xref: /netbsd-src/sys/dev/ic/hme.c (revision e89934bbf778a6d6d6894877c4da59d0c7835b0f)
1 /*	$NetBSD: hme.c,v 1.95 2016/12/15 09:28:05 ozaki-r Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * HME Ethernet module driver.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.95 2016/12/15 09:28:05 ozaki-r Exp $");
38 
39 /* #define HMEDEBUG */
40 
41 #include "opt_inet.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/mbuf.h>
47 #include <sys/syslog.h>
48 #include <sys/socket.h>
49 #include <sys/device.h>
50 #include <sys/malloc.h>
51 #include <sys/ioctl.h>
52 #include <sys/errno.h>
53 #include <sys/rndsource.h>
54 
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_ether.h>
58 #include <net/if_media.h>
59 
60 #ifdef INET
61 #include <net/if_vlanvar.h>
62 #include <netinet/in.h>
63 #include <netinet/if_inarp.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip.h>
67 #include <netinet/tcp.h>
68 #include <netinet/udp.h>
69 #endif
70 
71 
72 #include <net/bpf.h>
73 #include <net/bpfdesc.h>
74 
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 
78 #include <sys/bus.h>
79 
80 #include <dev/ic/hmereg.h>
81 #include <dev/ic/hmevar.h>
82 
83 static void	hme_start(struct ifnet *);
84 static void	hme_stop(struct ifnet *, int);
85 static int	hme_ioctl(struct ifnet *, u_long, void *);
86 static void	hme_tick(void *);
87 static void	hme_watchdog(struct ifnet *);
88 static bool	hme_shutdown(device_t, int);
89 static int	hme_init(struct ifnet *);
90 static void	hme_meminit(struct hme_softc *);
91 static void	hme_mifinit(struct hme_softc *);
92 static void	hme_reset(struct hme_softc *);
93 static void	hme_chipreset(struct hme_softc *);
94 static void	hme_setladrf(struct hme_softc *);
95 
96 /* MII methods & callbacks */
97 static int	hme_mii_readreg(device_t, int, int);
98 static void	hme_mii_writereg(device_t, int, int, int);
99 static void	hme_mii_statchg(struct ifnet *);
100 
101 static int	hme_mediachange(struct ifnet *);
102 
103 static struct mbuf *hme_get(struct hme_softc *, int, uint32_t);
104 static int	hme_put(struct hme_softc *, int, struct mbuf *);
105 static void	hme_read(struct hme_softc *, int, uint32_t);
106 static int	hme_eint(struct hme_softc *, u_int);
107 static int	hme_rint(struct hme_softc *);
108 static int	hme_tint(struct hme_softc *);
109 
110 #if 0
111 /* Default buffer copy routines */
112 static void	hme_copytobuf_contig(struct hme_softc *, void *, int, int);
113 static void	hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
114 #endif
115 
116 void
117 hme_config(struct hme_softc *sc)
118 {
119 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
120 	struct mii_data *mii = &sc->sc_mii;
121 	struct mii_softc *child;
122 	bus_dma_tag_t dmatag = sc->sc_dmatag;
123 	bus_dma_segment_t seg;
124 	bus_size_t size;
125 	int rseg, error;
126 
127 	/*
128 	 * HME common initialization.
129 	 *
130 	 * hme_softc fields that must be initialized by the front-end:
131 	 *
132 	 * the bus tag:
133 	 *	sc_bustag
134 	 *
135 	 * the DMA bus tag:
136 	 *	sc_dmatag
137 	 *
138 	 * the bus handles:
139 	 *	sc_seb		(Shared Ethernet Block registers)
140 	 *	sc_erx		(Receiver Unit registers)
141 	 *	sc_etx		(Transmitter Unit registers)
142 	 *	sc_mac		(MAC registers)
143 	 *	sc_mif		(Management Interface registers)
144 	 *
145 	 * the maximum bus burst size:
146 	 *	sc_burst
147 	 *
148 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
149 	 *	rb_membase, rb_dmabase)
150 	 *
151 	 * the local Ethernet address:
152 	 *	sc_enaddr
153 	 *
154 	 */
155 
156 	/* Make sure the chip is stopped. */
157 	hme_chipreset(sc);
158 
159 	/*
160 	 * Allocate descriptors and buffers
161 	 * XXX - do all this differently.. and more configurably,
162 	 * eg. use things as `dma_load_mbuf()' on transmit,
163 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
164 	 *     all the time) on the receiver side.
165 	 *
166 	 * Note: receive buffers must be 64-byte aligned.
167 	 * Also, apparently, the buffers must extend to a DMA burst
168 	 * boundary beyond the maximum packet size.
169 	 */
170 #define _HME_NDESC	128
171 #define _HME_BUFSZ	1600
172 
173 	/* Note: the # of descriptors must be a multiple of 16 */
174 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
175 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
176 
177 	/*
178 	 * Allocate DMA capable memory
179 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
180 	 * take this into account when calculating the size. Note that
181 	 * the maximum number of descriptors (256) occupies 2048 bytes,
182 	 * so we allocate that much regardless of _HME_NDESC.
183 	 */
184 	size =	2048 +					/* TX descriptors */
185 		2048 +					/* RX descriptors */
186 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
187 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* RX buffers */
188 
189 	/* Allocate DMA buffer */
190 	if ((error = bus_dmamem_alloc(dmatag, size,
191 				      2048, 0,
192 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
193 		aprint_error_dev(sc->sc_dev, "DMA buffer alloc error %d\n",
194 			error);
195 		return;
196 	}
197 
198 	/* Map DMA memory in CPU addressable space */
199 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
200 				    &sc->sc_rb.rb_membase,
201 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
202 		aprint_error_dev(sc->sc_dev, "DMA buffer map error %d\n",
203 			error);
204 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
205 		bus_dmamem_free(dmatag, &seg, rseg);
206 		return;
207 	}
208 
209 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
210 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
211 		aprint_error_dev(sc->sc_dev, "DMA map create error %d\n",
212 			error);
213 		return;
214 	}
215 
216 	/* Load the buffer */
217 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
218 	    sc->sc_rb.rb_membase, size, NULL,
219 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
220 		aprint_error_dev(sc->sc_dev, "DMA buffer map load error %d\n",
221 			error);
222 		bus_dmamem_free(dmatag, &seg, rseg);
223 		return;
224 	}
225 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
226 
227 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
228 	    ether_sprintf(sc->sc_enaddr));
229 
230 	/* Initialize ifnet structure. */
231 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
232 	ifp->if_softc = sc;
233 	ifp->if_start = hme_start;
234 	ifp->if_stop = hme_stop;
235 	ifp->if_ioctl = hme_ioctl;
236 	ifp->if_init = hme_init;
237 	ifp->if_watchdog = hme_watchdog;
238 	ifp->if_flags =
239 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
240 	sc->sc_if_flags = ifp->if_flags;
241 	ifp->if_capabilities |=
242 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
243 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
244 	IFQ_SET_READY(&ifp->if_snd);
245 
246 	/* Initialize ifmedia structures and MII info */
247 	mii->mii_ifp = ifp;
248 	mii->mii_readreg = hme_mii_readreg;
249 	mii->mii_writereg = hme_mii_writereg;
250 	mii->mii_statchg = hme_mii_statchg;
251 
252 	sc->sc_ethercom.ec_mii = mii;
253 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
254 
255 	hme_mifinit(sc);
256 
257 	mii_attach(sc->sc_dev, mii, 0xffffffff,
258 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
259 
260 	child = LIST_FIRST(&mii->mii_phys);
261 	if (child == NULL) {
262 		/* No PHY attached */
263 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
264 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
265 	} else {
266 		/*
267 		 * Walk along the list of attached MII devices and
268 		 * establish an `MII instance' to `phy number'
269 		 * mapping. We'll use this mapping in media change
270 		 * requests to determine which phy to use to program
271 		 * the MIF configuration register.
272 		 */
273 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
274 			/*
275 			 * Note: we support just two PHYs: the built-in
276 			 * internal device and an external on the MII
277 			 * connector.
278 			 */
279 			if (child->mii_phy > 1 || child->mii_inst > 1) {
280 				aprint_error_dev(sc->sc_dev,
281 				    "cannot accommodate MII device %s"
282 				       " at phy %d, instance %d\n",
283 				       device_xname(child->mii_dev),
284 				       child->mii_phy, child->mii_inst);
285 				continue;
286 			}
287 
288 			sc->sc_phys[child->mii_inst] = child->mii_phy;
289 		}
290 
291 		/*
292 		 * Set the default media to auto negotiation if the phy has
293 		 * the auto negotiation capability.
294 		 * XXX; What to do otherwise?
295 		 */
296 		if (ifmedia_match(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0))
297 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
298 /*
299 		else
300 			ifmedia_set(&sc->sc_mii.mii_media, sc->sc_defaultmedia);
301 */
302 	}
303 
304 	/* claim 802.1q capability */
305 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
306 
307 	/* Attach the interface. */
308 	if_attach(ifp);
309 	ether_ifattach(ifp, sc->sc_enaddr);
310 
311 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, hme_shutdown))
312 		pmf_class_network_register(sc->sc_dev, ifp);
313 	else
314 		aprint_error_dev(sc->sc_dev,
315 		    "couldn't establish power handler\n");
316 
317 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
318 			  RND_TYPE_NET, RND_FLAG_DEFAULT);
319 
320 	callout_init(&sc->sc_tick_ch, 0);
321 }
322 
323 void
324 hme_tick(void *arg)
325 {
326 	struct hme_softc *sc = arg;
327 	int s;
328 
329 	s = splnet();
330 	mii_tick(&sc->sc_mii);
331 	splx(s);
332 
333 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
334 }
335 
336 void
337 hme_reset(struct hme_softc *sc)
338 {
339 	int s;
340 
341 	s = splnet();
342 	(void)hme_init(&sc->sc_ethercom.ec_if);
343 	splx(s);
344 }
345 
346 void
347 hme_chipreset(struct hme_softc *sc)
348 {
349 	bus_space_tag_t t = sc->sc_bustag;
350 	bus_space_handle_t seb = sc->sc_seb;
351 	int n;
352 
353 	/* Mask all interrupts */
354 	bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
355 
356 	/* Reset transmitter and receiver */
357 	bus_space_write_4(t, seb, HME_SEBI_RESET,
358 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
359 
360 	for (n = 0; n < 20; n++) {
361 		uint32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
362 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
363 			return;
364 		DELAY(20);
365 	}
366 
367 	printf("%s: %s: reset failed\n", device_xname(sc->sc_dev), __func__);
368 }
369 
370 void
371 hme_stop(struct ifnet *ifp, int disable)
372 {
373 	struct hme_softc *sc;
374 
375 	sc = ifp->if_softc;
376 
377 	ifp->if_timer = 0;
378 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
379 
380 	callout_stop(&sc->sc_tick_ch);
381 	mii_down(&sc->sc_mii);
382 
383 	hme_chipreset(sc);
384 }
385 
386 void
387 hme_meminit(struct hme_softc *sc)
388 {
389 	bus_addr_t txbufdma, rxbufdma;
390 	bus_addr_t dma;
391 	char *p;
392 	unsigned int ntbuf, nrbuf, i;
393 	struct hme_ring *hr = &sc->sc_rb;
394 
395 	p = hr->rb_membase;
396 	dma = hr->rb_dmabase;
397 
398 	ntbuf = hr->rb_ntbuf;
399 	nrbuf = hr->rb_nrbuf;
400 
401 	/*
402 	 * Allocate transmit descriptors
403 	 */
404 	hr->rb_txd = p;
405 	hr->rb_txddma = dma;
406 	p += ntbuf * HME_XD_SIZE;
407 	dma += ntbuf * HME_XD_SIZE;
408 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
409 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
410 	p = (void *)roundup((u_long)p, 2048);
411 
412 	/*
413 	 * Allocate receive descriptors
414 	 */
415 	hr->rb_rxd = p;
416 	hr->rb_rxddma = dma;
417 	p += nrbuf * HME_XD_SIZE;
418 	dma += nrbuf * HME_XD_SIZE;
419 	/* Again move forward to the next 2048 byte boundary.*/
420 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
421 	p = (void *)roundup((u_long)p, 2048);
422 
423 
424 	/*
425 	 * Allocate transmit buffers
426 	 */
427 	hr->rb_txbuf = p;
428 	txbufdma = dma;
429 	p += ntbuf * _HME_BUFSZ;
430 	dma += ntbuf * _HME_BUFSZ;
431 
432 	/*
433 	 * Allocate receive buffers
434 	 */
435 	hr->rb_rxbuf = p;
436 	rxbufdma = dma;
437 	p += nrbuf * _HME_BUFSZ;
438 	dma += nrbuf * _HME_BUFSZ;
439 
440 	/*
441 	 * Initialize transmit buffer descriptors
442 	 */
443 	for (i = 0; i < ntbuf; i++) {
444 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
445 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
446 	}
447 
448 	/*
449 	 * Initialize receive buffer descriptors
450 	 */
451 	for (i = 0; i < nrbuf; i++) {
452 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
453 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
454 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
455 	}
456 
457 	hr->rb_tdhead = hr->rb_tdtail = 0;
458 	hr->rb_td_nbusy = 0;
459 	hr->rb_rdtail = 0;
460 }
461 
462 /*
463  * Initialization of interface; set up initialization block
464  * and transmit/receive descriptor rings.
465  */
466 int
467 hme_init(struct ifnet *ifp)
468 {
469 	struct hme_softc *sc = ifp->if_softc;
470 	bus_space_tag_t t = sc->sc_bustag;
471 	bus_space_handle_t seb = sc->sc_seb;
472 	bus_space_handle_t etx = sc->sc_etx;
473 	bus_space_handle_t erx = sc->sc_erx;
474 	bus_space_handle_t mac = sc->sc_mac;
475 	uint8_t *ea;
476 	uint32_t v;
477 	int rc;
478 
479 	/*
480 	 * Initialization sequence. The numbered steps below correspond
481 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
482 	 * Channel Engine manual (part of the PCIO manual).
483 	 * See also the STP2002-STQ document from Sun Microsystems.
484 	 */
485 
486 	/* step 1 & 2. Reset the Ethernet Channel */
487 	hme_stop(ifp, 0);
488 
489 	/* Re-initialize the MIF */
490 	hme_mifinit(sc);
491 
492 	/* Call MI reset function if any */
493 	if (sc->sc_hwreset)
494 		(*sc->sc_hwreset)(sc);
495 
496 #if 0
497 	/* Mask all MIF interrupts, just in case */
498 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
499 #endif
500 
501 	/* step 3. Setup data structures in host memory */
502 	hme_meminit(sc);
503 
504 	/* step 4. TX MAC registers & counters */
505 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
506 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
507 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
508 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
509 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
510 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
511 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
512 	sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
513 
514 	/* Load station MAC address */
515 	ea = sc->sc_enaddr;
516 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
517 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
518 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
519 
520 	/*
521 	 * Init seed for backoff
522 	 * (source suggested by manual: low 10 bits of MAC address)
523 	 */
524 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
525 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
526 
527 
528 	/* Note: Accepting power-on default for other MAC registers here.. */
529 
530 
531 	/* step 5. RX MAC registers & counters */
532 	hme_setladrf(sc);
533 
534 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
535 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
536 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
537 
538 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
539 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
540 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
541 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
542 
543 	/* step 8. Global Configuration & Interrupt Mask */
544 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
545 			~(
546 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
547 			  HME_SEB_STAT_HOSTTOTX |
548 			  HME_SEB_STAT_RXTOHOST |
549 			  HME_SEB_STAT_TXALL |
550 			  HME_SEB_STAT_TXPERR |
551 			  HME_SEB_STAT_RCNTEXP |
552 			  HME_SEB_STAT_MIFIRQ |
553 			  HME_SEB_STAT_ALL_ERRORS ));
554 
555 	switch (sc->sc_burst) {
556 	default:
557 		v = 0;
558 		break;
559 	case 16:
560 		v = HME_SEB_CFG_BURST16;
561 		break;
562 	case 32:
563 		v = HME_SEB_CFG_BURST32;
564 		break;
565 	case 64:
566 		v = HME_SEB_CFG_BURST64;
567 		break;
568 	}
569 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
570 
571 	/* step 9. ETX Configuration: use mostly default values */
572 
573 	/* Enable DMA */
574 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
575 	v |= HME_ETX_CFG_DMAENABLE;
576 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
577 
578 	/* Transmit Descriptor ring size: in increments of 16 */
579 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
580 
581 
582 	/* step 10. ERX Configuration */
583 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
584 
585 	/* Encode Receive Descriptor ring size: four possible values */
586 	switch (_HME_NDESC /*XXX*/) {
587 	case 32:
588 		v |= HME_ERX_CFG_RINGSIZE32;
589 		break;
590 	case 64:
591 		v |= HME_ERX_CFG_RINGSIZE64;
592 		break;
593 	case 128:
594 		v |= HME_ERX_CFG_RINGSIZE128;
595 		break;
596 	case 256:
597 		v |= HME_ERX_CFG_RINGSIZE256;
598 		break;
599 	default:
600 		printf("hme: invalid Receive Descriptor ring size\n");
601 		break;
602 	}
603 
604 	/* Enable DMA */
605 	v |= HME_ERX_CFG_DMAENABLE;
606 
607 	/* set h/w rx checksum start offset (# of half-words) */
608 #ifdef INET
609 	v |= (((ETHER_HDR_LEN + sizeof(struct ip)) / sizeof(uint16_t))
610 		<< HME_ERX_CFG_CSUMSHIFT) &
611 		HME_ERX_CFG_CSUMSTART;
612 #endif
613 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
614 
615 	/* step 11. XIF Configuration */
616 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
617 	v |= HME_MAC_XIF_OE;
618 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
619 
620 	/* step 12. RX_MAC Configuration Register */
621 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
622 	v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
623 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
624 
625 	/* step 13. TX_MAC Configuration Register */
626 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
627 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
628 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
629 
630 	/* step 14. Issue Transmit Pending command */
631 
632 	/* Call MI initialization function if any */
633 	if (sc->sc_hwinit)
634 		(*sc->sc_hwinit)(sc);
635 
636 	/* Set the current media. */
637 	if ((rc = hme_mediachange(ifp)) != 0)
638 		return rc;
639 
640 	/* Start the one second timer. */
641 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
642 
643 	ifp->if_flags |= IFF_RUNNING;
644 	ifp->if_flags &= ~IFF_OACTIVE;
645 	sc->sc_if_flags = ifp->if_flags;
646 	ifp->if_timer = 0;
647 	hme_start(ifp);
648 	return 0;
649 }
650 
651 /*
652  * Routine to copy from mbuf chain to transmit buffer in
653  * network buffer memory.
654  * Returns the amount of data copied.
655  */
656 int
657 hme_put(struct hme_softc *sc, int ri, struct mbuf *m)
658 	/* ri:			 Ring index */
659 {
660 	struct mbuf *n;
661 	int len, tlen = 0;
662 	char *bp;
663 
664 	bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
665 	for (; m; m = n) {
666 		len = m->m_len;
667 		if (len == 0) {
668 			n = m_free(m);
669 			continue;
670 		}
671 		memcpy(bp, mtod(m, void *), len);
672 		bp += len;
673 		tlen += len;
674 		n = m_free(m);
675 	}
676 	return (tlen);
677 }
678 
679 /*
680  * Pull data off an interface.
681  * Len is length of data, with local net header stripped.
682  * We copy the data into mbufs.  When full cluster sized units are present
683  * we copy into clusters.
684  */
685 struct mbuf *
686 hme_get(struct hme_softc *sc, int ri, uint32_t flags)
687 {
688 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
689 	struct mbuf *m, *m0, *newm;
690 	char *bp;
691 	int len, totlen;
692 #ifdef INET
693 	int csum_flags;
694 #endif
695 
696 	totlen = HME_XD_DECODE_RSIZE(flags);
697 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
698 	if (m0 == 0)
699 		return (0);
700 	m_set_rcvif(m0, ifp);
701 	m0->m_pkthdr.len = totlen;
702 	len = MHLEN;
703 	m = m0;
704 
705 	bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
706 
707 	while (totlen > 0) {
708 		if (totlen >= MINCLSIZE) {
709 			MCLGET(m, M_DONTWAIT);
710 			if ((m->m_flags & M_EXT) == 0)
711 				goto bad;
712 			len = MCLBYTES;
713 		}
714 
715 		if (m == m0) {
716 			char *newdata = (char *)
717 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
718 			    sizeof(struct ether_header);
719 			len -= newdata - m->m_data;
720 			m->m_data = newdata;
721 		}
722 
723 		m->m_len = len = min(totlen, len);
724 		memcpy(mtod(m, void *), bp, len);
725 		bp += len;
726 
727 		totlen -= len;
728 		if (totlen > 0) {
729 			MGET(newm, M_DONTWAIT, MT_DATA);
730 			if (newm == 0)
731 				goto bad;
732 			len = MLEN;
733 			m = m->m_next = newm;
734 		}
735 	}
736 
737 #ifdef INET
738 	/* hardware checksum */
739 	csum_flags = 0;
740 	if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
741 		struct ether_header *eh;
742 		struct ether_vlan_header *evh;
743 		struct ip *ip;
744 		struct udphdr *uh;
745 		uint16_t *opts;
746 		int32_t hlen, pktlen;
747 		uint32_t csum_data;
748 
749 		eh = mtod(m0, struct ether_header *);
750 		if (ntohs(eh->ether_type) == ETHERTYPE_IP) {
751 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN);
752 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
753 		} else if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
754 			evh = (struct ether_vlan_header *)eh;
755 			if (ntohs(evh->evl_proto != ETHERTYPE_IP))
756 				goto swcsum;
757 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN +
758 			    ETHER_VLAN_ENCAP_LEN);
759 			pktlen = m0->m_pkthdr.len -
760 			    ETHER_HDR_LEN - ETHER_VLAN_ENCAP_LEN;
761 		} else
762 			goto swcsum;
763 
764 		/* IPv4 only */
765 		if (ip->ip_v != IPVERSION)
766 			goto swcsum;
767 
768 		hlen = ip->ip_hl << 2;
769 		if (hlen < sizeof(struct ip))
770 			goto swcsum;
771 
772 		/*
773 		 * bail if too short, has random trailing garbage, truncated,
774 		 * fragment, or has ethernet pad.
775 		 */
776 		if (ntohs(ip->ip_len) < hlen ||
777 		    ntohs(ip->ip_len) != pktlen ||
778 		    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
779 			goto swcsum;
780 
781 		switch (ip->ip_p) {
782 		case IPPROTO_TCP:
783 			if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0)
784 				goto swcsum;
785 			if (pktlen < (hlen + sizeof(struct tcphdr)))
786 				goto swcsum;
787 			csum_flags =
788 			    M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
789 			break;
790 		case IPPROTO_UDP:
791 			if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0)
792 				goto swcsum;
793 			if (pktlen < (hlen + sizeof(struct udphdr)))
794 				goto swcsum;
795 			uh = (struct udphdr *)((char *)ip + hlen);
796 			/* no checksum */
797 			if (uh->uh_sum == 0)
798 				goto swcsum;
799 			csum_flags =
800 			    M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
801 			break;
802 		default:
803 			goto swcsum;
804 		}
805 
806 		/* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
807 		csum_data = ~flags & HME_XD_RXCKSUM;
808 
809 		/*
810 		 * If data offset is different from RX cksum start offset,
811 		 * we have to deduct them.
812 		 */
813 		hlen = ((char *)ip + hlen) -
814 		    ((char *)eh + ETHER_HDR_LEN + sizeof(struct ip));
815 		if (hlen > 1) {
816 			uint32_t optsum;
817 
818 			optsum = 0;
819 			opts = (uint16_t *)((char *)eh +
820 			    ETHER_HDR_LEN + sizeof(struct ip));
821 
822 			while (hlen > 1) {
823 				optsum += ntohs(*opts++);
824 				hlen -= 2;
825 			}
826 			while (optsum >> 16)
827 				optsum = (optsum >> 16) + (optsum & 0xffff);
828 
829 			/* Deduct the ip opts sum from the hwsum. */
830 			csum_data += (uint16_t)~optsum;
831 
832 			while (csum_data >> 16)
833 				csum_data =
834 				    (csum_data >> 16) + (csum_data & 0xffff);
835 		}
836 		m0->m_pkthdr.csum_data = csum_data;
837 	}
838 swcsum:
839 	m0->m_pkthdr.csum_flags = csum_flags;
840 #endif
841 
842 	return (m0);
843 
844 bad:
845 	m_freem(m0);
846 	return (0);
847 }
848 
849 /*
850  * Pass a packet to the higher levels.
851  */
852 void
853 hme_read(struct hme_softc *sc, int ix, uint32_t flags)
854 {
855 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
856 	struct mbuf *m;
857 	int len;
858 
859 	len = HME_XD_DECODE_RSIZE(flags);
860 	if (len <= sizeof(struct ether_header) ||
861 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
862 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
863 	    ETHERMTU + sizeof(struct ether_header))) {
864 #ifdef HMEDEBUG
865 		printf("%s: invalid packet size %d; dropping\n",
866 		    device_xname(sc->sc_dev), len);
867 #endif
868 		ifp->if_ierrors++;
869 		return;
870 	}
871 
872 	/* Pull packet off interface. */
873 	m = hme_get(sc, ix, flags);
874 	if (m == 0) {
875 		ifp->if_ierrors++;
876 		return;
877 	}
878 
879 	/* Pass the packet up. */
880 	if_percpuq_enqueue(ifp->if_percpuq, m);
881 }
882 
883 void
884 hme_start(struct ifnet *ifp)
885 {
886 	struct hme_softc *sc = ifp->if_softc;
887 	void *txd = sc->sc_rb.rb_txd;
888 	struct mbuf *m;
889 	unsigned int txflags;
890 	unsigned int ri, len, obusy;
891 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
892 
893 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
894 		return;
895 
896 	ri = sc->sc_rb.rb_tdhead;
897 	obusy = sc->sc_rb.rb_td_nbusy;
898 
899 	for (;;) {
900 		IFQ_DEQUEUE(&ifp->if_snd, m);
901 		if (m == 0)
902 			break;
903 
904 		/*
905 		 * If BPF is listening on this interface, let it see the
906 		 * packet before we commit it to the wire.
907 		 */
908 		bpf_mtap(ifp, m);
909 
910 #ifdef INET
911 		/* collect bits for h/w csum, before hme_put frees the mbuf */
912 		if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
913 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
914 			struct ether_header *eh;
915 			uint16_t offset, start;
916 
917 			eh = mtod(m, struct ether_header *);
918 			switch (ntohs(eh->ether_type)) {
919 			case ETHERTYPE_IP:
920 				start = ETHER_HDR_LEN;
921 				break;
922 			case ETHERTYPE_VLAN:
923 				start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
924 				break;
925 			default:
926 				/* unsupported, drop it */
927 				m_free(m);
928 				continue;
929 			}
930 			start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
931 			offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
932 			    + start;
933 			txflags = HME_XD_TXCKSUM |
934 				  (offset << HME_XD_TXCSSTUFFSHIFT) |
935 		  		  (start << HME_XD_TXCSSTARTSHIFT);
936 		} else
937 #endif
938 			txflags = 0;
939 
940 		/*
941 		 * Copy the mbuf chain into the transmit buffer.
942 		 */
943 		len = hme_put(sc, ri, m);
944 
945 		/*
946 		 * Initialize transmit registers and start transmission
947 		 */
948 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
949 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
950 			HME_XD_ENCODE_TSIZE(len) | txflags);
951 
952 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
953 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
954 				  HME_ETX_TP_DMAWAKEUP);
955 
956 		if (++ri == ntbuf)
957 			ri = 0;
958 
959 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
960 			ifp->if_flags |= IFF_OACTIVE;
961 			break;
962 		}
963 	}
964 
965 	if (obusy != sc->sc_rb.rb_td_nbusy) {
966 		sc->sc_rb.rb_tdhead = ri;
967 		ifp->if_timer = 5;
968 	}
969 }
970 
971 /*
972  * Transmit interrupt.
973  */
974 int
975 hme_tint(struct hme_softc *sc)
976 {
977 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
978 	bus_space_tag_t t = sc->sc_bustag;
979 	bus_space_handle_t mac = sc->sc_mac;
980 	unsigned int ri, txflags;
981 
982 	/*
983 	 * Unload collision counters
984 	 */
985 	ifp->if_collisions +=
986 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
987 		bus_space_read_4(t, mac, HME_MACI_FCCNT);
988 	ifp->if_oerrors +=
989 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
990 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
991 
992 	/*
993 	 * then clear the hardware counters.
994 	 */
995 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
996 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
997 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
998 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
999 
1000 	/* Fetch current position in the transmit ring */
1001 	ri = sc->sc_rb.rb_tdtail;
1002 
1003 	for (;;) {
1004 		if (sc->sc_rb.rb_td_nbusy <= 0)
1005 			break;
1006 
1007 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
1008 
1009 		if (txflags & HME_XD_OWN)
1010 			break;
1011 
1012 		ifp->if_flags &= ~IFF_OACTIVE;
1013 		ifp->if_opackets++;
1014 
1015 		if (++ri == sc->sc_rb.rb_ntbuf)
1016 			ri = 0;
1017 
1018 		--sc->sc_rb.rb_td_nbusy;
1019 	}
1020 
1021 	/* Update ring */
1022 	sc->sc_rb.rb_tdtail = ri;
1023 
1024 	hme_start(ifp);
1025 
1026 	if (sc->sc_rb.rb_td_nbusy == 0)
1027 		ifp->if_timer = 0;
1028 
1029 	return (1);
1030 }
1031 
1032 /*
1033  * Receive interrupt.
1034  */
1035 int
1036 hme_rint(struct hme_softc *sc)
1037 {
1038 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1039 	bus_space_tag_t t = sc->sc_bustag;
1040 	bus_space_handle_t mac = sc->sc_mac;
1041 	void *xdr = sc->sc_rb.rb_rxd;
1042 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
1043 	unsigned int ri;
1044 	uint32_t flags;
1045 
1046 	ri = sc->sc_rb.rb_rdtail;
1047 
1048 	/*
1049 	 * Process all buffers with valid data.
1050 	 */
1051 	for (;;) {
1052 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
1053 		if (flags & HME_XD_OWN)
1054 			break;
1055 
1056 		if (flags & HME_XD_OFL) {
1057 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
1058 					device_xname(sc->sc_dev), ri, flags);
1059 		} else
1060 			hme_read(sc, ri, flags);
1061 
1062 		/* This buffer can be used by the hardware again */
1063 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
1064 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
1065 
1066 		if (++ri == nrbuf)
1067 			ri = 0;
1068 	}
1069 
1070 	sc->sc_rb.rb_rdtail = ri;
1071 
1072 	/* Read error counters ... */
1073 	ifp->if_ierrors +=
1074 	    bus_space_read_4(t, mac, HME_MACI_STAT_LCNT) +
1075 	    bus_space_read_4(t, mac, HME_MACI_STAT_ACNT) +
1076 	    bus_space_read_4(t, mac, HME_MACI_STAT_CCNT) +
1077 	    bus_space_read_4(t, mac, HME_MACI_STAT_CVCNT);
1078 
1079 	/* ... then clear the hardware counters. */
1080 	bus_space_write_4(t, mac, HME_MACI_STAT_LCNT, 0);
1081 	bus_space_write_4(t, mac, HME_MACI_STAT_ACNT, 0);
1082 	bus_space_write_4(t, mac, HME_MACI_STAT_CCNT, 0);
1083 	bus_space_write_4(t, mac, HME_MACI_STAT_CVCNT, 0);
1084 	return (1);
1085 }
1086 
1087 int
1088 hme_eint(struct hme_softc *sc, u_int status)
1089 {
1090 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1091 	char bits[128];
1092 
1093 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
1094 		bus_space_tag_t t = sc->sc_bustag;
1095 		bus_space_handle_t mif = sc->sc_mif;
1096 		uint32_t cf, st, sm;
1097 		cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
1098 		st = bus_space_read_4(t, mif, HME_MIFI_STAT);
1099 		sm = bus_space_read_4(t, mif, HME_MIFI_SM);
1100 		printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
1101 			device_xname(sc->sc_dev), cf, st, sm);
1102 		return (1);
1103 	}
1104 
1105 	/* Receive error counters rolled over */
1106 	if (status & HME_SEB_STAT_ACNTEXP)
1107 		ifp->if_ierrors += 0xff;
1108 	if (status & HME_SEB_STAT_CCNTEXP)
1109 		ifp->if_ierrors += 0xff;
1110 	if (status & HME_SEB_STAT_LCNTEXP)
1111 		ifp->if_ierrors += 0xff;
1112 	if (status & HME_SEB_STAT_CVCNTEXP)
1113 		ifp->if_ierrors += 0xff;
1114 
1115 	/* RXTERR locks up the interface, so do a reset */
1116 	if (status & HME_SEB_STAT_RXTERR)
1117 		hme_reset(sc);
1118 
1119 	snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
1120 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1121 
1122 	return (1);
1123 }
1124 
1125 int
1126 hme_intr(void *v)
1127 {
1128 	struct hme_softc *sc = v;
1129 	bus_space_tag_t t = sc->sc_bustag;
1130 	bus_space_handle_t seb = sc->sc_seb;
1131 	uint32_t status;
1132 	int r = 0;
1133 
1134 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
1135 
1136 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
1137 		r |= hme_eint(sc, status);
1138 
1139 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
1140 		r |= hme_tint(sc);
1141 
1142 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
1143 		r |= hme_rint(sc);
1144 
1145 	rnd_add_uint32(&sc->rnd_source, status);
1146 
1147 	return (r);
1148 }
1149 
1150 
1151 void
1152 hme_watchdog(struct ifnet *ifp)
1153 {
1154 	struct hme_softc *sc = ifp->if_softc;
1155 
1156 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1157 	++ifp->if_oerrors;
1158 
1159 	hme_reset(sc);
1160 }
1161 
1162 /*
1163  * Initialize the MII Management Interface
1164  */
1165 void
1166 hme_mifinit(struct hme_softc *sc)
1167 {
1168 	bus_space_tag_t t = sc->sc_bustag;
1169 	bus_space_handle_t mif = sc->sc_mif;
1170 	bus_space_handle_t mac = sc->sc_mac;
1171 	int instance, phy;
1172 	uint32_t v;
1173 
1174 	if (sc->sc_mii.mii_media.ifm_cur != NULL) {
1175 		instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1176 		phy = sc->sc_phys[instance];
1177 	} else
1178 		/* No media set yet, pick phy arbitrarily.. */
1179 		phy = HME_PHYAD_EXTERNAL;
1180 
1181 	/* Configure the MIF in frame mode, no poll, current phy select */
1182 	v = 0;
1183 	if (phy == HME_PHYAD_EXTERNAL)
1184 		v |= HME_MIF_CFG_PHY;
1185 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1186 
1187 	/* If an external transceiver is selected, enable its MII drivers */
1188 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
1189 	v &= ~HME_MAC_XIF_MIIENABLE;
1190 	if (phy == HME_PHYAD_EXTERNAL)
1191 		v |= HME_MAC_XIF_MIIENABLE;
1192 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1193 }
1194 
1195 /*
1196  * MII interface
1197  */
1198 static int
1199 hme_mii_readreg(device_t self, int phy, int reg)
1200 {
1201 	struct hme_softc *sc = device_private(self);
1202 	bus_space_tag_t t = sc->sc_bustag;
1203 	bus_space_handle_t mif = sc->sc_mif;
1204 	bus_space_handle_t mac = sc->sc_mac;
1205 	uint32_t v, xif_cfg, mifi_cfg;
1206 	int n;
1207 
1208 	/* We can at most have two PHYs */
1209 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1210 		return (0);
1211 
1212 	/* Select the desired PHY in the MIF configuration register */
1213 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1214 	v &= ~HME_MIF_CFG_PHY;
1215 	if (phy == HME_PHYAD_EXTERNAL)
1216 		v |= HME_MIF_CFG_PHY;
1217 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1218 
1219 	/* Enable MII drivers on external transceiver */
1220 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1221 	if (phy == HME_PHYAD_EXTERNAL)
1222 		v |= HME_MAC_XIF_MIIENABLE;
1223 	else
1224 		v &= ~HME_MAC_XIF_MIIENABLE;
1225 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1226 
1227 #if 0
1228 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1229 	/*
1230 	 * Check whether a transceiver is connected by testing
1231 	 * the MIF configuration register's MDI_X bits. Note that
1232 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1233 	 */
1234 	mif_mdi_bit = 1 << (8 + (1 - phy));
1235 	delay(100);
1236 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1237 	if ((v & mif_mdi_bit) == 0)
1238 		return (0);
1239 #endif
1240 
1241 	/* Construct the frame command */
1242 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1243 	    HME_MIF_FO_TAMSB |
1244 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1245 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
1246 	    (reg << HME_MIF_FO_REGAD_SHIFT);
1247 
1248 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
1249 	for (n = 0; n < 100; n++) {
1250 		DELAY(1);
1251 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
1252 		if (v & HME_MIF_FO_TALSB) {
1253 			v &= HME_MIF_FO_DATA;
1254 			goto out;
1255 		}
1256 	}
1257 
1258 	v = 0;
1259 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1260 
1261 out:
1262 	/* Restore MIFI_CFG register */
1263 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1264 	/* Restore XIF register */
1265 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1266 	return (v);
1267 }
1268 
1269 static void
1270 hme_mii_writereg(device_t self, int phy, int reg, int val)
1271 {
1272 	struct hme_softc *sc = device_private(self);
1273 	bus_space_tag_t t = sc->sc_bustag;
1274 	bus_space_handle_t mif = sc->sc_mif;
1275 	bus_space_handle_t mac = sc->sc_mac;
1276 	uint32_t v, xif_cfg, mifi_cfg;
1277 	int n;
1278 
1279 	/* We can at most have two PHYs */
1280 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1281 		return;
1282 
1283 	/* Select the desired PHY in the MIF configuration register */
1284 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1285 	v &= ~HME_MIF_CFG_PHY;
1286 	if (phy == HME_PHYAD_EXTERNAL)
1287 		v |= HME_MIF_CFG_PHY;
1288 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1289 
1290 	/* Enable MII drivers on external transceiver */
1291 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1292 	if (phy == HME_PHYAD_EXTERNAL)
1293 		v |= HME_MAC_XIF_MIIENABLE;
1294 	else
1295 		v &= ~HME_MAC_XIF_MIIENABLE;
1296 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1297 
1298 #if 0
1299 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1300 	/*
1301 	 * Check whether a transceiver is connected by testing
1302 	 * the MIF configuration register's MDI_X bits. Note that
1303 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1304 	 */
1305 	mif_mdi_bit = 1 << (8 + (1 - phy));
1306 	delay(100);
1307 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1308 	if ((v & mif_mdi_bit) == 0)
1309 		return;
1310 #endif
1311 
1312 	/* Construct the frame command */
1313 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
1314 	    HME_MIF_FO_TAMSB				|
1315 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
1316 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
1317 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
1318 	    (val & HME_MIF_FO_DATA);
1319 
1320 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
1321 	for (n = 0; n < 100; n++) {
1322 		DELAY(1);
1323 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
1324 		if (v & HME_MIF_FO_TALSB)
1325 			goto out;
1326 	}
1327 
1328 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1329 out:
1330 	/* Restore MIFI_CFG register */
1331 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1332 	/* Restore XIF register */
1333 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1334 }
1335 
1336 static void
1337 hme_mii_statchg(struct ifnet *ifp)
1338 {
1339 	struct hme_softc *sc = ifp->if_softc;
1340 	bus_space_tag_t t = sc->sc_bustag;
1341 	bus_space_handle_t mac = sc->sc_mac;
1342 	uint32_t v;
1343 
1344 #ifdef HMEDEBUG
1345 	if (sc->sc_debug)
1346 		printf("hme_mii_statchg: status change\n");
1347 #endif
1348 
1349 	/* Set the MAC Full Duplex bit appropriately */
1350 	/* Apparently the hme chip is SIMPLEX if working in full duplex mode,
1351 	   but not otherwise. */
1352 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1353 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1354 		v |= HME_MAC_TXCFG_FULLDPLX;
1355 		sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
1356 	} else {
1357 		v &= ~HME_MAC_TXCFG_FULLDPLX;
1358 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
1359 	}
1360 	sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
1361 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1362 }
1363 
1364 int
1365 hme_mediachange(struct ifnet *ifp)
1366 {
1367 	struct hme_softc *sc = ifp->if_softc;
1368 	bus_space_tag_t t = sc->sc_bustag;
1369 	bus_space_handle_t mif = sc->sc_mif;
1370 	bus_space_handle_t mac = sc->sc_mac;
1371 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1372 	int phy = sc->sc_phys[instance];
1373 	int rc;
1374 	uint32_t v;
1375 
1376 #ifdef HMEDEBUG
1377 	if (sc->sc_debug)
1378 		printf("hme_mediachange: phy = %d\n", phy);
1379 #endif
1380 
1381 	/* Select the current PHY in the MIF configuration register */
1382 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1383 	v &= ~HME_MIF_CFG_PHY;
1384 	if (phy == HME_PHYAD_EXTERNAL)
1385 		v |= HME_MIF_CFG_PHY;
1386 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1387 
1388 	/* If an external transceiver is selected, enable its MII drivers */
1389 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
1390 	v &= ~HME_MAC_XIF_MIIENABLE;
1391 	if (phy == HME_PHYAD_EXTERNAL)
1392 		v |= HME_MAC_XIF_MIIENABLE;
1393 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1394 
1395 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
1396 		return 0;
1397 	return rc;
1398 }
1399 
1400 /*
1401  * Process an ioctl request.
1402  */
1403 int
1404 hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
1405 {
1406 	struct hme_softc *sc = ifp->if_softc;
1407 	struct ifaddr *ifa = (struct ifaddr *)data;
1408 	int s, error = 0;
1409 
1410 	s = splnet();
1411 
1412 	switch (cmd) {
1413 
1414 	case SIOCINITIFADDR:
1415 		switch (ifa->ifa_addr->sa_family) {
1416 #ifdef INET
1417 		case AF_INET:
1418 			if (ifp->if_flags & IFF_UP)
1419 				hme_setladrf(sc);
1420 			else {
1421 				ifp->if_flags |= IFF_UP;
1422 				error = hme_init(ifp);
1423 			}
1424 			arp_ifinit(ifp, ifa);
1425 			break;
1426 #endif
1427 		default:
1428 			ifp->if_flags |= IFF_UP;
1429 			error = hme_init(ifp);
1430 			break;
1431 		}
1432 		break;
1433 
1434 	case SIOCSIFFLAGS:
1435 #ifdef HMEDEBUG
1436 		{
1437 			struct ifreq *ifr = data;
1438 			sc->sc_debug =
1439 			    (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
1440 		}
1441 #endif
1442 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1443 			break;
1444 
1445 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1446 		case IFF_RUNNING:
1447 			/*
1448 			 * If interface is marked down and it is running, then
1449 			 * stop it.
1450 			 */
1451 			hme_stop(ifp, 0);
1452 			ifp->if_flags &= ~IFF_RUNNING;
1453 			break;
1454 		case IFF_UP:
1455 			/*
1456 			 * If interface is marked up and it is stopped, then
1457 			 * start it.
1458 			 */
1459 			error = hme_init(ifp);
1460 			break;
1461 		case IFF_UP|IFF_RUNNING:
1462 			/*
1463 			 * If setting debug or promiscuous mode, do not reset
1464 			 * the chip; for everything else, call hme_init()
1465 			 * which will trigger a reset.
1466 			 */
1467 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
1468 			if (ifp->if_flags != sc->sc_if_flags) {
1469 				if ((ifp->if_flags & (~RESETIGN))
1470 				    == (sc->sc_if_flags & (~RESETIGN)))
1471 					hme_setladrf(sc);
1472 				else
1473 					error = hme_init(ifp);
1474 			}
1475 #undef RESETIGN
1476 			break;
1477 		case 0:
1478 			break;
1479 		}
1480 
1481 		if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
1482 			error = hme_init(ifp);
1483 
1484 		break;
1485 
1486 	default:
1487 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1488 			break;
1489 
1490 		error = 0;
1491 
1492 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1493 			;
1494 		else if (ifp->if_flags & IFF_RUNNING) {
1495 			/*
1496 			 * Multicast list has changed; set the hardware filter
1497 			 * accordingly.
1498 			 */
1499 			hme_setladrf(sc);
1500 		}
1501 		break;
1502 	}
1503 
1504 	sc->sc_if_flags = ifp->if_flags;
1505 	splx(s);
1506 	return (error);
1507 }
1508 
1509 bool
1510 hme_shutdown(device_t self, int howto)
1511 {
1512 	struct hme_softc *sc;
1513 	struct ifnet *ifp;
1514 
1515 	sc = device_private(self);
1516 	ifp = &sc->sc_ethercom.ec_if;
1517 	hme_stop(ifp, 1);
1518 
1519 	return true;
1520 }
1521 
1522 /*
1523  * Set up the logical address filter.
1524  */
1525 void
1526 hme_setladrf(struct hme_softc *sc)
1527 {
1528 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1529 	struct ether_multi *enm;
1530 	struct ether_multistep step;
1531 	struct ethercom *ec = &sc->sc_ethercom;
1532 	bus_space_tag_t t = sc->sc_bustag;
1533 	bus_space_handle_t mac = sc->sc_mac;
1534 	uint32_t v;
1535 	uint32_t crc;
1536 	uint32_t hash[4];
1537 
1538 	/* Clear hash table */
1539 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
1540 
1541 	/* Get current RX configuration */
1542 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1543 
1544 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
1545 		/* Turn on promiscuous mode; turn off the hash filter */
1546 		v |= HME_MAC_RXCFG_PMISC;
1547 		v &= ~HME_MAC_RXCFG_HENABLE;
1548 		ifp->if_flags |= IFF_ALLMULTI;
1549 		goto chipit;
1550 	}
1551 
1552 	/* Turn off promiscuous mode; turn on the hash filter */
1553 	v &= ~HME_MAC_RXCFG_PMISC;
1554 	v |= HME_MAC_RXCFG_HENABLE;
1555 
1556 	/*
1557 	 * Set up multicast address filter by passing all multicast addresses
1558 	 * through a crc generator, and then using the high order 6 bits as an
1559 	 * index into the 64 bit logical address filter.  The high order bit
1560 	 * selects the word, while the rest of the bits select the bit within
1561 	 * the word.
1562 	 */
1563 
1564 	ETHER_FIRST_MULTI(step, ec, enm);
1565 	while (enm != NULL) {
1566 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1567 			/*
1568 			 * We must listen to a range of multicast addresses.
1569 			 * For now, just accept all multicasts, rather than
1570 			 * trying to set only those filter bits needed to match
1571 			 * the range.  (At this time, the only use of address
1572 			 * ranges is for IP multicast routing, for which the
1573 			 * range is big enough to require all bits set.)
1574 			 */
1575 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1576 			ifp->if_flags |= IFF_ALLMULTI;
1577 			goto chipit;
1578 		}
1579 
1580 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1581 
1582 		/* Just want the 6 most significant bits. */
1583 		crc >>= 26;
1584 
1585 		/* Set the corresponding bit in the filter. */
1586 		hash[crc >> 4] |= 1 << (crc & 0xf);
1587 
1588 		ETHER_NEXT_MULTI(step, enm);
1589 	}
1590 
1591 	ifp->if_flags &= ~IFF_ALLMULTI;
1592 
1593 chipit:
1594 	/* Now load the hash table into the chip */
1595 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1596 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1597 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1598 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1599 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1600 }
1601 
1602 /*
1603  * Routines for accessing the transmit and receive buffers.
1604  * The various CPU and adapter configurations supported by this
1605  * driver require three different access methods for buffers
1606  * and descriptors:
1607  *	(1) contig (contiguous data; no padding),
1608  *	(2) gap2 (two bytes of data followed by two bytes of padding),
1609  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
1610  */
1611 
1612 #if 0
1613 /*
1614  * contig: contiguous data with no padding.
1615  *
1616  * Buffers may have any alignment.
1617  */
1618 
1619 void
1620 hme_copytobuf_contig(struct hme_softc *sc, void *from, int ri, int len)
1621 {
1622 	volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1623 
1624 	/*
1625 	 * Just call memcpy() to do the work.
1626 	 */
1627 	memcpy(buf, from, len);
1628 }
1629 
1630 void
1631 hme_copyfrombuf_contig(struct hme_softc *sc, void *to, int boff, int len)
1632 {
1633 	volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1634 
1635 	/*
1636 	 * Just call memcpy() to do the work.
1637 	 */
1638 	memcpy(to, buf, len);
1639 }
1640 #endif
1641