txd));
1940 		txd->txd_txcb.cb_command =
1941 		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1942 		txd->txd_txcb.link_addr =
1943 		    htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1944 		if (sc->sc_flags & FXPF_EXT_TXCB)
1945 			txd->txd_txcb.tbd_array_addr =
1946 			    htole32(FXP_CDTBDADDR(sc, i) +
1947 				    (2 * sizeof(struct fxp_tbd)));
1948 		else
1949 			txd->txd_txcb.tbd_array_addr =
1950 			    htole32(FXP_CDTBDADDR(sc, i));
1951 		FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1952 	}
1953 	sc->sc_txpending = 0;
1954 	sc->sc_txdirty = 0;
1955 	sc->sc_txlast = FXP_NTXCB - 1;
1956 
1957 	/*
1958 	 * Initialize the receive buffer list.
1959 	 */
1960 	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1961 	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1962 		rxmap = FXP_RXMAP_GET(sc);
1963 		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1964 			log(LOG_ERR, "%s: unable to allocate or map rx "
1965 			    "buffer %d, error = %d\n",
1966 			    device_xname(sc->sc_dev),
1967 			    sc->sc_rxq.ifq_len, error);
1968 			/*
1969 			 * XXX Should attempt to run with fewer receive
1970 			 * XXX buffers instead of just failing.
1971 			 */
1972 			FXP_RXMAP_PUT(sc, rxmap);
1973 			fxp_rxdrain(sc);
1974 			goto out;
1975 		}
1976 	}
1977 	sc->sc_rxidle = 0;
1978 
1979 	/*
1980 	 * Give the transmit ring to the chip.  We do this by pointing
1981 	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1982 	 * issuing a start command.  It will execute the NOP and then
1983 	 * suspend, pointing at the first descriptor.
1984 	 */
1985 	fxp_scb_wait(sc);
1986 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1987 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1988 
1989 	/*
1990 	 * Initialize receiver buffer area - RFA.
1991 	 */
1992 #if 0	/* initialization will be done by FXP_SCB_INTRCNTL_REQUEST_SWI later */
1993 	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1994 	fxp_scb_wait(sc);
1995 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1996 	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1997 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1998 #endif
1999 
2000 	if (sc->sc_flags & FXPF_MII) {
2001 		/*
2002 		 * Set current media.
2003 		 */
2004 		if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
2005 			goto out;
2006 	}
2007 
2008 	/*
2009 	 * ...all done!
2010 	 */
2011 	ifp->if_flags |= IFF_RUNNING;
2012 	ifp->if_flags &= ~IFF_OACTIVE;
2013 
2014 	/*
2015 	 * Request a software generated interrupt that will be used to
2016 	 * (re)start the RU processing.  If we direct the chip to start
2017 	 * receiving from the start of queue now, instead of letting the
2018 	 * interrupt handler first process all received packets, we run
2019 	 * the risk of having it overwrite mbuf clusters while they are
2020 	 * being processed or after they have been returned to the pool.
2021 	 */
2022 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTRCNTL_REQUEST_SWI);
2023 
2024 	/*
2025 	 * Start the one second timer.
2026 	 */
2027 	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
2028 
2029 	/*
2030 	 * Attempt to start output on the interface.
2031 	 */
2032 	fxp_start(ifp);
2033 
2034  out:
2035 	if (error) {
2036 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2037 		ifp->if_timer = 0;
2038 		log(LOG_ERR, "%s: interface not running\n",
2039 		    device_xname(sc->sc_dev));
2040 	}
2041 	return (error);
2042 }
2043 
2044 /*
2045  * Notify the world which media we're using.
2046  */
2047 void
2048 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2049 {
2050 	struct fxp_softc *sc = ifp->if_softc;
2051 
2052 	if (sc->sc_enabled == 0) {
2053 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
2054 		ifmr->ifm_status = 0;
2055 		return;
2056 	}
2057 
2058 	ether_mediastatus(ifp, ifmr);
2059 }
2060 
2061 int
2062 fxp_80c24_mediachange(struct ifnet *ifp)
2063 {
2064 
2065 	/* Nothing to do here. */
2066 	return (0);
2067 }
2068 
2069 void
2070 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2071 {
2072 	struct fxp_softc *sc = ifp->if_softc;
2073 
2074 	/*
2075 	 * Media is currently-selected media.  We cannot determine
2076 	 * the link status.
2077 	 */
2078 	ifmr->ifm_status = 0;
2079 	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
2080 }
2081 
2082 /*
2083  * Add a buffer to the end of the RFA buffer list.
2084  * Return 0 if successful, error code on failure.
2085  *
2086  * The RFA struct is stuck at the beginning of mbuf cluster and the
2087  * data pointer is fixed up to point just past it.
2088  */
2089 int
2090 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
2091 {
2092 	struct mbuf *m;
2093 	int error;
2094 
2095 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2096 	if (m == NULL)
2097 		return (ENOBUFS);
2098 
2099 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2100 	MCLGET(m, M_DONTWAIT);
2101 	if ((m->m_flags & M_EXT) == 0) {
2102 		m_freem(m);
2103 		return (ENOBUFS);
2104 	}
2105 
2106 	if (unload)
2107 		bus_dmamap_unload(sc->sc_dmat, rxmap);
2108 
2109 	M_SETCTX(m, rxmap);
2110 
2111 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2112 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
2113 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2114 	if (error) {
2115 		/* XXX XXX XXX */
2116 		aprint_error_dev(sc->sc_dev,
2117 		    "can't load rx DMA map %d, error = %d\n",
2118 		    sc->sc_rxq.ifq_len, error);
2119 		panic("fxp_add_rfabuf");
2120 	}
2121 
2122 	FXP_INIT_RFABUF(sc, m);
2123 
2124 	return (0);
2125 }
2126 
2127 int
2128 fxp_mdi_read(device_t self, int phy, int reg)
2129 {
2130 	struct fxp_softc *sc = device_private(self);
2131 	int count = 10000;
2132 	int value;
2133 
2134 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2135 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2136 
2137 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
2138 	    0x10000000) == 0 && count--)
2139 		DELAY(10);
2140 
2141 	if (count <= 0)
2142 		log(LOG_WARNING,
2143 		    "%s: fxp_mdi_read: timed out\n", device_xname(self));
2144 
2145 	return (value & 0xffff);
2146 }
2147 
2148 void
2149 fxp_statchg(device_t self)
2150 {
2151 
2152 	/* Nothing to do. */
2153 }
2154 
2155 void
2156 fxp_mdi_write(device_t self, int phy, int reg, int value)
2157 {
2158 	struct fxp_softc *sc = device_private(self);
2159 	int count = 10000;
2160 
2161 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2162 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2163 	    (value & 0xffff));
2164 
2165 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2166 	    count--)
2167 		DELAY(10);
2168 
2169 	if (count <= 0)
2170 		log(LOG_WARNING,
2171 		    "%s: fxp_mdi_write: timed out\n", device_xname(self));
2172 }
2173 
2174 int
2175 fxp_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2176 {
2177 	struct fxp_softc *sc = ifp->if_softc;
2178 	struct ifreq *ifr = (struct ifreq *)data;
2179 	int s, error;
2180 
2181 	s = splnet();
2182 
2183 	switch (cmd) {
2184 	case SIOCSIFMEDIA:
2185 	case SIOCGIFMEDIA:
2186 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2187 		break;
2188 
2189 	default:
2190 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
2191 			break;
2192 
2193 		error = 0;
2194 
2195 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2196 			;
2197 		else if (ifp->if_flags & IFF_RUNNING) {
2198 			/*
2199 			 * Multicast list has changed; set the
2200 			 * hardware filter accordingly.
2201 			 */
2202 			while (sc->sc_txpending) {
2203 				sc->sc_flags |= FXPF_WANTINIT;
2204 				tsleep(sc, PSOCK, "fxp_init", 0);
2205 			}
2206 			error = fxp_init(ifp);
2207 		}
2208 		break;
2209 	}
2210 
2211 	/* Try to get more packets going. */
2212 	if (sc->sc_enabled)
2213 		fxp_start(ifp);
2214 
2215 	splx(s);
2216 	return (error);
2217 }
2218 
2219 /*
2220  * Program the multicast filter.
2221  *
2222  * This function must be called at splnet().
2223  */
2224 void
2225 fxp_mc_setup(struct fxp_softc *sc)
2226 {
2227 	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
2228 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2229 	struct ethercom *ec = &sc->sc_ethercom;
2230 	struct ether_multi *enm;
2231 	struct ether_multistep step;
2232 	int count, nmcasts;
2233 	uint16_t status;
2234 
2235 #ifdef DIAGNOSTIC
2236 	if (sc->sc_txpending)
2237 		panic("fxp_mc_setup: pending transmissions");
2238 #endif
2239 
2240 	ifp->if_flags &= ~IFF_ALLMULTI;
2241 
2242 	/*
2243 	 * Initialize multicast setup descriptor.
2244 	 */
2245 	nmcasts = 0;
2246 	ETHER_FIRST_MULTI(step, ec, enm);
2247 	while (enm != NULL) {
2248 		/*
2249 		 * Check for too many multicast addresses or if we're
2250 		 * listening to a range.  Either way, we simply have
2251 		 * to accept all multicasts.
2252 		 */
2253 		if (nmcasts >= MAXMCADDR ||
2254 		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
2255 		    ETHER_ADDR_LEN) != 0) {
2256 			/*
2257 			 * Callers of this function must do the
2258 			 * right thing with this.  If we're called
2259 			 * from outside fxp_init(), the caller must
2260 			 * detect if the state if IFF_ALLMULTI changes.
2261 			 * If it does, the caller must then call
2262 			 * fxp_init(), since allmulti is handled by
2263 			 * the config block.
2264 			 */
2265 			ifp->if_flags |= IFF_ALLMULTI;
2266 			return;
2267 		}
2268 		memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
2269 		    ETHER_ADDR_LEN);
2270 		nmcasts++;
2271 		ETHER_NEXT_MULTI(step, enm);
2272 	}
2273 
2274 	/* BIG_ENDIAN: no need to swap to store 0 */
2275 	mcsp->cb_status = 0;
2276 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2277 	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2278 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2279 
2280 	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2281 
2282 	/*
2283 	 * Wait until the command unit is not active.  This should never
2284 	 * happen since nothing is queued, but make sure anyway.
2285 	 */
2286 	count = 100;
2287 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2288 	    FXP_SCB_CUS_ACTIVE && --count)
2289 		DELAY(1);
2290 	if (count == 0) {
2291 		log(LOG_WARNING, "%s: line %d: command queue timeout\n",
2292 		    device_xname(sc->sc_dev), __LINE__);
2293 		return;
2294 	}
2295 
2296 	/*
2297 	 * Start the multicast setup command/DMA.
2298 	 */
2299 	fxp_scb_wait(sc);
2300 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2301 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2302 
2303 	/* ...and wait for it to complete. */
2304 	for (count = 1000; count > 0; count--) {
2305 		FXP_CDMCSSYNC(sc,
2306 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2307 		status = le16toh(mcsp->cb_status);
2308 		FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD);
2309 		if ((status & FXP_CB_STATUS_C) != 0)
2310 			break;
2311 		DELAY(1);
2312 	}
2313 	if (count == 0) {
2314 		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
2315 		    device_xname(sc->sc_dev), __LINE__);
2316 		return;
2317 	}
2318 }
2319 
2320 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2321 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2322 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2323 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2324 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2325 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2326 
2327 #define	UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2328 
2329 static const struct ucode {
2330 	int32_t		revision;
2331 	const uint32_t	*ucode;
2332 	size_t		length;
2333 	uint16_t	int_delay_offset;
2334 	uint16_t	bundle_max_offset;
2335 } ucode_table[] = {
2336 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2337 	  D101_CPUSAVER_DWORD, 0 },
2338 
2339 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2340 	  D101_CPUSAVER_DWORD, 0 },
2341 
2342 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2343 	  D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2344 
2345 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2346 	  D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2347 
2348 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2349 	  D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2350 
2351 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2352 	  D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2353 
2354 	{ 0, NULL, 0, 0, 0 }
2355 };
2356 
2357 void
2358 fxp_load_ucode(struct fxp_softc *sc)
2359 {
2360 	const struct ucode *uc;
2361 	struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2362 	int count, i;
2363 	uint16_t status;
2364 
2365 	if (sc->sc_flags & FXPF_UCODE_LOADED)
2366 		return;
2367 
2368 	/*
2369 	 * Only load the uCode if the user has requested that
2370 	 * we do so.
2371 	 */
2372 	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2373 		sc->sc_int_delay = 0;
2374 		sc->sc_bundle_max = 0;
2375 		return;
2376 	}
2377 
2378 	for (uc = ucode_table; uc->ucode != NULL; uc++) {
2379 		if (sc->sc_rev == uc->revision)
2380 			break;
2381 	}
2382 	if (uc->ucode == NULL)
2383 		return;
2384 
2385 	/* BIG ENDIAN: no need to swap to store 0 */
2386 	cbp->cb_status = 0;
2387 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2388 	cbp->link_addr = 0xffffffff;		/* (no) next command */
2389 	for (i = 0; i < uc->length; i++)
2390 		cbp->ucode[i] = htole32(uc->ucode[i]);
2391 
2392 	if (uc->int_delay_offset)
2393 		*(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2394 		    htole16(fxp_int_delay + (fxp_int_delay / 2));
2395 
2396 	if (uc->bundle_max_offset)
2397 		*(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2398 		    htole16(fxp_bundle_max);
2399 
2400 	FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2401 
2402 	/*
2403 	 * Download the uCode to the chip.
2404 	 */
2405 	fxp_scb_wait(sc);
2406 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2407 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2408 
2409 	/* ...and wait for it to complete. */
2410 	for (count = 10000; count > 0; count--) {
2411 		FXP_CDUCODESYNC(sc,
2412 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2413 		status = le16toh(cbp->cb_status);
2414 		FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD);
2415 		if ((status & FXP_CB_STATUS_C) != 0)
2416 			break;
2417 		DELAY(2);
2418 	}
2419 	if (count == 0) {
2420 		sc->sc_int_delay = 0;
2421 		sc->sc_bundle_max = 0;
2422 		log(LOG_WARNING, "%s: timeout loading microcode\n",
2423 		    device_xname(sc->sc_dev));
2424 		return;
2425 	}
2426 
2427 	if (sc->sc_int_delay != fxp_int_delay ||
2428 	    sc->sc_bundle_max != fxp_bundle_max) {
2429 		sc->sc_int_delay = fxp_int_delay;
2430 		sc->sc_bundle_max = fxp_bundle_max;
2431 		log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
2432 		    "max bundle: %d\n", device_xname(sc->sc_dev),
2433 		    sc->sc_int_delay,
2434 		    uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2435 	}
2436 
2437 	sc->sc_flags |= FXPF_UCODE_LOADED;
2438 }
2439 
2440 int
2441 fxp_enable(struct fxp_softc *sc)
2442 {
2443 
2444 	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2445 		if ((*sc->sc_enable)(sc) != 0) {
2446 			log(LOG_ERR, "%s: device enable failed\n",
2447 			    device_xname(sc->sc_dev));
2448 			return (EIO);
2449 		}
2450 	}
2451 
2452 	sc->sc_enabled = 1;
2453 	return (0);
2454 }
2455 
2456 void
2457 fxp_disable(struct fxp_softc *sc)
2458 {
2459 
2460 	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2461 		(*sc->sc_disable)(sc);
2462 		sc->sc_enabled = 0;
2463 	}
2464 }
2465 
2466 /*
2467  * fxp_activate:
2468  *
2469  *	Handle device activation/deactivation requests.
2470  */
2471 int
2472 fxp_activate(device_t self, enum devact act)
2473 {
2474 	struct fxp_softc *sc = device_private(self);
2475 
2476 	switch (act) {
2477 	case DVACT_DEACTIVATE:
2478 		if_deactivate(&sc->sc_ethercom.ec_if);
2479 		return 0;
2480 	default:
2481 		return EOPNOTSUPP;
2482 	}
2483 }
2484 
2485 /*
2486  * fxp_detach:
2487  *
2488  *	Detach an i82557 interface.
2489  */
2490 int
2491 fxp_detach(struct fxp_softc *sc, int flags)
2492 {
2493 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2494 	int i, s;
2495 
2496 	/* Succeed now if there's no work to do. */
2497 	if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2498 		return (0);
2499 
2500 	s = splnet();
2501 	/* Stop the interface. Callouts are stopped in it. */
2502 	fxp_stop(ifp, 1);
2503 	splx(s);
2504 
2505 	/* Destroy our callout. */
2506 	callout_destroy(&sc->sc_callout);
2507 
2508 	if (sc->sc_flags & FXPF_MII) {
2509 		/* Detach all PHYs */
2510 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2511 	}
2512 
2513 	/* Delete all remaining media. */
2514 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2515 
2516 #if NRND > 0
2517 	rnd_detach_source(&sc->rnd_source);
2518 #endif
2519 	ether_ifdetach(ifp);
2520 	if_detach(ifp);
2521 
2522 	for (i = 0; i < FXP_NRFABUFS; i++) {
2523 		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2524 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2525 	}
2526 
2527 	for (i = 0; i < FXP_NTXCB; i++) {
2528 		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2529 		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2530 	}
2531 
2532 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2533 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2534 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2535 	    sizeof(struct fxp_control_data));
2536 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2537 
2538 	return (0);
2539 }
2540