xref: /netbsd-src/sys/dev/ic/i82557.c (revision 0c4ddb1599a0bea866fde8522a74cfbd2f68cd1b)
1 /*	$NetBSD: i82557.c,v 1.114 2008/07/09 17:07:28 joerg Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1995, David Greenman
35  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
36  * All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice unmodified, this list of conditions, and the following
43  *    disclaimer.
44  * 2. Redistributions in binary form must reproduce the above copyright
45  *    notice, this list of conditions and the following disclaimer in the
46  *    documentation and/or other materials provided with the distribution.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  *
60  *	Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
61  */
62 
63 /*
64  * Device driver for the Intel i82557 fast Ethernet controller,
65  * and its successors, the i82558 and i82559.
66  */
67 
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.114 2008/07/09 17:07:28 joerg Exp $");
70 
71 #include "bpfilter.h"
72 #include "rnd.h"
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/callout.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/socket.h>
81 #include <sys/ioctl.h>
82 #include <sys/errno.h>
83 #include <sys/device.h>
84 #include <sys/syslog.h>
85 
86 #include <machine/endian.h>
87 
88 #include <uvm/uvm_extern.h>
89 
90 #if NRND > 0
91 #include <sys/rnd.h>
92 #endif
93 
94 #include <net/if.h>
95 #include <net/if_dl.h>
96 #include <net/if_media.h>
97 #include <net/if_ether.h>
98 
99 #if NBPFILTER > 0
100 #include <net/bpf.h>
101 #endif
102 
103 #include <sys/bus.h>
104 #include <sys/intr.h>
105 
106 #include <dev/mii/miivar.h>
107 
108 #include <dev/ic/i82557reg.h>
109 #include <dev/ic/i82557var.h>
110 
111 #include <dev/microcode/i8255x/rcvbundl.h>
112 
113 /*
114  * NOTE!  On the Alpha, we have an alignment constraint.  The
115  * card DMAs the packet immediately following the RFA.  However,
116  * the first thing in the packet is a 14-byte Ethernet header.
117  * This means that the packet is misaligned.  To compensate,
118  * we actually offset the RFA 2 bytes into the cluster.  This
119  * alignes the packet after the Ethernet header at a 32-bit
120  * boundary.  HOWEVER!  This means that the RFA is misaligned!
121  */
122 #define	RFA_ALIGNMENT_FUDGE	2
123 
124 /*
125  * The configuration byte map has several undefined fields which
126  * must be one or must be zero.  Set up a template for these bits
127  * only (assuming an i82557 chip), leaving the actual configuration
128  * for fxp_init().
129  *
130  * See the definition of struct fxp_cb_config for the bit definitions.
131  */
132 const u_int8_t fxp_cb_config_template[] = {
133 	0x0, 0x0,		/* cb_status */
134 	0x0, 0x0,		/* cb_command */
135 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
136 	0x0,	/*  0 */
137 	0x0,	/*  1 */
138 	0x0,	/*  2 */
139 	0x0,	/*  3 */
140 	0x0,	/*  4 */
141 	0x0,	/*  5 */
142 	0x32,	/*  6 */
143 	0x0,	/*  7 */
144 	0x0,	/*  8 */
145 	0x0,	/*  9 */
146 	0x6,	/* 10 */
147 	0x0,	/* 11 */
148 	0x0,	/* 12 */
149 	0x0,	/* 13 */
150 	0xf2,	/* 14 */
151 	0x48,	/* 15 */
152 	0x0,	/* 16 */
153 	0x40,	/* 17 */
154 	0xf0,	/* 18 */
155 	0x0,	/* 19 */
156 	0x3f,	/* 20 */
157 	0x5,	/* 21 */
158 	0x0,	/* 22 */
159 	0x0,	/* 23 */
160 	0x0,	/* 24 */
161 	0x0,	/* 25 */
162 	0x0,	/* 26 */
163 	0x0,	/* 27 */
164 	0x0,	/* 28 */
165 	0x0,	/* 29 */
166 	0x0,	/* 30 */
167 	0x0,	/* 31 */
168 };
169 
170 void	fxp_mii_initmedia(struct fxp_softc *);
171 void	fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
172 
173 void	fxp_80c24_initmedia(struct fxp_softc *);
174 int	fxp_80c24_mediachange(struct ifnet *);
175 void	fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
176 
177 void	fxp_start(struct ifnet *);
178 int	fxp_ioctl(struct ifnet *, u_long, void *);
179 void	fxp_watchdog(struct ifnet *);
180 int	fxp_init(struct ifnet *);
181 void	fxp_stop(struct ifnet *, int);
182 
183 void	fxp_txintr(struct fxp_softc *);
184 int	fxp_rxintr(struct fxp_softc *);
185 
186 int	fxp_rx_hwcksum(struct mbuf *, const struct fxp_rfa *);
187 
188 void	fxp_rxdrain(struct fxp_softc *);
189 int	fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
190 int	fxp_mdi_read(device_t, int, int);
191 void	fxp_statchg(device_t);
192 void	fxp_mdi_write(device_t, int, int, int);
193 void	fxp_autosize_eeprom(struct fxp_softc*);
194 void	fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
195 void	fxp_write_eeprom(struct fxp_softc *, u_int16_t *, int, int);
196 void	fxp_eeprom_update_cksum(struct fxp_softc *);
197 void	fxp_get_info(struct fxp_softc *, u_int8_t *);
198 void	fxp_tick(void *);
199 void	fxp_mc_setup(struct fxp_softc *);
200 void	fxp_load_ucode(struct fxp_softc *);
201 
202 int	fxp_copy_small = 0;
203 
204 /*
205  * Variables for interrupt mitigating microcode.
206  */
207 int	fxp_int_delay = 1000;		/* usec */
208 int	fxp_bundle_max = 6;		/* packets */
209 
210 struct fxp_phytype {
211 	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
212 	void	(*fp_init)(struct fxp_softc *);
213 } fxp_phytype_table[] = {
214 	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
215 	{ -1,				fxp_mii_initmedia },
216 };
217 
218 /*
219  * Set initial transmit threshold at 64 (512 bytes). This is
220  * increased by 64 (512 bytes) at a time, to maximum of 192
221  * (1536 bytes), if an underrun occurs.
222  */
223 static int tx_threshold = 64;
224 
225 /*
226  * Wait for the previous command to be accepted (but not necessarily
227  * completed).
228  */
229 static inline void
230 fxp_scb_wait(struct fxp_softc *sc)
231 {
232 	int i = 10000;
233 
234 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
235 		delay(2);
236 	if (i == 0)
237 		log(LOG_WARNING,
238 		    "%s: WARNING: SCB timed out!\n", device_xname(sc->sc_dev));
239 }
240 
241 /*
242  * Submit a command to the i82557.
243  */
244 static inline void
245 fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
246 {
247 
248 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
249 }
250 
251 /*
252  * Finish attaching an i82557 interface.  Called by bus-specific front-end.
253  */
254 void
255 fxp_attach(struct fxp_softc *sc)
256 {
257 	u_int8_t enaddr[ETHER_ADDR_LEN];
258 	struct ifnet *ifp;
259 	bus_dma_segment_t seg;
260 	int rseg, i, error;
261 	struct fxp_phytype *fp;
262 
263 	callout_init(&sc->sc_callout, 0);
264 
265 	/*
266 	 * Enable some good stuff on i82558 and later.
267 	 */
268 	if (sc->sc_rev >= FXP_REV_82558_A4) {
269 		/* Enable the extended TxCB. */
270 		sc->sc_flags |= FXPF_EXT_TXCB;
271 	}
272 
273         /*
274 	 * Enable use of extended RFDs and TCBs for 82550
275 	 * and later chips. Note: we need extended TXCB support
276 	 * too, but that's already enabled by the code above.
277 	 * Be careful to do this only on the right devices.
278 	 */
279 	if (sc->sc_rev == FXP_REV_82550 || sc->sc_rev == FXP_REV_82550_C) {
280 		sc->sc_flags |= FXPF_EXT_RFA | FXPF_IPCB;
281 		sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
282 	} else {
283 		sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
284 	}
285 
286 	sc->sc_rfa_size =
287 	    (sc->sc_flags & FXPF_EXT_RFA) ? RFA_EXT_SIZE : RFA_SIZE;
288 
289 	/*
290 	 * Allocate the control data structures, and create and load the
291 	 * DMA map for it.
292 	 */
293 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
294 	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
295 	    0)) != 0) {
296 		aprint_error_dev(sc->sc_dev,
297 		    "unable to allocate control data, error = %d\n",
298 		    error);
299 		goto fail_0;
300 	}
301 
302 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
303 	    sizeof(struct fxp_control_data), (void **)&sc->sc_control_data,
304 	    BUS_DMA_COHERENT)) != 0) {
305 		aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
306 		    error);
307 		goto fail_1;
308 	}
309 	sc->sc_cdseg = seg;
310 	sc->sc_cdnseg = rseg;
311 
312 	memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
313 
314 	if ((error = bus_dmamap_create(sc->sc_dmat,
315 	    sizeof(struct fxp_control_data), 1,
316 	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
317 		aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
318 		    "error = %d\n", error);
319 		goto fail_2;
320 	}
321 
322 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
323 	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
324 	    0)) != 0) {
325 		aprint_error_dev(sc->sc_dev,
326 		    "can't load control data DMA map, error = %d\n",
327 		    error);
328 		goto fail_3;
329 	}
330 
331 	/*
332 	 * Create the transmit buffer DMA maps.
333 	 */
334 	for (i = 0; i < FXP_NTXCB; i++) {
335 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
336 		    (sc->sc_flags & FXPF_IPCB) ? FXP_IPCB_NTXSEG : FXP_NTXSEG,
337 		    MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
338 			aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, "
339 			    "error = %d\n", i, error);
340 			goto fail_4;
341 		}
342 	}
343 
344 	/*
345 	 * Create the receive buffer DMA maps.
346 	 */
347 	for (i = 0; i < FXP_NRFABUFS; i++) {
348 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
349 		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
350 			aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, "
351 			    "error = %d\n", i, error);
352 			goto fail_5;
353 		}
354 	}
355 
356 	/* Initialize MAC address and media structures. */
357 	fxp_get_info(sc, enaddr);
358 
359 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
360 	    ether_sprintf(enaddr));
361 
362 	ifp = &sc->sc_ethercom.ec_if;
363 
364 	/*
365 	 * Get info about our media interface, and initialize it.  Note
366 	 * the table terminates itself with a phy of -1, indicating
367 	 * that we're using MII.
368 	 */
369 	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
370 		if (fp->fp_phy == sc->phy_primary_device)
371 			break;
372 	(*fp->fp_init)(sc);
373 
374 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
375 	ifp->if_softc = sc;
376 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
377 	ifp->if_ioctl = fxp_ioctl;
378 	ifp->if_start = fxp_start;
379 	ifp->if_watchdog = fxp_watchdog;
380 	ifp->if_init = fxp_init;
381 	ifp->if_stop = fxp_stop;
382 	IFQ_SET_READY(&ifp->if_snd);
383 
384 	if (sc->sc_flags & FXPF_IPCB) {
385 		KASSERT(sc->sc_flags & FXPF_EXT_RFA); /* we have both or none */
386 		/*
387 		 * IFCAP_CSUM_IPv4_Tx seems to have a problem,
388 		 * at least, on i82550 rev.12.
389 		 * specifically, it doesn't calculate ipv4 checksum correctly
390 		 * when sending 20 byte ipv4 header + 1 or 2 byte data.
391 		 * FreeBSD driver has related comments.
392 		 */
393 		ifp->if_capabilities =
394 		    IFCAP_CSUM_IPv4_Rx |
395 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
396 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
397 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
398 	}
399 
400 	/*
401 	 * We can support 802.1Q VLAN-sized frames.
402 	 */
403 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
404 
405 	/*
406 	 * Attach the interface.
407 	 */
408 	if_attach(ifp);
409 	ether_ifattach(ifp, enaddr);
410 #if NRND > 0
411 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
412 	    RND_TYPE_NET, 0);
413 #endif
414 
415 #ifdef FXP_EVENT_COUNTERS
416 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
417 	    NULL, device_xname(sc->sc_dev), "txstall");
418 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
419 	    NULL, device_xname(sc->sc_dev), "txintr");
420 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
421 	    NULL, device_xname(sc->sc_dev), "rxintr");
422 	if (sc->sc_rev >= FXP_REV_82558_A4) {
423 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
424 		    NULL, device_xname(sc->sc_dev), "txpause");
425 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
426 		    NULL, device_xname(sc->sc_dev), "rxpause");
427 	}
428 #endif /* FXP_EVENT_COUNTERS */
429 
430 	/* The attach is successful. */
431 	sc->sc_flags |= FXPF_ATTACHED;
432 
433 	return;
434 
435 	/*
436 	 * Free any resources we've allocated during the failed attach
437 	 * attempt.  Do this in reverse order and fall though.
438 	 */
439  fail_5:
440 	for (i = 0; i < FXP_NRFABUFS; i++) {
441 		if (sc->sc_rxmaps[i] != NULL)
442 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
443 	}
444  fail_4:
445 	for (i = 0; i < FXP_NTXCB; i++) {
446 		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
447 			bus_dmamap_destroy(sc->sc_dmat,
448 			    FXP_DSTX(sc, i)->txs_dmamap);
449 	}
450 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
451  fail_3:
452 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
453  fail_2:
454 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
455 	    sizeof(struct fxp_control_data));
456  fail_1:
457 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
458  fail_0:
459 	return;
460 }
461 
462 void
463 fxp_mii_initmedia(struct fxp_softc *sc)
464 {
465 	int flags;
466 
467 	sc->sc_flags |= FXPF_MII;
468 
469 	sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
470 	sc->sc_mii.mii_readreg = fxp_mdi_read;
471 	sc->sc_mii.mii_writereg = fxp_mdi_write;
472 	sc->sc_mii.mii_statchg = fxp_statchg;
473 
474 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
475 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
476 	    fxp_mii_mediastatus);
477 
478 	flags = MIIF_NOISOLATE;
479 	if (sc->sc_rev >= FXP_REV_82558_A4)
480 		flags |= MIIF_DOPAUSE;
481 	/*
482 	 * The i82557 wedges if all of its PHYs are isolated!
483 	 */
484 	mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
485 	    MII_OFFSET_ANY, flags);
486 	if (LIST_EMPTY(&sc->sc_mii.mii_phys)) {
487 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
488 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
489 	} else
490 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
491 }
492 
493 void
494 fxp_80c24_initmedia(struct fxp_softc *sc)
495 {
496 
497 	/*
498 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
499 	 * doesn't have a programming interface of any sort.  The
500 	 * media is sensed automatically based on how the link partner
501 	 * is configured.  This is, in essence, manual configuration.
502 	 */
503 	aprint_normal_dev(sc->sc_dev, "Seeq 80c24 AutoDUPLEX media interface present\n");
504 	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
505 	    fxp_80c24_mediastatus);
506 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
507 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
508 }
509 
510 /*
511  * Initialize the interface media.
512  */
513 void
514 fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
515 {
516 	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
517 
518 	/*
519 	 * Reset to a stable state.
520 	 */
521 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
522 	DELAY(100);
523 
524 	sc->sc_eeprom_size = 0;
525 	fxp_autosize_eeprom(sc);
526 	if (sc->sc_eeprom_size == 0) {
527 		aprint_error_dev(sc->sc_dev, "failed to detect EEPROM size\n");
528 		sc->sc_eeprom_size = 6; /* XXX panic here? */
529 	}
530 #ifdef DEBUG
531 	aprint_debug_dev(sc->sc_dev, "detected %d word EEPROM\n",
532 	    1 << sc->sc_eeprom_size);
533 #endif
534 
535 	/*
536 	 * Get info about the primary PHY
537 	 */
538 	fxp_read_eeprom(sc, &data, 6, 1);
539 	sc->phy_primary_device =
540 	    (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
541 
542 	/*
543 	 * Read MAC address.
544 	 */
545 	fxp_read_eeprom(sc, myea, 0, 3);
546 	enaddr[0] = myea[0] & 0xff;
547 	enaddr[1] = myea[0] >> 8;
548 	enaddr[2] = myea[1] & 0xff;
549 	enaddr[3] = myea[1] >> 8;
550 	enaddr[4] = myea[2] & 0xff;
551 	enaddr[5] = myea[2] >> 8;
552 
553 	/*
554 	 * Systems based on the ICH2/ICH2-M chip from Intel, as well
555 	 * as some i82559 designs, have a defect where the chip can
556 	 * cause a PCI protocol violation if it receives a CU_RESUME
557 	 * command when it is entering the IDLE state.
558 	 *
559 	 * The work-around is to disable Dynamic Standby Mode, so that
560 	 * the chip never deasserts #CLKRUN, and always remains in the
561 	 * active state.
562 	 *
563 	 * Unfortunately, the only way to disable Dynamic Standby is
564 	 * to frob an EEPROM setting and reboot (the EEPROM setting
565 	 * is only consulted when the PCI bus comes out of reset).
566 	 *
567 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
568 	 */
569 	if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
570 		fxp_read_eeprom(sc, &data, 10, 1);
571 		if (data & 0x02) {		/* STB enable */
572 			aprint_error_dev(sc->sc_dev, "WARNING: "
573 			    "Disabling dynamic standby mode in EEPROM "
574 			    "to work around a\n");
575 			aprint_normal_dev(sc->sc_dev,
576 			    "WARNING: hardware bug.  You must reset "
577 			    "the system before using this\n");
578 			aprint_normal_dev(sc->sc_dev, "WARNING: interface.\n");
579 			data &= ~0x02;
580 			fxp_write_eeprom(sc, &data, 10, 1);
581 			aprint_normal_dev(sc->sc_dev, "new EEPROM ID: 0x%04x\n",
582 			    data);
583 			fxp_eeprom_update_cksum(sc);
584 		}
585 	}
586 
587 	/* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
588 	/* Due to false positives we make it conditional on setting link1 */
589 	fxp_read_eeprom(sc, &data, 3, 1);
590 	if ((data & 0x03) != 0x03) {
591 		aprint_verbose_dev(sc->sc_dev, "May need receiver lock-up workaround\n");
592 	}
593 }
594 
595 static void
596 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
597 {
598 	uint16_t reg;
599 	int x;
600 
601 	for (x = 1 << (len - 1); x != 0; x >>= 1) {
602 		DELAY(40);
603 		if (data & x)
604 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
605 		else
606 			reg = FXP_EEPROM_EECS;
607 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
608 		DELAY(40);
609 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
610 		    reg | FXP_EEPROM_EESK);
611 		DELAY(40);
612 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
613 	}
614 	DELAY(40);
615 }
616 
617 /*
618  * Figure out EEPROM size.
619  *
620  * 559's can have either 64-word or 256-word EEPROMs, the 558
621  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
622  * talks about the existence of 16 to 256 word EEPROMs.
623  *
624  * The only known sizes are 64 and 256, where the 256 version is used
625  * by CardBus cards to store CIS information.
626  *
627  * The address is shifted in msb-to-lsb, and after the last
628  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
629  * after which follows the actual data. We try to detect this zero, by
630  * probing the data-out bit in the EEPROM control register just after
631  * having shifted in a bit. If the bit is zero, we assume we've
632  * shifted enough address bits. The data-out should be tri-state,
633  * before this, which should translate to a logical one.
634  *
635  * Other ways to do this would be to try to read a register with known
636  * contents with a varying number of address bits, but no such
637  * register seem to be available. The high bits of register 10 are 01
638  * on the 558 and 559, but apparently not on the 557.
639  *
640  * The Linux driver computes a checksum on the EEPROM data, but the
641  * value of this checksum is not very well documented.
642  */
643 
644 void
645 fxp_autosize_eeprom(struct fxp_softc *sc)
646 {
647 	int x;
648 
649 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
650 	DELAY(40);
651 
652 	/* Shift in read opcode. */
653 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
654 
655 	/*
656 	 * Shift in address, wait for the dummy zero following a correct
657 	 * address shift.
658 	 */
659 	for (x = 1; x <= 8; x++) {
660 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
661 		DELAY(40);
662 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
663 		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
664 		DELAY(40);
665 		if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
666 		    FXP_EEPROM_EEDO) == 0)
667 			break;
668 		DELAY(40);
669 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
670 		DELAY(40);
671 	}
672 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
673 	DELAY(40);
674 	if (x != 6 && x != 8) {
675 #ifdef DEBUG
676 		printf("%s: strange EEPROM size (%d)\n",
677 		    device_xname(sc->sc_dev), 1 << x);
678 #endif
679 	} else
680 		sc->sc_eeprom_size = x;
681 }
682 
683 /*
684  * Read from the serial EEPROM. Basically, you manually shift in
685  * the read opcode (one bit at a time) and then shift in the address,
686  * and then you shift out the data (all of this one bit at a time).
687  * The word size is 16 bits, so you have to provide the address for
688  * every 16 bits of data.
689  */
690 void
691 fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
692 {
693 	u_int16_t reg;
694 	int i, x;
695 
696 	for (i = 0; i < words; i++) {
697 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
698 
699 		/* Shift in read opcode. */
700 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
701 
702 		/* Shift in address. */
703 		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
704 
705 		reg = FXP_EEPROM_EECS;
706 		data[i] = 0;
707 
708 		/* Shift out data. */
709 		for (x = 16; x > 0; x--) {
710 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
711 			    reg | FXP_EEPROM_EESK);
712 			DELAY(40);
713 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
714 			    FXP_EEPROM_EEDO)
715 				data[i] |= (1 << (x - 1));
716 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
717 			DELAY(40);
718 		}
719 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
720 		DELAY(40);
721 	}
722 }
723 
724 /*
725  * Write data to the serial EEPROM.
726  */
727 void
728 fxp_write_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
729 {
730 	int i, j;
731 
732 	for (i = 0; i < words; i++) {
733 		/* Erase/write enable. */
734 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
735 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
736 		fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
737 		    sc->sc_eeprom_size);
738 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
739 		DELAY(4);
740 
741 		/* Shift in write opcode, address, data. */
742 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
743 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
744 		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
745 		fxp_eeprom_shiftin(sc, data[i], 16);
746 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
747 		DELAY(4);
748 
749 		/* Wait for the EEPROM to finish up. */
750 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
751 		DELAY(4);
752 		for (j = 0; j < 1000; j++) {
753 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
754 			    FXP_EEPROM_EEDO)
755 				break;
756 			DELAY(50);
757 		}
758 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
759 		DELAY(4);
760 
761 		/* Erase/write disable. */
762 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
763 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
764 		fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
765 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
766 		DELAY(4);
767 	}
768 }
769 
770 /*
771  * Update the checksum of the EEPROM.
772  */
773 void
774 fxp_eeprom_update_cksum(struct fxp_softc *sc)
775 {
776 	int i;
777 	uint16_t data, cksum;
778 
779 	cksum = 0;
780 	for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
781 		fxp_read_eeprom(sc, &data, i, 1);
782 		cksum += data;
783 	}
784 	i = (1 << sc->sc_eeprom_size) - 1;
785 	cksum = 0xbaba - cksum;
786 	fxp_read_eeprom(sc, &data, i, 1);
787 	fxp_write_eeprom(sc, &cksum, i, 1);
788 	log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
789 	    device_xname(sc->sc_dev), i, data, cksum);
790 }
791 
792 /*
793  * Start packet transmission on the interface.
794  */
795 void
796 fxp_start(struct ifnet *ifp)
797 {
798 	struct fxp_softc *sc = ifp->if_softc;
799 	struct mbuf *m0, *m;
800 	struct fxp_txdesc *txd;
801 	struct fxp_txsoft *txs;
802 	bus_dmamap_t dmamap;
803 	int error, lasttx, nexttx, opending, seg;
804 
805 	/*
806 	 * If we want a re-init, bail out now.
807 	 */
808 	if (sc->sc_flags & FXPF_WANTINIT) {
809 		ifp->if_flags |= IFF_OACTIVE;
810 		return;
811 	}
812 
813 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
814 		return;
815 
816 	/*
817 	 * Remember the previous txpending and the current lasttx.
818 	 */
819 	opending = sc->sc_txpending;
820 	lasttx = sc->sc_txlast;
821 
822 	/*
823 	 * Loop through the send queue, setting up transmit descriptors
824 	 * until we drain the queue, or use up all available transmit
825 	 * descriptors.
826 	 */
827 	for (;;) {
828 		struct fxp_tbd *tbdp;
829 		int csum_flags;
830 
831 		/*
832 		 * Grab a packet off the queue.
833 		 */
834 		IFQ_POLL(&ifp->if_snd, m0);
835 		if (m0 == NULL)
836 			break;
837 		m = NULL;
838 
839 		if (sc->sc_txpending == FXP_NTXCB - 1) {
840 			FXP_EVCNT_INCR(&sc->sc_ev_txstall);
841 			break;
842 		}
843 
844 		/*
845 		 * Get the next available transmit descriptor.
846 		 */
847 		nexttx = FXP_NEXTTX(sc->sc_txlast);
848 		txd = FXP_CDTX(sc, nexttx);
849 		txs = FXP_DSTX(sc, nexttx);
850 		dmamap = txs->txs_dmamap;
851 
852 		/*
853 		 * Load the DMA map.  If this fails, the packet either
854 		 * didn't fit in the allotted number of frags, or we were
855 		 * short on resources.  In this case, we'll copy and try
856 		 * again.
857 		 */
858 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
859 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
860 			MGETHDR(m, M_DONTWAIT, MT_DATA);
861 			if (m == NULL) {
862 				log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
863 				    device_xname(sc->sc_dev));
864 				break;
865 			}
866 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
867 			if (m0->m_pkthdr.len > MHLEN) {
868 				MCLGET(m, M_DONTWAIT);
869 				if ((m->m_flags & M_EXT) == 0) {
870 					log(LOG_ERR,
871 					    "%s: unable to allocate Tx "
872 					    "cluster\n", device_xname(sc->sc_dev));
873 					m_freem(m);
874 					break;
875 				}
876 			}
877 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
878 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
879 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
880 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
881 			if (error) {
882 				log(LOG_ERR, "%s: unable to load Tx buffer, "
883 				    "error = %d\n", device_xname(sc->sc_dev), error);
884 				break;
885 			}
886 		}
887 
888 		IFQ_DEQUEUE(&ifp->if_snd, m0);
889 		csum_flags = m0->m_pkthdr.csum_flags;
890 		if (m != NULL) {
891 			m_freem(m0);
892 			m0 = m;
893 		}
894 
895 		/* Initialize the fraglist. */
896 		tbdp = txd->txd_tbd;
897 		if (sc->sc_flags & FXPF_IPCB)
898 			tbdp++;
899 		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
900 			tbdp[seg].tb_addr =
901 			    htole32(dmamap->dm_segs[seg].ds_addr);
902 			tbdp[seg].tb_size =
903 			    htole32(dmamap->dm_segs[seg].ds_len);
904 		}
905 
906 		/* Sync the DMA map. */
907 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
908 		    BUS_DMASYNC_PREWRITE);
909 
910 		/*
911 		 * Store a pointer to the packet so we can free it later.
912 		 */
913 		txs->txs_mbuf = m0;
914 
915 		/*
916 		 * Initialize the transmit descriptor.
917 		 */
918 		/* BIG_ENDIAN: no need to swap to store 0 */
919 		txd->txd_txcb.cb_status = 0;
920 		txd->txd_txcb.cb_command =
921 		    sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
922 		txd->txd_txcb.tx_threshold = tx_threshold;
923 		txd->txd_txcb.tbd_number = dmamap->dm_nsegs;
924 
925 		KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
926 		if (sc->sc_flags & FXPF_IPCB) {
927 			struct m_tag *vtag;
928 			struct fxp_ipcb *ipcb;
929 			/*
930 			 * Deal with TCP/IP checksum offload. Note that
931 			 * in order for TCP checksum offload to work,
932 			 * the pseudo header checksum must have already
933 			 * been computed and stored in the checksum field
934 			 * in the TCP header. The stack should have
935 			 * already done this for us.
936 			 */
937 			ipcb = &txd->txd_u.txdu_ipcb;
938 			memset(ipcb, 0, sizeof(*ipcb));
939 			/*
940 			 * always do hardware parsing.
941 			 */
942 			ipcb->ipcb_ip_activation_high =
943 			    FXP_IPCB_HARDWAREPARSING_ENABLE;
944 			/*
945 			 * ip checksum offloading.
946 			 */
947 			if (csum_flags & M_CSUM_IPv4) {
948 				ipcb->ipcb_ip_schedule |=
949 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
950 			}
951 			/*
952 			 * TCP/UDP checksum offloading.
953 			 */
954 			if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
955 				ipcb->ipcb_ip_schedule |=
956 				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
957 			}
958 
959 			/*
960 			 * request VLAN tag insertion if needed.
961 			 */
962 			vtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
963 			if (vtag) {
964 				ipcb->ipcb_vlan_id =
965 				    htobe16(*(u_int *)(vtag + 1));
966 				ipcb->ipcb_ip_activation_high |=
967 				    FXP_IPCB_INSERTVLAN_ENABLE;
968 			}
969 		} else {
970 			KASSERT((csum_flags &
971 			    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
972 		}
973 
974 		FXP_CDTXSYNC(sc, nexttx,
975 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
976 
977 		/* Advance the tx pointer. */
978 		sc->sc_txpending++;
979 		sc->sc_txlast = nexttx;
980 
981 #if NBPFILTER > 0
982 		/*
983 		 * Pass packet to bpf if there is a listener.
984 		 */
985 		if (ifp->if_bpf)
986 			bpf_mtap(ifp->if_bpf, m0);
987 #endif
988 	}
989 
990 	if (sc->sc_txpending == FXP_NTXCB - 1) {
991 		/* No more slots; notify upper layer. */
992 		ifp->if_flags |= IFF_OACTIVE;
993 	}
994 
995 	if (sc->sc_txpending != opending) {
996 		/*
997 		 * We enqueued packets.  If the transmitter was idle,
998 		 * reset the txdirty pointer.
999 		 */
1000 		if (opending == 0)
1001 			sc->sc_txdirty = FXP_NEXTTX(lasttx);
1002 
1003 		/*
1004 		 * Cause the chip to interrupt and suspend command
1005 		 * processing once the last packet we've enqueued
1006 		 * has been transmitted.
1007 		 *
1008 		 * To avoid a race between updating status bits
1009 		 * by the fxp chip and clearing command bits
1010 		 * by this function on machines which don't have
1011 		 * atomic methods to clear/set bits in memory
1012 		 * smaller than 32bits (both cb_status and cb_command
1013 		 * members are uint16_t and in the same 32bit word),
1014 		 * we have to prepare a dummy TX descriptor which has
1015 		 * NOP command and just causes a TX completion interrupt.
1016 		 */
1017 		sc->sc_txpending++;
1018 		sc->sc_txlast = FXP_NEXTTX(sc->sc_txlast);
1019 		txd = FXP_CDTX(sc, sc->sc_txlast);
1020 		/* BIG_ENDIAN: no need to swap to store 0 */
1021 		txd->txd_txcb.cb_status = 0;
1022 		txd->txd_txcb.cb_command = htole16(FXP_CB_COMMAND_NOP |
1023 		    FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
1024 		FXP_CDTXSYNC(sc, sc->sc_txlast,
1025 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1026 
1027 		/*
1028 		 * The entire packet chain is set up.  Clear the suspend bit
1029 		 * on the command prior to the first packet we set up.
1030 		 */
1031 		FXP_CDTXSYNC(sc, lasttx,
1032 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1033 		FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
1034 		    htole16(~FXP_CB_COMMAND_S);
1035 		FXP_CDTXSYNC(sc, lasttx,
1036 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1037 
1038 		/*
1039 		 * Issue a Resume command in case the chip was suspended.
1040 		 */
1041 		fxp_scb_wait(sc);
1042 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1043 
1044 		/* Set a watchdog timer in case the chip flakes out. */
1045 		ifp->if_timer = 5;
1046 	}
1047 }
1048 
1049 /*
1050  * Process interface interrupts.
1051  */
1052 int
1053 fxp_intr(void *arg)
1054 {
1055 	struct fxp_softc *sc = arg;
1056 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1057 	bus_dmamap_t rxmap;
1058 	int claimed = 0, rnr;
1059 	u_int8_t statack;
1060 
1061 	if (!device_is_active(sc->sc_dev) || sc->sc_enabled == 0)
1062 		return (0);
1063 	/*
1064 	 * If the interface isn't running, don't try to
1065 	 * service the interrupt.. just ack it and bail.
1066 	 */
1067 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
1068 		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1069 		if (statack) {
1070 			claimed = 1;
1071 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1072 		}
1073 		return (claimed);
1074 	}
1075 
1076 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1077 		claimed = 1;
1078 
1079 		/*
1080 		 * First ACK all the interrupts in this pass.
1081 		 */
1082 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1083 
1084 		/*
1085 		 * Process receiver interrupts. If a no-resource (RNR)
1086 		 * condition exists, get whatever packets we can and
1087 		 * re-start the receiver.
1088 		 */
1089 		rnr = (statack & (FXP_SCB_STATACK_RNR | FXP_SCB_STATACK_SWI)) ?
1090 		    1 : 0;
1091 		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR |
1092 		    FXP_SCB_STATACK_SWI)) {
1093 			FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1094 			rnr |= fxp_rxintr(sc);
1095 		}
1096 
1097 		/*
1098 		 * Free any finished transmit mbuf chains.
1099 		 */
1100 		if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1101 			FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1102 			fxp_txintr(sc);
1103 
1104 			/*
1105 			 * Try to get more packets going.
1106 			 */
1107 			fxp_start(ifp);
1108 
1109 			if (sc->sc_txpending == 0) {
1110 				/*
1111 				 * If we want a re-init, do that now.
1112 				 */
1113 				if (sc->sc_flags & FXPF_WANTINIT)
1114 					(void) fxp_init(ifp);
1115 			}
1116 		}
1117 
1118 		if (rnr) {
1119 			fxp_scb_wait(sc);
1120 			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
1121 			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1122 			fxp_scb_wait(sc);
1123 			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1124 			    rxmap->dm_segs[0].ds_addr +
1125 			    RFA_ALIGNMENT_FUDGE);
1126 			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1127 		}
1128 	}
1129 
1130 #if NRND > 0
1131 	if (claimed)
1132 		rnd_add_uint32(&sc->rnd_source, statack);
1133 #endif
1134 	return (claimed);
1135 }
1136 
1137 /*
1138  * Handle transmit completion interrupts.
1139  */
1140 void
1141 fxp_txintr(struct fxp_softc *sc)
1142 {
1143 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1144 	struct fxp_txdesc *txd;
1145 	struct fxp_txsoft *txs;
1146 	int i;
1147 	u_int16_t txstat;
1148 
1149 	ifp->if_flags &= ~IFF_OACTIVE;
1150 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1151 	    i = FXP_NEXTTX(i), sc->sc_txpending--) {
1152 		txd = FXP_CDTX(sc, i);
1153 		txs = FXP_DSTX(sc, i);
1154 
1155 		FXP_CDTXSYNC(sc, i,
1156 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1157 
1158 		/* skip dummy NOP TX descriptor */
1159 		if ((le16toh(txd->txd_txcb.cb_command) & FXP_CB_COMMAND_CMD)
1160 		    == FXP_CB_COMMAND_NOP)
1161 			continue;
1162 
1163 		txstat = le16toh(txd->txd_txcb.cb_status);
1164 
1165 		if ((txstat & FXP_CB_STATUS_C) == 0)
1166 			break;
1167 
1168 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1169 		    0, txs->txs_dmamap->dm_mapsize,
1170 		    BUS_DMASYNC_POSTWRITE);
1171 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1172 		m_freem(txs->txs_mbuf);
1173 		txs->txs_mbuf = NULL;
1174 	}
1175 
1176 	/* Update the dirty transmit buffer pointer. */
1177 	sc->sc_txdirty = i;
1178 
1179 	/*
1180 	 * Cancel the watchdog timer if there are no pending
1181 	 * transmissions.
1182 	 */
1183 	if (sc->sc_txpending == 0)
1184 		ifp->if_timer = 0;
1185 }
1186 
1187 /*
1188  * fxp_rx_hwcksum: check status of H/W offloading for received packets.
1189  */
1190 
1191 int
1192 fxp_rx_hwcksum(struct mbuf *m, const struct fxp_rfa *rfa)
1193 {
1194 	u_int16_t rxparsestat;
1195 	u_int16_t csum_stat;
1196 	u_int32_t csum_data;
1197 	int csum_flags;
1198 
1199 	/*
1200 	 * check VLAN tag stripping.
1201 	 */
1202 
1203 	if (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) {
1204 		struct m_tag *vtag;
1205 
1206 		vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int), M_NOWAIT);
1207 		if (vtag == NULL)
1208 			return ENOMEM;
1209 		*(u_int *)(vtag + 1) = be16toh(rfa->vlan_id);
1210 		m_tag_prepend(m, vtag);
1211 	}
1212 
1213 	/*
1214 	 * check H/W Checksumming.
1215 	 */
1216 
1217 	csum_stat = le16toh(rfa->cksum_stat);
1218 	rxparsestat = le16toh(rfa->rx_parse_stat);
1219 	if (!(rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)))
1220 		return 0;
1221 
1222 	csum_flags = 0;
1223 	csum_data = 0;
1224 
1225 	if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
1226 		csum_flags = M_CSUM_IPv4;
1227 		if (!(csum_stat & FXP_RFDX_CS_IP_CSUM_VALID))
1228 			csum_flags |= M_CSUM_IPv4_BAD;
1229 	}
1230 
1231 	if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
1232 		csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
1233 		if (!(csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID))
1234 			csum_flags |= M_CSUM_TCP_UDP_BAD;
1235 	}
1236 
1237 	m->m_pkthdr.csum_flags = csum_flags;
1238 	m->m_pkthdr.csum_data = csum_data;
1239 
1240 	return 0;
1241 }
1242 
1243 /*
1244  * Handle receive interrupts.
1245  */
1246 int
1247 fxp_rxintr(struct fxp_softc *sc)
1248 {
1249 	struct ethercom *ec = &sc->sc_ethercom;
1250 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1251 	struct mbuf *m, *m0;
1252 	bus_dmamap_t rxmap;
1253 	struct fxp_rfa *rfa;
1254 	int rnr;
1255 	u_int16_t len, rxstat;
1256 
1257 	rnr = 0;
1258 
1259 	for (;;) {
1260 		m = sc->sc_rxq.ifq_head;
1261 		rfa = FXP_MTORFA(m);
1262 		rxmap = M_GETCTX(m, bus_dmamap_t);
1263 
1264 		FXP_RFASYNC(sc, m,
1265 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1266 
1267 		rxstat = le16toh(rfa->rfa_status);
1268 
1269 		if ((rxstat & FXP_RFA_STATUS_RNR) != 0)
1270 			rnr = 1;
1271 
1272 		if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1273 			/*
1274 			 * We have processed all of the
1275 			 * receive buffers.
1276 			 */
1277 			FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1278 			return rnr;
1279 		}
1280 
1281 		IF_DEQUEUE(&sc->sc_rxq, m);
1282 
1283 		FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1284 
1285 		len = le16toh(rfa->actual_size) &
1286 		    (m->m_ext.ext_size - 1);
1287 
1288 		if (len < sizeof(struct ether_header)) {
1289 			/*
1290 			 * Runt packet; drop it now.
1291 			 */
1292 			FXP_INIT_RFABUF(sc, m);
1293 			continue;
1294 		}
1295 
1296 		/*
1297 		 * If support for 802.1Q VLAN sized frames is
1298 		 * enabled, we need to do some additional error
1299 		 * checking (as we are saving bad frames, in
1300 		 * order to receive the larger ones).
1301 		 */
1302 		if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1303 		    (rxstat & (FXP_RFA_STATUS_OVERRUN|
1304 			       FXP_RFA_STATUS_RNR|
1305 			       FXP_RFA_STATUS_ALIGN|
1306 			       FXP_RFA_STATUS_CRC)) != 0) {
1307 			FXP_INIT_RFABUF(sc, m);
1308 			continue;
1309 		}
1310 
1311 		/* Do checksum checking. */
1312 		m->m_pkthdr.csum_flags = 0;
1313 		if (sc->sc_flags & FXPF_EXT_RFA)
1314 			if (fxp_rx_hwcksum(m, rfa))
1315 				goto dropit;
1316 
1317 		/*
1318 		 * If the packet is small enough to fit in a
1319 		 * single header mbuf, allocate one and copy
1320 		 * the data into it.  This greatly reduces
1321 		 * memory consumption when we receive lots
1322 		 * of small packets.
1323 		 *
1324 		 * Otherwise, we add a new buffer to the receive
1325 		 * chain.  If this fails, we drop the packet and
1326 		 * recycle the old buffer.
1327 		 */
1328 		if (fxp_copy_small != 0 && len <= MHLEN) {
1329 			MGETHDR(m0, M_DONTWAIT, MT_DATA);
1330 			if (m0 == NULL)
1331 				goto dropit;
1332 			MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
1333 			memcpy(mtod(m0, void *),
1334 			    mtod(m, void *), len);
1335 			m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
1336 			m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
1337 			FXP_INIT_RFABUF(sc, m);
1338 			m = m0;
1339 		} else {
1340 			if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1341  dropit:
1342 				ifp->if_ierrors++;
1343 				FXP_INIT_RFABUF(sc, m);
1344 				continue;
1345 			}
1346 		}
1347 
1348 		m->m_pkthdr.rcvif = ifp;
1349 		m->m_pkthdr.len = m->m_len = len;
1350 
1351 #if NBPFILTER > 0
1352 		/*
1353 		 * Pass this up to any BPF listeners, but only
1354 		 * pass it up the stack if it's for us.
1355 		 */
1356 		if (ifp->if_bpf)
1357 			bpf_mtap(ifp->if_bpf, m);
1358 #endif
1359 
1360 		/* Pass it on. */
1361 		(*ifp->if_input)(ifp, m);
1362 	}
1363 }
1364 
1365 /*
1366  * Update packet in/out/collision statistics. The i82557 doesn't
1367  * allow you to access these counters without doing a fairly
1368  * expensive DMA to get _all_ of the statistics it maintains, so
1369  * we do this operation here only once per second. The statistics
1370  * counters in the kernel are updated from the previous dump-stats
1371  * DMA and then a new dump-stats DMA is started. The on-chip
1372  * counters are zeroed when the DMA completes. If we can't start
1373  * the DMA immediately, we don't wait - we just prepare to read
1374  * them again next time.
1375  */
1376 void
1377 fxp_tick(void *arg)
1378 {
1379 	struct fxp_softc *sc = arg;
1380 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1381 	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1382 	int s;
1383 
1384 	if (!device_is_active(sc->sc_dev))
1385 		return;
1386 
1387 	s = splnet();
1388 
1389 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1390 
1391 	ifp->if_opackets += le32toh(sp->tx_good);
1392 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1393 	if (sp->rx_good) {
1394 		ifp->if_ipackets += le32toh(sp->rx_good);
1395 		sc->sc_rxidle = 0;
1396 	} else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
1397 		sc->sc_rxidle++;
1398 	}
1399 	ifp->if_ierrors +=
1400 	    le32toh(sp->rx_crc_errors) +
1401 	    le32toh(sp->rx_alignment_errors) +
1402 	    le32toh(sp->rx_rnr_errors) +
1403 	    le32toh(sp->rx_overrun_errors);
1404 	/*
1405 	 * If any transmit underruns occurred, bump up the transmit
1406 	 * threshold by another 512 bytes (64 * 8).
1407 	 */
1408 	if (sp->tx_underruns) {
1409 		ifp->if_oerrors += le32toh(sp->tx_underruns);
1410 		if (tx_threshold < 192)
1411 			tx_threshold += 64;
1412 	}
1413 #ifdef FXP_EVENT_COUNTERS
1414 	if (sc->sc_rev >= FXP_REV_82558_A4) {
1415 		sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
1416 		sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
1417 	}
1418 #endif
1419 
1420 	/*
1421 	 * If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
1422 	 * then assume the receiver has locked up and attempt to clear
1423 	 * the condition by reprogramming the multicast filter (actually,
1424 	 * resetting the interface). This is a work-around for a bug in
1425 	 * the 82557 where the receiver locks up if it gets certain types
1426 	 * of garbage in the synchronization bits prior to the packet header.
1427 	 * This bug is supposed to only occur in 10Mbps mode, but has been
1428 	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1429 	 * speed transition).
1430 	 */
1431 	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1432 		(void) fxp_init(ifp);
1433 		splx(s);
1434 		return;
1435 	}
1436 	/*
1437 	 * If there is no pending command, start another stats
1438 	 * dump. Otherwise punt for now.
1439 	 */
1440 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1441 		/*
1442 		 * Start another stats dump.
1443 		 */
1444 		FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1445 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1446 	} else {
1447 		/*
1448 		 * A previous command is still waiting to be accepted.
1449 		 * Just zero our copy of the stats and wait for the
1450 		 * next timer event to update them.
1451 		 */
1452 		/* BIG_ENDIAN: no swap required to store 0 */
1453 		sp->tx_good = 0;
1454 		sp->tx_underruns = 0;
1455 		sp->tx_total_collisions = 0;
1456 
1457 		sp->rx_good = 0;
1458 		sp->rx_crc_errors = 0;
1459 		sp->rx_alignment_errors = 0;
1460 		sp->rx_rnr_errors = 0;
1461 		sp->rx_overrun_errors = 0;
1462 		if (sc->sc_rev >= FXP_REV_82558_A4) {
1463 			sp->tx_pauseframes = 0;
1464 			sp->rx_pauseframes = 0;
1465 		}
1466 	}
1467 
1468 	if (sc->sc_flags & FXPF_MII) {
1469 		/* Tick the MII clock. */
1470 		mii_tick(&sc->sc_mii);
1471 	}
1472 
1473 	splx(s);
1474 
1475 	/*
1476 	 * Schedule another timeout one second from now.
1477 	 */
1478 	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1479 }
1480 
1481 /*
1482  * Drain the receive queue.
1483  */
1484 void
1485 fxp_rxdrain(struct fxp_softc *sc)
1486 {
1487 	bus_dmamap_t rxmap;
1488 	struct mbuf *m;
1489 
1490 	for (;;) {
1491 		IF_DEQUEUE(&sc->sc_rxq, m);
1492 		if (m == NULL)
1493 			break;
1494 		rxmap = M_GETCTX(m, bus_dmamap_t);
1495 		bus_dmamap_unload(sc->sc_dmat, rxmap);
1496 		FXP_RXMAP_PUT(sc, rxmap);
1497 		m_freem(m);
1498 	}
1499 }
1500 
1501 /*
1502  * Stop the interface. Cancels the statistics updater and resets
1503  * the interface.
1504  */
1505 void
1506 fxp_stop(struct ifnet *ifp, int disable)
1507 {
1508 	struct fxp_softc *sc = ifp->if_softc;
1509 	struct fxp_txsoft *txs;
1510 	int i;
1511 
1512 	/*
1513 	 * Turn down interface (done early to avoid bad interactions
1514 	 * between panics, shutdown hooks, and the watchdog timer)
1515 	 */
1516 	ifp->if_timer = 0;
1517 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1518 
1519 	/*
1520 	 * Cancel stats updater.
1521 	 */
1522 	callout_stop(&sc->sc_callout);
1523 	if (sc->sc_flags & FXPF_MII) {
1524 		/* Down the MII. */
1525 		mii_down(&sc->sc_mii);
1526 	}
1527 
1528 	/*
1529 	 * Issue software reset.  This unloads any microcode that
1530 	 * might already be loaded.
1531 	 */
1532 	sc->sc_flags &= ~FXPF_UCODE_LOADED;
1533 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1534 	DELAY(50);
1535 
1536 	/*
1537 	 * Release any xmit buffers.
1538 	 */
1539 	for (i = 0; i < FXP_NTXCB; i++) {
1540 		txs = FXP_DSTX(sc, i);
1541 		if (txs->txs_mbuf != NULL) {
1542 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1543 			m_freem(txs->txs_mbuf);
1544 			txs->txs_mbuf = NULL;
1545 		}
1546 	}
1547 	sc->sc_txpending = 0;
1548 
1549 	if (disable) {
1550 		fxp_rxdrain(sc);
1551 		fxp_disable(sc);
1552 	}
1553 
1554 }
1555 
1556 /*
1557  * Watchdog/transmission transmit timeout handler. Called when a
1558  * transmission is started on the interface, but no interrupt is
1559  * received before the timeout. This usually indicates that the
1560  * card has wedged for some reason.
1561  */
1562 void
1563 fxp_watchdog(struct ifnet *ifp)
1564 {
1565 	struct fxp_softc *sc = ifp->if_softc;
1566 
1567 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1568 	ifp->if_oerrors++;
1569 
1570 	(void) fxp_init(ifp);
1571 }
1572 
1573 /*
1574  * Initialize the interface.  Must be called at splnet().
1575  */
1576 int
1577 fxp_init(struct ifnet *ifp)
1578 {
1579 	struct fxp_softc *sc = ifp->if_softc;
1580 	struct fxp_cb_config *cbp;
1581 	struct fxp_cb_ias *cb_ias;
1582 	struct fxp_txdesc *txd;
1583 	bus_dmamap_t rxmap;
1584 	int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
1585 
1586 	if ((error = fxp_enable(sc)) != 0)
1587 		goto out;
1588 
1589 	/*
1590 	 * Cancel any pending I/O
1591 	 */
1592 	fxp_stop(ifp, 0);
1593 
1594 	/*
1595 	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1596 	 * flag, and this prevents the MII from detaching resulting in
1597 	 * a panic. The flags field should perhaps be split in runtime
1598 	 * flags and more static information. For now, just clear the
1599 	 * only other flag set.
1600 	 */
1601 
1602 	sc->sc_flags &= ~FXPF_WANTINIT;
1603 
1604 	/*
1605 	 * Initialize base of CBL and RFA memory. Loading with zero
1606 	 * sets it up for regular linear addressing.
1607 	 */
1608 	fxp_scb_wait(sc);
1609 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1610 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1611 
1612 	fxp_scb_wait(sc);
1613 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1614 
1615 	/*
1616 	 * Initialize the multicast filter.  Do this now, since we might
1617 	 * have to setup the config block differently.
1618 	 */
1619 	fxp_mc_setup(sc);
1620 
1621 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1622 	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1623 
1624 	/*
1625 	 * In order to support receiving 802.1Q VLAN frames, we have to
1626 	 * enable "save bad frames", since they are 4 bytes larger than
1627 	 * the normal Ethernet maximum frame length.  On i82558 and later,
1628 	 * we have a better mechanism for this.
1629 	 */
1630 	save_bf = 0;
1631 	lrxen = 0;
1632 	vlan_drop = 0;
1633 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1634 		if (sc->sc_rev < FXP_REV_82558_A4)
1635 			save_bf = 1;
1636 		else
1637 			lrxen = 1;
1638 		if (sc->sc_rev >= FXP_REV_82550)
1639 			vlan_drop = 1;
1640 	}
1641 
1642 	/*
1643 	 * Initialize base of dump-stats buffer.
1644 	 */
1645 	fxp_scb_wait(sc);
1646 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1647 	    sc->sc_cddma + FXP_CDSTATSOFF);
1648 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1649 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1650 
1651 	cbp = &sc->sc_control_data->fcd_configcb;
1652 	memset(cbp, 0, sizeof(struct fxp_cb_config));
1653 
1654 	/*
1655 	 * Load microcode for this controller.
1656 	 */
1657 	fxp_load_ucode(sc);
1658 
1659 	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
1660 		sc->sc_flags |= FXPF_RECV_WORKAROUND;
1661 	else
1662 		sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
1663 
1664 	/*
1665 	 * This copy is kind of disgusting, but there are a bunch of must be
1666 	 * zero and must be one bits in this structure and this is the easiest
1667 	 * way to initialize them all to proper values.
1668 	 */
1669 	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1670 
1671 	/* BIG_ENDIAN: no need to swap to store 0 */
1672 	cbp->cb_status =	0;
1673 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
1674 				    FXP_CB_COMMAND_EL);
1675 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1676 	cbp->link_addr =	0xffffffff; /* (no) next command */
1677 					/* bytes in config block */
1678 	cbp->byte_count =	(sc->sc_flags & FXPF_EXT_RFA) ?
1679 				FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
1680 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1681 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1682 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1683 	cbp->mwi_enable =	(sc->sc_flags & FXPF_MWI) ? 1 : 0;
1684 	cbp->type_enable =	0;	/* actually reserved */
1685 	cbp->read_align_en =	(sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1686 	cbp->end_wr_on_cl =	(sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1687 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1688 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1689 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1690 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1691 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1692 	cbp->ci_int =		1;	/* interrupt on CU idle */
1693 	cbp->ext_txcb_dis =	(sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1694 	cbp->ext_stats_dis =	1;	/* disable extended counters */
1695 	cbp->keep_overrun_rx =	0;	/* don't pass overrun frames to host */
1696 	cbp->save_bf =		save_bf;/* save bad frames */
1697 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1698 	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
1699 	cbp->ext_rfa =		(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1700 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1701 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1702 					/* interface mode */
1703 	cbp->mediatype =	(sc->sc_flags & FXPF_MII) ? 1 : 0;
1704 	cbp->csma_dis =		0;	/* (don't) disable link */
1705 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1706 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1707 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1708 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1709 	cbp->mc_wake_en =	0;	/* (don't) assert PME# on mcmatch */
1710 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1711 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1712 	cbp->loopback =		0;	/* (don't) loopback */
1713 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1714 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1715 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1716 	cbp->promiscuous =	prm;	/* promiscuous mode */
1717 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1718 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1719 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1720 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1721 	cbp->crscdt =		(sc->sc_flags & FXPF_MII) ? 0 : 1;
1722 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1723 	cbp->padding =		1;	/* (do) pad short tx packets */
1724 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1725 	cbp->long_rx_en =	lrxen;	/* long packet receive enable */
1726 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1727 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1728 					/* must set wake_en in PMCSR also */
1729 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1730 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1731 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1732 	cbp->mc_all =		allm;	/* accept all multicasts */
1733 	cbp->ext_rx_mode =	(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1734 	cbp->vlan_drop_en =	vlan_drop;
1735 
1736 	if (sc->sc_rev < FXP_REV_82558_A4) {
1737 		/*
1738 		 * The i82557 has no hardware flow control, the values
1739 		 * here are the defaults for the chip.
1740 		 */
1741 		cbp->fc_delay_lsb =	0;
1742 		cbp->fc_delay_msb =	0x40;
1743 		cbp->pri_fc_thresh =	3;
1744 		cbp->tx_fc_dis =	0;
1745 		cbp->rx_fc_restop =	0;
1746 		cbp->rx_fc_restart =	0;
1747 		cbp->fc_filter =	0;
1748 		cbp->pri_fc_loc =	1;
1749 	} else {
1750 		cbp->fc_delay_lsb =	0x1f;
1751 		cbp->fc_delay_msb =	0x01;
1752 		cbp->pri_fc_thresh =	3;
1753 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1754 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1755 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1756 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1757 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1758 		cbp->ext_stats_dis =	0;	/* enable extended stats */
1759 	}
1760 
1761 	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1762 
1763 	/*
1764 	 * Start the config command/DMA.
1765 	 */
1766 	fxp_scb_wait(sc);
1767 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1768 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1769 	/* ...and wait for it to complete. */
1770 	i = 1000;
1771 	do {
1772 		FXP_CDCONFIGSYNC(sc,
1773 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1774 		DELAY(1);
1775 	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1776 	if (i == 0) {
1777 		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1778 		    device_xname(sc->sc_dev), __LINE__);
1779 		return (ETIMEDOUT);
1780 	}
1781 
1782 	/*
1783 	 * Initialize the station address.
1784 	 */
1785 	cb_ias = &sc->sc_control_data->fcd_iascb;
1786 	/* BIG_ENDIAN: no need to swap to store 0 */
1787 	cb_ias->cb_status = 0;
1788 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1789 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1790 	cb_ias->link_addr = 0xffffffff;
1791 	memcpy(cb_ias->macaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1792 
1793 	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1794 
1795 	/*
1796 	 * Start the IAS (Individual Address Setup) command/DMA.
1797 	 */
1798 	fxp_scb_wait(sc);
1799 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1800 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1801 	/* ...and wait for it to complete. */
1802 	i = 1000;
1803 	do {
1804 		FXP_CDIASSYNC(sc,
1805 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1806 		DELAY(1);
1807 	} while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1808 	if (i == 0) {
1809 		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1810 		    device_xname(sc->sc_dev), __LINE__);
1811 		return (ETIMEDOUT);
1812 	}
1813 
1814 	/*
1815 	 * Initialize the transmit descriptor ring.  txlast is initialized
1816 	 * to the end of the list so that it will wrap around to the first
1817 	 * descriptor when the first packet is transmitted.
1818 	 */
1819 	for (i = 0; i < FXP_NTXCB; i++) {
1820 		txd = FXP_CDTX(sc, i);
1821 		memset(txd, 0, sizeof(*txd));
1822 		txd->txd_txcb.cb_command =
1823 		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1824 		txd->txd_txcb.link_addr =
1825 		    htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1826 		if (sc->sc_flags & FXPF_EXT_TXCB)
1827 			txd->txd_txcb.tbd_array_addr =
1828 			    htole32(FXP_CDTBDADDR(sc, i) +
1829 				    (2 * sizeof(struct fxp_tbd)));
1830 		else
1831 			txd->txd_txcb.tbd_array_addr =
1832 			    htole32(FXP_CDTBDADDR(sc, i));
1833 		FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1834 	}
1835 	sc->sc_txpending = 0;
1836 	sc->sc_txdirty = 0;
1837 	sc->sc_txlast = FXP_NTXCB - 1;
1838 
1839 	/*
1840 	 * Initialize the receive buffer list.
1841 	 */
1842 	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1843 	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1844 		rxmap = FXP_RXMAP_GET(sc);
1845 		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1846 			log(LOG_ERR, "%s: unable to allocate or map rx "
1847 			    "buffer %d, error = %d\n",
1848 			    device_xname(sc->sc_dev),
1849 			    sc->sc_rxq.ifq_len, error);
1850 			/*
1851 			 * XXX Should attempt to run with fewer receive
1852 			 * XXX buffers instead of just failing.
1853 			 */
1854 			FXP_RXMAP_PUT(sc, rxmap);
1855 			fxp_rxdrain(sc);
1856 			goto out;
1857 		}
1858 	}
1859 	sc->sc_rxidle = 0;
1860 
1861 	/*
1862 	 * Give the transmit ring to the chip.  We do this by pointing
1863 	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1864 	 * issuing a start command.  It will execute the NOP and then
1865 	 * suspend, pointing at the first descriptor.
1866 	 */
1867 	fxp_scb_wait(sc);
1868 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1869 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1870 
1871 	/*
1872 	 * Initialize receiver buffer area - RFA.
1873 	 */
1874 #if 0	/* initialization will be done by FXP_SCB_INTRCNTL_REQUEST_SWI later */
1875 	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1876 	fxp_scb_wait(sc);
1877 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1878 	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1879 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1880 #endif
1881 
1882 	if (sc->sc_flags & FXPF_MII) {
1883 		/*
1884 		 * Set current media.
1885 		 */
1886 		if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
1887 			goto out;
1888 	}
1889 
1890 	/*
1891 	 * ...all done!
1892 	 */
1893 	ifp->if_flags |= IFF_RUNNING;
1894 	ifp->if_flags &= ~IFF_OACTIVE;
1895 
1896 	/*
1897 	 * Request a software generated interrupt that will be used to
1898 	 * (re)start the RU processing.  If we direct the chip to start
1899 	 * receiving from the start of queue now, instead of letting the
1900 	 * interrupt handler first process all received packets, we run
1901 	 * the risk of having it overwrite mbuf clusters while they are
1902 	 * being processed or after they have been returned to the pool.
1903 	 */
1904 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTRCNTL_REQUEST_SWI);
1905 
1906 	/*
1907 	 * Start the one second timer.
1908 	 */
1909 	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1910 
1911 	/*
1912 	 * Attempt to start output on the interface.
1913 	 */
1914 	fxp_start(ifp);
1915 
1916  out:
1917 	if (error) {
1918 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1919 		ifp->if_timer = 0;
1920 		log(LOG_ERR, "%s: interface not running\n",
1921 		    device_xname(sc->sc_dev));
1922 	}
1923 	return (error);
1924 }
1925 
1926 /*
1927  * Notify the world which media we're using.
1928  */
1929 void
1930 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1931 {
1932 	struct fxp_softc *sc = ifp->if_softc;
1933 
1934 	if (sc->sc_enabled == 0) {
1935 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1936 		ifmr->ifm_status = 0;
1937 		return;
1938 	}
1939 
1940 	ether_mediastatus(ifp, ifmr);
1941 
1942 	/*
1943 	 * XXX Flow control is always turned on if the chip supports
1944 	 * XXX it; we can't easily control it dynamically, since it
1945 	 * XXX requires sending a setup packet.
1946 	 */
1947 	if (sc->sc_rev >= FXP_REV_82558_A4)
1948 		ifmr->ifm_active |= IFM_FLOW|IFM_ETH_TXPAUSE|IFM_ETH_RXPAUSE;
1949 }
1950 
1951 int
1952 fxp_80c24_mediachange(struct ifnet *ifp)
1953 {
1954 
1955 	/* Nothing to do here. */
1956 	return (0);
1957 }
1958 
1959 void
1960 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1961 {
1962 	struct fxp_softc *sc = ifp->if_softc;
1963 
1964 	/*
1965 	 * Media is currently-selected media.  We cannot determine
1966 	 * the link status.
1967 	 */
1968 	ifmr->ifm_status = 0;
1969 	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1970 }
1971 
1972 /*
1973  * Add a buffer to the end of the RFA buffer list.
1974  * Return 0 if successful, error code on failure.
1975  *
1976  * The RFA struct is stuck at the beginning of mbuf cluster and the
1977  * data pointer is fixed up to point just past it.
1978  */
1979 int
1980 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
1981 {
1982 	struct mbuf *m;
1983 	int error;
1984 
1985 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1986 	if (m == NULL)
1987 		return (ENOBUFS);
1988 
1989 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1990 	MCLGET(m, M_DONTWAIT);
1991 	if ((m->m_flags & M_EXT) == 0) {
1992 		m_freem(m);
1993 		return (ENOBUFS);
1994 	}
1995 
1996 	if (unload)
1997 		bus_dmamap_unload(sc->sc_dmat, rxmap);
1998 
1999 	M_SETCTX(m, rxmap);
2000 
2001 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2002 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
2003 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2004 	if (error) {
2005 		/* XXX XXX XXX */
2006 		aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
2007 		    sc->sc_rxq.ifq_len, error);
2008 		panic("fxp_add_rfabuf");
2009 	}
2010 
2011 	FXP_INIT_RFABUF(sc, m);
2012 
2013 	return (0);
2014 }
2015 
2016 int
2017 fxp_mdi_read(device_t self, int phy, int reg)
2018 {
2019 	struct fxp_softc *sc = device_private(self);
2020 	int count = 10000;
2021 	int value;
2022 
2023 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2024 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2025 
2026 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
2027 	    0x10000000) == 0 && count--)
2028 		DELAY(10);
2029 
2030 	if (count <= 0)
2031 		log(LOG_WARNING,
2032 		    "%s: fxp_mdi_read: timed out\n", device_xname(self));
2033 
2034 	return (value & 0xffff);
2035 }
2036 
2037 void
2038 fxp_statchg(device_t self)
2039 {
2040 
2041 	/* Nothing to do. */
2042 }
2043 
2044 void
2045 fxp_mdi_write(device_t self, int phy, int reg, int value)
2046 {
2047 	struct fxp_softc *sc = device_private(self);
2048 	int count = 10000;
2049 
2050 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2051 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2052 	    (value & 0xffff));
2053 
2054 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2055 	    count--)
2056 		DELAY(10);
2057 
2058 	if (count <= 0)
2059 		log(LOG_WARNING,
2060 		    "%s: fxp_mdi_write: timed out\n", device_xname(self));
2061 }
2062 
2063 int
2064 fxp_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2065 {
2066 	struct fxp_softc *sc = ifp->if_softc;
2067 	struct ifreq *ifr = (struct ifreq *)data;
2068 	int s, error;
2069 
2070 	s = splnet();
2071 
2072 	switch (cmd) {
2073 	case SIOCSIFMEDIA:
2074 	case SIOCGIFMEDIA:
2075 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2076 		break;
2077 
2078 	default:
2079 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
2080 			break;
2081 
2082 		error = 0;
2083 
2084 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2085 			;
2086 		else if (ifp->if_flags & IFF_RUNNING) {
2087 			/*
2088 			 * Multicast list has changed; set the
2089 			 * hardware filter accordingly.
2090 			 */
2091 			if (sc->sc_txpending) {
2092 				sc->sc_flags |= FXPF_WANTINIT;
2093 			} else
2094 				error = fxp_init(ifp);
2095 		}
2096 		break;
2097 	}
2098 
2099 	/* Try to get more packets going. */
2100 	if (sc->sc_enabled)
2101 		fxp_start(ifp);
2102 
2103 	splx(s);
2104 	return (error);
2105 }
2106 
2107 /*
2108  * Program the multicast filter.
2109  *
2110  * This function must be called at splnet().
2111  */
2112 void
2113 fxp_mc_setup(struct fxp_softc *sc)
2114 {
2115 	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
2116 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2117 	struct ethercom *ec = &sc->sc_ethercom;
2118 	struct ether_multi *enm;
2119 	struct ether_multistep step;
2120 	int count, nmcasts;
2121 
2122 #ifdef DIAGNOSTIC
2123 	if (sc->sc_txpending)
2124 		panic("fxp_mc_setup: pending transmissions");
2125 #endif
2126 
2127 	ifp->if_flags &= ~IFF_ALLMULTI;
2128 
2129 	/*
2130 	 * Initialize multicast setup descriptor.
2131 	 */
2132 	nmcasts = 0;
2133 	ETHER_FIRST_MULTI(step, ec, enm);
2134 	while (enm != NULL) {
2135 		/*
2136 		 * Check for too many multicast addresses or if we're
2137 		 * listening to a range.  Either way, we simply have
2138 		 * to accept all multicasts.
2139 		 */
2140 		if (nmcasts >= MAXMCADDR ||
2141 		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
2142 		    ETHER_ADDR_LEN) != 0) {
2143 			/*
2144 			 * Callers of this function must do the
2145 			 * right thing with this.  If we're called
2146 			 * from outside fxp_init(), the caller must
2147 			 * detect if the state if IFF_ALLMULTI changes.
2148 			 * If it does, the caller must then call
2149 			 * fxp_init(), since allmulti is handled by
2150 			 * the config block.
2151 			 */
2152 			ifp->if_flags |= IFF_ALLMULTI;
2153 			return;
2154 		}
2155 		memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
2156 		    ETHER_ADDR_LEN);
2157 		nmcasts++;
2158 		ETHER_NEXT_MULTI(step, enm);
2159 	}
2160 
2161 	/* BIG_ENDIAN: no need to swap to store 0 */
2162 	mcsp->cb_status = 0;
2163 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2164 	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2165 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2166 
2167 	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2168 
2169 	/*
2170 	 * Wait until the command unit is not active.  This should never
2171 	 * happen since nothing is queued, but make sure anyway.
2172 	 */
2173 	count = 100;
2174 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2175 	    FXP_SCB_CUS_ACTIVE && --count)
2176 		DELAY(1);
2177 	if (count == 0) {
2178 		log(LOG_WARNING, "%s: line %d: command queue timeout\n",
2179 		    device_xname(sc->sc_dev), __LINE__);
2180 		return;
2181 	}
2182 
2183 	/*
2184 	 * Start the multicast setup command/DMA.
2185 	 */
2186 	fxp_scb_wait(sc);
2187 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2188 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2189 
2190 	/* ...and wait for it to complete. */
2191 	count = 1000;
2192 	do {
2193 		FXP_CDMCSSYNC(sc,
2194 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2195 		DELAY(1);
2196 	} while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2197 	if (count == 0) {
2198 		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
2199 		    device_xname(sc->sc_dev), __LINE__);
2200 		return;
2201 	}
2202 }
2203 
2204 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2205 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2206 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2207 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2208 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2209 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2210 
2211 #define	UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2212 
2213 static const struct ucode {
2214 	int32_t		revision;
2215 	const uint32_t	*ucode;
2216 	size_t		length;
2217 	uint16_t	int_delay_offset;
2218 	uint16_t	bundle_max_offset;
2219 } ucode_table[] = {
2220 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2221 	  D101_CPUSAVER_DWORD, 0 },
2222 
2223 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2224 	  D101_CPUSAVER_DWORD, 0 },
2225 
2226 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2227 	  D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2228 
2229 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2230 	  D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2231 
2232 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2233 	  D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2234 
2235 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2236 	  D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2237 
2238 	{ 0, NULL, 0, 0, 0 }
2239 };
2240 
2241 void
2242 fxp_load_ucode(struct fxp_softc *sc)
2243 {
2244 	const struct ucode *uc;
2245 	struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2246 	int count, i;
2247 
2248 	if (sc->sc_flags & FXPF_UCODE_LOADED)
2249 		return;
2250 
2251 	/*
2252 	 * Only load the uCode if the user has requested that
2253 	 * we do so.
2254 	 */
2255 	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2256 		sc->sc_int_delay = 0;
2257 		sc->sc_bundle_max = 0;
2258 		return;
2259 	}
2260 
2261 	for (uc = ucode_table; uc->ucode != NULL; uc++) {
2262 		if (sc->sc_rev == uc->revision)
2263 			break;
2264 	}
2265 	if (uc->ucode == NULL)
2266 		return;
2267 
2268 	/* BIG ENDIAN: no need to swap to store 0 */
2269 	cbp->cb_status = 0;
2270 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2271 	cbp->link_addr = 0xffffffff;		/* (no) next command */
2272 	for (i = 0; i < uc->length; i++)
2273 		cbp->ucode[i] = htole32(uc->ucode[i]);
2274 
2275 	if (uc->int_delay_offset)
2276 		*(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2277 		    htole16(fxp_int_delay + (fxp_int_delay / 2));
2278 
2279 	if (uc->bundle_max_offset)
2280 		*(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2281 		    htole16(fxp_bundle_max);
2282 
2283 	FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2284 
2285 	/*
2286 	 * Download the uCode to the chip.
2287 	 */
2288 	fxp_scb_wait(sc);
2289 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2290 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2291 
2292 	/* ...and wait for it to complete. */
2293 	count = 10000;
2294 	do {
2295 		FXP_CDUCODESYNC(sc,
2296 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2297 		DELAY(2);
2298 	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2299 	if (count == 0) {
2300 		sc->sc_int_delay = 0;
2301 		sc->sc_bundle_max = 0;
2302 		log(LOG_WARNING, "%s: timeout loading microcode\n",
2303 		    device_xname(sc->sc_dev));
2304 		return;
2305 	}
2306 
2307 	if (sc->sc_int_delay != fxp_int_delay ||
2308 	    sc->sc_bundle_max != fxp_bundle_max) {
2309 		sc->sc_int_delay = fxp_int_delay;
2310 		sc->sc_bundle_max = fxp_bundle_max;
2311 		log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
2312 		    "max bundle: %d\n", device_xname(sc->sc_dev),
2313 		    sc->sc_int_delay,
2314 		    uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2315 	}
2316 
2317 	sc->sc_flags |= FXPF_UCODE_LOADED;
2318 }
2319 
2320 int
2321 fxp_enable(struct fxp_softc *sc)
2322 {
2323 
2324 	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2325 		if ((*sc->sc_enable)(sc) != 0) {
2326 			log(LOG_ERR, "%s: device enable failed\n",
2327 			    device_xname(sc->sc_dev));
2328 			return (EIO);
2329 		}
2330 	}
2331 
2332 	sc->sc_enabled = 1;
2333 	return (0);
2334 }
2335 
2336 void
2337 fxp_disable(struct fxp_softc *sc)
2338 {
2339 
2340 	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2341 		(*sc->sc_disable)(sc);
2342 		sc->sc_enabled = 0;
2343 	}
2344 }
2345 
2346 /*
2347  * fxp_activate:
2348  *
2349  *	Handle device activation/deactivation requests.
2350  */
2351 int
2352 fxp_activate(device_t self, enum devact act)
2353 {
2354 	struct fxp_softc *sc = device_private(self);
2355 	int s, error = 0;
2356 
2357 	s = splnet();
2358 	switch (act) {
2359 	case DVACT_ACTIVATE:
2360 		error = EOPNOTSUPP;
2361 		break;
2362 
2363 	case DVACT_DEACTIVATE:
2364 		if (sc->sc_flags & FXPF_MII)
2365 			mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2366 			    MII_OFFSET_ANY);
2367 		if_deactivate(&sc->sc_ethercom.ec_if);
2368 		break;
2369 	}
2370 	splx(s);
2371 
2372 	return (error);
2373 }
2374 
2375 /*
2376  * fxp_detach:
2377  *
2378  *	Detach an i82557 interface.
2379  */
2380 int
2381 fxp_detach(struct fxp_softc *sc)
2382 {
2383 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2384 	int i;
2385 
2386 	/* Succeed now if there's no work to do. */
2387 	if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2388 		return (0);
2389 
2390 	/* Unhook our tick handler. */
2391 	callout_stop(&sc->sc_callout);
2392 
2393 	if (sc->sc_flags & FXPF_MII) {
2394 		/* Detach all PHYs */
2395 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2396 	}
2397 
2398 	/* Delete all remaining media. */
2399 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2400 
2401 #if NRND > 0
2402 	rnd_detach_source(&sc->rnd_source);
2403 #endif
2404 	ether_ifdetach(ifp);
2405 	if_detach(ifp);
2406 
2407 	for (i = 0; i < FXP_NRFABUFS; i++) {
2408 		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2409 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2410 	}
2411 
2412 	for (i = 0; i < FXP_NTXCB; i++) {
2413 		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2414 		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2415 	}
2416 
2417 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2418 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2419 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2420 	    sizeof(struct fxp_control_data));
2421 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2422 
2423 	return (0);
2424 }
2425