xref: /netbsd-src/sys/dev/ic/i82557.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: i82557.c,v 1.149 2018/06/26 06:48:00 msaitoh Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1995, David Greenman
35  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
36  * All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice unmodified, this list of conditions, and the following
43  *    disclaimer.
44  * 2. Redistributions in binary form must reproduce the above copyright
45  *    notice, this list of conditions and the following disclaimer in the
46  *    documentation and/or other materials provided with the distribution.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  *
60  *	Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
61  */
62 
63 /*
64  * Device driver for the Intel i82557 fast Ethernet controller,
65  * and its successors, the i82558 and i82559.
66  */
67 
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.149 2018/06/26 06:48:00 msaitoh Exp $");
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/callout.h>
74 #include <sys/mbuf.h>
75 #include <sys/malloc.h>
76 #include <sys/kernel.h>
77 #include <sys/socket.h>
78 #include <sys/ioctl.h>
79 #include <sys/errno.h>
80 #include <sys/device.h>
81 #include <sys/syslog.h>
82 #include <sys/proc.h>
83 
84 #include <machine/endian.h>
85 
86 #include <sys/rndsource.h>
87 
88 #include <net/if.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_ether.h>
92 
93 #include <netinet/in.h>
94 #include <netinet/in_systm.h>
95 #include <netinet/ip.h>
96 #include <netinet/tcp.h>
97 #include <netinet/udp.h>
98 
99 #include <net/bpf.h>
100 
101 #include <sys/bus.h>
102 #include <sys/intr.h>
103 
104 #include <dev/mii/miivar.h>
105 
106 #include <dev/ic/i82557reg.h>
107 #include <dev/ic/i82557var.h>
108 
109 #include <dev/microcode/i8255x/rcvbundl.h>
110 
111 /*
112  * NOTE!  On the Alpha, we have an alignment constraint.  The
113  * card DMAs the packet immediately following the RFA.  However,
114  * the first thing in the packet is a 14-byte Ethernet header.
115  * This means that the packet is misaligned.  To compensate,
116  * we actually offset the RFA 2 bytes into the cluster.  This
117  * alignes the packet after the Ethernet header at a 32-bit
118  * boundary.  HOWEVER!  This means that the RFA is misaligned!
119  */
120 #define	RFA_ALIGNMENT_FUDGE	2
121 
122 /*
123  * The configuration byte map has several undefined fields which
124  * must be one or must be zero.  Set up a template for these bits
125  * only (assuming an i82557 chip), leaving the actual configuration
126  * for fxp_init().
127  *
128  * See the definition of struct fxp_cb_config for the bit definitions.
129  */
130 const uint8_t fxp_cb_config_template[] = {
131 	0x0, 0x0,		/* cb_status */
132 	0x0, 0x0,		/* cb_command */
133 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
134 	0x0,	/*  0 */
135 	0x0,	/*  1 */
136 	0x0,	/*  2 */
137 	0x0,	/*  3 */
138 	0x0,	/*  4 */
139 	0x0,	/*  5 */
140 	0x32,	/*  6 */
141 	0x0,	/*  7 */
142 	0x0,	/*  8 */
143 	0x0,	/*  9 */
144 	0x6,	/* 10 */
145 	0x0,	/* 11 */
146 	0x0,	/* 12 */
147 	0x0,	/* 13 */
148 	0xf2,	/* 14 */
149 	0x48,	/* 15 */
150 	0x0,	/* 16 */
151 	0x40,	/* 17 */
152 	0xf0,	/* 18 */
153 	0x0,	/* 19 */
154 	0x3f,	/* 20 */
155 	0x5,	/* 21 */
156 	0x0,	/* 22 */
157 	0x0,	/* 23 */
158 	0x0,	/* 24 */
159 	0x0,	/* 25 */
160 	0x0,	/* 26 */
161 	0x0,	/* 27 */
162 	0x0,	/* 28 */
163 	0x0,	/* 29 */
164 	0x0,	/* 30 */
165 	0x0,	/* 31 */
166 };
167 
168 void	fxp_mii_initmedia(struct fxp_softc *);
169 void	fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
170 
171 void	fxp_80c24_initmedia(struct fxp_softc *);
172 int	fxp_80c24_mediachange(struct ifnet *);
173 void	fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
174 
175 void	fxp_start(struct ifnet *);
176 int	fxp_ioctl(struct ifnet *, u_long, void *);
177 void	fxp_watchdog(struct ifnet *);
178 int	fxp_init(struct ifnet *);
179 void	fxp_stop(struct ifnet *, int);
180 
181 void	fxp_txintr(struct fxp_softc *);
182 int	fxp_rxintr(struct fxp_softc *);
183 
184 void	fxp_rx_hwcksum(struct fxp_softc *,struct mbuf *,
185 	    const struct fxp_rfa *, u_int);
186 
187 void	fxp_rxdrain(struct fxp_softc *);
188 int	fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
189 int	fxp_mdi_read(device_t, int, int);
190 void	fxp_statchg(struct ifnet *);
191 void	fxp_mdi_write(device_t, int, int, int);
192 void	fxp_autosize_eeprom(struct fxp_softc*);
193 void	fxp_read_eeprom(struct fxp_softc *, uint16_t *, int, int);
194 void	fxp_write_eeprom(struct fxp_softc *, uint16_t *, int, int);
195 void	fxp_eeprom_update_cksum(struct fxp_softc *);
196 void	fxp_get_info(struct fxp_softc *, uint8_t *);
197 void	fxp_tick(void *);
198 void	fxp_mc_setup(struct fxp_softc *);
199 void	fxp_load_ucode(struct fxp_softc *);
200 
201 int	fxp_copy_small = 0;
202 
203 /*
204  * Variables for interrupt mitigating microcode.
205  */
206 int	fxp_int_delay = 1000;		/* usec */
207 int	fxp_bundle_max = 6;		/* packets */
208 
209 struct fxp_phytype {
210 	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
211 	void	(*fp_init)(struct fxp_softc *);
212 } fxp_phytype_table[] = {
213 	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
214 	{ -1,				fxp_mii_initmedia },
215 };
216 
217 /*
218  * Set initial transmit threshold at 64 (512 bytes). This is
219  * increased by 64 (512 bytes) at a time, to maximum of 192
220  * (1536 bytes), if an underrun occurs.
221  */
222 static int tx_threshold = 64;
223 
224 /*
225  * Wait for the previous command to be accepted (but not necessarily
226  * completed).
227  */
228 static inline void
229 fxp_scb_wait(struct fxp_softc *sc)
230 {
231 	int i = 10000;
232 
233 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
234 		delay(2);
235 	if (i == 0)
236 		log(LOG_WARNING,
237 		    "%s: WARNING: SCB timed out!\n", device_xname(sc->sc_dev));
238 }
239 
240 /*
241  * Submit a command to the i82557.
242  */
243 static inline void
244 fxp_scb_cmd(struct fxp_softc *sc, uint8_t cmd)
245 {
246 
247 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
248 }
249 
250 /*
251  * Finish attaching an i82557 interface.  Called by bus-specific front-end.
252  */
253 void
254 fxp_attach(struct fxp_softc *sc)
255 {
256 	uint8_t enaddr[ETHER_ADDR_LEN];
257 	struct ifnet *ifp;
258 	bus_dma_segment_t seg;
259 	int rseg, i, error;
260 	struct fxp_phytype *fp;
261 
262 	callout_init(&sc->sc_callout, 0);
263 
264         /*
265 	 * Enable use of extended RFDs and IPCBs for 82550 and later chips.
266 	 * Note: to use IPCB we need extended TXCB support too, and
267 	 *       these feature flags should be set in each bus attachment.
268 	 */
269 	if (sc->sc_flags & FXPF_EXT_RFA) {
270 		sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
271 		sc->sc_rfa_size = RFA_EXT_SIZE;
272 	} else {
273 		sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
274 		sc->sc_rfa_size = RFA_SIZE;
275 	}
276 
277 	/*
278 	 * Allocate the control data structures, and create and load the
279 	 * DMA map for it.
280 	 */
281 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
282 	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
283 	    0)) != 0) {
284 		aprint_error_dev(sc->sc_dev,
285 		    "unable to allocate control data, error = %d\n",
286 		    error);
287 		goto fail_0;
288 	}
289 
290 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
291 	    sizeof(struct fxp_control_data), (void **)&sc->sc_control_data,
292 	    BUS_DMA_COHERENT)) != 0) {
293 		aprint_error_dev(sc->sc_dev,
294 		    "unable to map control data, error = %d\n", error);
295 		goto fail_1;
296 	}
297 	sc->sc_cdseg = seg;
298 	sc->sc_cdnseg = rseg;
299 
300 	memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
301 
302 	if ((error = bus_dmamap_create(sc->sc_dmat,
303 	    sizeof(struct fxp_control_data), 1,
304 	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
305 		aprint_error_dev(sc->sc_dev,
306 		    "unable to create control data DMA map, error = %d\n",
307 		    error);
308 		goto fail_2;
309 	}
310 
311 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
312 	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
313 	    0)) != 0) {
314 		aprint_error_dev(sc->sc_dev,
315 		    "can't load control data DMA map, error = %d\n",
316 		    error);
317 		goto fail_3;
318 	}
319 
320 	/*
321 	 * Create the transmit buffer DMA maps.
322 	 */
323 	for (i = 0; i < FXP_NTXCB; i++) {
324 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
325 		    (sc->sc_flags & FXPF_EXT_RFA) ?
326 		    FXP_IPCB_NTXSEG : FXP_NTXSEG,
327 		    MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
328 			aprint_error_dev(sc->sc_dev,
329 			    "unable to create tx DMA map %d, error = %d\n",
330 			    i, error);
331 			goto fail_4;
332 		}
333 	}
334 
335 	/*
336 	 * Create the receive buffer DMA maps.
337 	 */
338 	for (i = 0; i < FXP_NRFABUFS; i++) {
339 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
340 		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
341 			aprint_error_dev(sc->sc_dev,
342 			    "unable to create rx DMA map %d, error = %d\n",
343 			    i, error);
344 			goto fail_5;
345 		}
346 	}
347 
348 	/* Initialize MAC address and media structures. */
349 	fxp_get_info(sc, enaddr);
350 
351 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
352 	    ether_sprintf(enaddr));
353 
354 	ifp = &sc->sc_ethercom.ec_if;
355 
356 	/*
357 	 * Get info about our media interface, and initialize it.  Note
358 	 * the table terminates itself with a phy of -1, indicating
359 	 * that we're using MII.
360 	 */
361 	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
362 		if (fp->fp_phy == sc->phy_primary_device)
363 			break;
364 	(*fp->fp_init)(sc);
365 
366 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
367 	ifp->if_softc = sc;
368 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
369 	ifp->if_ioctl = fxp_ioctl;
370 	ifp->if_start = fxp_start;
371 	ifp->if_watchdog = fxp_watchdog;
372 	ifp->if_init = fxp_init;
373 	ifp->if_stop = fxp_stop;
374 	IFQ_SET_READY(&ifp->if_snd);
375 
376 	if (sc->sc_flags & FXPF_EXT_RFA) {
377 		/*
378 		 * Enable hardware cksum support by EXT_RFA and IPCB.
379 		 *
380 		 * IFCAP_CSUM_IPv4_Tx seems to have a problem,
381 		 * at least, on i82550 rev.12.
382 		 * specifically, it doesn't set ipv4 checksum properly
383 		 * when sending UDP (and probably TCP) packets with
384 		 * 20 byte ipv4 header + 1 or 2 byte data,
385 		 * though ICMP packets seem working.
386 		 * FreeBSD driver has related comments.
387 		 * We've added a workaround to handle the bug by padding
388 		 * such packets manually.
389 		 */
390 		ifp->if_capabilities =
391 		    IFCAP_CSUM_IPv4_Tx  | IFCAP_CSUM_IPv4_Rx  |
392 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
393 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
394 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
395 	} else if (sc->sc_flags & FXPF_82559_RXCSUM) {
396 		ifp->if_capabilities =
397 		    IFCAP_CSUM_TCPv4_Rx |
398 		    IFCAP_CSUM_UDPv4_Rx;
399 	}
400 
401 	/*
402 	 * We can support 802.1Q VLAN-sized frames.
403 	 */
404 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
405 
406 	/*
407 	 * Attach the interface.
408 	 */
409 	if_attach(ifp);
410 	if_deferred_start_init(ifp, NULL);
411 	ether_ifattach(ifp, enaddr);
412 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
413 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
414 
415 #ifdef FXP_EVENT_COUNTERS
416 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
417 	    NULL, device_xname(sc->sc_dev), "txstall");
418 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
419 	    NULL, device_xname(sc->sc_dev), "txintr");
420 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
421 	    NULL, device_xname(sc->sc_dev), "rxintr");
422 	if (sc->sc_flags & FXPF_FC) {
423 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
424 		    NULL, device_xname(sc->sc_dev), "txpause");
425 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
426 		    NULL, device_xname(sc->sc_dev), "rxpause");
427 	}
428 #endif /* FXP_EVENT_COUNTERS */
429 
430 	/* The attach is successful. */
431 	sc->sc_flags |= FXPF_ATTACHED;
432 
433 	return;
434 
435 	/*
436 	 * Free any resources we've allocated during the failed attach
437 	 * attempt.  Do this in reverse order and fall though.
438 	 */
439  fail_5:
440 	for (i = 0; i < FXP_NRFABUFS; i++) {
441 		if (sc->sc_rxmaps[i] != NULL)
442 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
443 	}
444  fail_4:
445 	for (i = 0; i < FXP_NTXCB; i++) {
446 		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
447 			bus_dmamap_destroy(sc->sc_dmat,
448 			    FXP_DSTX(sc, i)->txs_dmamap);
449 	}
450 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
451  fail_3:
452 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
453  fail_2:
454 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
455 	    sizeof(struct fxp_control_data));
456  fail_1:
457 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
458  fail_0:
459 	return;
460 }
461 
462 void
463 fxp_mii_initmedia(struct fxp_softc *sc)
464 {
465 	int flags;
466 
467 	sc->sc_flags |= FXPF_MII;
468 
469 	sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
470 	sc->sc_mii.mii_readreg = fxp_mdi_read;
471 	sc->sc_mii.mii_writereg = fxp_mdi_write;
472 	sc->sc_mii.mii_statchg = fxp_statchg;
473 
474 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
475 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
476 	    fxp_mii_mediastatus);
477 
478 	flags = MIIF_NOISOLATE;
479 	if (sc->sc_flags & FXPF_FC)
480 		flags |= MIIF_FORCEANEG|MIIF_DOPAUSE;
481 	/*
482 	 * The i82557 wedges if all of its PHYs are isolated!
483 	 */
484 	mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
485 	    MII_OFFSET_ANY, flags);
486 	if (LIST_EMPTY(&sc->sc_mii.mii_phys)) {
487 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
488 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
489 	} else
490 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
491 }
492 
493 void
494 fxp_80c24_initmedia(struct fxp_softc *sc)
495 {
496 
497 	/*
498 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
499 	 * doesn't have a programming interface of any sort.  The
500 	 * media is sensed automatically based on how the link partner
501 	 * is configured.  This is, in essence, manual configuration.
502 	 */
503 	aprint_normal_dev(sc->sc_dev,
504 	    "Seeq 80c24 AutoDUPLEX media interface present\n");
505 	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
506 	    fxp_80c24_mediastatus);
507 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
508 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
509 }
510 
511 /*
512  * Initialize the interface media.
513  */
514 void
515 fxp_get_info(struct fxp_softc *sc, uint8_t *enaddr)
516 {
517 	uint16_t data, myea[ETHER_ADDR_LEN / 2];
518 
519 	/*
520 	 * Reset to a stable state.
521 	 */
522 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
523 	DELAY(100);
524 
525 	sc->sc_eeprom_size = 0;
526 	fxp_autosize_eeprom(sc);
527 	if (sc->sc_eeprom_size == 0) {
528 		aprint_error_dev(sc->sc_dev, "failed to detect EEPROM size\n");
529 		sc->sc_eeprom_size = 6; /* XXX panic here? */
530 	}
531 #ifdef DEBUG
532 	aprint_debug_dev(sc->sc_dev, "detected %d word EEPROM\n",
533 	    1 << sc->sc_eeprom_size);
534 #endif
535 
536 	/*
537 	 * Get info about the primary PHY
538 	 */
539 	fxp_read_eeprom(sc, &data, 6, 1);
540 	sc->phy_primary_device =
541 	    (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
542 
543 	/*
544 	 * Read MAC address.
545 	 */
546 	fxp_read_eeprom(sc, myea, 0, 3);
547 	enaddr[0] = myea[0] & 0xff;
548 	enaddr[1] = myea[0] >> 8;
549 	enaddr[2] = myea[1] & 0xff;
550 	enaddr[3] = myea[1] >> 8;
551 	enaddr[4] = myea[2] & 0xff;
552 	enaddr[5] = myea[2] >> 8;
553 
554 	/*
555 	 * Systems based on the ICH2/ICH2-M chip from Intel, as well
556 	 * as some i82559 designs, have a defect where the chip can
557 	 * cause a PCI protocol violation if it receives a CU_RESUME
558 	 * command when it is entering the IDLE state.
559 	 *
560 	 * The work-around is to disable Dynamic Standby Mode, so that
561 	 * the chip never deasserts #CLKRUN, and always remains in the
562 	 * active state.
563 	 *
564 	 * Unfortunately, the only way to disable Dynamic Standby is
565 	 * to frob an EEPROM setting and reboot (the EEPROM setting
566 	 * is only consulted when the PCI bus comes out of reset).
567 	 *
568 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
569 	 */
570 	if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
571 		fxp_read_eeprom(sc, &data, 10, 1);
572 		if (data & 0x02) {		/* STB enable */
573 			aprint_error_dev(sc->sc_dev, "WARNING: "
574 			    "Disabling dynamic standby mode in EEPROM "
575 			    "to work around a\n");
576 			aprint_normal_dev(sc->sc_dev,
577 			    "WARNING: hardware bug.  You must reset "
578 			    "the system before using this\n");
579 			aprint_normal_dev(sc->sc_dev, "WARNING: interface.\n");
580 			data &= ~0x02;
581 			fxp_write_eeprom(sc, &data, 10, 1);
582 			aprint_normal_dev(sc->sc_dev, "new EEPROM ID: 0x%04x\n",
583 			    data);
584 			fxp_eeprom_update_cksum(sc);
585 		}
586 	}
587 
588 	/* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
589 	/* Due to false positives we make it conditional on setting link1 */
590 	fxp_read_eeprom(sc, &data, 3, 1);
591 	if ((data & 0x03) != 0x03) {
592 		aprint_verbose_dev(sc->sc_dev,
593 		    "May need receiver lock-up workaround\n");
594 	}
595 }
596 
597 static void
598 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
599 {
600 	uint16_t reg;
601 	int x;
602 
603 	for (x = 1 << (len - 1); x != 0; x >>= 1) {
604 		DELAY(40);
605 		if (data & x)
606 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
607 		else
608 			reg = FXP_EEPROM_EECS;
609 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
610 		DELAY(40);
611 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
612 		    reg | FXP_EEPROM_EESK);
613 		DELAY(40);
614 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
615 	}
616 	DELAY(40);
617 }
618 
619 /*
620  * Figure out EEPROM size.
621  *
622  * 559's can have either 64-word or 256-word EEPROMs, the 558
623  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
624  * talks about the existence of 16 to 256 word EEPROMs.
625  *
626  * The only known sizes are 64 and 256, where the 256 version is used
627  * by CardBus cards to store CIS information.
628  *
629  * The address is shifted in msb-to-lsb, and after the last
630  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
631  * after which follows the actual data. We try to detect this zero, by
632  * probing the data-out bit in the EEPROM control register just after
633  * having shifted in a bit. If the bit is zero, we assume we've
634  * shifted enough address bits. The data-out should be tri-state,
635  * before this, which should translate to a logical one.
636  *
637  * Other ways to do this would be to try to read a register with known
638  * contents with a varying number of address bits, but no such
639  * register seem to be available. The high bits of register 10 are 01
640  * on the 558 and 559, but apparently not on the 557.
641  *
642  * The Linux driver computes a checksum on the EEPROM data, but the
643  * value of this checksum is not very well documented.
644  */
645 
646 void
647 fxp_autosize_eeprom(struct fxp_softc *sc)
648 {
649 	int x;
650 
651 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
652 	DELAY(40);
653 
654 	/* Shift in read opcode. */
655 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
656 
657 	/*
658 	 * Shift in address, wait for the dummy zero following a correct
659 	 * address shift.
660 	 */
661 	for (x = 1; x <= 8; x++) {
662 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
663 		DELAY(40);
664 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
665 		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
666 		DELAY(40);
667 		if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
668 		    FXP_EEPROM_EEDO) == 0)
669 			break;
670 		DELAY(40);
671 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
672 		DELAY(40);
673 	}
674 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
675 	DELAY(40);
676 	if (x != 6 && x != 8) {
677 #ifdef DEBUG
678 		printf("%s: strange EEPROM size (%d)\n",
679 		    device_xname(sc->sc_dev), 1 << x);
680 #endif
681 	} else
682 		sc->sc_eeprom_size = x;
683 }
684 
685 /*
686  * Read from the serial EEPROM. Basically, you manually shift in
687  * the read opcode (one bit at a time) and then shift in the address,
688  * and then you shift out the data (all of this one bit at a time).
689  * The word size is 16 bits, so you have to provide the address for
690  * every 16 bits of data.
691  */
692 void
693 fxp_read_eeprom(struct fxp_softc *sc, uint16_t *data, int offset, int words)
694 {
695 	uint16_t reg;
696 	int i, x;
697 
698 	for (i = 0; i < words; i++) {
699 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
700 
701 		/* Shift in read opcode. */
702 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
703 
704 		/* Shift in address. */
705 		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
706 
707 		reg = FXP_EEPROM_EECS;
708 		data[i] = 0;
709 
710 		/* Shift out data. */
711 		for (x = 16; x > 0; x--) {
712 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
713 			    reg | FXP_EEPROM_EESK);
714 			DELAY(40);
715 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
716 			    FXP_EEPROM_EEDO)
717 				data[i] |= (1 << (x - 1));
718 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
719 			DELAY(40);
720 		}
721 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
722 		DELAY(40);
723 	}
724 }
725 
726 /*
727  * Write data to the serial EEPROM.
728  */
729 void
730 fxp_write_eeprom(struct fxp_softc *sc, uint16_t *data, int offset, int words)
731 {
732 	int i, j;
733 
734 	for (i = 0; i < words; i++) {
735 		/* Erase/write enable. */
736 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
737 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
738 		fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
739 		    sc->sc_eeprom_size);
740 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
741 		DELAY(4);
742 
743 		/* Shift in write opcode, address, data. */
744 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
745 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
746 		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
747 		fxp_eeprom_shiftin(sc, data[i], 16);
748 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
749 		DELAY(4);
750 
751 		/* Wait for the EEPROM to finish up. */
752 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
753 		DELAY(4);
754 		for (j = 0; j < 1000; j++) {
755 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
756 			    FXP_EEPROM_EEDO)
757 				break;
758 			DELAY(50);
759 		}
760 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
761 		DELAY(4);
762 
763 		/* Erase/write disable. */
764 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
765 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
766 		fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
767 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
768 		DELAY(4);
769 	}
770 }
771 
772 /*
773  * Update the checksum of the EEPROM.
774  */
775 void
776 fxp_eeprom_update_cksum(struct fxp_softc *sc)
777 {
778 	int i;
779 	uint16_t data, cksum;
780 
781 	cksum = 0;
782 	for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
783 		fxp_read_eeprom(sc, &data, i, 1);
784 		cksum += data;
785 	}
786 	i = (1 << sc->sc_eeprom_size) - 1;
787 	cksum = 0xbaba - cksum;
788 	fxp_read_eeprom(sc, &data, i, 1);
789 	fxp_write_eeprom(sc, &cksum, i, 1);
790 	log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
791 	    device_xname(sc->sc_dev), i, data, cksum);
792 }
793 
794 /*
795  * Start packet transmission on the interface.
796  */
797 void
798 fxp_start(struct ifnet *ifp)
799 {
800 	struct fxp_softc *sc = ifp->if_softc;
801 	struct mbuf *m0, *m;
802 	struct fxp_txdesc *txd;
803 	struct fxp_txsoft *txs;
804 	bus_dmamap_t dmamap;
805 	int error, lasttx, nexttx, opending, seg, nsegs, len;
806 
807 	/*
808 	 * If we want a re-init, bail out now.
809 	 */
810 	if (sc->sc_flags & FXPF_WANTINIT) {
811 		ifp->if_flags |= IFF_OACTIVE;
812 		return;
813 	}
814 
815 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
816 		return;
817 
818 	/*
819 	 * Remember the previous txpending and the current lasttx.
820 	 */
821 	opending = sc->sc_txpending;
822 	lasttx = sc->sc_txlast;
823 
824 	/*
825 	 * Loop through the send queue, setting up transmit descriptors
826 	 * until we drain the queue, or use up all available transmit
827 	 * descriptors.
828 	 */
829 	for (;;) {
830 		struct fxp_tbd *tbdp;
831 		int csum_flags;
832 
833 		/*
834 		 * Grab a packet off the queue.
835 		 */
836 		IFQ_POLL(&ifp->if_snd, m0);
837 		if (m0 == NULL)
838 			break;
839 		m = NULL;
840 
841 		if (sc->sc_txpending == FXP_NTXCB - 1) {
842 			FXP_EVCNT_INCR(&sc->sc_ev_txstall);
843 			break;
844 		}
845 
846 		/*
847 		 * Get the next available transmit descriptor.
848 		 */
849 		nexttx = FXP_NEXTTX(sc->sc_txlast);
850 		txd = FXP_CDTX(sc, nexttx);
851 		txs = FXP_DSTX(sc, nexttx);
852 		dmamap = txs->txs_dmamap;
853 
854 		/*
855 		 * Load the DMA map.  If this fails, the packet either
856 		 * didn't fit in the allotted number of frags, or we were
857 		 * short on resources.  In this case, we'll copy and try
858 		 * again.
859 		 */
860 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
861 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
862 			MGETHDR(m, M_DONTWAIT, MT_DATA);
863 			if (m == NULL) {
864 				log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
865 				    device_xname(sc->sc_dev));
866 				break;
867 			}
868 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
869 			if (m0->m_pkthdr.len > MHLEN) {
870 				MCLGET(m, M_DONTWAIT);
871 				if ((m->m_flags & M_EXT) == 0) {
872 					log(LOG_ERR, "%s: unable to allocate "
873 					    "Tx cluster\n",
874 					    device_xname(sc->sc_dev));
875 					m_freem(m);
876 					break;
877 				}
878 			}
879 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
880 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
881 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
882 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
883 			if (error) {
884 				log(LOG_ERR, "%s: unable to load Tx buffer, "
885 				    "error = %d\n",
886 				    device_xname(sc->sc_dev), error);
887 				break;
888 			}
889 		}
890 
891 		IFQ_DEQUEUE(&ifp->if_snd, m0);
892 		csum_flags = m0->m_pkthdr.csum_flags;
893 		if (m != NULL) {
894 			m_freem(m0);
895 			m0 = m;
896 		}
897 
898 		/* Initialize the fraglist. */
899 		tbdp = txd->txd_tbd;
900 		len = m0->m_pkthdr.len;
901 		nsegs = dmamap->dm_nsegs;
902 		if (sc->sc_flags & FXPF_EXT_RFA)
903 			tbdp++;
904 		for (seg = 0; seg < nsegs; seg++) {
905 			tbdp[seg].tb_addr =
906 			    htole32(dmamap->dm_segs[seg].ds_addr);
907 			tbdp[seg].tb_size =
908 			    htole32(dmamap->dm_segs[seg].ds_len);
909 		}
910 		if (__predict_false(len <= FXP_IP4CSUMTX_PADLEN &&
911 		    (csum_flags & M_CSUM_IPv4) != 0)) {
912 			/*
913 			 * Pad short packets to avoid ip4csum-tx bug.
914 			 *
915 			 * XXX Should we still consider if such short
916 			 *     (36 bytes or less) packets might already
917 			 *     occupy FXP_IPCB_NTXSEG (15) fragments here?
918 			 */
919 			KASSERT(nsegs < FXP_IPCB_NTXSEG);
920 			nsegs++;
921 			tbdp[seg].tb_addr = htole32(FXP_CDTXPADADDR(sc));
922 			tbdp[seg].tb_size =
923 			    htole32(FXP_IP4CSUMTX_PADLEN + 1 - len);
924 		}
925 
926 		/* Sync the DMA map. */
927 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
928 		    BUS_DMASYNC_PREWRITE);
929 
930 		/*
931 		 * Store a pointer to the packet so we can free it later.
932 		 */
933 		txs->txs_mbuf = m0;
934 
935 		/*
936 		 * Initialize the transmit descriptor.
937 		 */
938 		/* BIG_ENDIAN: no need to swap to store 0 */
939 		txd->txd_txcb.cb_status = 0;
940 		txd->txd_txcb.cb_command =
941 		    sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
942 		txd->txd_txcb.tx_threshold = tx_threshold;
943 		txd->txd_txcb.tbd_number = nsegs;
944 
945 		KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
946 		if (sc->sc_flags & FXPF_EXT_RFA) {
947 			struct fxp_ipcb *ipcb;
948 			/*
949 			 * Deal with TCP/IP checksum offload. Note that
950 			 * in order for TCP checksum offload to work,
951 			 * the pseudo header checksum must have already
952 			 * been computed and stored in the checksum field
953 			 * in the TCP header. The stack should have
954 			 * already done this for us.
955 			 */
956 			ipcb = &txd->txd_u.txdu_ipcb;
957 			memset(ipcb, 0, sizeof(*ipcb));
958 			/*
959 			 * always do hardware parsing.
960 			 */
961 			ipcb->ipcb_ip_activation_high =
962 			    FXP_IPCB_HARDWAREPARSING_ENABLE;
963 			/*
964 			 * ip checksum offloading.
965 			 */
966 			if (csum_flags & M_CSUM_IPv4) {
967 				ipcb->ipcb_ip_schedule |=
968 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
969 			}
970 			/*
971 			 * TCP/UDP checksum offloading.
972 			 */
973 			if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
974 				ipcb->ipcb_ip_schedule |=
975 				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
976 			}
977 
978 			/*
979 			 * request VLAN tag insertion if needed.
980 			 */
981 			if (vlan_has_tag(m0)) {
982 				ipcb->ipcb_vlan_id = htobe16(vlan_get_tag(m0));
983 				ipcb->ipcb_ip_activation_high |=
984 				    FXP_IPCB_INSERTVLAN_ENABLE;
985 			}
986 		} else {
987 			KASSERT((csum_flags &
988 			    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
989 		}
990 
991 		FXP_CDTXSYNC(sc, nexttx,
992 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
993 
994 		/* Advance the tx pointer. */
995 		sc->sc_txpending++;
996 		sc->sc_txlast = nexttx;
997 
998 		/*
999 		 * Pass packet to bpf if there is a listener.
1000 		 */
1001 		bpf_mtap(ifp, m0, BPF_D_OUT);
1002 	}
1003 
1004 	if (sc->sc_txpending == FXP_NTXCB - 1) {
1005 		/* No more slots; notify upper layer. */
1006 		ifp->if_flags |= IFF_OACTIVE;
1007 	}
1008 
1009 	if (sc->sc_txpending != opending) {
1010 		/*
1011 		 * We enqueued packets.  If the transmitter was idle,
1012 		 * reset the txdirty pointer.
1013 		 */
1014 		if (opending == 0)
1015 			sc->sc_txdirty = FXP_NEXTTX(lasttx);
1016 
1017 		/*
1018 		 * Cause the chip to interrupt and suspend command
1019 		 * processing once the last packet we've enqueued
1020 		 * has been transmitted.
1021 		 *
1022 		 * To avoid a race between updating status bits
1023 		 * by the fxp chip and clearing command bits
1024 		 * by this function on machines which don't have
1025 		 * atomic methods to clear/set bits in memory
1026 		 * smaller than 32bits (both cb_status and cb_command
1027 		 * members are uint16_t and in the same 32bit word),
1028 		 * we have to prepare a dummy TX descriptor which has
1029 		 * NOP command and just causes a TX completion interrupt.
1030 		 */
1031 		sc->sc_txpending++;
1032 		sc->sc_txlast = FXP_NEXTTX(sc->sc_txlast);
1033 		txd = FXP_CDTX(sc, sc->sc_txlast);
1034 		/* BIG_ENDIAN: no need to swap to store 0 */
1035 		txd->txd_txcb.cb_status = 0;
1036 		txd->txd_txcb.cb_command = htole16(FXP_CB_COMMAND_NOP |
1037 		    FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
1038 		FXP_CDTXSYNC(sc, sc->sc_txlast,
1039 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1040 
1041 		/*
1042 		 * The entire packet chain is set up.  Clear the suspend bit
1043 		 * on the command prior to the first packet we set up.
1044 		 */
1045 		FXP_CDTXSYNC(sc, lasttx,
1046 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1047 		FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
1048 		    htole16(~FXP_CB_COMMAND_S);
1049 		FXP_CDTXSYNC(sc, lasttx,
1050 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1051 
1052 		/*
1053 		 * Issue a Resume command in case the chip was suspended.
1054 		 */
1055 		fxp_scb_wait(sc);
1056 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1057 
1058 		/* Set a watchdog timer in case the chip flakes out. */
1059 		ifp->if_timer = 5;
1060 	}
1061 }
1062 
1063 /*
1064  * Process interface interrupts.
1065  */
1066 int
1067 fxp_intr(void *arg)
1068 {
1069 	struct fxp_softc *sc = arg;
1070 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1071 	bus_dmamap_t rxmap;
1072 	int claimed = 0, rnr;
1073 	uint8_t statack;
1074 
1075 	if (!device_is_active(sc->sc_dev) || sc->sc_enabled == 0)
1076 		return (0);
1077 	/*
1078 	 * If the interface isn't running, don't try to
1079 	 * service the interrupt.. just ack it and bail.
1080 	 */
1081 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
1082 		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1083 		if (statack) {
1084 			claimed = 1;
1085 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1086 		}
1087 		return (claimed);
1088 	}
1089 
1090 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1091 		claimed = 1;
1092 
1093 		/*
1094 		 * First ACK all the interrupts in this pass.
1095 		 */
1096 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1097 
1098 		/*
1099 		 * Process receiver interrupts. If a no-resource (RNR)
1100 		 * condition exists, get whatever packets we can and
1101 		 * re-start the receiver.
1102 		 */
1103 		rnr = (statack & (FXP_SCB_STATACK_RNR | FXP_SCB_STATACK_SWI)) ?
1104 		    1 : 0;
1105 		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR |
1106 		    FXP_SCB_STATACK_SWI)) {
1107 			FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1108 			rnr |= fxp_rxintr(sc);
1109 		}
1110 
1111 		/*
1112 		 * Free any finished transmit mbuf chains.
1113 		 */
1114 		if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1115 			FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1116 			fxp_txintr(sc);
1117 
1118 			/*
1119 			 * Try to get more packets going.
1120 			 */
1121 			if_schedule_deferred_start(ifp);
1122 
1123 			if (sc->sc_txpending == 0) {
1124 				/*
1125 				 * Tell them that they can re-init now.
1126 				 */
1127 				if (sc->sc_flags & FXPF_WANTINIT)
1128 					wakeup(sc);
1129 			}
1130 		}
1131 
1132 		if (rnr) {
1133 			fxp_scb_wait(sc);
1134 			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
1135 			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1136 			fxp_scb_wait(sc);
1137 			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1138 			    rxmap->dm_segs[0].ds_addr +
1139 			    RFA_ALIGNMENT_FUDGE);
1140 			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1141 		}
1142 	}
1143 
1144 	if (claimed)
1145 		rnd_add_uint32(&sc->rnd_source, statack);
1146 	return (claimed);
1147 }
1148 
1149 /*
1150  * Handle transmit completion interrupts.
1151  */
1152 void
1153 fxp_txintr(struct fxp_softc *sc)
1154 {
1155 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1156 	struct fxp_txdesc *txd;
1157 	struct fxp_txsoft *txs;
1158 	int i;
1159 	uint16_t txstat;
1160 
1161 	ifp->if_flags &= ~IFF_OACTIVE;
1162 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1163 	    i = FXP_NEXTTX(i), sc->sc_txpending--) {
1164 		txd = FXP_CDTX(sc, i);
1165 		txs = FXP_DSTX(sc, i);
1166 
1167 		FXP_CDTXSYNC(sc, i,
1168 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1169 
1170 		/* skip dummy NOP TX descriptor */
1171 		if ((le16toh(txd->txd_txcb.cb_command) & FXP_CB_COMMAND_CMD)
1172 		    == FXP_CB_COMMAND_NOP)
1173 			continue;
1174 
1175 		txstat = le16toh(txd->txd_txcb.cb_status);
1176 
1177 		if ((txstat & FXP_CB_STATUS_C) == 0)
1178 			break;
1179 
1180 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1181 		    0, txs->txs_dmamap->dm_mapsize,
1182 		    BUS_DMASYNC_POSTWRITE);
1183 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1184 		m_freem(txs->txs_mbuf);
1185 		txs->txs_mbuf = NULL;
1186 	}
1187 
1188 	/* Update the dirty transmit buffer pointer. */
1189 	sc->sc_txdirty = i;
1190 
1191 	/*
1192 	 * Cancel the watchdog timer if there are no pending
1193 	 * transmissions.
1194 	 */
1195 	if (sc->sc_txpending == 0)
1196 		ifp->if_timer = 0;
1197 }
1198 
1199 /*
1200  * fxp_rx_hwcksum: check status of H/W offloading for received packets.
1201  */
1202 
1203 void
1204 fxp_rx_hwcksum(struct fxp_softc *sc, struct mbuf *m, const struct fxp_rfa *rfa,
1205     u_int len)
1206 {
1207 	uint32_t csum_data;
1208 	int csum_flags;
1209 
1210 	/*
1211 	 * check H/W Checksumming.
1212 	 */
1213 
1214 	csum_flags = 0;
1215 	csum_data = 0;
1216 
1217 	if ((sc->sc_flags & FXPF_EXT_RFA) != 0) {
1218 		uint8_t csum_stat;
1219 
1220 		csum_stat = rfa->cksum_stat;
1221 		if ((rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)) == 0)
1222 			goto out;
1223 
1224 		if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
1225 			csum_flags = M_CSUM_IPv4;
1226 			if ((csum_stat & FXP_RFDX_CS_IP_CSUM_VALID) == 0)
1227 				csum_flags |= M_CSUM_IPv4_BAD;
1228 		}
1229 
1230 		if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
1231 			csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
1232 			if ((csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID) == 0)
1233 				csum_flags |= M_CSUM_TCP_UDP_BAD;
1234 		}
1235 
1236 	} else if ((sc->sc_flags & FXPF_82559_RXCSUM) != 0) {
1237 		struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1238 		struct ether_header *eh;
1239 		struct ip *ip;
1240 		struct udphdr *uh;
1241 		u_int hlen, pktlen;
1242 
1243 		if (len < ETHER_HDR_LEN + sizeof(struct ip))
1244 			goto out;
1245 		pktlen = len - ETHER_HDR_LEN;
1246 		eh = mtod(m, struct ether_header *);
1247 		if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1248 			goto out;
1249 		ip = (struct ip *)((uint8_t *)eh + ETHER_HDR_LEN);
1250 		if (ip->ip_v != IPVERSION)
1251 			goto out;
1252 
1253 		hlen = ip->ip_hl << 2;
1254 		if (hlen < sizeof(struct ip))
1255 			goto out;
1256 
1257 		/*
1258 		 * Bail if too short, has random trailing garbage, truncated,
1259 		 * fragment, or has ethernet pad.
1260 		 */
1261 		if (ntohs(ip->ip_len) < hlen ||
1262 		    ntohs(ip->ip_len) != pktlen ||
1263 		    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
1264 			goto out;
1265 
1266 		switch (ip->ip_p) {
1267 		case IPPROTO_TCP:
1268 			if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0 ||
1269 			    pktlen < (hlen + sizeof(struct tcphdr)))
1270 				goto out;
1271 			csum_flags =
1272 			    M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
1273 			break;
1274 		case IPPROTO_UDP:
1275 			if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0 ||
1276 			    pktlen < (hlen + sizeof(struct udphdr)))
1277 				goto out;
1278 			uh = (struct udphdr *)((uint8_t *)ip + hlen);
1279 			if (uh->uh_sum == 0)
1280 				goto out;	/* no checksum */
1281 			csum_flags =
1282 			    M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
1283 			break;
1284 		default:
1285 			goto out;
1286 		}
1287 
1288 		/* Extract computed checksum. */
1289 		csum_data = be16dec(mtod(m, uint8_t *) + len);
1290 
1291 		/*
1292 		 * The computed checksum includes IP headers,
1293 		 * so we have to deduct them.
1294 		 */
1295 #if 0
1296 		/*
1297 		 * But in TCP/UDP layer we can assume the IP header is valid,
1298 		 * i.e. a sum of the whole IP header should be 0xffff,
1299 		 * so we don't have to bother to deduct it.
1300 		 */
1301 		if (hlen > 0) {
1302 			uint32_t hsum;
1303 			const uint16_t *iphdr;
1304 			hsum = 0;
1305 			iphdr = (uint16_t *)ip;
1306 
1307 			while (hlen > 1) {
1308 				hsum += ntohs(*iphdr++);
1309 				hlen -= sizeof(uint16_t);
1310 			}
1311 			while (hsum >> 16)
1312 				hsum = (hsum >> 16) + (hsum & 0xffff);
1313 
1314 			csum_data += (uint16_t)~hsum;
1315 
1316 			while (csum_data >> 16)
1317 				csum_data =
1318 				    (csum_data >> 16) + (csum_data & 0xffff);
1319 		}
1320 #endif
1321 	}
1322  out:
1323 	m->m_pkthdr.csum_flags = csum_flags;
1324 	m->m_pkthdr.csum_data = csum_data;
1325 }
1326 
1327 /*
1328  * Handle receive interrupts.
1329  */
1330 int
1331 fxp_rxintr(struct fxp_softc *sc)
1332 {
1333 	struct ethercom *ec = &sc->sc_ethercom;
1334 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1335 	struct mbuf *m, *m0;
1336 	bus_dmamap_t rxmap;
1337 	struct fxp_rfa *rfa;
1338 	int rnr;
1339 	uint16_t len, rxstat;
1340 
1341 	rnr = 0;
1342 
1343 	for (;;) {
1344 		m = sc->sc_rxq.ifq_head;
1345 		rfa = FXP_MTORFA(m);
1346 		rxmap = M_GETCTX(m, bus_dmamap_t);
1347 
1348 		FXP_RFASYNC(sc, m,
1349 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1350 
1351 		rxstat = le16toh(rfa->rfa_status);
1352 
1353 		if ((rxstat & FXP_RFA_STATUS_RNR) != 0)
1354 			rnr = 1;
1355 
1356 		if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1357 			/*
1358 			 * We have processed all of the
1359 			 * receive buffers.
1360 			 */
1361 			FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1362 			return rnr;
1363 		}
1364 
1365 		IF_DEQUEUE(&sc->sc_rxq, m);
1366 
1367 		FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1368 
1369 		len = le16toh(rfa->actual_size) &
1370 		    (m->m_ext.ext_size - 1);
1371 		if ((sc->sc_flags & FXPF_82559_RXCSUM) != 0) {
1372 			/* Adjust for appended checksum bytes. */
1373 			len -= sizeof(uint16_t);
1374 		}
1375 
1376 		if (len < sizeof(struct ether_header)) {
1377 			/*
1378 			 * Runt packet; drop it now.
1379 			 */
1380 			FXP_INIT_RFABUF(sc, m);
1381 			continue;
1382 		}
1383 
1384 		/*
1385 		 * If support for 802.1Q VLAN sized frames is
1386 		 * enabled, we need to do some additional error
1387 		 * checking (as we are saving bad frames, in
1388 		 * order to receive the larger ones).
1389 		 */
1390 		if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1391 		    (rxstat & (FXP_RFA_STATUS_OVERRUN|
1392 			       FXP_RFA_STATUS_RNR|
1393 			       FXP_RFA_STATUS_ALIGN|
1394 			       FXP_RFA_STATUS_CRC)) != 0) {
1395 			FXP_INIT_RFABUF(sc, m);
1396 			continue;
1397 		}
1398 
1399 		/*
1400 		 * check VLAN tag stripping.
1401 		 */
1402 		if ((sc->sc_flags & FXPF_EXT_RFA) != 0 &&
1403 		    (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) != 0)
1404 			vlan_set_tag(m, be16toh(rfa->vlan_id));
1405 
1406 		/* Do checksum checking. */
1407 		if ((ifp->if_csum_flags_rx & (M_CSUM_TCPv4|M_CSUM_UDPv4)) != 0)
1408 			fxp_rx_hwcksum(sc, m, rfa, len);
1409 
1410 		/*
1411 		 * If the packet is small enough to fit in a
1412 		 * single header mbuf, allocate one and copy
1413 		 * the data into it.  This greatly reduces
1414 		 * memory consumption when we receive lots
1415 		 * of small packets.
1416 		 *
1417 		 * Otherwise, we add a new buffer to the receive
1418 		 * chain.  If this fails, we drop the packet and
1419 		 * recycle the old buffer.
1420 		 */
1421 		if (fxp_copy_small != 0 && len <= MHLEN) {
1422 			MGETHDR(m0, M_DONTWAIT, MT_DATA);
1423 			if (m0 == NULL)
1424 				goto dropit;
1425 			MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
1426 			memcpy(mtod(m0, void *),
1427 			    mtod(m, void *), len);
1428 			m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
1429 			m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
1430 			FXP_INIT_RFABUF(sc, m);
1431 			m = m0;
1432 		} else {
1433 			if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1434  dropit:
1435 				ifp->if_ierrors++;
1436 				FXP_INIT_RFABUF(sc, m);
1437 				continue;
1438 			}
1439 		}
1440 
1441 		m_set_rcvif(m, ifp);
1442 		m->m_pkthdr.len = m->m_len = len;
1443 
1444 		/* Pass it on. */
1445 		if_percpuq_enqueue(ifp->if_percpuq, m);
1446 	}
1447 }
1448 
1449 /*
1450  * Update packet in/out/collision statistics. The i82557 doesn't
1451  * allow you to access these counters without doing a fairly
1452  * expensive DMA to get _all_ of the statistics it maintains, so
1453  * we do this operation here only once per second. The statistics
1454  * counters in the kernel are updated from the previous dump-stats
1455  * DMA and then a new dump-stats DMA is started. The on-chip
1456  * counters are zeroed when the DMA completes. If we can't start
1457  * the DMA immediately, we don't wait - we just prepare to read
1458  * them again next time.
1459  */
1460 void
1461 fxp_tick(void *arg)
1462 {
1463 	struct fxp_softc *sc = arg;
1464 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1465 	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1466 	int s;
1467 
1468 	if (!device_is_active(sc->sc_dev))
1469 		return;
1470 
1471 	s = splnet();
1472 
1473 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1474 
1475 	ifp->if_opackets += le32toh(sp->tx_good);
1476 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1477 	if (sp->rx_good) {
1478 		ifp->if_ipackets += le32toh(sp->rx_good);
1479 		sc->sc_rxidle = 0;
1480 	} else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
1481 		sc->sc_rxidle++;
1482 	}
1483 	ifp->if_ierrors +=
1484 	    le32toh(sp->rx_crc_errors) +
1485 	    le32toh(sp->rx_alignment_errors) +
1486 	    le32toh(sp->rx_rnr_errors) +
1487 	    le32toh(sp->rx_overrun_errors);
1488 	/*
1489 	 * If any transmit underruns occurred, bump up the transmit
1490 	 * threshold by another 512 bytes (64 * 8).
1491 	 */
1492 	if (sp->tx_underruns) {
1493 		ifp->if_oerrors += le32toh(sp->tx_underruns);
1494 		if (tx_threshold < 192)
1495 			tx_threshold += 64;
1496 	}
1497 #ifdef FXP_EVENT_COUNTERS
1498 	if (sc->sc_flags & FXPF_FC) {
1499 		sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
1500 		sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
1501 	}
1502 #endif
1503 
1504 	/*
1505 	 * If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
1506 	 * then assume the receiver has locked up and attempt to clear
1507 	 * the condition by reprogramming the multicast filter (actually,
1508 	 * resetting the interface). This is a work-around for a bug in
1509 	 * the 82557 where the receiver locks up if it gets certain types
1510 	 * of garbage in the synchronization bits prior to the packet header.
1511 	 * This bug is supposed to only occur in 10Mbps mode, but has been
1512 	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1513 	 * speed transition).
1514 	 */
1515 	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1516 		(void) fxp_init(ifp);
1517 		splx(s);
1518 		return;
1519 	}
1520 	/*
1521 	 * If there is no pending command, start another stats
1522 	 * dump. Otherwise punt for now.
1523 	 */
1524 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1525 		/*
1526 		 * Start another stats dump.
1527 		 */
1528 		FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1529 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1530 	} else {
1531 		/*
1532 		 * A previous command is still waiting to be accepted.
1533 		 * Just zero our copy of the stats and wait for the
1534 		 * next timer event to update them.
1535 		 */
1536 		/* BIG_ENDIAN: no swap required to store 0 */
1537 		sp->tx_good = 0;
1538 		sp->tx_underruns = 0;
1539 		sp->tx_total_collisions = 0;
1540 
1541 		sp->rx_good = 0;
1542 		sp->rx_crc_errors = 0;
1543 		sp->rx_alignment_errors = 0;
1544 		sp->rx_rnr_errors = 0;
1545 		sp->rx_overrun_errors = 0;
1546 		if (sc->sc_flags & FXPF_FC) {
1547 			sp->tx_pauseframes = 0;
1548 			sp->rx_pauseframes = 0;
1549 		}
1550 	}
1551 
1552 	if (sc->sc_flags & FXPF_MII) {
1553 		/* Tick the MII clock. */
1554 		mii_tick(&sc->sc_mii);
1555 	}
1556 
1557 	splx(s);
1558 
1559 	/*
1560 	 * Schedule another timeout one second from now.
1561 	 */
1562 	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1563 }
1564 
1565 /*
1566  * Drain the receive queue.
1567  */
1568 void
1569 fxp_rxdrain(struct fxp_softc *sc)
1570 {
1571 	bus_dmamap_t rxmap;
1572 	struct mbuf *m;
1573 
1574 	for (;;) {
1575 		IF_DEQUEUE(&sc->sc_rxq, m);
1576 		if (m == NULL)
1577 			break;
1578 		rxmap = M_GETCTX(m, bus_dmamap_t);
1579 		bus_dmamap_unload(sc->sc_dmat, rxmap);
1580 		FXP_RXMAP_PUT(sc, rxmap);
1581 		m_freem(m);
1582 	}
1583 }
1584 
1585 /*
1586  * Stop the interface. Cancels the statistics updater and resets
1587  * the interface.
1588  */
1589 void
1590 fxp_stop(struct ifnet *ifp, int disable)
1591 {
1592 	struct fxp_softc *sc = ifp->if_softc;
1593 	struct fxp_txsoft *txs;
1594 	int i;
1595 
1596 	/*
1597 	 * Turn down interface (done early to avoid bad interactions
1598 	 * between panics, shutdown hooks, and the watchdog timer)
1599 	 */
1600 	ifp->if_timer = 0;
1601 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1602 
1603 	/*
1604 	 * Cancel stats updater.
1605 	 */
1606 	callout_stop(&sc->sc_callout);
1607 	if (sc->sc_flags & FXPF_MII) {
1608 		/* Down the MII. */
1609 		mii_down(&sc->sc_mii);
1610 	}
1611 
1612 	/*
1613 	 * Issue software reset.  This unloads any microcode that
1614 	 * might already be loaded.
1615 	 */
1616 	sc->sc_flags &= ~FXPF_UCODE_LOADED;
1617 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1618 	DELAY(50);
1619 
1620 	/*
1621 	 * Release any xmit buffers.
1622 	 */
1623 	for (i = 0; i < FXP_NTXCB; i++) {
1624 		txs = FXP_DSTX(sc, i);
1625 		if (txs->txs_mbuf != NULL) {
1626 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1627 			m_freem(txs->txs_mbuf);
1628 			txs->txs_mbuf = NULL;
1629 		}
1630 	}
1631 	sc->sc_txpending = 0;
1632 
1633 	if (disable) {
1634 		fxp_rxdrain(sc);
1635 		fxp_disable(sc);
1636 	}
1637 
1638 }
1639 
1640 /*
1641  * Watchdog/transmission transmit timeout handler. Called when a
1642  * transmission is started on the interface, but no interrupt is
1643  * received before the timeout. This usually indicates that the
1644  * card has wedged for some reason.
1645  */
1646 void
1647 fxp_watchdog(struct ifnet *ifp)
1648 {
1649 	struct fxp_softc *sc = ifp->if_softc;
1650 
1651 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1652 	ifp->if_oerrors++;
1653 
1654 	(void) fxp_init(ifp);
1655 }
1656 
1657 /*
1658  * Initialize the interface.  Must be called at splnet().
1659  */
1660 int
1661 fxp_init(struct ifnet *ifp)
1662 {
1663 	struct fxp_softc *sc = ifp->if_softc;
1664 	struct fxp_cb_config *cbp;
1665 	struct fxp_cb_ias *cb_ias;
1666 	struct fxp_txdesc *txd;
1667 	bus_dmamap_t rxmap;
1668 	int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
1669 	uint16_t status;
1670 
1671 	if ((error = fxp_enable(sc)) != 0)
1672 		goto out;
1673 
1674 	/*
1675 	 * Cancel any pending I/O
1676 	 */
1677 	fxp_stop(ifp, 0);
1678 
1679 	/*
1680 	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1681 	 * flag, and this prevents the MII from detaching resulting in
1682 	 * a panic. The flags field should perhaps be split in runtime
1683 	 * flags and more static information. For now, just clear the
1684 	 * only other flag set.
1685 	 */
1686 
1687 	sc->sc_flags &= ~FXPF_WANTINIT;
1688 
1689 	/*
1690 	 * Initialize base of CBL and RFA memory. Loading with zero
1691 	 * sets it up for regular linear addressing.
1692 	 */
1693 	fxp_scb_wait(sc);
1694 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1695 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1696 
1697 	fxp_scb_wait(sc);
1698 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1699 
1700 	/*
1701 	 * Initialize the multicast filter.  Do this now, since we might
1702 	 * have to setup the config block differently.
1703 	 */
1704 	fxp_mc_setup(sc);
1705 
1706 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1707 	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1708 
1709 	/*
1710 	 * In order to support receiving 802.1Q VLAN frames, we have to
1711 	 * enable "save bad frames", since they are 4 bytes larger than
1712 	 * the normal Ethernet maximum frame length.  On i82558 and later,
1713 	 * we have a better mechanism for this.
1714 	 */
1715 	save_bf = 0;
1716 	lrxen = 0;
1717 	vlan_drop = 0;
1718 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1719 		if (sc->sc_rev < FXP_REV_82558_A4)
1720 			save_bf = 1;
1721 		else
1722 			lrxen = 1;
1723 		if (sc->sc_rev >= FXP_REV_82550)
1724 			vlan_drop = 1;
1725 	}
1726 
1727 	/*
1728 	 * Initialize base of dump-stats buffer.
1729 	 */
1730 	fxp_scb_wait(sc);
1731 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1732 	    sc->sc_cddma + FXP_CDSTATSOFF);
1733 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1734 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1735 
1736 	cbp = &sc->sc_control_data->fcd_configcb;
1737 	memset(cbp, 0, sizeof(struct fxp_cb_config));
1738 
1739 	/*
1740 	 * Load microcode for this controller.
1741 	 */
1742 	fxp_load_ucode(sc);
1743 
1744 	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
1745 		sc->sc_flags |= FXPF_RECV_WORKAROUND;
1746 	else
1747 		sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
1748 
1749 	/*
1750 	 * This copy is kind of disgusting, but there are a bunch of must be
1751 	 * zero and must be one bits in this structure and this is the easiest
1752 	 * way to initialize them all to proper values.
1753 	 */
1754 	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1755 
1756 	/* BIG_ENDIAN: no need to swap to store 0 */
1757 	cbp->cb_status =	0;
1758 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
1759 				    FXP_CB_COMMAND_EL);
1760 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1761 	cbp->link_addr =	0xffffffff; /* (no) next command */
1762 					/* bytes in config block */
1763 	cbp->byte_count =	(sc->sc_flags & FXPF_EXT_RFA) ?
1764 				FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
1765 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1766 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1767 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1768 	cbp->mwi_enable =	(sc->sc_flags & FXPF_MWI) ? 1 : 0;
1769 	cbp->type_enable =	0;	/* actually reserved */
1770 	cbp->read_align_en =	(sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1771 	cbp->end_wr_on_cl =	(sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1772 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1773 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1774 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1775 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1776 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1777 	cbp->ci_int =		1;	/* interrupt on CU idle */
1778 	cbp->ext_txcb_dis =	(sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1779 	cbp->ext_stats_dis =	1;	/* disable extended counters */
1780 	cbp->keep_overrun_rx =	0;	/* don't pass overrun frames to host */
1781 	cbp->save_bf =		save_bf;/* save bad frames */
1782 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1783 	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
1784 	cbp->ext_rfa =		(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1785 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1786 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1787 					/* interface mode */
1788 	cbp->mediatype =	(sc->sc_flags & FXPF_MII) ? 1 : 0;
1789 	cbp->csma_dis =		0;	/* (don't) disable link */
1790 	cbp->tcp_udp_cksum =	(sc->sc_flags & FXPF_82559_RXCSUM) ? 1 : 0;
1791 					/* (don't) enable RX checksum */
1792 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1793 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1794 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1795 	cbp->mc_wake_en =	0;	/* (don't) assert PME# on mcmatch */
1796 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1797 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1798 	cbp->loopback =		0;	/* (don't) loopback */
1799 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1800 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1801 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1802 	cbp->promiscuous =	prm;	/* promiscuous mode */
1803 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1804 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1805 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1806 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1807 	cbp->crscdt =		(sc->sc_flags & FXPF_MII) ? 0 : 1;
1808 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1809 	cbp->padding =		1;	/* (do) pad short tx packets */
1810 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1811 	cbp->long_rx_en =	lrxen;	/* long packet receive enable */
1812 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1813 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1814 					/* must set wake_en in PMCSR also */
1815 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1816 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1817 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1818 	cbp->mc_all =		allm;	/* accept all multicasts */
1819 	cbp->ext_rx_mode =	(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1820 	cbp->vlan_drop_en =	vlan_drop;
1821 
1822 	if (!(sc->sc_flags & FXPF_FC)) {
1823 		/*
1824 		 * The i82557 has no hardware flow control, the values
1825 		 * here are the defaults for the chip.
1826 		 */
1827 		cbp->fc_delay_lsb =	0;
1828 		cbp->fc_delay_msb =	0x40;
1829 		cbp->pri_fc_thresh =	3;
1830 		cbp->tx_fc_dis =	0;
1831 		cbp->rx_fc_restop =	0;
1832 		cbp->rx_fc_restart =	0;
1833 		cbp->fc_filter =	0;
1834 		cbp->pri_fc_loc =	1;
1835 	} else {
1836 		cbp->fc_delay_lsb =	0x1f;
1837 		cbp->fc_delay_msb =	0x01;
1838 		cbp->pri_fc_thresh =	3;
1839 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1840 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1841 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1842 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1843 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1844 		cbp->ext_stats_dis =	0;	/* enable extended stats */
1845 	}
1846 
1847 	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1848 
1849 	/*
1850 	 * Start the config command/DMA.
1851 	 */
1852 	fxp_scb_wait(sc);
1853 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1854 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1855 	/* ...and wait for it to complete. */
1856 	for (i = 1000; i > 0; i--) {
1857 		FXP_CDCONFIGSYNC(sc,
1858 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1859 		status = le16toh(cbp->cb_status);
1860 		FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD);
1861 		if ((status & FXP_CB_STATUS_C) != 0)
1862 			break;
1863 		DELAY(1);
1864 	}
1865 	if (i == 0) {
1866 		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1867 		    device_xname(sc->sc_dev), __LINE__);
1868 		return (ETIMEDOUT);
1869 	}
1870 
1871 	/*
1872 	 * Initialize the station address.
1873 	 */
1874 	cb_ias = &sc->sc_control_data->fcd_iascb;
1875 	/* BIG_ENDIAN: no need to swap to store 0 */
1876 	cb_ias->cb_status = 0;
1877 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1878 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1879 	cb_ias->link_addr = 0xffffffff;
1880 	memcpy(cb_ias->macaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1881 
1882 	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1883 
1884 	/*
1885 	 * Start the IAS (Individual Address Setup) command/DMA.
1886 	 */
1887 	fxp_scb_wait(sc);
1888 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1889 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1890 	/* ...and wait for it to complete. */
1891 	for (i = 1000; i > 0; i++) {
1892 		FXP_CDIASSYNC(sc,
1893 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1894 		status = le16toh(cb_ias->cb_status);
1895 		FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD);
1896 		if ((status & FXP_CB_STATUS_C) != 0)
1897 			break;
1898 		DELAY(1);
1899 	}
1900 	if (i == 0) {
1901 		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1902 		    device_xname(sc->sc_dev), __LINE__);
1903 		return (ETIMEDOUT);
1904 	}
1905 
1906 	/*
1907 	 * Initialize the transmit descriptor ring.  txlast is initialized
1908 	 * to the end of the list so that it will wrap around to the first
1909 	 * descriptor when the first packet is transmitted.
1910 	 */
1911 	for (i = 0; i < FXP_NTXCB; i++) {
1912 		txd = FXP_CDTX(sc, i);
1913 		memset(txd, 0, sizeof(*txd));
1914 		txd->txd_txcb.cb_command =
1915 		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1916 		txd->txd_txcb.link_addr =
1917 		    htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1918 		if (sc->sc_flags & FXPF_EXT_TXCB)
1919 			txd->txd_txcb.tbd_array_addr =
1920 			    htole32(FXP_CDTBDADDR(sc, i) +
1921 				    (2 * sizeof(struct fxp_tbd)));
1922 		else
1923 			txd->txd_txcb.tbd_array_addr =
1924 			    htole32(FXP_CDTBDADDR(sc, i));
1925 		FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1926 	}
1927 	sc->sc_txpending = 0;
1928 	sc->sc_txdirty = 0;
1929 	sc->sc_txlast = FXP_NTXCB - 1;
1930 
1931 	/*
1932 	 * Initialize the receive buffer list.
1933 	 */
1934 	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1935 	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1936 		rxmap = FXP_RXMAP_GET(sc);
1937 		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1938 			log(LOG_ERR, "%s: unable to allocate or map rx "
1939 			    "buffer %d, error = %d\n",
1940 			    device_xname(sc->sc_dev),
1941 			    sc->sc_rxq.ifq_len, error);
1942 			/*
1943 			 * XXX Should attempt to run with fewer receive
1944 			 * XXX buffers instead of just failing.
1945 			 */
1946 			FXP_RXMAP_PUT(sc, rxmap);
1947 			fxp_rxdrain(sc);
1948 			goto out;
1949 		}
1950 	}
1951 	sc->sc_rxidle = 0;
1952 
1953 	/*
1954 	 * Give the transmit ring to the chip.  We do this by pointing
1955 	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1956 	 * issuing a start command.  It will execute the NOP and then
1957 	 * suspend, pointing at the first descriptor.
1958 	 */
1959 	fxp_scb_wait(sc);
1960 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1961 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1962 
1963 	/*
1964 	 * Initialize receiver buffer area - RFA.
1965 	 */
1966 #if 0	/* initialization will be done by FXP_SCB_INTRCNTL_REQUEST_SWI later */
1967 	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1968 	fxp_scb_wait(sc);
1969 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1970 	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1971 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1972 #endif
1973 
1974 	if (sc->sc_flags & FXPF_MII) {
1975 		/*
1976 		 * Set current media.
1977 		 */
1978 		if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
1979 			goto out;
1980 	}
1981 
1982 	/*
1983 	 * ...all done!
1984 	 */
1985 	ifp->if_flags |= IFF_RUNNING;
1986 	ifp->if_flags &= ~IFF_OACTIVE;
1987 
1988 	/*
1989 	 * Request a software generated interrupt that will be used to
1990 	 * (re)start the RU processing.  If we direct the chip to start
1991 	 * receiving from the start of queue now, instead of letting the
1992 	 * interrupt handler first process all received packets, we run
1993 	 * the risk of having it overwrite mbuf clusters while they are
1994 	 * being processed or after they have been returned to the pool.
1995 	 */
1996 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTRCNTL_REQUEST_SWI);
1997 
1998 	/*
1999 	 * Start the one second timer.
2000 	 */
2001 	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
2002 
2003 	/*
2004 	 * Attempt to start output on the interface.
2005 	 */
2006 	fxp_start(ifp);
2007 
2008  out:
2009 	if (error) {
2010 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2011 		ifp->if_timer = 0;
2012 		log(LOG_ERR, "%s: interface not running\n",
2013 		    device_xname(sc->sc_dev));
2014 	}
2015 	return (error);
2016 }
2017 
2018 /*
2019  * Notify the world which media we're using.
2020  */
2021 void
2022 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2023 {
2024 	struct fxp_softc *sc = ifp->if_softc;
2025 
2026 	if (sc->sc_enabled == 0) {
2027 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
2028 		ifmr->ifm_status = 0;
2029 		return;
2030 	}
2031 
2032 	ether_mediastatus(ifp, ifmr);
2033 }
2034 
2035 int
2036 fxp_80c24_mediachange(struct ifnet *ifp)
2037 {
2038 
2039 	/* Nothing to do here. */
2040 	return (0);
2041 }
2042 
2043 void
2044 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2045 {
2046 	struct fxp_softc *sc = ifp->if_softc;
2047 
2048 	/*
2049 	 * Media is currently-selected media.  We cannot determine
2050 	 * the link status.
2051 	 */
2052 	ifmr->ifm_status = 0;
2053 	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
2054 }
2055 
2056 /*
2057  * Add a buffer to the end of the RFA buffer list.
2058  * Return 0 if successful, error code on failure.
2059  *
2060  * The RFA struct is stuck at the beginning of mbuf cluster and the
2061  * data pointer is fixed up to point just past it.
2062  */
2063 int
2064 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
2065 {
2066 	struct mbuf *m;
2067 	int error;
2068 
2069 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2070 	if (m == NULL)
2071 		return (ENOBUFS);
2072 
2073 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2074 	MCLGET(m, M_DONTWAIT);
2075 	if ((m->m_flags & M_EXT) == 0) {
2076 		m_freem(m);
2077 		return (ENOBUFS);
2078 	}
2079 
2080 	if (unload)
2081 		bus_dmamap_unload(sc->sc_dmat, rxmap);
2082 
2083 	M_SETCTX(m, rxmap);
2084 
2085 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2086 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
2087 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2088 	if (error) {
2089 		/* XXX XXX XXX */
2090 		aprint_error_dev(sc->sc_dev,
2091 		    "can't load rx DMA map %d, error = %d\n",
2092 		    sc->sc_rxq.ifq_len, error);
2093 		panic("fxp_add_rfabuf");
2094 	}
2095 
2096 	FXP_INIT_RFABUF(sc, m);
2097 
2098 	return (0);
2099 }
2100 
2101 int
2102 fxp_mdi_read(device_t self, int phy, int reg)
2103 {
2104 	struct fxp_softc *sc = device_private(self);
2105 	int count = 10000;
2106 	int value;
2107 
2108 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2109 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2110 
2111 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
2112 	    0x10000000) == 0 && count--)
2113 		DELAY(10);
2114 
2115 	if (count <= 0)
2116 		log(LOG_WARNING,
2117 		    "%s: fxp_mdi_read: timed out\n", device_xname(self));
2118 
2119 	return (value & 0xffff);
2120 }
2121 
2122 void
2123 fxp_statchg(struct ifnet *ifp)
2124 {
2125 
2126 	/* Nothing to do. */
2127 }
2128 
2129 void
2130 fxp_mdi_write(device_t self, int phy, int reg, int value)
2131 {
2132 	struct fxp_softc *sc = device_private(self);
2133 	int count = 10000;
2134 
2135 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2136 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2137 	    (value & 0xffff));
2138 
2139 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2140 	    count--)
2141 		DELAY(10);
2142 
2143 	if (count <= 0)
2144 		log(LOG_WARNING,
2145 		    "%s: fxp_mdi_write: timed out\n", device_xname(self));
2146 }
2147 
2148 int
2149 fxp_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2150 {
2151 	struct fxp_softc *sc = ifp->if_softc;
2152 	struct ifreq *ifr = (struct ifreq *)data;
2153 	int s, error;
2154 
2155 	s = splnet();
2156 
2157 	switch (cmd) {
2158 	case SIOCSIFMEDIA:
2159 	case SIOCGIFMEDIA:
2160 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2161 		break;
2162 
2163 	default:
2164 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
2165 			break;
2166 
2167 		error = 0;
2168 
2169 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2170 			;
2171 		else if (ifp->if_flags & IFF_RUNNING) {
2172 			/*
2173 			 * Multicast list has changed; set the
2174 			 * hardware filter accordingly.
2175 			 */
2176 			while (sc->sc_txpending) {
2177 				sc->sc_flags |= FXPF_WANTINIT;
2178 				tsleep(sc, PSOCK, "fxp_init", 0);
2179 			}
2180 			error = fxp_init(ifp);
2181 		}
2182 		break;
2183 	}
2184 
2185 	/* Try to get more packets going. */
2186 	if (sc->sc_enabled)
2187 		fxp_start(ifp);
2188 
2189 	splx(s);
2190 	return (error);
2191 }
2192 
2193 /*
2194  * Program the multicast filter.
2195  *
2196  * This function must be called at splnet().
2197  */
2198 void
2199 fxp_mc_setup(struct fxp_softc *sc)
2200 {
2201 	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
2202 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2203 	struct ethercom *ec = &sc->sc_ethercom;
2204 	struct ether_multi *enm;
2205 	struct ether_multistep step;
2206 	int count, nmcasts;
2207 	uint16_t status;
2208 
2209 #ifdef DIAGNOSTIC
2210 	if (sc->sc_txpending)
2211 		panic("fxp_mc_setup: pending transmissions");
2212 #endif
2213 
2214 
2215 	if (ifp->if_flags & IFF_PROMISC) {
2216 		ifp->if_flags |= IFF_ALLMULTI;
2217 		return;
2218 	} else {
2219 		ifp->if_flags &= ~IFF_ALLMULTI;
2220 	}
2221 
2222 	/*
2223 	 * Initialize multicast setup descriptor.
2224 	 */
2225 	nmcasts = 0;
2226 	ETHER_FIRST_MULTI(step, ec, enm);
2227 	while (enm != NULL) {
2228 		/*
2229 		 * Check for too many multicast addresses or if we're
2230 		 * listening to a range.  Either way, we simply have
2231 		 * to accept all multicasts.
2232 		 */
2233 		if (nmcasts >= MAXMCADDR ||
2234 		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
2235 		    ETHER_ADDR_LEN) != 0) {
2236 			/*
2237 			 * Callers of this function must do the
2238 			 * right thing with this.  If we're called
2239 			 * from outside fxp_init(), the caller must
2240 			 * detect if the state if IFF_ALLMULTI changes.
2241 			 * If it does, the caller must then call
2242 			 * fxp_init(), since allmulti is handled by
2243 			 * the config block.
2244 			 */
2245 			ifp->if_flags |= IFF_ALLMULTI;
2246 			return;
2247 		}
2248 		memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
2249 		    ETHER_ADDR_LEN);
2250 		nmcasts++;
2251 		ETHER_NEXT_MULTI(step, enm);
2252 	}
2253 
2254 	/* BIG_ENDIAN: no need to swap to store 0 */
2255 	mcsp->cb_status = 0;
2256 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2257 	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2258 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2259 
2260 	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2261 
2262 	/*
2263 	 * Wait until the command unit is not active.  This should never
2264 	 * happen since nothing is queued, but make sure anyway.
2265 	 */
2266 	count = 100;
2267 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2268 	    FXP_SCB_CUS_ACTIVE && --count)
2269 		DELAY(1);
2270 	if (count == 0) {
2271 		log(LOG_WARNING, "%s: line %d: command queue timeout\n",
2272 		    device_xname(sc->sc_dev), __LINE__);
2273 		return;
2274 	}
2275 
2276 	/*
2277 	 * Start the multicast setup command/DMA.
2278 	 */
2279 	fxp_scb_wait(sc);
2280 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2281 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2282 
2283 	/* ...and wait for it to complete. */
2284 	for (count = 1000; count > 0; count--) {
2285 		FXP_CDMCSSYNC(sc,
2286 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2287 		status = le16toh(mcsp->cb_status);
2288 		FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD);
2289 		if ((status & FXP_CB_STATUS_C) != 0)
2290 			break;
2291 		DELAY(1);
2292 	}
2293 	if (count == 0) {
2294 		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
2295 		    device_xname(sc->sc_dev), __LINE__);
2296 		return;
2297 	}
2298 }
2299 
2300 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2301 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2302 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2303 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2304 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2305 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2306 static const uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
2307 
2308 #define	UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2309 
2310 static const struct ucode {
2311 	int32_t		revision;
2312 	const uint32_t	*ucode;
2313 	size_t		length;
2314 	uint16_t	int_delay_offset;
2315 	uint16_t	bundle_max_offset;
2316 } ucode_table[] = {
2317 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2318 	  D101_CPUSAVER_DWORD, 0 },
2319 
2320 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2321 	  D101_CPUSAVER_DWORD, 0 },
2322 
2323 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2324 	  D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2325 
2326 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2327 	  D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2328 
2329 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2330 	  D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2331 
2332 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2333 	  D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2334 
2335 	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
2336 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2337 
2338 	{ FXP_REV_82551_10, UCODE(fxp_ucode_d102e),
2339 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2340 
2341 	{ 0, NULL, 0, 0, 0 }
2342 };
2343 
2344 void
2345 fxp_load_ucode(struct fxp_softc *sc)
2346 {
2347 	const struct ucode *uc;
2348 	struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2349 	int count, i;
2350 	uint16_t status;
2351 
2352 	if (sc->sc_flags & FXPF_UCODE_LOADED)
2353 		return;
2354 
2355 	/*
2356 	 * Only load the uCode if the user has requested that
2357 	 * we do so.
2358 	 */
2359 	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2360 		sc->sc_int_delay = 0;
2361 		sc->sc_bundle_max = 0;
2362 		return;
2363 	}
2364 
2365 	for (uc = ucode_table; uc->ucode != NULL; uc++) {
2366 		if (sc->sc_rev == uc->revision)
2367 			break;
2368 	}
2369 	if (uc->ucode == NULL)
2370 		return;
2371 
2372 	/* BIG ENDIAN: no need to swap to store 0 */
2373 	cbp->cb_status = 0;
2374 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2375 	cbp->link_addr = 0xffffffff;		/* (no) next command */
2376 	for (i = 0; i < uc->length; i++)
2377 		cbp->ucode[i] = htole32(uc->ucode[i]);
2378 
2379 	if (uc->int_delay_offset)
2380 		*(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2381 		    htole16(fxp_int_delay + (fxp_int_delay / 2));
2382 
2383 	if (uc->bundle_max_offset)
2384 		*(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2385 		    htole16(fxp_bundle_max);
2386 
2387 	FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2388 
2389 	/*
2390 	 * Download the uCode to the chip.
2391 	 */
2392 	fxp_scb_wait(sc);
2393 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2394 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2395 
2396 	/* ...and wait for it to complete. */
2397 	for (count = 10000; count > 0; count--) {
2398 		FXP_CDUCODESYNC(sc,
2399 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2400 		status = le16toh(cbp->cb_status);
2401 		FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD);
2402 		if ((status & FXP_CB_STATUS_C) != 0)
2403 			break;
2404 		DELAY(2);
2405 	}
2406 	if (count == 0) {
2407 		sc->sc_int_delay = 0;
2408 		sc->sc_bundle_max = 0;
2409 		log(LOG_WARNING, "%s: timeout loading microcode\n",
2410 		    device_xname(sc->sc_dev));
2411 		return;
2412 	}
2413 
2414 	if (sc->sc_int_delay != fxp_int_delay ||
2415 	    sc->sc_bundle_max != fxp_bundle_max) {
2416 		sc->sc_int_delay = fxp_int_delay;
2417 		sc->sc_bundle_max = fxp_bundle_max;
2418 		log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
2419 		    "max bundle: %d\n", device_xname(sc->sc_dev),
2420 		    sc->sc_int_delay,
2421 		    uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2422 	}
2423 
2424 	sc->sc_flags |= FXPF_UCODE_LOADED;
2425 }
2426 
2427 int
2428 fxp_enable(struct fxp_softc *sc)
2429 {
2430 
2431 	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2432 		if ((*sc->sc_enable)(sc) != 0) {
2433 			log(LOG_ERR, "%s: device enable failed\n",
2434 			    device_xname(sc->sc_dev));
2435 			return (EIO);
2436 		}
2437 	}
2438 
2439 	sc->sc_enabled = 1;
2440 	return (0);
2441 }
2442 
2443 void
2444 fxp_disable(struct fxp_softc *sc)
2445 {
2446 
2447 	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2448 		(*sc->sc_disable)(sc);
2449 		sc->sc_enabled = 0;
2450 	}
2451 }
2452 
2453 /*
2454  * fxp_activate:
2455  *
2456  *	Handle device activation/deactivation requests.
2457  */
2458 int
2459 fxp_activate(device_t self, enum devact act)
2460 {
2461 	struct fxp_softc *sc = device_private(self);
2462 
2463 	switch (act) {
2464 	case DVACT_DEACTIVATE:
2465 		if_deactivate(&sc->sc_ethercom.ec_if);
2466 		return 0;
2467 	default:
2468 		return EOPNOTSUPP;
2469 	}
2470 }
2471 
2472 /*
2473  * fxp_detach:
2474  *
2475  *	Detach an i82557 interface.
2476  */
2477 int
2478 fxp_detach(struct fxp_softc *sc, int flags)
2479 {
2480 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2481 	int i, s;
2482 
2483 	/* Succeed now if there's no work to do. */
2484 	if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2485 		return (0);
2486 
2487 	s = splnet();
2488 	/* Stop the interface. Callouts are stopped in it. */
2489 	fxp_stop(ifp, 1);
2490 	splx(s);
2491 
2492 	/* Destroy our callout. */
2493 	callout_destroy(&sc->sc_callout);
2494 
2495 	if (sc->sc_flags & FXPF_MII) {
2496 		/* Detach all PHYs */
2497 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2498 	}
2499 
2500 	/* Delete all remaining media. */
2501 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2502 
2503 	rnd_detach_source(&sc->rnd_source);
2504 	ether_ifdetach(ifp);
2505 	if_detach(ifp);
2506 
2507 	for (i = 0; i < FXP_NRFABUFS; i++) {
2508 		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2509 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2510 	}
2511 
2512 	for (i = 0; i < FXP_NTXCB; i++) {
2513 		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2514 		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2515 	}
2516 
2517 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2518 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2519 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2520 	    sizeof(struct fxp_control_data));
2521 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2522 
2523 	return (0);
2524 }
2525