xref: /netbsd-src/sys/dev/ic/i82557.c (revision 86811edb37e43f44504b192591c863c5d48f5e08)
1 /*	$NetBSD: i82557.c,v 1.96 2005/12/24 20:27:30 perry Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * Copyright (c) 1995, David Greenman
42  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
43  * All rights reserved.
44  *
45  * Redistribution and use in source and binary forms, with or without
46  * modification, are permitted provided that the following conditions
47  * are met:
48  * 1. Redistributions of source code must retain the above copyright
49  *    notice unmodified, this list of conditions, and the following
50  *    disclaimer.
51  * 2. Redistributions in binary form must reproduce the above copyright
52  *    notice, this list of conditions and the following disclaimer in the
53  *    documentation and/or other materials provided with the distribution.
54  *
55  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  *
67  *	Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
68  */
69 
70 /*
71  * Device driver for the Intel i82557 fast Ethernet controller,
72  * and its successors, the i82558 and i82559.
73  */
74 
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.96 2005/12/24 20:27:30 perry Exp $");
77 
78 #include "bpfilter.h"
79 #include "rnd.h"
80 
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/callout.h>
84 #include <sys/mbuf.h>
85 #include <sys/malloc.h>
86 #include <sys/kernel.h>
87 #include <sys/socket.h>
88 #include <sys/ioctl.h>
89 #include <sys/errno.h>
90 #include <sys/device.h>
91 #include <sys/syslog.h>
92 
93 #include <machine/endian.h>
94 
95 #include <uvm/uvm_extern.h>
96 
97 #if NRND > 0
98 #include <sys/rnd.h>
99 #endif
100 
101 #include <net/if.h>
102 #include <net/if_dl.h>
103 #include <net/if_media.h>
104 #include <net/if_ether.h>
105 
106 #if NBPFILTER > 0
107 #include <net/bpf.h>
108 #endif
109 
110 #include <machine/bus.h>
111 #include <machine/intr.h>
112 
113 #include <dev/mii/miivar.h>
114 
115 #include <dev/ic/i82557reg.h>
116 #include <dev/ic/i82557var.h>
117 
118 #include <dev/microcode/i8255x/rcvbundl.h>
119 
120 /*
121  * NOTE!  On the Alpha, we have an alignment constraint.  The
122  * card DMAs the packet immediately following the RFA.  However,
123  * the first thing in the packet is a 14-byte Ethernet header.
124  * This means that the packet is misaligned.  To compensate,
125  * we actually offset the RFA 2 bytes into the cluster.  This
126  * alignes the packet after the Ethernet header at a 32-bit
127  * boundary.  HOWEVER!  This means that the RFA is misaligned!
128  */
129 #define	RFA_ALIGNMENT_FUDGE	2
130 
131 /*
132  * The configuration byte map has several undefined fields which
133  * must be one or must be zero.  Set up a template for these bits
134  * only (assuming an i82557 chip), leaving the actual configuration
135  * for fxp_init().
136  *
137  * See the definition of struct fxp_cb_config for the bit definitions.
138  */
139 const u_int8_t fxp_cb_config_template[] = {
140 	0x0, 0x0,		/* cb_status */
141 	0x0, 0x0,		/* cb_command */
142 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
143 	0x0,	/*  0 */
144 	0x0,	/*  1 */
145 	0x0,	/*  2 */
146 	0x0,	/*  3 */
147 	0x0,	/*  4 */
148 	0x0,	/*  5 */
149 	0x32,	/*  6 */
150 	0x0,	/*  7 */
151 	0x0,	/*  8 */
152 	0x0,	/*  9 */
153 	0x6,	/* 10 */
154 	0x0,	/* 11 */
155 	0x0,	/* 12 */
156 	0x0,	/* 13 */
157 	0xf2,	/* 14 */
158 	0x48,	/* 15 */
159 	0x0,	/* 16 */
160 	0x40,	/* 17 */
161 	0xf0,	/* 18 */
162 	0x0,	/* 19 */
163 	0x3f,	/* 20 */
164 	0x5,	/* 21 */
165 	0x0,	/* 22 */
166 	0x0,	/* 23 */
167 	0x0,	/* 24 */
168 	0x0,	/* 25 */
169 	0x0,	/* 26 */
170 	0x0,	/* 27 */
171 	0x0,	/* 28 */
172 	0x0,	/* 29 */
173 	0x0,	/* 30 */
174 	0x0,	/* 31 */
175 };
176 
177 void	fxp_mii_initmedia(struct fxp_softc *);
178 int	fxp_mii_mediachange(struct ifnet *);
179 void	fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
180 
181 void	fxp_80c24_initmedia(struct fxp_softc *);
182 int	fxp_80c24_mediachange(struct ifnet *);
183 void	fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
184 
185 void	fxp_start(struct ifnet *);
186 int	fxp_ioctl(struct ifnet *, u_long, caddr_t);
187 void	fxp_watchdog(struct ifnet *);
188 int	fxp_init(struct ifnet *);
189 void	fxp_stop(struct ifnet *, int);
190 
191 void	fxp_txintr(struct fxp_softc *);
192 void	fxp_rxintr(struct fxp_softc *);
193 
194 int	fxp_rx_hwcksum(struct mbuf *, const struct fxp_rfa *);
195 
196 void	fxp_rxdrain(struct fxp_softc *);
197 int	fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
198 int	fxp_mdi_read(struct device *, int, int);
199 void	fxp_statchg(struct device *);
200 void	fxp_mdi_write(struct device *, int, int, int);
201 void	fxp_autosize_eeprom(struct fxp_softc*);
202 void	fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
203 void	fxp_write_eeprom(struct fxp_softc *, u_int16_t *, int, int);
204 void	fxp_eeprom_update_cksum(struct fxp_softc *);
205 void	fxp_get_info(struct fxp_softc *, u_int8_t *);
206 void	fxp_tick(void *);
207 void	fxp_mc_setup(struct fxp_softc *);
208 void	fxp_load_ucode(struct fxp_softc *);
209 
210 void	fxp_shutdown(void *);
211 void	fxp_power(int, void *);
212 
213 int	fxp_copy_small = 0;
214 
215 /*
216  * Variables for interrupt mitigating microcode.
217  */
218 int	fxp_int_delay = 1000;		/* usec */
219 int	fxp_bundle_max = 6;		/* packets */
220 
221 struct fxp_phytype {
222 	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
223 	void	(*fp_init)(struct fxp_softc *);
224 } fxp_phytype_table[] = {
225 	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
226 	{ -1,				fxp_mii_initmedia },
227 };
228 
229 /*
230  * Set initial transmit threshold at 64 (512 bytes). This is
231  * increased by 64 (512 bytes) at a time, to maximum of 192
232  * (1536 bytes), if an underrun occurs.
233  */
234 static int tx_threshold = 64;
235 
236 /*
237  * Wait for the previous command to be accepted (but not necessarily
238  * completed).
239  */
240 static inline void
241 fxp_scb_wait(struct fxp_softc *sc)
242 {
243 	int i = 10000;
244 
245 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
246 		delay(2);
247 	if (i == 0)
248 		log(LOG_WARNING,
249 		    "%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
250 }
251 
252 /*
253  * Submit a command to the i82557.
254  */
255 static inline void
256 fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
257 {
258 
259 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
260 }
261 
262 /*
263  * Finish attaching an i82557 interface.  Called by bus-specific front-end.
264  */
265 void
266 fxp_attach(struct fxp_softc *sc)
267 {
268 	u_int8_t enaddr[ETHER_ADDR_LEN];
269 	struct ifnet *ifp;
270 	bus_dma_segment_t seg;
271 	int rseg, i, error;
272 	struct fxp_phytype *fp;
273 
274 	callout_init(&sc->sc_callout);
275 
276 	/*
277 	 * Enable some good stuff on i82558 and later.
278 	 */
279 	if (sc->sc_rev >= FXP_REV_82558_A4) {
280 		/* Enable the extended TxCB. */
281 		sc->sc_flags |= FXPF_EXT_TXCB;
282 	}
283 
284         /*
285 	 * Enable use of extended RFDs and TCBs for 82550
286 	 * and later chips. Note: we need extended TXCB support
287 	 * too, but that's already enabled by the code above.
288 	 * Be careful to do this only on the right devices.
289 	 */
290 	if (sc->sc_rev == FXP_REV_82550 || sc->sc_rev == FXP_REV_82550_C) {
291 		sc->sc_flags |= FXPF_EXT_RFA | FXPF_IPCB;
292 		sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
293 	} else {
294 		sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
295 	}
296 
297 	sc->sc_rfa_size =
298 	    (sc->sc_flags & FXPF_EXT_RFA) ? RFA_EXT_SIZE : RFA_SIZE;
299 
300 	/*
301 	 * Allocate the control data structures, and create and load the
302 	 * DMA map for it.
303 	 */
304 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
305 	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
306 	    0)) != 0) {
307 		aprint_error(
308 		    "%s: unable to allocate control data, error = %d\n",
309 		    sc->sc_dev.dv_xname, error);
310 		goto fail_0;
311 	}
312 
313 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
314 	    sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
315 	    BUS_DMA_COHERENT)) != 0) {
316 		aprint_error("%s: unable to map control data, error = %d\n",
317 		    sc->sc_dev.dv_xname, error);
318 		goto fail_1;
319 	}
320 	sc->sc_cdseg = seg;
321 	sc->sc_cdnseg = rseg;
322 
323 	memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
324 
325 	if ((error = bus_dmamap_create(sc->sc_dmat,
326 	    sizeof(struct fxp_control_data), 1,
327 	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
328 		aprint_error("%s: unable to create control data DMA map, "
329 		    "error = %d\n", sc->sc_dev.dv_xname, error);
330 		goto fail_2;
331 	}
332 
333 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
334 	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
335 	    0)) != 0) {
336 		aprint_error(
337 		    "%s: can't load control data DMA map, error = %d\n",
338 		    sc->sc_dev.dv_xname, error);
339 		goto fail_3;
340 	}
341 
342 	/*
343 	 * Create the transmit buffer DMA maps.
344 	 */
345 	for (i = 0; i < FXP_NTXCB; i++) {
346 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
347 		    (sc->sc_flags & FXPF_IPCB) ? FXP_IPCB_NTXSEG : FXP_NTXSEG,
348 		    MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
349 			aprint_error("%s: unable to create tx DMA map %d, "
350 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
351 			goto fail_4;
352 		}
353 	}
354 
355 	/*
356 	 * Create the receive buffer DMA maps.
357 	 */
358 	for (i = 0; i < FXP_NRFABUFS; i++) {
359 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
360 		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
361 			aprint_error("%s: unable to create rx DMA map %d, "
362 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
363 			goto fail_5;
364 		}
365 	}
366 
367 	/* Initialize MAC address and media structures. */
368 	fxp_get_info(sc, enaddr);
369 
370 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
371 	    ether_sprintf(enaddr));
372 
373 	ifp = &sc->sc_ethercom.ec_if;
374 
375 	/*
376 	 * Get info about our media interface, and initialize it.  Note
377 	 * the table terminates itself with a phy of -1, indicating
378 	 * that we're using MII.
379 	 */
380 	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
381 		if (fp->fp_phy == sc->phy_primary_device)
382 			break;
383 	(*fp->fp_init)(sc);
384 
385 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
386 	ifp->if_softc = sc;
387 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
388 	ifp->if_ioctl = fxp_ioctl;
389 	ifp->if_start = fxp_start;
390 	ifp->if_watchdog = fxp_watchdog;
391 	ifp->if_init = fxp_init;
392 	ifp->if_stop = fxp_stop;
393 	IFQ_SET_READY(&ifp->if_snd);
394 
395 	if (sc->sc_flags & FXPF_IPCB) {
396 		KASSERT(sc->sc_flags & FXPF_EXT_RFA); /* we have both or none */
397 		/*
398 		 * IFCAP_CSUM_IPv4_Tx seems to have a problem,
399 		 * at least, on i82550 rev.12.
400 		 * specifically, it doesn't calculate ipv4 checksum correctly
401 		 * when sending 20 byte ipv4 header + 1 or 2 byte data.
402 		 * FreeBSD driver has related comments.
403 		 */
404 		ifp->if_capabilities =
405 		    IFCAP_CSUM_IPv4_Rx |
406 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
407 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
408 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
409 	}
410 
411 	/*
412 	 * We can support 802.1Q VLAN-sized frames.
413 	 */
414 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
415 
416 	/*
417 	 * Attach the interface.
418 	 */
419 	if_attach(ifp);
420 	ether_ifattach(ifp, enaddr);
421 #if NRND > 0
422 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
423 	    RND_TYPE_NET, 0);
424 #endif
425 
426 #ifdef FXP_EVENT_COUNTERS
427 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
428 	    NULL, sc->sc_dev.dv_xname, "txstall");
429 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
430 	    NULL, sc->sc_dev.dv_xname, "txintr");
431 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
432 	    NULL, sc->sc_dev.dv_xname, "rxintr");
433 	if (sc->sc_rev >= FXP_REV_82558_A4) {
434 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
435 		    NULL, sc->sc_dev.dv_xname, "txpause");
436 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
437 		    NULL, sc->sc_dev.dv_xname, "rxpause");
438 	}
439 #endif /* FXP_EVENT_COUNTERS */
440 
441 	/*
442 	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
443 	 * doing do could allow DMA to corrupt kernel memory during the
444 	 * reboot before the driver initializes.
445 	 */
446 	sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
447 	if (sc->sc_sdhook == NULL)
448 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
449 		    sc->sc_dev.dv_xname);
450 	/*
451   	 * Add suspend hook, for similar reasons..
452 	 */
453 	sc->sc_powerhook = powerhook_establish(fxp_power, sc);
454 	if (sc->sc_powerhook == NULL)
455 		aprint_error("%s: WARNING: unable to establish power hook\n",
456 		    sc->sc_dev.dv_xname);
457 
458 	/* The attach is successful. */
459 	sc->sc_flags |= FXPF_ATTACHED;
460 
461 	return;
462 
463 	/*
464 	 * Free any resources we've allocated during the failed attach
465 	 * attempt.  Do this in reverse order and fall though.
466 	 */
467  fail_5:
468 	for (i = 0; i < FXP_NRFABUFS; i++) {
469 		if (sc->sc_rxmaps[i] != NULL)
470 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
471 	}
472  fail_4:
473 	for (i = 0; i < FXP_NTXCB; i++) {
474 		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
475 			bus_dmamap_destroy(sc->sc_dmat,
476 			    FXP_DSTX(sc, i)->txs_dmamap);
477 	}
478 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
479  fail_3:
480 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
481  fail_2:
482 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
483 	    sizeof(struct fxp_control_data));
484  fail_1:
485 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
486  fail_0:
487 	return;
488 }
489 
490 void
491 fxp_mii_initmedia(struct fxp_softc *sc)
492 {
493 	int flags;
494 
495 	sc->sc_flags |= FXPF_MII;
496 
497 	sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
498 	sc->sc_mii.mii_readreg = fxp_mdi_read;
499 	sc->sc_mii.mii_writereg = fxp_mdi_write;
500 	sc->sc_mii.mii_statchg = fxp_statchg;
501 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, fxp_mii_mediachange,
502 	    fxp_mii_mediastatus);
503 
504 	flags = MIIF_NOISOLATE;
505 	if (sc->sc_rev >= FXP_REV_82558_A4)
506 		flags |= MIIF_DOPAUSE;
507 	/*
508 	 * The i82557 wedges if all of its PHYs are isolated!
509 	 */
510 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
511 	    MII_OFFSET_ANY, flags);
512 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
513 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
514 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
515 	} else
516 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
517 }
518 
519 void
520 fxp_80c24_initmedia(struct fxp_softc *sc)
521 {
522 
523 	/*
524 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
525 	 * doesn't have a programming interface of any sort.  The
526 	 * media is sensed automatically based on how the link partner
527 	 * is configured.  This is, in essence, manual configuration.
528 	 */
529 	aprint_normal("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
530 	    sc->sc_dev.dv_xname);
531 	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
532 	    fxp_80c24_mediastatus);
533 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
534 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
535 }
536 
537 /*
538  * Device shutdown routine. Called at system shutdown after sync. The
539  * main purpose of this routine is to shut off receiver DMA so that
540  * kernel memory doesn't get clobbered during warmboot.
541  */
542 void
543 fxp_shutdown(void *arg)
544 {
545 	struct fxp_softc *sc = arg;
546 
547 	/*
548 	 * Since the system's going to halt shortly, don't bother
549 	 * freeing mbufs.
550 	 */
551 	fxp_stop(&sc->sc_ethercom.ec_if, 0);
552 }
553 /*
554  * Power handler routine. Called when the system is transitioning
555  * into/out of power save modes.  As with fxp_shutdown, the main
556  * purpose of this routine is to shut off receiver DMA so it doesn't
557  * clobber kernel memory at the wrong time.
558  */
559 void
560 fxp_power(int why, void *arg)
561 {
562 	struct fxp_softc *sc = arg;
563 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
564 	int s;
565 
566 	s = splnet();
567 	switch (why) {
568 	case PWR_SUSPEND:
569 	case PWR_STANDBY:
570 		fxp_stop(ifp, 0);
571 		break;
572 	case PWR_RESUME:
573 		if (ifp->if_flags & IFF_UP)
574 			fxp_init(ifp);
575 		break;
576 	case PWR_SOFTSUSPEND:
577 	case PWR_SOFTSTANDBY:
578 	case PWR_SOFTRESUME:
579 		break;
580 	}
581 	splx(s);
582 }
583 
584 /*
585  * Initialize the interface media.
586  */
587 void
588 fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
589 {
590 	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
591 
592 	/*
593 	 * Reset to a stable state.
594 	 */
595 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
596 	DELAY(100);
597 
598 	sc->sc_eeprom_size = 0;
599 	fxp_autosize_eeprom(sc);
600 	if (sc->sc_eeprom_size == 0) {
601 		aprint_error("%s: failed to detect EEPROM size\n",
602 		    sc->sc_dev.dv_xname);
603 		sc->sc_eeprom_size = 6; /* XXX panic here? */
604 	}
605 #ifdef DEBUG
606 	aprint_debug("%s: detected %d word EEPROM\n",
607 	    sc->sc_dev.dv_xname, 1 << sc->sc_eeprom_size);
608 #endif
609 
610 	/*
611 	 * Get info about the primary PHY
612 	 */
613 	fxp_read_eeprom(sc, &data, 6, 1);
614 	sc->phy_primary_device =
615 	    (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
616 
617 	/*
618 	 * Read MAC address.
619 	 */
620 	fxp_read_eeprom(sc, myea, 0, 3);
621 	enaddr[0] = myea[0] & 0xff;
622 	enaddr[1] = myea[0] >> 8;
623 	enaddr[2] = myea[1] & 0xff;
624 	enaddr[3] = myea[1] >> 8;
625 	enaddr[4] = myea[2] & 0xff;
626 	enaddr[5] = myea[2] >> 8;
627 
628 	/*
629 	 * Systems based on the ICH2/ICH2-M chip from Intel, as well
630 	 * as some i82559 designs, have a defect where the chip can
631 	 * cause a PCI protocol violation if it receives a CU_RESUME
632 	 * command when it is entering the IDLE state.
633 	 *
634 	 * The work-around is to disable Dynamic Standby Mode, so that
635 	 * the chip never deasserts #CLKRUN, and always remains in the
636 	 * active state.
637 	 *
638 	 * Unfortunately, the only way to disable Dynamic Standby is
639 	 * to frob an EEPROM setting and reboot (the EEPROM setting
640 	 * is only consulted when the PCI bus comes out of reset).
641 	 *
642 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
643 	 */
644 	if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
645 		fxp_read_eeprom(sc, &data, 10, 1);
646 		if (data & 0x02) {		/* STB enable */
647 			aprint_error("%s: WARNING: "
648 			    "Disabling dynamic standby mode in EEPROM "
649 			    "to work around a\n",
650 			    sc->sc_dev.dv_xname);
651 			aprint_normal(
652 			    "%s: WARNING: hardware bug.  You must reset "
653 			    "the system before using this\n",
654 			    sc->sc_dev.dv_xname);
655 			aprint_normal("%s: WARNING: interface.\n",
656 			    sc->sc_dev.dv_xname);
657 			data &= ~0x02;
658 			fxp_write_eeprom(sc, &data, 10, 1);
659 			aprint_normal("%s: new EEPROM ID: 0x%04x\n",
660 			    sc->sc_dev.dv_xname, data);
661 			fxp_eeprom_update_cksum(sc);
662 		}
663 	}
664 
665 	/* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
666 	/* Due to false positives we make it conditional on setting link1 */
667 	fxp_read_eeprom(sc, &data, 3, 1);
668 	if ((data & 0x03) != 0x03) {
669 		aprint_verbose("%s: May need receiver lock-up workaround\n",
670 		    sc->sc_dev.dv_xname);
671 	}
672 }
673 
674 static void
675 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
676 {
677 	uint16_t reg;
678 	int x;
679 
680 	for (x = 1 << (len - 1); x != 0; x >>= 1) {
681 		DELAY(40);
682 		if (data & x)
683 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
684 		else
685 			reg = FXP_EEPROM_EECS;
686 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
687 		DELAY(40);
688 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
689 		    reg | FXP_EEPROM_EESK);
690 		DELAY(40);
691 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
692 	}
693 	DELAY(40);
694 }
695 
696 /*
697  * Figure out EEPROM size.
698  *
699  * 559's can have either 64-word or 256-word EEPROMs, the 558
700  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
701  * talks about the existence of 16 to 256 word EEPROMs.
702  *
703  * The only known sizes are 64 and 256, where the 256 version is used
704  * by CardBus cards to store CIS information.
705  *
706  * The address is shifted in msb-to-lsb, and after the last
707  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
708  * after which follows the actual data. We try to detect this zero, by
709  * probing the data-out bit in the EEPROM control register just after
710  * having shifted in a bit. If the bit is zero, we assume we've
711  * shifted enough address bits. The data-out should be tri-state,
712  * before this, which should translate to a logical one.
713  *
714  * Other ways to do this would be to try to read a register with known
715  * contents with a varying number of address bits, but no such
716  * register seem to be available. The high bits of register 10 are 01
717  * on the 558 and 559, but apparently not on the 557.
718  *
719  * The Linux driver computes a checksum on the EEPROM data, but the
720  * value of this checksum is not very well documented.
721  */
722 
723 void
724 fxp_autosize_eeprom(struct fxp_softc *sc)
725 {
726 	int x;
727 
728 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
729 	DELAY(40);
730 
731 	/* Shift in read opcode. */
732 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
733 
734 	/*
735 	 * Shift in address, wait for the dummy zero following a correct
736 	 * address shift.
737 	 */
738 	for (x = 1; x <= 8; x++) {
739 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
740 		DELAY(40);
741 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
742 		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
743 		DELAY(40);
744 		if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
745 		    FXP_EEPROM_EEDO) == 0)
746 			break;
747 		DELAY(40);
748 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
749 		DELAY(40);
750 	}
751 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
752 	DELAY(40);
753 	if (x != 6 && x != 8) {
754 #ifdef DEBUG
755 		printf("%s: strange EEPROM size (%d)\n",
756 		    sc->sc_dev.dv_xname, 1 << x);
757 #endif
758 	} else
759 		sc->sc_eeprom_size = x;
760 }
761 
762 /*
763  * Read from the serial EEPROM. Basically, you manually shift in
764  * the read opcode (one bit at a time) and then shift in the address,
765  * and then you shift out the data (all of this one bit at a time).
766  * The word size is 16 bits, so you have to provide the address for
767  * every 16 bits of data.
768  */
769 void
770 fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
771 {
772 	u_int16_t reg;
773 	int i, x;
774 
775 	for (i = 0; i < words; i++) {
776 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
777 
778 		/* Shift in read opcode. */
779 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
780 
781 		/* Shift in address. */
782 		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
783 
784 		reg = FXP_EEPROM_EECS;
785 		data[i] = 0;
786 
787 		/* Shift out data. */
788 		for (x = 16; x > 0; x--) {
789 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
790 			    reg | FXP_EEPROM_EESK);
791 			DELAY(40);
792 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
793 			    FXP_EEPROM_EEDO)
794 				data[i] |= (1 << (x - 1));
795 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
796 			DELAY(40);
797 		}
798 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
799 		DELAY(40);
800 	}
801 }
802 
803 /*
804  * Write data to the serial EEPROM.
805  */
806 void
807 fxp_write_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
808 {
809 	int i, j;
810 
811 	for (i = 0; i < words; i++) {
812 		/* Erase/write enable. */
813 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
814 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
815 		fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
816 		    sc->sc_eeprom_size);
817 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
818 		DELAY(4);
819 
820 		/* Shift in write opcode, address, data. */
821 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
822 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
823 		fxp_eeprom_shiftin(sc, offset, sc->sc_eeprom_size);
824 		fxp_eeprom_shiftin(sc, data[i], 16);
825 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
826 		DELAY(4);
827 
828 		/* Wait for the EEPROM to finish up. */
829 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
830 		DELAY(4);
831 		for (j = 0; j < 1000; j++) {
832 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
833 			    FXP_EEPROM_EEDO)
834 				break;
835 			DELAY(50);
836 		}
837 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
838 		DELAY(4);
839 
840 		/* Erase/write disable. */
841 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
842 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
843 		fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
844 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
845 		DELAY(4);
846 	}
847 }
848 
849 /*
850  * Update the checksum of the EEPROM.
851  */
852 void
853 fxp_eeprom_update_cksum(struct fxp_softc *sc)
854 {
855 	int i;
856 	uint16_t data, cksum;
857 
858 	cksum = 0;
859 	for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
860 		fxp_read_eeprom(sc, &data, i, 1);
861 		cksum += data;
862 	}
863 	i = (1 << sc->sc_eeprom_size) - 1;
864 	cksum = 0xbaba - cksum;
865 	fxp_read_eeprom(sc, &data, i, 1);
866 	fxp_write_eeprom(sc, &cksum, i, 1);
867 	log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
868 	    sc->sc_dev.dv_xname, i, data, cksum);
869 }
870 
871 /*
872  * Start packet transmission on the interface.
873  */
874 void
875 fxp_start(struct ifnet *ifp)
876 {
877 	struct fxp_softc *sc = ifp->if_softc;
878 	struct mbuf *m0, *m;
879 	struct fxp_txdesc *txd;
880 	struct fxp_txsoft *txs;
881 	bus_dmamap_t dmamap;
882 	int error, lasttx, nexttx, opending, seg;
883 
884 	/*
885 	 * If we want a re-init, bail out now.
886 	 */
887 	if (sc->sc_flags & FXPF_WANTINIT) {
888 		ifp->if_flags |= IFF_OACTIVE;
889 		return;
890 	}
891 
892 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
893 		return;
894 
895 	/*
896 	 * Remember the previous txpending and the current lasttx.
897 	 */
898 	opending = sc->sc_txpending;
899 	lasttx = sc->sc_txlast;
900 
901 	/*
902 	 * Loop through the send queue, setting up transmit descriptors
903 	 * until we drain the queue, or use up all available transmit
904 	 * descriptors.
905 	 */
906 	for (;;) {
907 		struct fxp_tbd *tbdp;
908 		int csum_flags;
909 
910 		/*
911 		 * Grab a packet off the queue.
912 		 */
913 		IFQ_POLL(&ifp->if_snd, m0);
914 		if (m0 == NULL)
915 			break;
916 		m = NULL;
917 
918 		if (sc->sc_txpending == FXP_NTXCB) {
919 			FXP_EVCNT_INCR(&sc->sc_ev_txstall);
920 			break;
921 		}
922 
923 		/*
924 		 * Get the next available transmit descriptor.
925 		 */
926 		nexttx = FXP_NEXTTX(sc->sc_txlast);
927 		txd = FXP_CDTX(sc, nexttx);
928 		txs = FXP_DSTX(sc, nexttx);
929 		dmamap = txs->txs_dmamap;
930 
931 		/*
932 		 * Load the DMA map.  If this fails, the packet either
933 		 * didn't fit in the allotted number of frags, or we were
934 		 * short on resources.  In this case, we'll copy and try
935 		 * again.
936 		 */
937 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
938 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
939 			MGETHDR(m, M_DONTWAIT, MT_DATA);
940 			if (m == NULL) {
941 				log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
942 				    sc->sc_dev.dv_xname);
943 				break;
944 			}
945 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
946 			if (m0->m_pkthdr.len > MHLEN) {
947 				MCLGET(m, M_DONTWAIT);
948 				if ((m->m_flags & M_EXT) == 0) {
949 					log(LOG_ERR,
950 					    "%s: unable to allocate Tx "
951 					    "cluster\n", sc->sc_dev.dv_xname);
952 					m_freem(m);
953 					break;
954 				}
955 			}
956 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
957 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
958 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
959 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
960 			if (error) {
961 				log(LOG_ERR, "%s: unable to load Tx buffer, "
962 				    "error = %d\n", sc->sc_dev.dv_xname, error);
963 				break;
964 			}
965 		}
966 
967 		IFQ_DEQUEUE(&ifp->if_snd, m0);
968 		csum_flags = m0->m_pkthdr.csum_flags;
969 		if (m != NULL) {
970 			m_freem(m0);
971 			m0 = m;
972 		}
973 
974 		/* Initialize the fraglist. */
975 		tbdp = txd->txd_tbd;
976 		if (sc->sc_flags & FXPF_IPCB)
977 			tbdp++;
978 		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
979 			tbdp[seg].tb_addr =
980 			    htole32(dmamap->dm_segs[seg].ds_addr);
981 			tbdp[seg].tb_size =
982 			    htole32(dmamap->dm_segs[seg].ds_len);
983 		}
984 
985 		/* Sync the DMA map. */
986 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
987 		    BUS_DMASYNC_PREWRITE);
988 
989 		/*
990 		 * Store a pointer to the packet so we can free it later.
991 		 */
992 		txs->txs_mbuf = m0;
993 
994 		/*
995 		 * Initialize the transmit descriptor.
996 		 */
997 		/* BIG_ENDIAN: no need to swap to store 0 */
998 		txd->txd_txcb.cb_status = 0;
999 		txd->txd_txcb.cb_command =
1000 		    sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
1001 		txd->txd_txcb.tx_threshold = tx_threshold;
1002 		txd->txd_txcb.tbd_number = dmamap->dm_nsegs;
1003 
1004 		KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
1005 		if (sc->sc_flags & FXPF_IPCB) {
1006 			struct m_tag *vtag;
1007 			struct fxp_ipcb *ipcb;
1008 			/*
1009 			 * Deal with TCP/IP checksum offload. Note that
1010 			 * in order for TCP checksum offload to work,
1011 			 * the pseudo header checksum must have already
1012 			 * been computed and stored in the checksum field
1013 			 * in the TCP header. The stack should have
1014 			 * already done this for us.
1015 			 */
1016 			ipcb = &txd->txd_u.txdu_ipcb;
1017 			memset(ipcb, 0, sizeof(*ipcb));
1018 			/*
1019 			 * always do hardware parsing.
1020 			 */
1021 			ipcb->ipcb_ip_activation_high =
1022 			    FXP_IPCB_HARDWAREPARSING_ENABLE;
1023 			/*
1024 			 * ip checksum offloading.
1025 			 */
1026 			if (csum_flags & M_CSUM_IPv4) {
1027 				ipcb->ipcb_ip_schedule |=
1028 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1029 			}
1030 			/*
1031 			 * TCP/UDP checksum offloading.
1032 			 */
1033 			if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
1034 				ipcb->ipcb_ip_schedule |=
1035 				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1036 			}
1037 
1038 			/*
1039 			 * request VLAN tag insertion if needed.
1040 			 */
1041 			vtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
1042 			if (vtag) {
1043 				ipcb->ipcb_vlan_id =
1044 				    htobe16(*(u_int *)(vtag + 1));
1045 				ipcb->ipcb_ip_activation_high |=
1046 				    FXP_IPCB_INSERTVLAN_ENABLE;
1047 			}
1048 		} else {
1049 			KASSERT((csum_flags &
1050 			    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
1051 		}
1052 
1053 		FXP_CDTXSYNC(sc, nexttx,
1054 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1055 
1056 		/* Advance the tx pointer. */
1057 		sc->sc_txpending++;
1058 		sc->sc_txlast = nexttx;
1059 
1060 #if NBPFILTER > 0
1061 		/*
1062 		 * Pass packet to bpf if there is a listener.
1063 		 */
1064 		if (ifp->if_bpf)
1065 			bpf_mtap(ifp->if_bpf, m0);
1066 #endif
1067 	}
1068 
1069 	if (sc->sc_txpending == FXP_NTXCB) {
1070 		/* No more slots; notify upper layer. */
1071 		ifp->if_flags |= IFF_OACTIVE;
1072 	}
1073 
1074 	if (sc->sc_txpending != opending) {
1075 		/*
1076 		 * We enqueued packets.  If the transmitter was idle,
1077 		 * reset the txdirty pointer.
1078 		 */
1079 		if (opending == 0)
1080 			sc->sc_txdirty = FXP_NEXTTX(lasttx);
1081 
1082 		/*
1083 		 * Cause the chip to interrupt and suspend command
1084 		 * processing once the last packet we've enqueued
1085 		 * has been transmitted.
1086 		 */
1087 		FXP_CDTX(sc, sc->sc_txlast)->txd_txcb.cb_command |=
1088 		    htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
1089 		FXP_CDTXSYNC(sc, sc->sc_txlast,
1090 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1091 
1092 		/*
1093 		 * The entire packet chain is set up.  Clear the suspend bit
1094 		 * on the command prior to the first packet we set up.
1095 		 */
1096 		FXP_CDTXSYNC(sc, lasttx,
1097 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1098 		FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
1099 		    htole16(~FXP_CB_COMMAND_S);
1100 		FXP_CDTXSYNC(sc, lasttx,
1101 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1102 
1103 		/*
1104 		 * Issue a Resume command in case the chip was suspended.
1105 		 */
1106 		fxp_scb_wait(sc);
1107 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1108 
1109 		/* Set a watchdog timer in case the chip flakes out. */
1110 		ifp->if_timer = 5;
1111 	}
1112 }
1113 
1114 /*
1115  * Process interface interrupts.
1116  */
1117 int
1118 fxp_intr(void *arg)
1119 {
1120 	struct fxp_softc *sc = arg;
1121 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1122 	bus_dmamap_t rxmap;
1123 	int claimed = 0;
1124 	u_int8_t statack;
1125 
1126 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 || sc->sc_enabled == 0)
1127 		return (0);
1128 	/*
1129 	 * If the interface isn't running, don't try to
1130 	 * service the interrupt.. just ack it and bail.
1131 	 */
1132 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
1133 		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1134 		if (statack) {
1135 			claimed = 1;
1136 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1137 		}
1138 		return (claimed);
1139 	}
1140 
1141 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1142 		claimed = 1;
1143 
1144 		/*
1145 		 * First ACK all the interrupts in this pass.
1146 		 */
1147 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1148 
1149 		/*
1150 		 * Process receiver interrupts. If a no-resource (RNR)
1151 		 * condition exists, get whatever packets we can and
1152 		 * re-start the receiver.
1153 		 */
1154 		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
1155 			FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1156 			fxp_rxintr(sc);
1157 		}
1158 
1159 		if (statack & FXP_SCB_STATACK_RNR) {
1160 			fxp_scb_wait(sc);
1161 			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
1162 			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1163 			fxp_scb_wait(sc);
1164 			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1165 			    rxmap->dm_segs[0].ds_addr +
1166 			    RFA_ALIGNMENT_FUDGE);
1167 			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1168 		}
1169 
1170 		/*
1171 		 * Free any finished transmit mbuf chains.
1172 		 */
1173 		if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1174 			FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1175 			fxp_txintr(sc);
1176 
1177 			/*
1178 			 * Try to get more packets going.
1179 			 */
1180 			fxp_start(ifp);
1181 
1182 			if (sc->sc_txpending == 0) {
1183 				/*
1184 				 * If we want a re-init, do that now.
1185 				 */
1186 				if (sc->sc_flags & FXPF_WANTINIT)
1187 					(void) fxp_init(ifp);
1188 			}
1189 		}
1190 	}
1191 
1192 #if NRND > 0
1193 	if (claimed)
1194 		rnd_add_uint32(&sc->rnd_source, statack);
1195 #endif
1196 	return (claimed);
1197 }
1198 
1199 /*
1200  * Handle transmit completion interrupts.
1201  */
1202 void
1203 fxp_txintr(struct fxp_softc *sc)
1204 {
1205 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1206 	struct fxp_txdesc *txd;
1207 	struct fxp_txsoft *txs;
1208 	int i;
1209 	u_int16_t txstat;
1210 
1211 	ifp->if_flags &= ~IFF_OACTIVE;
1212 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1213 	    i = FXP_NEXTTX(i), sc->sc_txpending--) {
1214 		txd = FXP_CDTX(sc, i);
1215 		txs = FXP_DSTX(sc, i);
1216 
1217 		FXP_CDTXSYNC(sc, i,
1218 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1219 
1220 		txstat = le16toh(txd->txd_txcb.cb_status);
1221 
1222 		if ((txstat & FXP_CB_STATUS_C) == 0)
1223 			break;
1224 
1225 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1226 		    0, txs->txs_dmamap->dm_mapsize,
1227 		    BUS_DMASYNC_POSTWRITE);
1228 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1229 		m_freem(txs->txs_mbuf);
1230 		txs->txs_mbuf = NULL;
1231 	}
1232 
1233 	/* Update the dirty transmit buffer pointer. */
1234 	sc->sc_txdirty = i;
1235 
1236 	/*
1237 	 * Cancel the watchdog timer if there are no pending
1238 	 * transmissions.
1239 	 */
1240 	if (sc->sc_txpending == 0)
1241 		ifp->if_timer = 0;
1242 }
1243 
1244 /*
1245  * fxp_rx_hwcksum: check status of H/W offloading for received packets.
1246  */
1247 
1248 int
1249 fxp_rx_hwcksum(struct mbuf *m, const struct fxp_rfa *rfa)
1250 {
1251 	u_int16_t rxparsestat;
1252 	u_int16_t csum_stat;
1253 	u_int32_t csum_data;
1254 	int csum_flags;
1255 
1256 	/*
1257 	 * check VLAN tag stripping.
1258 	 */
1259 
1260 	if (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) {
1261 		struct m_tag *vtag;
1262 
1263 		vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int), M_NOWAIT);
1264 		if (vtag == NULL)
1265 			return ENOMEM;
1266 		*(u_int *)(vtag + 1) = be16toh(rfa->vlan_id);
1267 		m_tag_prepend(m, vtag);
1268 	}
1269 
1270 	/*
1271 	 * check H/W Checksumming.
1272 	 */
1273 
1274 	csum_stat = le16toh(rfa->cksum_stat);
1275 	rxparsestat = le16toh(rfa->rx_parse_stat);
1276 	if (!(rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)))
1277 		return 0;
1278 
1279 	csum_flags = 0;
1280 	csum_data = 0;
1281 
1282 	if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
1283 		csum_flags = M_CSUM_IPv4;
1284 		if (!(csum_stat & FXP_RFDX_CS_IP_CSUM_VALID))
1285 			csum_flags |= M_CSUM_IPv4_BAD;
1286 	}
1287 
1288 	if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
1289 		csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
1290 		if (!(csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID))
1291 			csum_flags |= M_CSUM_TCP_UDP_BAD;
1292 	}
1293 
1294 	m->m_pkthdr.csum_flags = csum_flags;
1295 	m->m_pkthdr.csum_data = csum_data;
1296 
1297 	return 0;
1298 }
1299 
1300 /*
1301  * Handle receive interrupts.
1302  */
1303 void
1304 fxp_rxintr(struct fxp_softc *sc)
1305 {
1306 	struct ethercom *ec = &sc->sc_ethercom;
1307 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1308 	struct mbuf *m, *m0;
1309 	bus_dmamap_t rxmap;
1310 	struct fxp_rfa *rfa;
1311 	u_int16_t len, rxstat;
1312 
1313 	for (;;) {
1314 		m = sc->sc_rxq.ifq_head;
1315 		rfa = FXP_MTORFA(m);
1316 		rxmap = M_GETCTX(m, bus_dmamap_t);
1317 
1318 		FXP_RFASYNC(sc, m,
1319 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1320 
1321 		rxstat = le16toh(rfa->rfa_status);
1322 
1323 		if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1324 			/*
1325 			 * We have processed all of the
1326 			 * receive buffers.
1327 			 */
1328 			FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1329 			return;
1330 		}
1331 
1332 		IF_DEQUEUE(&sc->sc_rxq, m);
1333 
1334 		FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1335 
1336 		len = le16toh(rfa->actual_size) &
1337 		    (m->m_ext.ext_size - 1);
1338 
1339 		if (len < sizeof(struct ether_header)) {
1340 			/*
1341 			 * Runt packet; drop it now.
1342 			 */
1343 			FXP_INIT_RFABUF(sc, m);
1344 			continue;
1345 		}
1346 
1347 		/*
1348 		 * If support for 802.1Q VLAN sized frames is
1349 		 * enabled, we need to do some additional error
1350 		 * checking (as we are saving bad frames, in
1351 		 * order to receive the larger ones).
1352 		 */
1353 		if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1354 		    (rxstat & (FXP_RFA_STATUS_OVERRUN|
1355 			       FXP_RFA_STATUS_RNR|
1356 			       FXP_RFA_STATUS_ALIGN|
1357 			       FXP_RFA_STATUS_CRC)) != 0) {
1358 			FXP_INIT_RFABUF(sc, m);
1359 			continue;
1360 		}
1361 
1362 		/* Do checksum checking. */
1363 		m->m_pkthdr.csum_flags = 0;
1364 		if (sc->sc_flags & FXPF_EXT_RFA)
1365 			if (fxp_rx_hwcksum(m, rfa))
1366 				goto dropit;
1367 
1368 		/*
1369 		 * If the packet is small enough to fit in a
1370 		 * single header mbuf, allocate one and copy
1371 		 * the data into it.  This greatly reduces
1372 		 * memory consumption when we receive lots
1373 		 * of small packets.
1374 		 *
1375 		 * Otherwise, we add a new buffer to the receive
1376 		 * chain.  If this fails, we drop the packet and
1377 		 * recycle the old buffer.
1378 		 */
1379 		if (fxp_copy_small != 0 && len <= MHLEN) {
1380 			MGETHDR(m0, M_DONTWAIT, MT_DATA);
1381 			if (m0 == NULL)
1382 				goto dropit;
1383 			MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
1384 			memcpy(mtod(m0, caddr_t),
1385 			    mtod(m, caddr_t), len);
1386 			m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
1387 			m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
1388 			FXP_INIT_RFABUF(sc, m);
1389 			m = m0;
1390 		} else {
1391 			if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1392  dropit:
1393 				ifp->if_ierrors++;
1394 				FXP_INIT_RFABUF(sc, m);
1395 				continue;
1396 			}
1397 		}
1398 
1399 		m->m_pkthdr.rcvif = ifp;
1400 		m->m_pkthdr.len = m->m_len = len;
1401 
1402 #if NBPFILTER > 0
1403 		/*
1404 		 * Pass this up to any BPF listeners, but only
1405 		 * pass it up the stack it its for us.
1406 		 */
1407 		if (ifp->if_bpf)
1408 			bpf_mtap(ifp->if_bpf, m);
1409 #endif
1410 
1411 		/* Pass it on. */
1412 		(*ifp->if_input)(ifp, m);
1413 	}
1414 }
1415 
1416 /*
1417  * Update packet in/out/collision statistics. The i82557 doesn't
1418  * allow you to access these counters without doing a fairly
1419  * expensive DMA to get _all_ of the statistics it maintains, so
1420  * we do this operation here only once per second. The statistics
1421  * counters in the kernel are updated from the previous dump-stats
1422  * DMA and then a new dump-stats DMA is started. The on-chip
1423  * counters are zeroed when the DMA completes. If we can't start
1424  * the DMA immediately, we don't wait - we just prepare to read
1425  * them again next time.
1426  */
1427 void
1428 fxp_tick(void *arg)
1429 {
1430 	struct fxp_softc *sc = arg;
1431 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1432 	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1433 	int s;
1434 
1435 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1436 		return;
1437 
1438 	s = splnet();
1439 
1440 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1441 
1442 	ifp->if_opackets += le32toh(sp->tx_good);
1443 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1444 	if (sp->rx_good) {
1445 		ifp->if_ipackets += le32toh(sp->rx_good);
1446 		sc->sc_rxidle = 0;
1447 	} else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
1448 		sc->sc_rxidle++;
1449 	}
1450 	ifp->if_ierrors +=
1451 	    le32toh(sp->rx_crc_errors) +
1452 	    le32toh(sp->rx_alignment_errors) +
1453 	    le32toh(sp->rx_rnr_errors) +
1454 	    le32toh(sp->rx_overrun_errors);
1455 	/*
1456 	 * If any transmit underruns occurred, bump up the transmit
1457 	 * threshold by another 512 bytes (64 * 8).
1458 	 */
1459 	if (sp->tx_underruns) {
1460 		ifp->if_oerrors += le32toh(sp->tx_underruns);
1461 		if (tx_threshold < 192)
1462 			tx_threshold += 64;
1463 	}
1464 #ifdef FXP_EVENT_COUNTERS
1465 	if (sc->sc_rev >= FXP_REV_82558_A4) {
1466 		sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
1467 		sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
1468 	}
1469 #endif
1470 
1471 	/*
1472 	 * If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
1473 	 * then assume the receiver has locked up and attempt to clear
1474 	 * the condition by reprogramming the multicast filter (actually,
1475 	 * resetting the interface). This is a work-around for a bug in
1476 	 * the 82557 where the receiver locks up if it gets certain types
1477 	 * of garbage in the synchronization bits prior to the packet header.
1478 	 * This bug is supposed to only occur in 10Mbps mode, but has been
1479 	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1480 	 * speed transition).
1481 	 */
1482 	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1483 		(void) fxp_init(ifp);
1484 		splx(s);
1485 		return;
1486 	}
1487 	/*
1488 	 * If there is no pending command, start another stats
1489 	 * dump. Otherwise punt for now.
1490 	 */
1491 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1492 		/*
1493 		 * Start another stats dump.
1494 		 */
1495 		FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1496 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1497 	} else {
1498 		/*
1499 		 * A previous command is still waiting to be accepted.
1500 		 * Just zero our copy of the stats and wait for the
1501 		 * next timer event to update them.
1502 		 */
1503 		/* BIG_ENDIAN: no swap required to store 0 */
1504 		sp->tx_good = 0;
1505 		sp->tx_underruns = 0;
1506 		sp->tx_total_collisions = 0;
1507 
1508 		sp->rx_good = 0;
1509 		sp->rx_crc_errors = 0;
1510 		sp->rx_alignment_errors = 0;
1511 		sp->rx_rnr_errors = 0;
1512 		sp->rx_overrun_errors = 0;
1513 		if (sc->sc_rev >= FXP_REV_82558_A4) {
1514 			sp->tx_pauseframes = 0;
1515 			sp->rx_pauseframes = 0;
1516 		}
1517 	}
1518 
1519 	if (sc->sc_flags & FXPF_MII) {
1520 		/* Tick the MII clock. */
1521 		mii_tick(&sc->sc_mii);
1522 	}
1523 
1524 	splx(s);
1525 
1526 	/*
1527 	 * Schedule another timeout one second from now.
1528 	 */
1529 	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1530 }
1531 
1532 /*
1533  * Drain the receive queue.
1534  */
1535 void
1536 fxp_rxdrain(struct fxp_softc *sc)
1537 {
1538 	bus_dmamap_t rxmap;
1539 	struct mbuf *m;
1540 
1541 	for (;;) {
1542 		IF_DEQUEUE(&sc->sc_rxq, m);
1543 		if (m == NULL)
1544 			break;
1545 		rxmap = M_GETCTX(m, bus_dmamap_t);
1546 		bus_dmamap_unload(sc->sc_dmat, rxmap);
1547 		FXP_RXMAP_PUT(sc, rxmap);
1548 		m_freem(m);
1549 	}
1550 }
1551 
1552 /*
1553  * Stop the interface. Cancels the statistics updater and resets
1554  * the interface.
1555  */
1556 void
1557 fxp_stop(struct ifnet *ifp, int disable)
1558 {
1559 	struct fxp_softc *sc = ifp->if_softc;
1560 	struct fxp_txsoft *txs;
1561 	int i;
1562 
1563 	/*
1564 	 * Turn down interface (done early to avoid bad interactions
1565 	 * between panics, shutdown hooks, and the watchdog timer)
1566 	 */
1567 	ifp->if_timer = 0;
1568 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1569 
1570 	/*
1571 	 * Cancel stats updater.
1572 	 */
1573 	callout_stop(&sc->sc_callout);
1574 	if (sc->sc_flags & FXPF_MII) {
1575 		/* Down the MII. */
1576 		mii_down(&sc->sc_mii);
1577 	}
1578 
1579 	/*
1580 	 * Issue software reset.  This unloads any microcode that
1581 	 * might already be loaded.
1582 	 */
1583 	sc->sc_flags &= ~FXPF_UCODE_LOADED;
1584 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1585 	DELAY(50);
1586 
1587 	/*
1588 	 * Release any xmit buffers.
1589 	 */
1590 	for (i = 0; i < FXP_NTXCB; i++) {
1591 		txs = FXP_DSTX(sc, i);
1592 		if (txs->txs_mbuf != NULL) {
1593 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1594 			m_freem(txs->txs_mbuf);
1595 			txs->txs_mbuf = NULL;
1596 		}
1597 	}
1598 	sc->sc_txpending = 0;
1599 
1600 	if (disable) {
1601 		fxp_rxdrain(sc);
1602 		fxp_disable(sc);
1603 	}
1604 
1605 }
1606 
1607 /*
1608  * Watchdog/transmission transmit timeout handler. Called when a
1609  * transmission is started on the interface, but no interrupt is
1610  * received before the timeout. This usually indicates that the
1611  * card has wedged for some reason.
1612  */
1613 void
1614 fxp_watchdog(struct ifnet *ifp)
1615 {
1616 	struct fxp_softc *sc = ifp->if_softc;
1617 
1618 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1619 	ifp->if_oerrors++;
1620 
1621 	(void) fxp_init(ifp);
1622 }
1623 
1624 /*
1625  * Initialize the interface.  Must be called at splnet().
1626  */
1627 int
1628 fxp_init(struct ifnet *ifp)
1629 {
1630 	struct fxp_softc *sc = ifp->if_softc;
1631 	struct fxp_cb_config *cbp;
1632 	struct fxp_cb_ias *cb_ias;
1633 	struct fxp_txdesc *txd;
1634 	bus_dmamap_t rxmap;
1635 	int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
1636 
1637 	if ((error = fxp_enable(sc)) != 0)
1638 		goto out;
1639 
1640 	/*
1641 	 * Cancel any pending I/O
1642 	 */
1643 	fxp_stop(ifp, 0);
1644 
1645 	/*
1646 	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1647 	 * flag, and this prevents the MII from detaching resulting in
1648 	 * a panic. The flags field should perhaps be split in runtime
1649 	 * flags and more static information. For now, just clear the
1650 	 * only other flag set.
1651 	 */
1652 
1653 	sc->sc_flags &= ~FXPF_WANTINIT;
1654 
1655 	/*
1656 	 * Initialize base of CBL and RFA memory. Loading with zero
1657 	 * sets it up for regular linear addressing.
1658 	 */
1659 	fxp_scb_wait(sc);
1660 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1661 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1662 
1663 	fxp_scb_wait(sc);
1664 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1665 
1666 	/*
1667 	 * Initialize the multicast filter.  Do this now, since we might
1668 	 * have to setup the config block differently.
1669 	 */
1670 	fxp_mc_setup(sc);
1671 
1672 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1673 	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1674 
1675 	/*
1676 	 * In order to support receiving 802.1Q VLAN frames, we have to
1677 	 * enable "save bad frames", since they are 4 bytes larger than
1678 	 * the normal Ethernet maximum frame length.  On i82558 and later,
1679 	 * we have a better mechanism for this.
1680 	 */
1681 	save_bf = 0;
1682 	lrxen = 0;
1683 	vlan_drop = 0;
1684 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1685 		if (sc->sc_rev < FXP_REV_82558_A4)
1686 			save_bf = 1;
1687 		else
1688 			lrxen = 1;
1689 		if (sc->sc_rev >= FXP_REV_82550)
1690 			vlan_drop = 1;
1691 	}
1692 
1693 	/*
1694 	 * Initialize base of dump-stats buffer.
1695 	 */
1696 	fxp_scb_wait(sc);
1697 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1698 	    sc->sc_cddma + FXP_CDSTATSOFF);
1699 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1700 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1701 
1702 	cbp = &sc->sc_control_data->fcd_configcb;
1703 	memset(cbp, 0, sizeof(struct fxp_cb_config));
1704 
1705 	/*
1706 	 * Load microcode for this controller.
1707 	 */
1708 	fxp_load_ucode(sc);
1709 
1710 	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
1711 		sc->sc_flags |= FXPF_RECV_WORKAROUND;
1712 	else
1713 		sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
1714 
1715 	/*
1716 	 * This copy is kind of disgusting, but there are a bunch of must be
1717 	 * zero and must be one bits in this structure and this is the easiest
1718 	 * way to initialize them all to proper values.
1719 	 */
1720 	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1721 
1722 	/* BIG_ENDIAN: no need to swap to store 0 */
1723 	cbp->cb_status =	0;
1724 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
1725 				    FXP_CB_COMMAND_EL);
1726 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1727 	cbp->link_addr =	0xffffffff; /* (no) next command */
1728 					/* bytes in config block */
1729 	cbp->byte_count =	(sc->sc_flags & FXPF_EXT_RFA) ?
1730 				FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
1731 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1732 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1733 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1734 	cbp->mwi_enable =	(sc->sc_flags & FXPF_MWI) ? 1 : 0;
1735 	cbp->type_enable =	0;	/* actually reserved */
1736 	cbp->read_align_en =	(sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1737 	cbp->end_wr_on_cl =	(sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1738 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1739 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1740 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1741 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1742 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1743 	cbp->ci_int =		1;	/* interrupt on CU idle */
1744 	cbp->ext_txcb_dis =	(sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1745 	cbp->ext_stats_dis =	1;	/* disable extended counters */
1746 	cbp->keep_overrun_rx =	0;	/* don't pass overrun frames to host */
1747 	cbp->save_bf =		save_bf;/* save bad frames */
1748 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1749 	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
1750 	cbp->ext_rfa =		(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1751 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1752 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1753 					/* interface mode */
1754 	cbp->mediatype =	(sc->sc_flags & FXPF_MII) ? 1 : 0;
1755 	cbp->csma_dis =		0;	/* (don't) disable link */
1756 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1757 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1758 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1759 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1760 	cbp->mc_wake_en =	0;	/* (don't) assert PME# on mcmatch */
1761 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1762 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1763 	cbp->loopback =		0;	/* (don't) loopback */
1764 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1765 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1766 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1767 	cbp->promiscuous =	prm;	/* promiscuous mode */
1768 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1769 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1770 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1771 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1772 	cbp->crscdt =		(sc->sc_flags & FXPF_MII) ? 0 : 1;
1773 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1774 	cbp->padding =		1;	/* (do) pad short tx packets */
1775 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1776 	cbp->long_rx_en =	lrxen;	/* long packet receive enable */
1777 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1778 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1779 					/* must set wake_en in PMCSR also */
1780 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1781 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1782 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1783 	cbp->mc_all =		allm;	/* accept all multicasts */
1784 	cbp->ext_rx_mode =	(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1785 	cbp->vlan_drop_en =	vlan_drop;
1786 
1787 	if (sc->sc_rev < FXP_REV_82558_A4) {
1788 		/*
1789 		 * The i82557 has no hardware flow control, the values
1790 		 * here are the defaults for the chip.
1791 		 */
1792 		cbp->fc_delay_lsb =	0;
1793 		cbp->fc_delay_msb =	0x40;
1794 		cbp->pri_fc_thresh =	3;
1795 		cbp->tx_fc_dis =	0;
1796 		cbp->rx_fc_restop =	0;
1797 		cbp->rx_fc_restart =	0;
1798 		cbp->fc_filter =	0;
1799 		cbp->pri_fc_loc =	1;
1800 	} else {
1801 		cbp->fc_delay_lsb =	0x1f;
1802 		cbp->fc_delay_msb =	0x01;
1803 		cbp->pri_fc_thresh =	3;
1804 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1805 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1806 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1807 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1808 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1809 		cbp->ext_stats_dis =	0;	/* enable extended stats */
1810 	}
1811 
1812 	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1813 
1814 	/*
1815 	 * Start the config command/DMA.
1816 	 */
1817 	fxp_scb_wait(sc);
1818 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1819 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1820 	/* ...and wait for it to complete. */
1821 	i = 1000;
1822 	do {
1823 		FXP_CDCONFIGSYNC(sc,
1824 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1825 		DELAY(1);
1826 	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1827 	if (i == 0) {
1828 		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1829 		    sc->sc_dev.dv_xname, __LINE__);
1830 		return (ETIMEDOUT);
1831 	}
1832 
1833 	/*
1834 	 * Initialize the station address.
1835 	 */
1836 	cb_ias = &sc->sc_control_data->fcd_iascb;
1837 	/* BIG_ENDIAN: no need to swap to store 0 */
1838 	cb_ias->cb_status = 0;
1839 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1840 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1841 	cb_ias->link_addr = 0xffffffff;
1842 	memcpy(cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1843 
1844 	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1845 
1846 	/*
1847 	 * Start the IAS (Individual Address Setup) command/DMA.
1848 	 */
1849 	fxp_scb_wait(sc);
1850 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1851 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1852 	/* ...and wait for it to complete. */
1853 	i = 1000;
1854 	do {
1855 		FXP_CDIASSYNC(sc,
1856 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1857 		DELAY(1);
1858 	} while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1859 	if (i == 0) {
1860 		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1861 		    sc->sc_dev.dv_xname, __LINE__);
1862 		return (ETIMEDOUT);
1863 	}
1864 
1865 	/*
1866 	 * Initialize the transmit descriptor ring.  txlast is initialized
1867 	 * to the end of the list so that it will wrap around to the first
1868 	 * descriptor when the first packet is transmitted.
1869 	 */
1870 	for (i = 0; i < FXP_NTXCB; i++) {
1871 		txd = FXP_CDTX(sc, i);
1872 		memset(txd, 0, sizeof(*txd));
1873 		txd->txd_txcb.cb_command =
1874 		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1875 		txd->txd_txcb.link_addr =
1876 		    htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1877 		if (sc->sc_flags & FXPF_EXT_TXCB)
1878 			txd->txd_txcb.tbd_array_addr =
1879 			    htole32(FXP_CDTBDADDR(sc, i) +
1880 				    (2 * sizeof(struct fxp_tbd)));
1881 		else
1882 			txd->txd_txcb.tbd_array_addr =
1883 			    htole32(FXP_CDTBDADDR(sc, i));
1884 		FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1885 	}
1886 	sc->sc_txpending = 0;
1887 	sc->sc_txdirty = 0;
1888 	sc->sc_txlast = FXP_NTXCB - 1;
1889 
1890 	/*
1891 	 * Initialize the receive buffer list.
1892 	 */
1893 	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1894 	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1895 		rxmap = FXP_RXMAP_GET(sc);
1896 		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1897 			log(LOG_ERR, "%s: unable to allocate or map rx "
1898 			    "buffer %d, error = %d\n",
1899 			    sc->sc_dev.dv_xname,
1900 			    sc->sc_rxq.ifq_len, error);
1901 			/*
1902 			 * XXX Should attempt to run with fewer receive
1903 			 * XXX buffers instead of just failing.
1904 			 */
1905 			FXP_RXMAP_PUT(sc, rxmap);
1906 			fxp_rxdrain(sc);
1907 			goto out;
1908 		}
1909 	}
1910 	sc->sc_rxidle = 0;
1911 
1912 	/*
1913 	 * Give the transmit ring to the chip.  We do this by pointing
1914 	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1915 	 * issuing a start command.  It will execute the NOP and then
1916 	 * suspend, pointing at the first descriptor.
1917 	 */
1918 	fxp_scb_wait(sc);
1919 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1920 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1921 
1922 	/*
1923 	 * Initialize receiver buffer area - RFA.
1924 	 */
1925 	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1926 	fxp_scb_wait(sc);
1927 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1928 	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1929 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1930 
1931 	if (sc->sc_flags & FXPF_MII) {
1932 		/*
1933 		 * Set current media.
1934 		 */
1935 		mii_mediachg(&sc->sc_mii);
1936 	}
1937 
1938 	/*
1939 	 * ...all done!
1940 	 */
1941 	ifp->if_flags |= IFF_RUNNING;
1942 	ifp->if_flags &= ~IFF_OACTIVE;
1943 
1944 	/*
1945 	 * Start the one second timer.
1946 	 */
1947 	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1948 
1949 	/*
1950 	 * Attempt to start output on the interface.
1951 	 */
1952 	fxp_start(ifp);
1953 
1954  out:
1955 	if (error) {
1956 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1957 		ifp->if_timer = 0;
1958 		log(LOG_ERR, "%s: interface not running\n",
1959 		    sc->sc_dev.dv_xname);
1960 	}
1961 	return (error);
1962 }
1963 
1964 /*
1965  * Change media according to request.
1966  */
1967 int
1968 fxp_mii_mediachange(struct ifnet *ifp)
1969 {
1970 	struct fxp_softc *sc = ifp->if_softc;
1971 
1972 	if (ifp->if_flags & IFF_UP)
1973 		mii_mediachg(&sc->sc_mii);
1974 	return (0);
1975 }
1976 
1977 /*
1978  * Notify the world which media we're using.
1979  */
1980 void
1981 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1982 {
1983 	struct fxp_softc *sc = ifp->if_softc;
1984 
1985 	if (sc->sc_enabled == 0) {
1986 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1987 		ifmr->ifm_status = 0;
1988 		return;
1989 	}
1990 
1991 	mii_pollstat(&sc->sc_mii);
1992 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1993 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1994 
1995 	/*
1996 	 * XXX Flow control is always turned on if the chip supports
1997 	 * XXX it; we can't easily control it dynamically, since it
1998 	 * XXX requires sending a setup packet.
1999 	 */
2000 	if (sc->sc_rev >= FXP_REV_82558_A4)
2001 		ifmr->ifm_active |= IFM_FLOW|IFM_ETH_TXPAUSE|IFM_ETH_RXPAUSE;
2002 }
2003 
2004 int
2005 fxp_80c24_mediachange(struct ifnet *ifp)
2006 {
2007 
2008 	/* Nothing to do here. */
2009 	return (0);
2010 }
2011 
2012 void
2013 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2014 {
2015 	struct fxp_softc *sc = ifp->if_softc;
2016 
2017 	/*
2018 	 * Media is currently-selected media.  We cannot determine
2019 	 * the link status.
2020 	 */
2021 	ifmr->ifm_status = 0;
2022 	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
2023 }
2024 
2025 /*
2026  * Add a buffer to the end of the RFA buffer list.
2027  * Return 0 if successful, error code on failure.
2028  *
2029  * The RFA struct is stuck at the beginning of mbuf cluster and the
2030  * data pointer is fixed up to point just past it.
2031  */
2032 int
2033 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
2034 {
2035 	struct mbuf *m;
2036 	int error;
2037 
2038 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2039 	if (m == NULL)
2040 		return (ENOBUFS);
2041 
2042 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2043 	MCLGET(m, M_DONTWAIT);
2044 	if ((m->m_flags & M_EXT) == 0) {
2045 		m_freem(m);
2046 		return (ENOBUFS);
2047 	}
2048 
2049 	if (unload)
2050 		bus_dmamap_unload(sc->sc_dmat, rxmap);
2051 
2052 	M_SETCTX(m, rxmap);
2053 
2054 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2055 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
2056 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2057 	if (error) {
2058 		/* XXX XXX XXX */
2059 		printf("%s: can't load rx DMA map %d, error = %d\n",
2060 		    sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
2061 		panic("fxp_add_rfabuf");
2062 	}
2063 
2064 	FXP_INIT_RFABUF(sc, m);
2065 
2066 	return (0);
2067 }
2068 
2069 int
2070 fxp_mdi_read(struct device *self, int phy, int reg)
2071 {
2072 	struct fxp_softc *sc = (struct fxp_softc *)self;
2073 	int count = 10000;
2074 	int value;
2075 
2076 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2077 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2078 
2079 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
2080 	    0x10000000) == 0 && count--)
2081 		DELAY(10);
2082 
2083 	if (count <= 0)
2084 		log(LOG_WARNING,
2085 		    "%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
2086 
2087 	return (value & 0xffff);
2088 }
2089 
2090 void
2091 fxp_statchg(struct device *self)
2092 {
2093 
2094 	/* Nothing to do. */
2095 }
2096 
2097 void
2098 fxp_mdi_write(struct device *self, int phy, int reg, int value)
2099 {
2100 	struct fxp_softc *sc = (struct fxp_softc *)self;
2101 	int count = 10000;
2102 
2103 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2104 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2105 	    (value & 0xffff));
2106 
2107 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2108 	    count--)
2109 		DELAY(10);
2110 
2111 	if (count <= 0)
2112 		log(LOG_WARNING,
2113 		    "%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
2114 }
2115 
2116 int
2117 fxp_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2118 {
2119 	struct fxp_softc *sc = ifp->if_softc;
2120 	struct ifreq *ifr = (struct ifreq *)data;
2121 	int s, error;
2122 
2123 	s = splnet();
2124 
2125 	switch (cmd) {
2126 	case SIOCSIFMEDIA:
2127 	case SIOCGIFMEDIA:
2128 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2129 		break;
2130 
2131 	default:
2132 		error = ether_ioctl(ifp, cmd, data);
2133 		if (error == ENETRESET) {
2134 			if (ifp->if_flags & IFF_RUNNING) {
2135 				/*
2136 				 * Multicast list has changed; set the
2137 				 * hardware filter accordingly.
2138 				 */
2139 				if (sc->sc_txpending) {
2140 					sc->sc_flags |= FXPF_WANTINIT;
2141 					error = 0;
2142 				} else
2143 					error = fxp_init(ifp);
2144 			} else
2145 				error = 0;
2146 		}
2147 		break;
2148 	}
2149 
2150 	/* Try to get more packets going. */
2151 	if (sc->sc_enabled)
2152 		fxp_start(ifp);
2153 
2154 	splx(s);
2155 	return (error);
2156 }
2157 
2158 /*
2159  * Program the multicast filter.
2160  *
2161  * This function must be called at splnet().
2162  */
2163 void
2164 fxp_mc_setup(struct fxp_softc *sc)
2165 {
2166 	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
2167 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2168 	struct ethercom *ec = &sc->sc_ethercom;
2169 	struct ether_multi *enm;
2170 	struct ether_multistep step;
2171 	int count, nmcasts;
2172 
2173 #ifdef DIAGNOSTIC
2174 	if (sc->sc_txpending)
2175 		panic("fxp_mc_setup: pending transmissions");
2176 #endif
2177 
2178 	ifp->if_flags &= ~IFF_ALLMULTI;
2179 
2180 	/*
2181 	 * Initialize multicast setup descriptor.
2182 	 */
2183 	nmcasts = 0;
2184 	ETHER_FIRST_MULTI(step, ec, enm);
2185 	while (enm != NULL) {
2186 		/*
2187 		 * Check for too many multicast addresses or if we're
2188 		 * listening to a range.  Either way, we simply have
2189 		 * to accept all multicasts.
2190 		 */
2191 		if (nmcasts >= MAXMCADDR ||
2192 		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
2193 		    ETHER_ADDR_LEN) != 0) {
2194 			/*
2195 			 * Callers of this function must do the
2196 			 * right thing with this.  If we're called
2197 			 * from outside fxp_init(), the caller must
2198 			 * detect if the state if IFF_ALLMULTI changes.
2199 			 * If it does, the caller must then call
2200 			 * fxp_init(), since allmulti is handled by
2201 			 * the config block.
2202 			 */
2203 			ifp->if_flags |= IFF_ALLMULTI;
2204 			return;
2205 		}
2206 		memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
2207 		    ETHER_ADDR_LEN);
2208 		nmcasts++;
2209 		ETHER_NEXT_MULTI(step, enm);
2210 	}
2211 
2212 	/* BIG_ENDIAN: no need to swap to store 0 */
2213 	mcsp->cb_status = 0;
2214 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2215 	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2216 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2217 
2218 	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2219 
2220 	/*
2221 	 * Wait until the command unit is not active.  This should never
2222 	 * happen since nothing is queued, but make sure anyway.
2223 	 */
2224 	count = 100;
2225 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2226 	    FXP_SCB_CUS_ACTIVE && --count)
2227 		DELAY(1);
2228 	if (count == 0) {
2229 		log(LOG_WARNING, "%s: line %d: command queue timeout\n",
2230 		    sc->sc_dev.dv_xname, __LINE__);
2231 		return;
2232 	}
2233 
2234 	/*
2235 	 * Start the multicast setup command/DMA.
2236 	 */
2237 	fxp_scb_wait(sc);
2238 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2239 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2240 
2241 	/* ...and wait for it to complete. */
2242 	count = 1000;
2243 	do {
2244 		FXP_CDMCSSYNC(sc,
2245 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2246 		DELAY(1);
2247 	} while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2248 	if (count == 0) {
2249 		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
2250 		    sc->sc_dev.dv_xname, __LINE__);
2251 		return;
2252 	}
2253 }
2254 
2255 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2256 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2257 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2258 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2259 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2260 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2261 
2262 #define	UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2263 
2264 static const struct ucode {
2265 	int32_t		revision;
2266 	const uint32_t	*ucode;
2267 	size_t		length;
2268 	uint16_t	int_delay_offset;
2269 	uint16_t	bundle_max_offset;
2270 } ucode_table[] = {
2271 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2272 	  D101_CPUSAVER_DWORD, 0 },
2273 
2274 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2275 	  D101_CPUSAVER_DWORD, 0 },
2276 
2277 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2278 	  D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2279 
2280 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2281 	  D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2282 
2283 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2284 	  D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2285 
2286 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2287 	  D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2288 
2289 	{ 0, NULL, 0, 0, 0 }
2290 };
2291 
2292 void
2293 fxp_load_ucode(struct fxp_softc *sc)
2294 {
2295 	const struct ucode *uc;
2296 	struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2297 	int count, i;
2298 
2299 	if (sc->sc_flags & FXPF_UCODE_LOADED)
2300 		return;
2301 
2302 	/*
2303 	 * Only load the uCode if the user has requested that
2304 	 * we do so.
2305 	 */
2306 	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2307 		sc->sc_int_delay = 0;
2308 		sc->sc_bundle_max = 0;
2309 		return;
2310 	}
2311 
2312 	for (uc = ucode_table; uc->ucode != NULL; uc++) {
2313 		if (sc->sc_rev == uc->revision)
2314 			break;
2315 	}
2316 	if (uc->ucode == NULL)
2317 		return;
2318 
2319 	/* BIG ENDIAN: no need to swap to store 0 */
2320 	cbp->cb_status = 0;
2321 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2322 	cbp->link_addr = 0xffffffff;		/* (no) next command */
2323 	for (i = 0; i < uc->length; i++)
2324 		cbp->ucode[i] = htole32(uc->ucode[i]);
2325 
2326 	if (uc->int_delay_offset)
2327 		*(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2328 		    htole16(fxp_int_delay + (fxp_int_delay / 2));
2329 
2330 	if (uc->bundle_max_offset)
2331 		*(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2332 		    htole16(fxp_bundle_max);
2333 
2334 	FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2335 
2336 	/*
2337 	 * Download the uCode to the chip.
2338 	 */
2339 	fxp_scb_wait(sc);
2340 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2341 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2342 
2343 	/* ...and wait for it to complete. */
2344 	count = 10000;
2345 	do {
2346 		FXP_CDUCODESYNC(sc,
2347 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2348 		DELAY(2);
2349 	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2350 	if (count == 0) {
2351 		sc->sc_int_delay = 0;
2352 		sc->sc_bundle_max = 0;
2353 		log(LOG_WARNING, "%s: timeout loading microcode\n",
2354 		    sc->sc_dev.dv_xname);
2355 		return;
2356 	}
2357 
2358 	if (sc->sc_int_delay != fxp_int_delay ||
2359 	    sc->sc_bundle_max != fxp_bundle_max) {
2360 		sc->sc_int_delay = fxp_int_delay;
2361 		sc->sc_bundle_max = fxp_bundle_max;
2362 		log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
2363 		    "max bundle: %d\n", sc->sc_dev.dv_xname,
2364 		    sc->sc_int_delay,
2365 		    uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2366 	}
2367 
2368 	sc->sc_flags |= FXPF_UCODE_LOADED;
2369 }
2370 
2371 int
2372 fxp_enable(struct fxp_softc *sc)
2373 {
2374 
2375 	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2376 		if ((*sc->sc_enable)(sc) != 0) {
2377 			log(LOG_ERR, "%s: device enable failed\n",
2378 			    sc->sc_dev.dv_xname);
2379 			return (EIO);
2380 		}
2381 	}
2382 
2383 	sc->sc_enabled = 1;
2384 	return (0);
2385 }
2386 
2387 void
2388 fxp_disable(struct fxp_softc *sc)
2389 {
2390 
2391 	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2392 		(*sc->sc_disable)(sc);
2393 		sc->sc_enabled = 0;
2394 	}
2395 }
2396 
2397 /*
2398  * fxp_activate:
2399  *
2400  *	Handle device activation/deactivation requests.
2401  */
2402 int
2403 fxp_activate(struct device *self, enum devact act)
2404 {
2405 	struct fxp_softc *sc = (void *) self;
2406 	int s, error = 0;
2407 
2408 	s = splnet();
2409 	switch (act) {
2410 	case DVACT_ACTIVATE:
2411 		error = EOPNOTSUPP;
2412 		break;
2413 
2414 	case DVACT_DEACTIVATE:
2415 		if (sc->sc_flags & FXPF_MII)
2416 			mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2417 			    MII_OFFSET_ANY);
2418 		if_deactivate(&sc->sc_ethercom.ec_if);
2419 		break;
2420 	}
2421 	splx(s);
2422 
2423 	return (error);
2424 }
2425 
2426 /*
2427  * fxp_detach:
2428  *
2429  *	Detach an i82557 interface.
2430  */
2431 int
2432 fxp_detach(struct fxp_softc *sc)
2433 {
2434 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2435 	int i;
2436 
2437 	/* Succeed now if there's no work to do. */
2438 	if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2439 		return (0);
2440 
2441 	/* Unhook our tick handler. */
2442 	callout_stop(&sc->sc_callout);
2443 
2444 	if (sc->sc_flags & FXPF_MII) {
2445 		/* Detach all PHYs */
2446 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2447 	}
2448 
2449 	/* Delete all remaining media. */
2450 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2451 
2452 #if NRND > 0
2453 	rnd_detach_source(&sc->rnd_source);
2454 #endif
2455 	ether_ifdetach(ifp);
2456 	if_detach(ifp);
2457 
2458 	for (i = 0; i < FXP_NRFABUFS; i++) {
2459 		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2460 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2461 	}
2462 
2463 	for (i = 0; i < FXP_NTXCB; i++) {
2464 		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2465 		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2466 	}
2467 
2468 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2469 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2470 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2471 	    sizeof(struct fxp_control_data));
2472 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2473 
2474 	shutdownhook_disestablish(sc->sc_sdhook);
2475 	powerhook_disestablish(sc->sc_powerhook);
2476 
2477 	return (0);
2478 }
2479