xref: /netbsd-src/sys/dev/ic/i82557.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*	$NetBSD: i82557.c,v 1.141 2013/09/12 20:40:46 martin Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1995, David Greenman
35  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
36  * All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice unmodified, this list of conditions, and the following
43  *    disclaimer.
44  * 2. Redistributions in binary form must reproduce the above copyright
45  *    notice, this list of conditions and the following disclaimer in the
46  *    documentation and/or other materials provided with the distribution.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  *
60  *	Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
61  */
62 
63 /*
64  * Device driver for the Intel i82557 fast Ethernet controller,
65  * and its successors, the i82558 and i82559.
66  */
67 
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.141 2013/09/12 20:40:46 martin Exp $");
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/callout.h>
74 #include <sys/mbuf.h>
75 #include <sys/malloc.h>
76 #include <sys/kernel.h>
77 #include <sys/socket.h>
78 #include <sys/ioctl.h>
79 #include <sys/errno.h>
80 #include <sys/device.h>
81 #include <sys/syslog.h>
82 #include <sys/proc.h>
83 
84 #include <machine/endian.h>
85 
86 #include <sys/rnd.h>
87 
88 #include <net/if.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_ether.h>
92 
93 #include <netinet/in.h>
94 #include <netinet/in_systm.h>
95 #include <netinet/ip.h>
96 #include <netinet/tcp.h>
97 #include <netinet/udp.h>
98 
99 #include <net/bpf.h>
100 
101 #include <sys/bus.h>
102 #include <sys/intr.h>
103 
104 #include <dev/mii/miivar.h>
105 
106 #include <dev/ic/i82557reg.h>
107 #include <dev/ic/i82557var.h>
108 
109 #include <dev/microcode/i8255x/rcvbundl.h>
110 
111 /*
112  * NOTE!  On the Alpha, we have an alignment constraint.  The
113  * card DMAs the packet immediately following the RFA.  However,
114  * the first thing in the packet is a 14-byte Ethernet header.
115  * This means that the packet is misaligned.  To compensate,
116  * we actually offset the RFA 2 bytes into the cluster.  This
117  * alignes the packet after the Ethernet header at a 32-bit
118  * boundary.  HOWEVER!  This means that the RFA is misaligned!
119  */
120 #define	RFA_ALIGNMENT_FUDGE	2
121 
122 /*
123  * The configuration byte map has several undefined fields which
124  * must be one or must be zero.  Set up a template for these bits
125  * only (assuming an i82557 chip), leaving the actual configuration
126  * for fxp_init().
127  *
128  * See the definition of struct fxp_cb_config for the bit definitions.
129  */
130 const uint8_t fxp_cb_config_template[] = {
131 	0x0, 0x0,		/* cb_status */
132 	0x0, 0x0,		/* cb_command */
133 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
134 	0x0,	/*  0 */
135 	0x0,	/*  1 */
136 	0x0,	/*  2 */
137 	0x0,	/*  3 */
138 	0x0,	/*  4 */
139 	0x0,	/*  5 */
140 	0x32,	/*  6 */
141 	0x0,	/*  7 */
142 	0x0,	/*  8 */
143 	0x0,	/*  9 */
144 	0x6,	/* 10 */
145 	0x0,	/* 11 */
146 	0x0,	/* 12 */
147 	0x0,	/* 13 */
148 	0xf2,	/* 14 */
149 	0x48,	/* 15 */
150 	0x0,	/* 16 */
151 	0x40,	/* 17 */
152 	0xf0,	/* 18 */
153 	0x0,	/* 19 */
154 	0x3f,	/* 20 */
155 	0x5,	/* 21 */
156 	0x0,	/* 22 */
157 	0x0,	/* 23 */
158 	0x0,	/* 24 */
159 	0x0,	/* 25 */
160 	0x0,	/* 26 */
161 	0x0,	/* 27 */
162 	0x0,	/* 28 */
163 	0x0,	/* 29 */
164 	0x0,	/* 30 */
165 	0x0,	/* 31 */
166 };
167 
168 void	fxp_mii_initmedia(struct fxp_softc *);
169 void	fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
170 
171 void	fxp_80c24_initmedia(struct fxp_softc *);
172 int	fxp_80c24_mediachange(struct ifnet *);
173 void	fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
174 
175 void	fxp_start(struct ifnet *);
176 int	fxp_ioctl(struct ifnet *, u_long, void *);
177 void	fxp_watchdog(struct ifnet *);
178 int	fxp_init(struct ifnet *);
179 void	fxp_stop(struct ifnet *, int);
180 
181 void	fxp_txintr(struct fxp_softc *);
182 int	fxp_rxintr(struct fxp_softc *);
183 
184 void	fxp_rx_hwcksum(struct fxp_softc *,struct mbuf *,
185 	    const struct fxp_rfa *, u_int);
186 
187 void	fxp_rxdrain(struct fxp_softc *);
188 int	fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
189 int	fxp_mdi_read(device_t, int, int);
190 void	fxp_statchg(struct ifnet *);
191 void	fxp_mdi_write(device_t, int, int, int);
192 void	fxp_autosize_eeprom(struct fxp_softc*);
193 void	fxp_read_eeprom(struct fxp_softc *, uint16_t *, int, int);
194 void	fxp_write_eeprom(struct fxp_softc *, uint16_t *, int, int);
195 void	fxp_eeprom_update_cksum(struct fxp_softc *);
196 void	fxp_get_info(struct fxp_softc *, uint8_t *);
197 void	fxp_tick(void *);
198 void	fxp_mc_setup(struct fxp_softc *);
199 void	fxp_load_ucode(struct fxp_softc *);
200 
201 int	fxp_copy_small = 0;
202 
203 /*
204  * Variables for interrupt mitigating microcode.
205  */
206 int	fxp_int_delay = 1000;		/* usec */
207 int	fxp_bundle_max = 6;		/* packets */
208 
209 struct fxp_phytype {
210 	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
211 	void	(*fp_init)(struct fxp_softc *);
212 } fxp_phytype_table[] = {
213 	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
214 	{ -1,				fxp_mii_initmedia },
215 };
216 
217 /*
218  * Set initial transmit threshold at 64 (512 bytes). This is
219  * increased by 64 (512 bytes) at a time, to maximum of 192
220  * (1536 bytes), if an underrun occurs.
221  */
222 static int tx_threshold = 64;
223 
224 /*
225  * Wait for the previous command to be accepted (but not necessarily
226  * completed).
227  */
228 static inline void
229 fxp_scb_wait(struct fxp_softc *sc)
230 {
231 	int i = 10000;
232 
233 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
234 		delay(2);
235 	if (i == 0)
236 		log(LOG_WARNING,
237 		    "%s: WARNING: SCB timed out!\n", device_xname(sc->sc_dev));
238 }
239 
240 /*
241  * Submit a command to the i82557.
242  */
243 static inline void
244 fxp_scb_cmd(struct fxp_softc *sc, uint8_t cmd)
245 {
246 
247 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
248 }
249 
250 /*
251  * Finish attaching an i82557 interface.  Called by bus-specific front-end.
252  */
253 void
254 fxp_attach(struct fxp_softc *sc)
255 {
256 	uint8_t enaddr[ETHER_ADDR_LEN];
257 	struct ifnet *ifp;
258 	bus_dma_segment_t seg;
259 	int rseg, i, error;
260 	struct fxp_phytype *fp;
261 
262 	callout_init(&sc->sc_callout, 0);
263 
264         /*
265 	 * Enable use of extended RFDs and IPCBs for 82550 and later chips.
266 	 * Note: to use IPCB we need extended TXCB support too, and
267 	 *       these feature flags should be set in each bus attachment.
268 	 */
269 	if (sc->sc_flags & FXPF_EXT_RFA) {
270 		sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
271 		sc->sc_rfa_size = RFA_EXT_SIZE;
272 	} else {
273 		sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
274 		sc->sc_rfa_size = RFA_SIZE;
275 	}
276 
277 	/*
278 	 * Allocate the control data structures, and create and load the
279 	 * DMA map for it.
280 	 */
281 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
282 	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
283 	    0)) != 0) {
284 		aprint_error_dev(sc->sc_dev,
285 		    "unable to allocate control data, error = %d\n",
286 		    error);
287 		goto fail_0;
288 	}
289 
290 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
291 	    sizeof(struct fxp_control_data), (void **)&sc->sc_control_data,
292 	    BUS_DMA_COHERENT)) != 0) {
293 		aprint_error_dev(sc->sc_dev,
294 		    "unable to map control data, error = %d\n", error);
295 		goto fail_1;
296 	}
297 	sc->sc_cdseg = seg;
298 	sc->sc_cdnseg = rseg;
299 
300 	memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
301 
302 	if ((error = bus_dmamap_create(sc->sc_dmat,
303 	    sizeof(struct fxp_control_data), 1,
304 	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
305 		aprint_error_dev(sc->sc_dev,
306 		    "unable to create control data DMA map, error = %d\n",
307 		    error);
308 		goto fail_2;
309 	}
310 
311 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
312 	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
313 	    0)) != 0) {
314 		aprint_error_dev(sc->sc_dev,
315 		    "can't load control data DMA map, error = %d\n",
316 		    error);
317 		goto fail_3;
318 	}
319 
320 	/*
321 	 * Create the transmit buffer DMA maps.
322 	 */
323 	for (i = 0; i < FXP_NTXCB; i++) {
324 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
325 		    (sc->sc_flags & FXPF_EXT_RFA) ?
326 		    FXP_IPCB_NTXSEG : FXP_NTXSEG,
327 		    MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
328 			aprint_error_dev(sc->sc_dev,
329 			    "unable to create tx DMA map %d, error = %d\n",
330 			    i, error);
331 			goto fail_4;
332 		}
333 	}
334 
335 	/*
336 	 * Create the receive buffer DMA maps.
337 	 */
338 	for (i = 0; i < FXP_NRFABUFS; i++) {
339 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
340 		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
341 			aprint_error_dev(sc->sc_dev,
342 			    "unable to create rx DMA map %d, error = %d\n",
343 			    i, error);
344 			goto fail_5;
345 		}
346 	}
347 
348 	/* Initialize MAC address and media structures. */
349 	fxp_get_info(sc, enaddr);
350 
351 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
352 	    ether_sprintf(enaddr));
353 
354 	ifp = &sc->sc_ethercom.ec_if;
355 
356 	/*
357 	 * Get info about our media interface, and initialize it.  Note
358 	 * the table terminates itself with a phy of -1, indicating
359 	 * that we're using MII.
360 	 */
361 	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
362 		if (fp->fp_phy == sc->phy_primary_device)
363 			break;
364 	(*fp->fp_init)(sc);
365 
366 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
367 	ifp->if_softc = sc;
368 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
369 	ifp->if_ioctl = fxp_ioctl;
370 	ifp->if_start = fxp_start;
371 	ifp->if_watchdog = fxp_watchdog;
372 	ifp->if_init = fxp_init;
373 	ifp->if_stop = fxp_stop;
374 	IFQ_SET_READY(&ifp->if_snd);
375 
376 	if (sc->sc_flags & FXPF_EXT_RFA) {
377 		/*
378 		 * Enable hardware cksum support by EXT_RFA and IPCB.
379 		 *
380 		 * IFCAP_CSUM_IPv4_Tx seems to have a problem,
381 		 * at least, on i82550 rev.12.
382 		 * specifically, it doesn't set ipv4 checksum properly
383 		 * when sending UDP (and probably TCP) packets with
384 		 * 20 byte ipv4 header + 1 or 2 byte data,
385 		 * though ICMP packets seem working.
386 		 * FreeBSD driver has related comments.
387 		 * We've added a workaround to handle the bug by padding
388 		 * such packets manually.
389 		 */
390 		ifp->if_capabilities =
391 		    IFCAP_CSUM_IPv4_Tx  | IFCAP_CSUM_IPv4_Rx  |
392 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
393 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
394 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
395 	} else if (sc->sc_flags & FXPF_82559_RXCSUM) {
396 		ifp->if_capabilities =
397 		    IFCAP_CSUM_TCPv4_Rx |
398 		    IFCAP_CSUM_UDPv4_Rx;
399 	}
400 
401 	/*
402 	 * We can support 802.1Q VLAN-sized frames.
403 	 */
404 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
405 
406 	/*
407 	 * Attach the interface.
408 	 */
409 	if_attach(ifp);
410 	ether_ifattach(ifp, enaddr);
411 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
412 	    RND_TYPE_NET, 0);
413 
414 #ifdef FXP_EVENT_COUNTERS
415 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
416 	    NULL, device_xname(sc->sc_dev), "txstall");
417 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
418 	    NULL, device_xname(sc->sc_dev), "txintr");
419 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
420 	    NULL, device_xname(sc->sc_dev), "rxintr");
421 	if (sc->sc_flags & FXPF_FC) {
422 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
423 		    NULL, device_xname(sc->sc_dev), "txpause");
424 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
425 		    NULL, device_xname(sc->sc_dev), "rxpause");
426 	}
427 #endif /* FXP_EVENT_COUNTERS */
428 
429 	/* The attach is successful. */
430 	sc->sc_flags |= FXPF_ATTACHED;
431 
432 	return;
433 
434 	/*
435 	 * Free any resources we've allocated during the failed attach
436 	 * attempt.  Do this in reverse order and fall though.
437 	 */
438  fail_5:
439 	for (i = 0; i < FXP_NRFABUFS; i++) {
440 		if (sc->sc_rxmaps[i] != NULL)
441 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
442 	}
443  fail_4:
444 	for (i = 0; i < FXP_NTXCB; i++) {
445 		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
446 			bus_dmamap_destroy(sc->sc_dmat,
447 			    FXP_DSTX(sc, i)->txs_dmamap);
448 	}
449 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
450  fail_3:
451 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
452  fail_2:
453 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
454 	    sizeof(struct fxp_control_data));
455  fail_1:
456 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
457  fail_0:
458 	return;
459 }
460 
461 void
462 fxp_mii_initmedia(struct fxp_softc *sc)
463 {
464 	int flags;
465 
466 	sc->sc_flags |= FXPF_MII;
467 
468 	sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
469 	sc->sc_mii.mii_readreg = fxp_mdi_read;
470 	sc->sc_mii.mii_writereg = fxp_mdi_write;
471 	sc->sc_mii.mii_statchg = fxp_statchg;
472 
473 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
474 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
475 	    fxp_mii_mediastatus);
476 
477 	flags = MIIF_NOISOLATE;
478 	if (sc->sc_flags & FXPF_FC)
479 		flags |= MIIF_FORCEANEG|MIIF_DOPAUSE;
480 	/*
481 	 * The i82557 wedges if all of its PHYs are isolated!
482 	 */
483 	mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
484 	    MII_OFFSET_ANY, flags);
485 	if (LIST_EMPTY(&sc->sc_mii.mii_phys)) {
486 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
487 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
488 	} else
489 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
490 }
491 
492 void
493 fxp_80c24_initmedia(struct fxp_softc *sc)
494 {
495 
496 	/*
497 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
498 	 * doesn't have a programming interface of any sort.  The
499 	 * media is sensed automatically based on how the link partner
500 	 * is configured.  This is, in essence, manual configuration.
501 	 */
502 	aprint_normal_dev(sc->sc_dev,
503 	    "Seeq 80c24 AutoDUPLEX media interface present\n");
504 	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
505 	    fxp_80c24_mediastatus);
506 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
507 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
508 }
509 
510 /*
511  * Initialize the interface media.
512  */
513 void
514 fxp_get_info(struct fxp_softc *sc, uint8_t *enaddr)
515 {
516 	uint16_t data, myea[ETHER_ADDR_LEN / 2];
517 
518 	/*
519 	 * Reset to a stable state.
520 	 */
521 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
522 	DELAY(100);
523 
524 	sc->sc_eeprom_size = 0;
525 	fxp_autosize_eeprom(sc);
526 	if (sc->sc_eeprom_size == 0) {
527 		aprint_error_dev(sc->sc_dev, "failed to detect EEPROM size\n");
528 		sc->sc_eeprom_size = 6; /* XXX panic here? */
529 	}
530 #ifdef DEBUG
531 	aprint_debug_dev(sc->sc_dev, "detected %d word EEPROM\n",
532 	    1 << sc->sc_eeprom_size);
533 #endif
534 
535 	/*
536 	 * Get info about the primary PHY
537 	 */
538 	fxp_read_eeprom(sc, &data, 6, 1);
539 	sc->phy_primary_device =
540 	    (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
541 
542 	/*
543 	 * Read MAC address.
544 	 */
545 	fxp_read_eeprom(sc, myea, 0, 3);
546 	enaddr[0] = myea[0] & 0xff;
547 	enaddr[1] = myea[0] >> 8;
548 	enaddr[2] = myea[1] & 0xff;
549 	enaddr[3] = myea[1] >> 8;
550 	enaddr[4] = myea[2] & 0xff;
551 	enaddr[5] = myea[2] >> 8;
552 
553 	/*
554 	 * Systems based on the ICH2/ICH2-M chip from Intel, as well
555 	 * as some i82559 designs, have a defect where the chip can
556 	 * cause a PCI protocol violation if it receives a CU_RESUME
557 	 * command when it is entering the IDLE state.
558 	 *
559 	 * The work-around is to disable Dynamic Standby Mode, so that
560 	 * the chip never deasserts #CLKRUN, and always remains in the
561 	 * active state.
562 	 *
563 	 * Unfortunately, the only way to disable Dynamic Standby is
564 	 * to frob an EEPROM setting and reboot (the EEPROM setting
565 	 * is only consulted when the PCI bus comes out of reset).
566 	 *
567 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
568 	 */
569 	if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
570 		fxp_read_eeprom(sc, &data, 10, 1);
571 		if (data & 0x02) {		/* STB enable */
572 			aprint_error_dev(sc->sc_dev, "WARNING: "
573 			    "Disabling dynamic standby mode in EEPROM "
574 			    "to work around a\n");
575 			aprint_normal_dev(sc->sc_dev,
576 			    "WARNING: hardware bug.  You must reset "
577 			    "the system before using this\n");
578 			aprint_normal_dev(sc->sc_dev, "WARNING: interface.\n");
579 			data &= ~0x02;
580 			fxp_write_eeprom(sc, &data, 10, 1);
581 			aprint_normal_dev(sc->sc_dev, "new EEPROM ID: 0x%04x\n",
582 			    data);
583 			fxp_eeprom_update_cksum(sc);
584 		}
585 	}
586 
587 	/* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
588 	/* Due to false positives we make it conditional on setting link1 */
589 	fxp_read_eeprom(sc, &data, 3, 1);
590 	if ((data & 0x03) != 0x03) {
591 		aprint_verbose_dev(sc->sc_dev,
592 		    "May need receiver lock-up workaround\n");
593 	}
594 }
595 
596 static void
597 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
598 {
599 	uint16_t reg;
600 	int x;
601 
602 	for (x = 1 << (len - 1); x != 0; x >>= 1) {
603 		DELAY(40);
604 		if (data & x)
605 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
606 		else
607 			reg = FXP_EEPROM_EECS;
608 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
609 		DELAY(40);
610 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
611 		    reg | FXP_EEPROM_EESK);
612 		DELAY(40);
613 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
614 	}
615 	DELAY(40);
616 }
617 
618 /*
619  * Figure out EEPROM size.
620  *
621  * 559's can have either 64-word or 256-word EEPROMs, the 558
622  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
623  * talks about the existence of 16 to 256 word EEPROMs.
624  *
625  * The only known sizes are 64 and 256, where the 256 version is used
626  * by CardBus cards to store CIS information.
627  *
628  * The address is shifted in msb-to-lsb, and after the last
629  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
630  * after which follows the actual data. We try to detect this zero, by
631  * probing the data-out bit in the EEPROM control register just after
632  * having shifted in a bit. If the bit is zero, we assume we've
633  * shifted enough address bits. The data-out should be tri-state,
634  * before this, which should translate to a logical one.
635  *
636  * Other ways to do this would be to try to read a register with known
637  * contents with a varying number of address bits, but no such
638  * register seem to be available. The high bits of register 10 are 01
639  * on the 558 and 559, but apparently not on the 557.
640  *
641  * The Linux driver computes a checksum on the EEPROM data, but the
642  * value of this checksum is not very well documented.
643  */
644 
645 void
646 fxp_autosize_eeprom(struct fxp_softc *sc)
647 {
648 	int x;
649 
650 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
651 	DELAY(40);
652 
653 	/* Shift in read opcode. */
654 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
655 
656 	/*
657 	 * Shift in address, wait for the dummy zero following a correct
658 	 * address shift.
659 	 */
660 	for (x = 1; x <= 8; x++) {
661 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
662 		DELAY(40);
663 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
664 		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
665 		DELAY(40);
666 		if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
667 		    FXP_EEPROM_EEDO) == 0)
668 			break;
669 		DELAY(40);
670 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
671 		DELAY(40);
672 	}
673 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
674 	DELAY(40);
675 	if (x != 6 && x != 8) {
676 #ifdef DEBUG
677 		printf("%s: strange EEPROM size (%d)\n",
678 		    device_xname(sc->sc_dev), 1 << x);
679 #endif
680 	} else
681 		sc->sc_eeprom_size = x;
682 }
683 
684 /*
685  * Read from the serial EEPROM. Basically, you manually shift in
686  * the read opcode (one bit at a time) and then shift in the address,
687  * and then you shift out the data (all of this one bit at a time).
688  * The word size is 16 bits, so you have to provide the address for
689  * every 16 bits of data.
690  */
691 void
692 fxp_read_eeprom(struct fxp_softc *sc, uint16_t *data, int offset, int words)
693 {
694 	uint16_t reg;
695 	int i, x;
696 
697 	for (i = 0; i < words; i++) {
698 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
699 
700 		/* Shift in read opcode. */
701 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
702 
703 		/* Shift in address. */
704 		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
705 
706 		reg = FXP_EEPROM_EECS;
707 		data[i] = 0;
708 
709 		/* Shift out data. */
710 		for (x = 16; x > 0; x--) {
711 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
712 			    reg | FXP_EEPROM_EESK);
713 			DELAY(40);
714 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
715 			    FXP_EEPROM_EEDO)
716 				data[i] |= (1 << (x - 1));
717 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
718 			DELAY(40);
719 		}
720 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
721 		DELAY(40);
722 	}
723 }
724 
725 /*
726  * Write data to the serial EEPROM.
727  */
728 void
729 fxp_write_eeprom(struct fxp_softc *sc, uint16_t *data, int offset, int words)
730 {
731 	int i, j;
732 
733 	for (i = 0; i < words; i++) {
734 		/* Erase/write enable. */
735 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
736 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
737 		fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
738 		    sc->sc_eeprom_size);
739 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
740 		DELAY(4);
741 
742 		/* Shift in write opcode, address, data. */
743 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
744 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
745 		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
746 		fxp_eeprom_shiftin(sc, data[i], 16);
747 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
748 		DELAY(4);
749 
750 		/* Wait for the EEPROM to finish up. */
751 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
752 		DELAY(4);
753 		for (j = 0; j < 1000; j++) {
754 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
755 			    FXP_EEPROM_EEDO)
756 				break;
757 			DELAY(50);
758 		}
759 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
760 		DELAY(4);
761 
762 		/* Erase/write disable. */
763 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
764 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
765 		fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
766 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
767 		DELAY(4);
768 	}
769 }
770 
771 /*
772  * Update the checksum of the EEPROM.
773  */
774 void
775 fxp_eeprom_update_cksum(struct fxp_softc *sc)
776 {
777 	int i;
778 	uint16_t data, cksum;
779 
780 	cksum = 0;
781 	for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
782 		fxp_read_eeprom(sc, &data, i, 1);
783 		cksum += data;
784 	}
785 	i = (1 << sc->sc_eeprom_size) - 1;
786 	cksum = 0xbaba - cksum;
787 	fxp_read_eeprom(sc, &data, i, 1);
788 	fxp_write_eeprom(sc, &cksum, i, 1);
789 	log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
790 	    device_xname(sc->sc_dev), i, data, cksum);
791 }
792 
793 /*
794  * Start packet transmission on the interface.
795  */
796 void
797 fxp_start(struct ifnet *ifp)
798 {
799 	struct fxp_softc *sc = ifp->if_softc;
800 	struct mbuf *m0, *m;
801 	struct fxp_txdesc *txd;
802 	struct fxp_txsoft *txs;
803 	bus_dmamap_t dmamap;
804 	int error, lasttx, nexttx, opending, seg, nsegs, len;
805 
806 	/*
807 	 * If we want a re-init, bail out now.
808 	 */
809 	if (sc->sc_flags & FXPF_WANTINIT) {
810 		ifp->if_flags |= IFF_OACTIVE;
811 		return;
812 	}
813 
814 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
815 		return;
816 
817 	/*
818 	 * Remember the previous txpending and the current lasttx.
819 	 */
820 	opending = sc->sc_txpending;
821 	lasttx = sc->sc_txlast;
822 
823 	/*
824 	 * Loop through the send queue, setting up transmit descriptors
825 	 * until we drain the queue, or use up all available transmit
826 	 * descriptors.
827 	 */
828 	for (;;) {
829 		struct fxp_tbd *tbdp;
830 		int csum_flags;
831 
832 		/*
833 		 * Grab a packet off the queue.
834 		 */
835 		IFQ_POLL(&ifp->if_snd, m0);
836 		if (m0 == NULL)
837 			break;
838 		m = NULL;
839 
840 		if (sc->sc_txpending == FXP_NTXCB - 1) {
841 			FXP_EVCNT_INCR(&sc->sc_ev_txstall);
842 			break;
843 		}
844 
845 		/*
846 		 * Get the next available transmit descriptor.
847 		 */
848 		nexttx = FXP_NEXTTX(sc->sc_txlast);
849 		txd = FXP_CDTX(sc, nexttx);
850 		txs = FXP_DSTX(sc, nexttx);
851 		dmamap = txs->txs_dmamap;
852 
853 		/*
854 		 * Load the DMA map.  If this fails, the packet either
855 		 * didn't fit in the allotted number of frags, or we were
856 		 * short on resources.  In this case, we'll copy and try
857 		 * again.
858 		 */
859 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
860 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
861 			MGETHDR(m, M_DONTWAIT, MT_DATA);
862 			if (m == NULL) {
863 				log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
864 				    device_xname(sc->sc_dev));
865 				break;
866 			}
867 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
868 			if (m0->m_pkthdr.len > MHLEN) {
869 				MCLGET(m, M_DONTWAIT);
870 				if ((m->m_flags & M_EXT) == 0) {
871 					log(LOG_ERR, "%s: unable to allocate "
872 					    "Tx cluster\n",
873 					    device_xname(sc->sc_dev));
874 					m_freem(m);
875 					break;
876 				}
877 			}
878 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
879 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
880 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
881 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
882 			if (error) {
883 				log(LOG_ERR, "%s: unable to load Tx buffer, "
884 				    "error = %d\n",
885 				    device_xname(sc->sc_dev), error);
886 				break;
887 			}
888 		}
889 
890 		IFQ_DEQUEUE(&ifp->if_snd, m0);
891 		csum_flags = m0->m_pkthdr.csum_flags;
892 		if (m != NULL) {
893 			m_freem(m0);
894 			m0 = m;
895 		}
896 
897 		/* Initialize the fraglist. */
898 		tbdp = txd->txd_tbd;
899 		len = m0->m_pkthdr.len;
900 		nsegs = dmamap->dm_nsegs;
901 		if (sc->sc_flags & FXPF_EXT_RFA)
902 			tbdp++;
903 		for (seg = 0; seg < nsegs; seg++) {
904 			tbdp[seg].tb_addr =
905 			    htole32(dmamap->dm_segs[seg].ds_addr);
906 			tbdp[seg].tb_size =
907 			    htole32(dmamap->dm_segs[seg].ds_len);
908 		}
909 		if (__predict_false(len <= FXP_IP4CSUMTX_PADLEN &&
910 		    (csum_flags & M_CSUM_IPv4) != 0)) {
911 			/*
912 			 * Pad short packets to avoid ip4csum-tx bug.
913 			 *
914 			 * XXX Should we still consider if such short
915 			 *     (36 bytes or less) packets might already
916 			 *     occupy FXP_IPCB_NTXSEG (15) fragments here?
917 			 */
918 			KASSERT(nsegs < FXP_IPCB_NTXSEG);
919 			nsegs++;
920 			tbdp[seg].tb_addr = htole32(FXP_CDTXPADADDR(sc));
921 			tbdp[seg].tb_size =
922 			    htole32(FXP_IP4CSUMTX_PADLEN + 1 - len);
923 		}
924 
925 		/* Sync the DMA map. */
926 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
927 		    BUS_DMASYNC_PREWRITE);
928 
929 		/*
930 		 * Store a pointer to the packet so we can free it later.
931 		 */
932 		txs->txs_mbuf = m0;
933 
934 		/*
935 		 * Initialize the transmit descriptor.
936 		 */
937 		/* BIG_ENDIAN: no need to swap to store 0 */
938 		txd->txd_txcb.cb_status = 0;
939 		txd->txd_txcb.cb_command =
940 		    sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
941 		txd->txd_txcb.tx_threshold = tx_threshold;
942 		txd->txd_txcb.tbd_number = nsegs;
943 
944 		KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
945 		if (sc->sc_flags & FXPF_EXT_RFA) {
946 			struct m_tag *vtag;
947 			struct fxp_ipcb *ipcb;
948 			/*
949 			 * Deal with TCP/IP checksum offload. Note that
950 			 * in order for TCP checksum offload to work,
951 			 * the pseudo header checksum must have already
952 			 * been computed and stored in the checksum field
953 			 * in the TCP header. The stack should have
954 			 * already done this for us.
955 			 */
956 			ipcb = &txd->txd_u.txdu_ipcb;
957 			memset(ipcb, 0, sizeof(*ipcb));
958 			/*
959 			 * always do hardware parsing.
960 			 */
961 			ipcb->ipcb_ip_activation_high =
962 			    FXP_IPCB_HARDWAREPARSING_ENABLE;
963 			/*
964 			 * ip checksum offloading.
965 			 */
966 			if (csum_flags & M_CSUM_IPv4) {
967 				ipcb->ipcb_ip_schedule |=
968 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
969 			}
970 			/*
971 			 * TCP/UDP checksum offloading.
972 			 */
973 			if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
974 				ipcb->ipcb_ip_schedule |=
975 				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
976 			}
977 
978 			/*
979 			 * request VLAN tag insertion if needed.
980 			 */
981 			vtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
982 			if (vtag) {
983 				ipcb->ipcb_vlan_id =
984 				    htobe16(*(u_int *)(vtag + 1));
985 				ipcb->ipcb_ip_activation_high |=
986 				    FXP_IPCB_INSERTVLAN_ENABLE;
987 			}
988 		} else {
989 			KASSERT((csum_flags &
990 			    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
991 		}
992 
993 		FXP_CDTXSYNC(sc, nexttx,
994 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
995 
996 		/* Advance the tx pointer. */
997 		sc->sc_txpending++;
998 		sc->sc_txlast = nexttx;
999 
1000 		/*
1001 		 * Pass packet to bpf if there is a listener.
1002 		 */
1003 		bpf_mtap(ifp, m0);
1004 	}
1005 
1006 	if (sc->sc_txpending == FXP_NTXCB - 1) {
1007 		/* No more slots; notify upper layer. */
1008 		ifp->if_flags |= IFF_OACTIVE;
1009 	}
1010 
1011 	if (sc->sc_txpending != opending) {
1012 		/*
1013 		 * We enqueued packets.  If the transmitter was idle,
1014 		 * reset the txdirty pointer.
1015 		 */
1016 		if (opending == 0)
1017 			sc->sc_txdirty = FXP_NEXTTX(lasttx);
1018 
1019 		/*
1020 		 * Cause the chip to interrupt and suspend command
1021 		 * processing once the last packet we've enqueued
1022 		 * has been transmitted.
1023 		 *
1024 		 * To avoid a race between updating status bits
1025 		 * by the fxp chip and clearing command bits
1026 		 * by this function on machines which don't have
1027 		 * atomic methods to clear/set bits in memory
1028 		 * smaller than 32bits (both cb_status and cb_command
1029 		 * members are uint16_t and in the same 32bit word),
1030 		 * we have to prepare a dummy TX descriptor which has
1031 		 * NOP command and just causes a TX completion interrupt.
1032 		 */
1033 		sc->sc_txpending++;
1034 		sc->sc_txlast = FXP_NEXTTX(sc->sc_txlast);
1035 		txd = FXP_CDTX(sc, sc->sc_txlast);
1036 		/* BIG_ENDIAN: no need to swap to store 0 */
1037 		txd->txd_txcb.cb_status = 0;
1038 		txd->txd_txcb.cb_command = htole16(FXP_CB_COMMAND_NOP |
1039 		    FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
1040 		FXP_CDTXSYNC(sc, sc->sc_txlast,
1041 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1042 
1043 		/*
1044 		 * The entire packet chain is set up.  Clear the suspend bit
1045 		 * on the command prior to the first packet we set up.
1046 		 */
1047 		FXP_CDTXSYNC(sc, lasttx,
1048 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1049 		FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
1050 		    htole16(~FXP_CB_COMMAND_S);
1051 		FXP_CDTXSYNC(sc, lasttx,
1052 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1053 
1054 		/*
1055 		 * Issue a Resume command in case the chip was suspended.
1056 		 */
1057 		fxp_scb_wait(sc);
1058 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1059 
1060 		/* Set a watchdog timer in case the chip flakes out. */
1061 		ifp->if_timer = 5;
1062 	}
1063 }
1064 
1065 /*
1066  * Process interface interrupts.
1067  */
1068 int
1069 fxp_intr(void *arg)
1070 {
1071 	struct fxp_softc *sc = arg;
1072 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1073 	bus_dmamap_t rxmap;
1074 	int claimed = 0, rnr;
1075 	uint8_t statack;
1076 
1077 	if (!device_is_active(sc->sc_dev) || sc->sc_enabled == 0)
1078 		return (0);
1079 	/*
1080 	 * If the interface isn't running, don't try to
1081 	 * service the interrupt.. just ack it and bail.
1082 	 */
1083 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
1084 		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1085 		if (statack) {
1086 			claimed = 1;
1087 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1088 		}
1089 		return (claimed);
1090 	}
1091 
1092 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1093 		claimed = 1;
1094 
1095 		/*
1096 		 * First ACK all the interrupts in this pass.
1097 		 */
1098 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1099 
1100 		/*
1101 		 * Process receiver interrupts. If a no-resource (RNR)
1102 		 * condition exists, get whatever packets we can and
1103 		 * re-start the receiver.
1104 		 */
1105 		rnr = (statack & (FXP_SCB_STATACK_RNR | FXP_SCB_STATACK_SWI)) ?
1106 		    1 : 0;
1107 		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR |
1108 		    FXP_SCB_STATACK_SWI)) {
1109 			FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1110 			rnr |= fxp_rxintr(sc);
1111 		}
1112 
1113 		/*
1114 		 * Free any finished transmit mbuf chains.
1115 		 */
1116 		if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1117 			FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1118 			fxp_txintr(sc);
1119 
1120 			/*
1121 			 * Try to get more packets going.
1122 			 */
1123 			fxp_start(ifp);
1124 
1125 			if (sc->sc_txpending == 0) {
1126 				/*
1127 				 * Tell them that they can re-init now.
1128 				 */
1129 				if (sc->sc_flags & FXPF_WANTINIT)
1130 					wakeup(sc);
1131 			}
1132 		}
1133 
1134 		if (rnr) {
1135 			fxp_scb_wait(sc);
1136 			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
1137 			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1138 			fxp_scb_wait(sc);
1139 			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1140 			    rxmap->dm_segs[0].ds_addr +
1141 			    RFA_ALIGNMENT_FUDGE);
1142 			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1143 		}
1144 	}
1145 
1146 	if (claimed)
1147 		rnd_add_uint32(&sc->rnd_source, statack);
1148 	return (claimed);
1149 }
1150 
1151 /*
1152  * Handle transmit completion interrupts.
1153  */
1154 void
1155 fxp_txintr(struct fxp_softc *sc)
1156 {
1157 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1158 	struct fxp_txdesc *txd;
1159 	struct fxp_txsoft *txs;
1160 	int i;
1161 	uint16_t txstat;
1162 
1163 	ifp->if_flags &= ~IFF_OACTIVE;
1164 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1165 	    i = FXP_NEXTTX(i), sc->sc_txpending--) {
1166 		txd = FXP_CDTX(sc, i);
1167 		txs = FXP_DSTX(sc, i);
1168 
1169 		FXP_CDTXSYNC(sc, i,
1170 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1171 
1172 		/* skip dummy NOP TX descriptor */
1173 		if ((le16toh(txd->txd_txcb.cb_command) & FXP_CB_COMMAND_CMD)
1174 		    == FXP_CB_COMMAND_NOP)
1175 			continue;
1176 
1177 		txstat = le16toh(txd->txd_txcb.cb_status);
1178 
1179 		if ((txstat & FXP_CB_STATUS_C) == 0)
1180 			break;
1181 
1182 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1183 		    0, txs->txs_dmamap->dm_mapsize,
1184 		    BUS_DMASYNC_POSTWRITE);
1185 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1186 		m_freem(txs->txs_mbuf);
1187 		txs->txs_mbuf = NULL;
1188 	}
1189 
1190 	/* Update the dirty transmit buffer pointer. */
1191 	sc->sc_txdirty = i;
1192 
1193 	/*
1194 	 * Cancel the watchdog timer if there are no pending
1195 	 * transmissions.
1196 	 */
1197 	if (sc->sc_txpending == 0)
1198 		ifp->if_timer = 0;
1199 }
1200 
1201 /*
1202  * fxp_rx_hwcksum: check status of H/W offloading for received packets.
1203  */
1204 
1205 void
1206 fxp_rx_hwcksum(struct fxp_softc *sc, struct mbuf *m, const struct fxp_rfa *rfa,
1207     u_int len)
1208 {
1209 	uint32_t csum_data;
1210 	int csum_flags;
1211 
1212 	/*
1213 	 * check H/W Checksumming.
1214 	 */
1215 
1216 	csum_flags = 0;
1217 	csum_data = 0;
1218 
1219 	if ((sc->sc_flags & FXPF_EXT_RFA) != 0) {
1220 		uint8_t csum_stat;
1221 
1222 		csum_stat = rfa->cksum_stat;
1223 		if ((rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)) == 0)
1224 			goto out;
1225 
1226 		if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
1227 			csum_flags = M_CSUM_IPv4;
1228 			if ((csum_stat & FXP_RFDX_CS_IP_CSUM_VALID) == 0)
1229 				csum_flags |= M_CSUM_IPv4_BAD;
1230 		}
1231 
1232 		if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
1233 			csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
1234 			if ((csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID) == 0)
1235 				csum_flags |= M_CSUM_TCP_UDP_BAD;
1236 		}
1237 
1238 	} else if ((sc->sc_flags & FXPF_82559_RXCSUM) != 0) {
1239 		struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1240 		struct ether_header *eh;
1241 		struct ip *ip;
1242 		struct udphdr *uh;
1243 		u_int hlen, pktlen;
1244 
1245 		if (len < ETHER_HDR_LEN + sizeof(struct ip))
1246 			goto out;
1247 		pktlen = len - ETHER_HDR_LEN;
1248 		eh = mtod(m, struct ether_header *);
1249 		if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1250 			goto out;
1251 		ip = (struct ip *)((uint8_t *)eh + ETHER_HDR_LEN);
1252 		if (ip->ip_v != IPVERSION)
1253 			goto out;
1254 
1255 		hlen = ip->ip_hl << 2;
1256 		if (hlen < sizeof(struct ip))
1257 			goto out;
1258 
1259 		/*
1260 		 * Bail if too short, has random trailing garbage, truncated,
1261 		 * fragment, or has ethernet pad.
1262 		 */
1263 		if (ntohs(ip->ip_len) < hlen ||
1264 		    ntohs(ip->ip_len) != pktlen ||
1265 		    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
1266 			goto out;
1267 
1268 		switch (ip->ip_p) {
1269 		case IPPROTO_TCP:
1270 			if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0 ||
1271 			    pktlen < (hlen + sizeof(struct tcphdr)))
1272 				goto out;
1273 			csum_flags =
1274 			    M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
1275 			break;
1276 		case IPPROTO_UDP:
1277 			if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0 ||
1278 			    pktlen < (hlen + sizeof(struct udphdr)))
1279 				goto out;
1280 			uh = (struct udphdr *)((uint8_t *)ip + hlen);
1281 			if (uh->uh_sum == 0)
1282 				goto out;	/* no checksum */
1283 			csum_flags =
1284 			    M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
1285 			break;
1286 		default:
1287 			goto out;
1288 		}
1289 
1290 		/* Extract computed checksum. */
1291 		csum_data = be16dec(mtod(m, uint8_t *) + len);
1292 
1293 		/*
1294 		 * The computed checksum includes IP headers,
1295 		 * so we have to deduct them.
1296 		 */
1297 #if 0
1298 		/*
1299 		 * But in TCP/UDP layer we can assume the IP header is valid,
1300 		 * i.e. a sum of the whole IP header should be 0xffff,
1301 		 * so we don't have to bother to deduct it.
1302 		 */
1303 		if (hlen > 0) {
1304 			uint32_t hsum;
1305 			const uint16_t *iphdr;
1306 			hsum = 0;
1307 			iphdr = (uint16_t *)ip;
1308 
1309 			while (hlen > 1) {
1310 				hsum += ntohs(*iphdr++);
1311 				hlen -= sizeof(uint16_t);
1312 			}
1313 			while (hsum >> 16)
1314 				hsum = (hsum >> 16) + (hsum & 0xffff);
1315 
1316 			csum_data += (uint16_t)~hsum;
1317 
1318 			while (csum_data >> 16)
1319 				csum_data =
1320 				    (csum_data >> 16) + (csum_data & 0xffff);
1321 		}
1322 #endif
1323 	}
1324  out:
1325 	m->m_pkthdr.csum_flags = csum_flags;
1326 	m->m_pkthdr.csum_data = csum_data;
1327 }
1328 
1329 /*
1330  * Handle receive interrupts.
1331  */
1332 int
1333 fxp_rxintr(struct fxp_softc *sc)
1334 {
1335 	struct ethercom *ec = &sc->sc_ethercom;
1336 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1337 	struct mbuf *m, *m0;
1338 	bus_dmamap_t rxmap;
1339 	struct fxp_rfa *rfa;
1340 	int rnr;
1341 	uint16_t len, rxstat;
1342 
1343 	rnr = 0;
1344 
1345 	for (;;) {
1346 		m = sc->sc_rxq.ifq_head;
1347 		rfa = FXP_MTORFA(m);
1348 		rxmap = M_GETCTX(m, bus_dmamap_t);
1349 
1350 		FXP_RFASYNC(sc, m,
1351 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1352 
1353 		rxstat = le16toh(rfa->rfa_status);
1354 
1355 		if ((rxstat & FXP_RFA_STATUS_RNR) != 0)
1356 			rnr = 1;
1357 
1358 		if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1359 			/*
1360 			 * We have processed all of the
1361 			 * receive buffers.
1362 			 */
1363 			FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1364 			return rnr;
1365 		}
1366 
1367 		IF_DEQUEUE(&sc->sc_rxq, m);
1368 
1369 		FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1370 
1371 		len = le16toh(rfa->actual_size) &
1372 		    (m->m_ext.ext_size - 1);
1373 		if ((sc->sc_flags & FXPF_82559_RXCSUM) != 0) {
1374 			/* Adjust for appended checksum bytes. */
1375 			len -= sizeof(uint16_t);
1376 		}
1377 
1378 		if (len < sizeof(struct ether_header)) {
1379 			/*
1380 			 * Runt packet; drop it now.
1381 			 */
1382 			FXP_INIT_RFABUF(sc, m);
1383 			continue;
1384 		}
1385 
1386 		/*
1387 		 * If support for 802.1Q VLAN sized frames is
1388 		 * enabled, we need to do some additional error
1389 		 * checking (as we are saving bad frames, in
1390 		 * order to receive the larger ones).
1391 		 */
1392 		if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1393 		    (rxstat & (FXP_RFA_STATUS_OVERRUN|
1394 			       FXP_RFA_STATUS_RNR|
1395 			       FXP_RFA_STATUS_ALIGN|
1396 			       FXP_RFA_STATUS_CRC)) != 0) {
1397 			FXP_INIT_RFABUF(sc, m);
1398 			continue;
1399 		}
1400 
1401 		/*
1402 		 * check VLAN tag stripping.
1403 		 */
1404 		if ((sc->sc_flags & FXPF_EXT_RFA) != 0 &&
1405 		    (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) != 0) {
1406 			struct m_tag *vtag;
1407 
1408 			vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
1409 			    M_NOWAIT);
1410 			if (vtag == NULL)
1411 				goto dropit;
1412 			*(u_int *)(vtag + 1) = be16toh(rfa->vlan_id);
1413 			m_tag_prepend(m, vtag);
1414 		}
1415 
1416 		/* Do checksum checking. */
1417 		if ((ifp->if_csum_flags_rx & (M_CSUM_TCPv4|M_CSUM_UDPv4)) != 0)
1418 			fxp_rx_hwcksum(sc, m, rfa, len);
1419 
1420 		/*
1421 		 * If the packet is small enough to fit in a
1422 		 * single header mbuf, allocate one and copy
1423 		 * the data into it.  This greatly reduces
1424 		 * memory consumption when we receive lots
1425 		 * of small packets.
1426 		 *
1427 		 * Otherwise, we add a new buffer to the receive
1428 		 * chain.  If this fails, we drop the packet and
1429 		 * recycle the old buffer.
1430 		 */
1431 		if (fxp_copy_small != 0 && len <= MHLEN) {
1432 			MGETHDR(m0, M_DONTWAIT, MT_DATA);
1433 			if (m0 == NULL)
1434 				goto dropit;
1435 			MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
1436 			memcpy(mtod(m0, void *),
1437 			    mtod(m, void *), len);
1438 			m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
1439 			m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
1440 			FXP_INIT_RFABUF(sc, m);
1441 			m = m0;
1442 		} else {
1443 			if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1444  dropit:
1445 				ifp->if_ierrors++;
1446 				FXP_INIT_RFABUF(sc, m);
1447 				continue;
1448 			}
1449 		}
1450 
1451 		m->m_pkthdr.rcvif = ifp;
1452 		m->m_pkthdr.len = m->m_len = len;
1453 
1454 		/*
1455 		 * Pass this up to any BPF listeners, but only
1456 		 * pass it up the stack if it's for us.
1457 		 */
1458 		bpf_mtap(ifp, m);
1459 
1460 		/* Pass it on. */
1461 		(*ifp->if_input)(ifp, m);
1462 	}
1463 }
1464 
1465 /*
1466  * Update packet in/out/collision statistics. The i82557 doesn't
1467  * allow you to access these counters without doing a fairly
1468  * expensive DMA to get _all_ of the statistics it maintains, so
1469  * we do this operation here only once per second. The statistics
1470  * counters in the kernel are updated from the previous dump-stats
1471  * DMA and then a new dump-stats DMA is started. The on-chip
1472  * counters are zeroed when the DMA completes. If we can't start
1473  * the DMA immediately, we don't wait - we just prepare to read
1474  * them again next time.
1475  */
1476 void
1477 fxp_tick(void *arg)
1478 {
1479 	struct fxp_softc *sc = arg;
1480 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1481 	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1482 	int s;
1483 
1484 	if (!device_is_active(sc->sc_dev))
1485 		return;
1486 
1487 	s = splnet();
1488 
1489 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1490 
1491 	ifp->if_opackets += le32toh(sp->tx_good);
1492 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1493 	if (sp->rx_good) {
1494 		ifp->if_ipackets += le32toh(sp->rx_good);
1495 		sc->sc_rxidle = 0;
1496 	} else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
1497 		sc->sc_rxidle++;
1498 	}
1499 	ifp->if_ierrors +=
1500 	    le32toh(sp->rx_crc_errors) +
1501 	    le32toh(sp->rx_alignment_errors) +
1502 	    le32toh(sp->rx_rnr_errors) +
1503 	    le32toh(sp->rx_overrun_errors);
1504 	/*
1505 	 * If any transmit underruns occurred, bump up the transmit
1506 	 * threshold by another 512 bytes (64 * 8).
1507 	 */
1508 	if (sp->tx_underruns) {
1509 		ifp->if_oerrors += le32toh(sp->tx_underruns);
1510 		if (tx_threshold < 192)
1511 			tx_threshold += 64;
1512 	}
1513 #ifdef FXP_EVENT_COUNTERS
1514 	if (sc->sc_flags & FXPF_FC) {
1515 		sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
1516 		sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
1517 	}
1518 #endif
1519 
1520 	/*
1521 	 * If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
1522 	 * then assume the receiver has locked up and attempt to clear
1523 	 * the condition by reprogramming the multicast filter (actually,
1524 	 * resetting the interface). This is a work-around for a bug in
1525 	 * the 82557 where the receiver locks up if it gets certain types
1526 	 * of garbage in the synchronization bits prior to the packet header.
1527 	 * This bug is supposed to only occur in 10Mbps mode, but has been
1528 	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1529 	 * speed transition).
1530 	 */
1531 	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1532 		(void) fxp_init(ifp);
1533 		splx(s);
1534 		return;
1535 	}
1536 	/*
1537 	 * If there is no pending command, start another stats
1538 	 * dump. Otherwise punt for now.
1539 	 */
1540 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1541 		/*
1542 		 * Start another stats dump.
1543 		 */
1544 		FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1545 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1546 	} else {
1547 		/*
1548 		 * A previous command is still waiting to be accepted.
1549 		 * Just zero our copy of the stats and wait for the
1550 		 * next timer event to update them.
1551 		 */
1552 		/* BIG_ENDIAN: no swap required to store 0 */
1553 		sp->tx_good = 0;
1554 		sp->tx_underruns = 0;
1555 		sp->tx_total_collisions = 0;
1556 
1557 		sp->rx_good = 0;
1558 		sp->rx_crc_errors = 0;
1559 		sp->rx_alignment_errors = 0;
1560 		sp->rx_rnr_errors = 0;
1561 		sp->rx_overrun_errors = 0;
1562 		if (sc->sc_flags & FXPF_FC) {
1563 			sp->tx_pauseframes = 0;
1564 			sp->rx_pauseframes = 0;
1565 		}
1566 	}
1567 
1568 	if (sc->sc_flags & FXPF_MII) {
1569 		/* Tick the MII clock. */
1570 		mii_tick(&sc->sc_mii);
1571 	}
1572 
1573 	splx(s);
1574 
1575 	/*
1576 	 * Schedule another timeout one second from now.
1577 	 */
1578 	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1579 }
1580 
1581 /*
1582  * Drain the receive queue.
1583  */
1584 void
1585 fxp_rxdrain(struct fxp_softc *sc)
1586 {
1587 	bus_dmamap_t rxmap;
1588 	struct mbuf *m;
1589 
1590 	for (;;) {
1591 		IF_DEQUEUE(&sc->sc_rxq, m);
1592 		if (m == NULL)
1593 			break;
1594 		rxmap = M_GETCTX(m, bus_dmamap_t);
1595 		bus_dmamap_unload(sc->sc_dmat, rxmap);
1596 		FXP_RXMAP_PUT(sc, rxmap);
1597 		m_freem(m);
1598 	}
1599 }
1600 
1601 /*
1602  * Stop the interface. Cancels the statistics updater and resets
1603  * the interface.
1604  */
1605 void
1606 fxp_stop(struct ifnet *ifp, int disable)
1607 {
1608 	struct fxp_softc *sc = ifp->if_softc;
1609 	struct fxp_txsoft *txs;
1610 	int i;
1611 
1612 	/*
1613 	 * Turn down interface (done early to avoid bad interactions
1614 	 * between panics, shutdown hooks, and the watchdog timer)
1615 	 */
1616 	ifp->if_timer = 0;
1617 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1618 
1619 	/*
1620 	 * Cancel stats updater.
1621 	 */
1622 	callout_stop(&sc->sc_callout);
1623 	if (sc->sc_flags & FXPF_MII) {
1624 		/* Down the MII. */
1625 		mii_down(&sc->sc_mii);
1626 	}
1627 
1628 	/*
1629 	 * Issue software reset.  This unloads any microcode that
1630 	 * might already be loaded.
1631 	 */
1632 	sc->sc_flags &= ~FXPF_UCODE_LOADED;
1633 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1634 	DELAY(50);
1635 
1636 	/*
1637 	 * Release any xmit buffers.
1638 	 */
1639 	for (i = 0; i < FXP_NTXCB; i++) {
1640 		txs = FXP_DSTX(sc, i);
1641 		if (txs->txs_mbuf != NULL) {
1642 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1643 			m_freem(txs->txs_mbuf);
1644 			txs->txs_mbuf = NULL;
1645 		}
1646 	}
1647 	sc->sc_txpending = 0;
1648 
1649 	if (disable) {
1650 		fxp_rxdrain(sc);
1651 		fxp_disable(sc);
1652 	}
1653 
1654 }
1655 
1656 /*
1657  * Watchdog/transmission transmit timeout handler. Called when a
1658  * transmission is started on the interface, but no interrupt is
1659  * received before the timeout. This usually indicates that the
1660  * card has wedged for some reason.
1661  */
1662 void
1663 fxp_watchdog(struct ifnet *ifp)
1664 {
1665 	struct fxp_softc *sc = ifp->if_softc;
1666 
1667 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1668 	ifp->if_oerrors++;
1669 
1670 	(void) fxp_init(ifp);
1671 }
1672 
1673 /*
1674  * Initialize the interface.  Must be called at splnet().
1675  */
1676 int
1677 fxp_init(struct ifnet *ifp)
1678 {
1679 	struct fxp_softc *sc = ifp->if_softc;
1680 	struct fxp_cb_config *cbp;
1681 	struct fxp_cb_ias *cb_ias;
1682 	struct fxp_txdesc *txd;
1683 	bus_dmamap_t rxmap;
1684 	int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
1685 	uint16_t status;
1686 
1687 	if ((error = fxp_enable(sc)) != 0)
1688 		goto out;
1689 
1690 	/*
1691 	 * Cancel any pending I/O
1692 	 */
1693 	fxp_stop(ifp, 0);
1694 
1695 	/*
1696 	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1697 	 * flag, and this prevents the MII from detaching resulting in
1698 	 * a panic. The flags field should perhaps be split in runtime
1699 	 * flags and more static information. For now, just clear the
1700 	 * only other flag set.
1701 	 */
1702 
1703 	sc->sc_flags &= ~FXPF_WANTINIT;
1704 
1705 	/*
1706 	 * Initialize base of CBL and RFA memory. Loading with zero
1707 	 * sets it up for regular linear addressing.
1708 	 */
1709 	fxp_scb_wait(sc);
1710 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1711 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1712 
1713 	fxp_scb_wait(sc);
1714 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1715 
1716 	/*
1717 	 * Initialize the multicast filter.  Do this now, since we might
1718 	 * have to setup the config block differently.
1719 	 */
1720 	fxp_mc_setup(sc);
1721 
1722 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1723 	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1724 
1725 	/*
1726 	 * In order to support receiving 802.1Q VLAN frames, we have to
1727 	 * enable "save bad frames", since they are 4 bytes larger than
1728 	 * the normal Ethernet maximum frame length.  On i82558 and later,
1729 	 * we have a better mechanism for this.
1730 	 */
1731 	save_bf = 0;
1732 	lrxen = 0;
1733 	vlan_drop = 0;
1734 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1735 		if (sc->sc_rev < FXP_REV_82558_A4)
1736 			save_bf = 1;
1737 		else
1738 			lrxen = 1;
1739 		if (sc->sc_rev >= FXP_REV_82550)
1740 			vlan_drop = 1;
1741 	}
1742 
1743 	/*
1744 	 * Initialize base of dump-stats buffer.
1745 	 */
1746 	fxp_scb_wait(sc);
1747 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1748 	    sc->sc_cddma + FXP_CDSTATSOFF);
1749 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1750 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1751 
1752 	cbp = &sc->sc_control_data->fcd_configcb;
1753 	memset(cbp, 0, sizeof(struct fxp_cb_config));
1754 
1755 	/*
1756 	 * Load microcode for this controller.
1757 	 */
1758 	fxp_load_ucode(sc);
1759 
1760 	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
1761 		sc->sc_flags |= FXPF_RECV_WORKAROUND;
1762 	else
1763 		sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
1764 
1765 	/*
1766 	 * This copy is kind of disgusting, but there are a bunch of must be
1767 	 * zero and must be one bits in this structure and this is the easiest
1768 	 * way to initialize them all to proper values.
1769 	 */
1770 	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1771 
1772 	/* BIG_ENDIAN: no need to swap to store 0 */
1773 	cbp->cb_status =	0;
1774 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
1775 				    FXP_CB_COMMAND_EL);
1776 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1777 	cbp->link_addr =	0xffffffff; /* (no) next command */
1778 					/* bytes in config block */
1779 	cbp->byte_count =	(sc->sc_flags & FXPF_EXT_RFA) ?
1780 				FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
1781 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1782 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1783 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1784 	cbp->mwi_enable =	(sc->sc_flags & FXPF_MWI) ? 1 : 0;
1785 	cbp->type_enable =	0;	/* actually reserved */
1786 	cbp->read_align_en =	(sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1787 	cbp->end_wr_on_cl =	(sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1788 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1789 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1790 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1791 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1792 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1793 	cbp->ci_int =		1;	/* interrupt on CU idle */
1794 	cbp->ext_txcb_dis =	(sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1795 	cbp->ext_stats_dis =	1;	/* disable extended counters */
1796 	cbp->keep_overrun_rx =	0;	/* don't pass overrun frames to host */
1797 	cbp->save_bf =		save_bf;/* save bad frames */
1798 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1799 	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
1800 	cbp->ext_rfa =		(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1801 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1802 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1803 					/* interface mode */
1804 	cbp->mediatype =	(sc->sc_flags & FXPF_MII) ? 1 : 0;
1805 	cbp->csma_dis =		0;	/* (don't) disable link */
1806 	cbp->tcp_udp_cksum =	(sc->sc_flags & FXPF_82559_RXCSUM) ? 1 : 0;
1807 					/* (don't) enable RX checksum */
1808 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1809 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1810 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1811 	cbp->mc_wake_en =	0;	/* (don't) assert PME# on mcmatch */
1812 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1813 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1814 	cbp->loopback =		0;	/* (don't) loopback */
1815 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1816 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1817 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1818 	cbp->promiscuous =	prm;	/* promiscuous mode */
1819 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1820 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1821 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1822 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1823 	cbp->crscdt =		(sc->sc_flags & FXPF_MII) ? 0 : 1;
1824 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1825 	cbp->padding =		1;	/* (do) pad short tx packets */
1826 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1827 	cbp->long_rx_en =	lrxen;	/* long packet receive enable */
1828 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1829 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1830 					/* must set wake_en in PMCSR also */
1831 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1832 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1833 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1834 	cbp->mc_all =		allm;	/* accept all multicasts */
1835 	cbp->ext_rx_mode =	(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1836 	cbp->vlan_drop_en =	vlan_drop;
1837 
1838 	if (!(sc->sc_flags & FXPF_FC)) {
1839 		/*
1840 		 * The i82557 has no hardware flow control, the values
1841 		 * here are the defaults for the chip.
1842 		 */
1843 		cbp->fc_delay_lsb =	0;
1844 		cbp->fc_delay_msb =	0x40;
1845 		cbp->pri_fc_thresh =	3;
1846 		cbp->tx_fc_dis =	0;
1847 		cbp->rx_fc_restop =	0;
1848 		cbp->rx_fc_restart =	0;
1849 		cbp->fc_filter =	0;
1850 		cbp->pri_fc_loc =	1;
1851 	} else {
1852 		cbp->fc_delay_lsb =	0x1f;
1853 		cbp->fc_delay_msb =	0x01;
1854 		cbp->pri_fc_thresh =	3;
1855 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1856 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1857 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1858 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1859 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1860 		cbp->ext_stats_dis =	0;	/* enable extended stats */
1861 	}
1862 
1863 	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1864 
1865 	/*
1866 	 * Start the config command/DMA.
1867 	 */
1868 	fxp_scb_wait(sc);
1869 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1870 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1871 	/* ...and wait for it to complete. */
1872 	for (i = 1000; i > 0; i--) {
1873 		FXP_CDCONFIGSYNC(sc,
1874 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1875 		status = le16toh(cbp->cb_status);
1876 		FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD);
1877 		if ((status & FXP_CB_STATUS_C) != 0)
1878 			break;
1879 		DELAY(1);
1880 	}
1881 	if (i == 0) {
1882 		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1883 		    device_xname(sc->sc_dev), __LINE__);
1884 		return (ETIMEDOUT);
1885 	}
1886 
1887 	/*
1888 	 * Initialize the station address.
1889 	 */
1890 	cb_ias = &sc->sc_control_data->fcd_iascb;
1891 	/* BIG_ENDIAN: no need to swap to store 0 */
1892 	cb_ias->cb_status = 0;
1893 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1894 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1895 	cb_ias->link_addr = 0xffffffff;
1896 	memcpy(cb_ias->macaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1897 
1898 	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1899 
1900 	/*
1901 	 * Start the IAS (Individual Address Setup) command/DMA.
1902 	 */
1903 	fxp_scb_wait(sc);
1904 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1905 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1906 	/* ...and wait for it to complete. */
1907 	for (i = 1000; i > 0; i++) {
1908 		FXP_CDIASSYNC(sc,
1909 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1910 		status = le16toh(cb_ias->cb_status);
1911 		FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD);
1912 		if ((status & FXP_CB_STATUS_C) != 0)
1913 			break;
1914 		DELAY(1);
1915 	}
1916 	if (i == 0) {
1917 		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1918 		    device_xname(sc->sc_dev), __LINE__);
1919 		return (ETIMEDOUT);
1920 	}
1921 
1922 	/*
1923 	 * Initialize the transmit descriptor ring.  txlast is initialized
1924 	 * to the end of the list so that it will wrap around to the first
1925 	 * descriptor when the first packet is transmitted.
1926 	 */
1927 	for (i = 0; i < FXP_NTXCB; i++) {
1928 		txd = FXP_CDTX(sc, i);
1929 		memset(txd, 0, sizeof(*txd));
1930 		txd->txd_txcb.cb_command =
1931 		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1932 		txd->txd_txcb.link_addr =
1933 		    htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1934 		if (sc->sc_flags & FXPF_EXT_TXCB)
1935 			txd->txd_txcb.tbd_array_addr =
1936 			    htole32(FXP_CDTBDADDR(sc, i) +
1937 				    (2 * sizeof(struct fxp_tbd)));
1938 		else
1939 			txd->txd_txcb.tbd_array_addr =
1940 			    htole32(FXP_CDTBDADDR(sc, i));
1941 		FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1942 	}
1943 	sc->sc_txpending = 0;
1944 	sc->sc_txdirty = 0;
1945 	sc->sc_txlast = FXP_NTXCB - 1;
1946 
1947 	/*
1948 	 * Initialize the receive buffer list.
1949 	 */
1950 	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1951 	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1952 		rxmap = FXP_RXMAP_GET(sc);
1953 		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1954 			log(LOG_ERR, "%s: unable to allocate or map rx "
1955 			    "buffer %d, error = %d\n",
1956 			    device_xname(sc->sc_dev),
1957 			    sc->sc_rxq.ifq_len, error);
1958 			/*
1959 			 * XXX Should attempt to run with fewer receive
1960 			 * XXX buffers instead of just failing.
1961 			 */
1962 			FXP_RXMAP_PUT(sc, rxmap);
1963 			fxp_rxdrain(sc);
1964 			goto out;
1965 		}
1966 	}
1967 	sc->sc_rxidle = 0;
1968 
1969 	/*
1970 	 * Give the transmit ring to the chip.  We do this by pointing
1971 	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1972 	 * issuing a start command.  It will execute the NOP and then
1973 	 * suspend, pointing at the first descriptor.
1974 	 */
1975 	fxp_scb_wait(sc);
1976 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1977 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1978 
1979 	/*
1980 	 * Initialize receiver buffer area - RFA.
1981 	 */
1982 #if 0	/* initialization will be done by FXP_SCB_INTRCNTL_REQUEST_SWI later */
1983 	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1984 	fxp_scb_wait(sc);
1985 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1986 	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1987 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1988 #endif
1989 
1990 	if (sc->sc_flags & FXPF_MII) {
1991 		/*
1992 		 * Set current media.
1993 		 */
1994 		if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
1995 			goto out;
1996 	}
1997 
1998 	/*
1999 	 * ...all done!
2000 	 */
2001 	ifp->if_flags |= IFF_RUNNING;
2002 	ifp->if_flags &= ~IFF_OACTIVE;
2003 
2004 	/*
2005 	 * Request a software generated interrupt that will be used to
2006 	 * (re)start the RU processing.  If we direct the chip to start
2007 	 * receiving from the start of queue now, instead of letting the
2008 	 * interrupt handler first process all received packets, we run
2009 	 * the risk of having it overwrite mbuf clusters while they are
2010 	 * being processed or after they have been returned to the pool.
2011 	 */
2012 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTRCNTL_REQUEST_SWI);
2013 
2014 	/*
2015 	 * Start the one second timer.
2016 	 */
2017 	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
2018 
2019 	/*
2020 	 * Attempt to start output on the interface.
2021 	 */
2022 	fxp_start(ifp);
2023 
2024  out:
2025 	if (error) {
2026 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2027 		ifp->if_timer = 0;
2028 		log(LOG_ERR, "%s: interface not running\n",
2029 		    device_xname(sc->sc_dev));
2030 	}
2031 	return (error);
2032 }
2033 
2034 /*
2035  * Notify the world which media we're using.
2036  */
2037 void
2038 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2039 {
2040 	struct fxp_softc *sc = ifp->if_softc;
2041 
2042 	if (sc->sc_enabled == 0) {
2043 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
2044 		ifmr->ifm_status = 0;
2045 		return;
2046 	}
2047 
2048 	ether_mediastatus(ifp, ifmr);
2049 }
2050 
2051 int
2052 fxp_80c24_mediachange(struct ifnet *ifp)
2053 {
2054 
2055 	/* Nothing to do here. */
2056 	return (0);
2057 }
2058 
2059 void
2060 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2061 {
2062 	struct fxp_softc *sc = ifp->if_softc;
2063 
2064 	/*
2065 	 * Media is currently-selected media.  We cannot determine
2066 	 * the link status.
2067 	 */
2068 	ifmr->ifm_status = 0;
2069 	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
2070 }
2071 
2072 /*
2073  * Add a buffer to the end of the RFA buffer list.
2074  * Return 0 if successful, error code on failure.
2075  *
2076  * The RFA struct is stuck at the beginning of mbuf cluster and the
2077  * data pointer is fixed up to point just past it.
2078  */
2079 int
2080 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
2081 {
2082 	struct mbuf *m;
2083 	int error;
2084 
2085 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2086 	if (m == NULL)
2087 		return (ENOBUFS);
2088 
2089 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2090 	MCLGET(m, M_DONTWAIT);
2091 	if ((m->m_flags & M_EXT) == 0) {
2092 		m_freem(m);
2093 		return (ENOBUFS);
2094 	}
2095 
2096 	if (unload)
2097 		bus_dmamap_unload(sc->sc_dmat, rxmap);
2098 
2099 	M_SETCTX(m, rxmap);
2100 
2101 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2102 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
2103 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2104 	if (error) {
2105 		/* XXX XXX XXX */
2106 		aprint_error_dev(sc->sc_dev,
2107 		    "can't load rx DMA map %d, error = %d\n",
2108 		    sc->sc_rxq.ifq_len, error);
2109 		panic("fxp_add_rfabuf");
2110 	}
2111 
2112 	FXP_INIT_RFABUF(sc, m);
2113 
2114 	return (0);
2115 }
2116 
2117 int
2118 fxp_mdi_read(device_t self, int phy, int reg)
2119 {
2120 	struct fxp_softc *sc = device_private(self);
2121 	int count = 10000;
2122 	int value;
2123 
2124 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2125 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2126 
2127 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
2128 	    0x10000000) == 0 && count--)
2129 		DELAY(10);
2130 
2131 	if (count <= 0)
2132 		log(LOG_WARNING,
2133 		    "%s: fxp_mdi_read: timed out\n", device_xname(self));
2134 
2135 	return (value & 0xffff);
2136 }
2137 
2138 void
2139 fxp_statchg(struct ifnet *ifp)
2140 {
2141 
2142 	/* Nothing to do. */
2143 }
2144 
2145 void
2146 fxp_mdi_write(device_t self, int phy, int reg, int value)
2147 {
2148 	struct fxp_softc *sc = device_private(self);
2149 	int count = 10000;
2150 
2151 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2152 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2153 	    (value & 0xffff));
2154 
2155 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2156 	    count--)
2157 		DELAY(10);
2158 
2159 	if (count <= 0)
2160 		log(LOG_WARNING,
2161 		    "%s: fxp_mdi_write: timed out\n", device_xname(self));
2162 }
2163 
2164 int
2165 fxp_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2166 {
2167 	struct fxp_softc *sc = ifp->if_softc;
2168 	struct ifreq *ifr = (struct ifreq *)data;
2169 	int s, error;
2170 
2171 	s = splnet();
2172 
2173 	switch (cmd) {
2174 	case SIOCSIFMEDIA:
2175 	case SIOCGIFMEDIA:
2176 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2177 		break;
2178 
2179 	default:
2180 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
2181 			break;
2182 
2183 		error = 0;
2184 
2185 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2186 			;
2187 		else if (ifp->if_flags & IFF_RUNNING) {
2188 			/*
2189 			 * Multicast list has changed; set the
2190 			 * hardware filter accordingly.
2191 			 */
2192 			while (sc->sc_txpending) {
2193 				sc->sc_flags |= FXPF_WANTINIT;
2194 				tsleep(sc, PSOCK, "fxp_init", 0);
2195 			}
2196 			error = fxp_init(ifp);
2197 		}
2198 		break;
2199 	}
2200 
2201 	/* Try to get more packets going. */
2202 	if (sc->sc_enabled)
2203 		fxp_start(ifp);
2204 
2205 	splx(s);
2206 	return (error);
2207 }
2208 
2209 /*
2210  * Program the multicast filter.
2211  *
2212  * This function must be called at splnet().
2213  */
2214 void
2215 fxp_mc_setup(struct fxp_softc *sc)
2216 {
2217 	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
2218 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2219 	struct ethercom *ec = &sc->sc_ethercom;
2220 	struct ether_multi *enm;
2221 	struct ether_multistep step;
2222 	int count, nmcasts;
2223 	uint16_t status;
2224 
2225 #ifdef DIAGNOSTIC
2226 	if (sc->sc_txpending)
2227 		panic("fxp_mc_setup: pending transmissions");
2228 #endif
2229 
2230 
2231 	if (ifp->if_flags & IFF_PROMISC) {
2232 		ifp->if_flags |= IFF_ALLMULTI;
2233 		return;
2234 	} else {
2235 		ifp->if_flags &= ~IFF_ALLMULTI;
2236 	}
2237 
2238 	/*
2239 	 * Initialize multicast setup descriptor.
2240 	 */
2241 	nmcasts = 0;
2242 	ETHER_FIRST_MULTI(step, ec, enm);
2243 	while (enm != NULL) {
2244 		/*
2245 		 * Check for too many multicast addresses or if we're
2246 		 * listening to a range.  Either way, we simply have
2247 		 * to accept all multicasts.
2248 		 */
2249 		if (nmcasts >= MAXMCADDR ||
2250 		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
2251 		    ETHER_ADDR_LEN) != 0) {
2252 			/*
2253 			 * Callers of this function must do the
2254 			 * right thing with this.  If we're called
2255 			 * from outside fxp_init(), the caller must
2256 			 * detect if the state if IFF_ALLMULTI changes.
2257 			 * If it does, the caller must then call
2258 			 * fxp_init(), since allmulti is handled by
2259 			 * the config block.
2260 			 */
2261 			ifp->if_flags |= IFF_ALLMULTI;
2262 			return;
2263 		}
2264 		memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
2265 		    ETHER_ADDR_LEN);
2266 		nmcasts++;
2267 		ETHER_NEXT_MULTI(step, enm);
2268 	}
2269 
2270 	/* BIG_ENDIAN: no need to swap to store 0 */
2271 	mcsp->cb_status = 0;
2272 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2273 	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2274 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2275 
2276 	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2277 
2278 	/*
2279 	 * Wait until the command unit is not active.  This should never
2280 	 * happen since nothing is queued, but make sure anyway.
2281 	 */
2282 	count = 100;
2283 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2284 	    FXP_SCB_CUS_ACTIVE && --count)
2285 		DELAY(1);
2286 	if (count == 0) {
2287 		log(LOG_WARNING, "%s: line %d: command queue timeout\n",
2288 		    device_xname(sc->sc_dev), __LINE__);
2289 		return;
2290 	}
2291 
2292 	/*
2293 	 * Start the multicast setup command/DMA.
2294 	 */
2295 	fxp_scb_wait(sc);
2296 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2297 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2298 
2299 	/* ...and wait for it to complete. */
2300 	for (count = 1000; count > 0; count--) {
2301 		FXP_CDMCSSYNC(sc,
2302 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2303 		status = le16toh(mcsp->cb_status);
2304 		FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD);
2305 		if ((status & FXP_CB_STATUS_C) != 0)
2306 			break;
2307 		DELAY(1);
2308 	}
2309 	if (count == 0) {
2310 		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
2311 		    device_xname(sc->sc_dev), __LINE__);
2312 		return;
2313 	}
2314 }
2315 
2316 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2317 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2318 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2319 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2320 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2321 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2322 static const uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
2323 
2324 #define	UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2325 
2326 static const struct ucode {
2327 	int32_t		revision;
2328 	const uint32_t	*ucode;
2329 	size_t		length;
2330 	uint16_t	int_delay_offset;
2331 	uint16_t	bundle_max_offset;
2332 } ucode_table[] = {
2333 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2334 	  D101_CPUSAVER_DWORD, 0 },
2335 
2336 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2337 	  D101_CPUSAVER_DWORD, 0 },
2338 
2339 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2340 	  D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2341 
2342 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2343 	  D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2344 
2345 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2346 	  D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2347 
2348 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2349 	  D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2350 
2351 	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
2352 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2353 
2354 	{ FXP_REV_82551_10, UCODE(fxp_ucode_d102e),
2355 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2356 
2357 	{ 0, NULL, 0, 0, 0 }
2358 };
2359 
2360 void
2361 fxp_load_ucode(struct fxp_softc *sc)
2362 {
2363 	const struct ucode *uc;
2364 	struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2365 	int count, i;
2366 	uint16_t status;
2367 
2368 	if (sc->sc_flags & FXPF_UCODE_LOADED)
2369 		return;
2370 
2371 	/*
2372 	 * Only load the uCode if the user has requested that
2373 	 * we do so.
2374 	 */
2375 	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2376 		sc->sc_int_delay = 0;
2377 		sc->sc_bundle_max = 0;
2378 		return;
2379 	}
2380 
2381 	for (uc = ucode_table; uc->ucode != NULL; uc++) {
2382 		if (sc->sc_rev == uc->revision)
2383 			break;
2384 	}
2385 	if (uc->ucode == NULL)
2386 		return;
2387 
2388 	/* BIG ENDIAN: no need to swap to store 0 */
2389 	cbp->cb_status = 0;
2390 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2391 	cbp->link_addr = 0xffffffff;		/* (no) next command */
2392 	for (i = 0; i < uc->length; i++)
2393 		cbp->ucode[i] = htole32(uc->ucode[i]);
2394 
2395 	if (uc->int_delay_offset)
2396 		*(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2397 		    htole16(fxp_int_delay + (fxp_int_delay / 2));
2398 
2399 	if (uc->bundle_max_offset)
2400 		*(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2401 		    htole16(fxp_bundle_max);
2402 
2403 	FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2404 
2405 	/*
2406 	 * Download the uCode to the chip.
2407 	 */
2408 	fxp_scb_wait(sc);
2409 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2410 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2411 
2412 	/* ...and wait for it to complete. */
2413 	for (count = 10000; count > 0; count--) {
2414 		FXP_CDUCODESYNC(sc,
2415 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2416 		status = le16toh(cbp->cb_status);
2417 		FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD);
2418 		if ((status & FXP_CB_STATUS_C) != 0)
2419 			break;
2420 		DELAY(2);
2421 	}
2422 	if (count == 0) {
2423 		sc->sc_int_delay = 0;
2424 		sc->sc_bundle_max = 0;
2425 		log(LOG_WARNING, "%s: timeout loading microcode\n",
2426 		    device_xname(sc->sc_dev));
2427 		return;
2428 	}
2429 
2430 	if (sc->sc_int_delay != fxp_int_delay ||
2431 	    sc->sc_bundle_max != fxp_bundle_max) {
2432 		sc->sc_int_delay = fxp_int_delay;
2433 		sc->sc_bundle_max = fxp_bundle_max;
2434 		log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
2435 		    "max bundle: %d\n", device_xname(sc->sc_dev),
2436 		    sc->sc_int_delay,
2437 		    uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2438 	}
2439 
2440 	sc->sc_flags |= FXPF_UCODE_LOADED;
2441 }
2442 
2443 int
2444 fxp_enable(struct fxp_softc *sc)
2445 {
2446 
2447 	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2448 		if ((*sc->sc_enable)(sc) != 0) {
2449 			log(LOG_ERR, "%s: device enable failed\n",
2450 			    device_xname(sc->sc_dev));
2451 			return (EIO);
2452 		}
2453 	}
2454 
2455 	sc->sc_enabled = 1;
2456 	return (0);
2457 }
2458 
2459 void
2460 fxp_disable(struct fxp_softc *sc)
2461 {
2462 
2463 	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2464 		(*sc->sc_disable)(sc);
2465 		sc->sc_enabled = 0;
2466 	}
2467 }
2468 
2469 /*
2470  * fxp_activate:
2471  *
2472  *	Handle device activation/deactivation requests.
2473  */
2474 int
2475 fxp_activate(device_t self, enum devact act)
2476 {
2477 	struct fxp_softc *sc = device_private(self);
2478 
2479 	switch (act) {
2480 	case DVACT_DEACTIVATE:
2481 		if_deactivate(&sc->sc_ethercom.ec_if);
2482 		return 0;
2483 	default:
2484 		return EOPNOTSUPP;
2485 	}
2486 }
2487 
2488 /*
2489  * fxp_detach:
2490  *
2491  *	Detach an i82557 interface.
2492  */
2493 int
2494 fxp_detach(struct fxp_softc *sc, int flags)
2495 {
2496 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2497 	int i, s;
2498 
2499 	/* Succeed now if there's no work to do. */
2500 	if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2501 		return (0);
2502 
2503 	s = splnet();
2504 	/* Stop the interface. Callouts are stopped in it. */
2505 	fxp_stop(ifp, 1);
2506 	splx(s);
2507 
2508 	/* Destroy our callout. */
2509 	callout_destroy(&sc->sc_callout);
2510 
2511 	if (sc->sc_flags & FXPF_MII) {
2512 		/* Detach all PHYs */
2513 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2514 	}
2515 
2516 	/* Delete all remaining media. */
2517 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2518 
2519 	rnd_detach_source(&sc->rnd_source);
2520 	ether_ifdetach(ifp);
2521 	if_detach(ifp);
2522 
2523 	for (i = 0; i < FXP_NRFABUFS; i++) {
2524 		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2525 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2526 	}
2527 
2528 	for (i = 0; i < FXP_NTXCB; i++) {
2529 		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2530 		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2531 	}
2532 
2533 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2534 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2535 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2536 	    sizeof(struct fxp_control_data));
2537 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2538 
2539 	return (0);
2540 }
2541