xref: /netbsd-src/sys/dev/ic/hme.c (revision e4d7c2e329d54c97e0c0bd3016bbe74f550c3d5e)
1 /*	$NetBSD: hme.c,v 1.8 2000/02/14 17:14:28 pk Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * HME Ethernet module driver.
41  */
42 
43 #define HMEDEBUG
44 
45 #include "opt_inet.h"
46 #include "opt_ns.h"
47 #include "bpfilter.h"
48 #include "rnd.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/kernel.h>
53 #include <sys/mbuf.h>
54 #include <sys/syslog.h>
55 #include <sys/socket.h>
56 #include <sys/device.h>
57 #include <sys/malloc.h>
58 #include <sys/ioctl.h>
59 #include <sys/errno.h>
60 #if NRND > 0
61 #include <sys/rnd.h>
62 #endif
63 
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_ether.h>
67 #include <net/if_media.h>
68 
69 #ifdef INET
70 #include <netinet/in.h>
71 #include <netinet/if_inarp.h>
72 #include <netinet/in_systm.h>
73 #include <netinet/in_var.h>
74 #include <netinet/ip.h>
75 #endif
76 
77 #ifdef NS
78 #include <netns/ns.h>
79 #include <netns/ns_if.h>
80 #endif
81 
82 #if NBPFILTER > 0
83 #include <net/bpf.h>
84 #include <net/bpfdesc.h>
85 #endif
86 
87 #include <dev/mii/mii.h>
88 #include <dev/mii/miivar.h>
89 
90 #include <machine/bus.h>
91 
92 #include <dev/ic/hmereg.h>
93 #include <dev/ic/hmevar.h>
94 
95 void		hme_start __P((struct ifnet *));
96 void		hme_stop __P((struct hme_softc *));
97 int		hme_ioctl __P((struct ifnet *, u_long, caddr_t));
98 void		hme_tick __P((void *));
99 void		hme_watchdog __P((struct ifnet *));
100 void		hme_shutdown __P((void *));
101 void		hme_init __P((struct hme_softc *));
102 void		hme_meminit __P((struct hme_softc *));
103 void		hme_mifinit __P((struct hme_softc *));
104 void		hme_reset __P((struct hme_softc *));
105 void		hme_setladrf __P((struct hme_softc *));
106 
107 /* MII methods & callbacks */
108 static int	hme_mii_readreg __P((struct device *, int, int));
109 static void	hme_mii_writereg __P((struct device *, int, int, int));
110 static void	hme_mii_statchg __P((struct device *));
111 
112 int		hme_mediachange __P((struct ifnet *));
113 void		hme_mediastatus __P((struct ifnet *, struct ifmediareq *));
114 
115 struct mbuf	*hme_get __P((struct hme_softc *, int, int));
116 int		hme_put __P((struct hme_softc *, int, struct mbuf *));
117 void		hme_read __P((struct hme_softc *, int, int));
118 int		hme_eint __P((struct hme_softc *, u_int));
119 int		hme_rint __P((struct hme_softc *));
120 int		hme_tint __P((struct hme_softc *));
121 
122 static int	ether_cmp __P((u_char *, u_char *));
123 
124 /* Default buffer copy routines */
125 void	hme_copytobuf_contig __P((struct hme_softc *, void *, int, int));
126 void	hme_copyfrombuf_contig __P((struct hme_softc *, void *, int, int));
127 void	hme_zerobuf_contig __P((struct hme_softc *, int, int));
128 
129 
130 void
131 hme_config(sc)
132 	struct hme_softc *sc;
133 {
134 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
135 	struct mii_data *mii = &sc->sc_mii;
136 	struct mii_softc *child;
137 	bus_dma_segment_t seg;
138 	bus_size_t size;
139 	int rseg, error;
140 
141 	/*
142 	 * HME common initialization.
143 	 *
144 	 * hme_softc fields that must be initialized by the front-end:
145 	 *
146 	 * the bus tag:
147 	 *	sc_bustag
148 	 *
149 	 * the dma bus tag:
150 	 *	sc_dmatag
151 	 *
152 	 * the bus handles:
153 	 *	sc_seb		(Shared Ethernet Block registers)
154 	 *	sc_erx		(Receiver Unit registers)
155 	 *	sc_etx		(Transmitter Unit registers)
156 	 *	sc_mac		(MAC registers)
157 	 *	sc_mif		(Managment Interface registers)
158 	 *
159 	 * the maximum bus burst size:
160 	 *	sc_burst
161 	 *
162 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
163 	 *	rb_membase, rb_dmabase)
164 	 *
165 	 * the local Ethernet address:
166 	 *	sc_enaddr
167 	 *
168 	 */
169 
170 	/* Make sure the chip is stopped. */
171 	hme_stop(sc);
172 
173 
174 	/*
175 	 * Allocate descriptors and buffers
176 	 * XXX - do all this differently.. and more configurably,
177 	 * eg. use things as `dma_load_mbuf()' on transmit,
178 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
179 	 *     all the time) on the reveiver side.
180 	 *
181 	 * Note: receive buffers must be 64-byte aligned.
182 	 * Also, apparently, the buffers must extend to a DMA burst
183 	 * boundary beyond the maximum packet size.
184 	 */
185 #define _HME_NDESC	32
186 #define _HME_BUFSZ	1600
187 
188 	/* Note: the # of descriptors must be a multiple of 16 */
189 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
190 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
191 
192 	/*
193 	 * Allocate DMA capable memory
194 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
195 	 * take this into account when calculating the size. Note that
196 	 * the maximum number of descriptors (256) occupies 2048 bytes,
197 	 * so we allocate that much regardless of _HME_NDESC.
198 	 */
199 	size =	2048 +					/* TX descriptors */
200 		2048 +					/* RX descriptors */
201 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
202 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* TX buffers */
203 	if ((error = bus_dmamem_alloc(sc->sc_dmatag, size,
204 				      2048, 0,
205 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
206 		printf("%s: DMA buffer alloc error %d\n",
207 			sc->sc_dev.dv_xname, error);
208 	}
209 	sc->sc_rb.rb_dmabase = seg.ds_addr;
210 
211 	/* Map DMA memory in CPU adressable space */
212 	if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg, size,
213 				    &sc->sc_rb.rb_membase,
214 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
215 		printf("%s: DMA buffer map error %d\n",
216 			sc->sc_dev.dv_xname, error);
217 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
218 		return;
219 	}
220 
221 #if 0
222 	/*
223 	 * Install default copy routines if not supplied.
224 	 */
225 	if (sc->sc_copytobuf == NULL)
226 		sc->sc_copytobuf = hme_copytobuf_contig;
227 
228 	if (sc->sc_copyfrombuf == NULL)
229 		sc->sc_copyfrombuf = hme_copyfrombuf_contig;
230 #endif
231 
232 	printf(": address %s\n", ether_sprintf(sc->sc_enaddr));
233 
234 	/* Initialize ifnet structure. */
235 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
236 	ifp->if_softc = sc;
237 	ifp->if_start = hme_start;
238 	ifp->if_ioctl = hme_ioctl;
239 	ifp->if_watchdog = hme_watchdog;
240 	ifp->if_flags =
241 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
242 
243 	/* Initialize ifmedia structures and MII info */
244 	mii->mii_ifp = ifp;
245 	mii->mii_readreg = hme_mii_readreg;
246 	mii->mii_writereg = hme_mii_writereg;
247 	mii->mii_statchg = hme_mii_statchg;
248 
249 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, hme_mediastatus);
250 
251 	hme_mifinit(sc);
252 
253 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
254 			MII_PHY_ANY, MII_OFFSET_ANY, 0);
255 
256 	child = LIST_FIRST(&mii->mii_phys);
257 	if (child == NULL) {
258 		/* No PHY attached */
259 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
260 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
261 	} else {
262 		/*
263 		 * Walk along the list of attached MII devices and
264 		 * establish an `MII instance' to `phy number'
265 		 * mapping. We'll use this mapping in media change
266 		 * requests to determine which phy to use to program
267 		 * the MIF configuration register.
268 		 */
269 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
270 			/*
271 			 * Note: we support just two PHYs: the built-in
272 			 * internal device and an external on the MII
273 			 * connector.
274 			 */
275 			if (child->mii_phy > 1 || child->mii_inst > 1) {
276 				printf("%s: cannot accomodate MII device %s"
277 				       " at phy %d, instance %d\n",
278 				       sc->sc_dev.dv_xname,
279 				       child->mii_dev.dv_xname,
280 				       child->mii_phy, child->mii_inst);
281 				continue;
282 			}
283 
284 			sc->sc_phys[child->mii_inst] = child->mii_phy;
285 		}
286 
287 		/*
288 		 * XXX - we can really do the following ONLY if the
289 		 * phy indeed has the auto negotiation capability!!
290 		 */
291 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
292 	}
293 
294 	/* Attach the interface. */
295 	if_attach(ifp);
296 	ether_ifattach(ifp, sc->sc_enaddr);
297 
298 #if NBPFILTER > 0
299 	bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
300 #endif
301 
302 	sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
303 	if (sc->sc_sh == NULL)
304 		panic("hme_config: can't establish shutdownhook");
305 
306 #if 0
307 	printf("%s: %d receive buffers, %d transmit buffers\n",
308 	    sc->sc_dev.dv_xname, sc->sc_nrbuf, sc->sc_ntbuf);
309 	sc->sc_rbufaddr = malloc(sc->sc_nrbuf * sizeof(int), M_DEVBUF,
310 					M_WAITOK);
311 	sc->sc_tbufaddr = malloc(sc->sc_ntbuf * sizeof(int), M_DEVBUF,
312 					M_WAITOK);
313 #endif
314 
315 #if NRND > 0
316 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
317 			  RND_TYPE_NET, 0);
318 #endif
319 
320 	/* Start the one second clock */
321 	timeout(hme_tick, sc, hz);
322 }
323 
324 void
325 hme_tick(arg)
326 	void *arg;
327 {
328 	struct hme_softc *sc = arg;
329 	int s;
330 
331 	s = splnet();
332 	mii_tick(&sc->sc_mii);
333 	splx(s);
334 
335 	timeout(hme_tick, sc, hz);
336 }
337 
338 void
339 hme_reset(sc)
340 	struct hme_softc *sc;
341 {
342 	int s;
343 
344 	s = splnet();
345 	hme_init(sc);
346 	splx(s);
347 }
348 
349 void
350 hme_stop(sc)
351 	struct hme_softc *sc;
352 {
353 	bus_space_tag_t t = sc->sc_bustag;
354 	bus_space_handle_t seb = sc->sc_seb;
355 	int n;
356 
357 	untimeout(hme_tick, sc);
358 	mii_down(&sc->sc_mii);
359 
360 	/* Reset transmitter and receiver */
361 	bus_space_write_4(t, seb, HME_SEBI_RESET,
362 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
363 
364 	for (n = 0; n < 20; n++) {
365 		u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
366 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
367 			return;
368 		DELAY(20);
369 	}
370 
371 	printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname);
372 }
373 
374 void
375 hme_meminit(sc)
376 	struct hme_softc *sc;
377 {
378 	bus_addr_t txbufdma, rxbufdma;
379 	bus_addr_t dma;
380 	caddr_t p;
381 	unsigned int ntbuf, nrbuf, i;
382 	struct hme_ring *hr = &sc->sc_rb;
383 
384 	p = hr->rb_membase;
385 	dma = hr->rb_dmabase;
386 
387 	ntbuf = hr->rb_ntbuf;
388 	nrbuf = hr->rb_nrbuf;
389 
390 	/*
391 	 * Allocate transmit descriptors
392 	 */
393 	hr->rb_txd = p;
394 	hr->rb_txddma = dma;
395 	p += ntbuf * HME_XD_SIZE;
396 	dma += ntbuf * HME_XD_SIZE;
397 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
398 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
399 	p = (caddr_t)roundup((u_long)p, 2048);
400 
401 	/*
402 	 * Allocate receive descriptors
403 	 */
404 	hr->rb_rxd = p;
405 	hr->rb_rxddma = dma;
406 	p += nrbuf * HME_XD_SIZE;
407 	dma += nrbuf * HME_XD_SIZE;
408 	/* Again move forward to the next 2048 byte boundary.*/
409 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
410 	p = (caddr_t)roundup((u_long)p, 2048);
411 
412 
413 	/*
414 	 * Allocate transmit buffers
415 	 */
416 	hr->rb_txbuf = p;
417 	txbufdma = dma;
418 	p += ntbuf * _HME_BUFSZ;
419 	dma += ntbuf * _HME_BUFSZ;
420 
421 	/*
422 	 * Allocate receive buffers
423 	 */
424 	hr->rb_rxbuf = p;
425 	rxbufdma = dma;
426 	p += nrbuf * _HME_BUFSZ;
427 	dma += nrbuf * _HME_BUFSZ;
428 
429 	/*
430 	 * Initialize transmit buffer descriptors
431 	 */
432 	for (i = 0; i < ntbuf; i++) {
433 		HME_XD_SETADDR(hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
434 		HME_XD_SETFLAGS(hr->rb_txd, i, 0);
435 	}
436 
437 	/*
438 	 * Initialize receive buffer descriptors
439 	 */
440 	for (i = 0; i < nrbuf; i++) {
441 		HME_XD_SETADDR(hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
442 		HME_XD_SETFLAGS(hr->rb_rxd, i,
443 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
444 	}
445 
446 	hr->rb_tdhead = hr->rb_tdtail = 0;
447 	hr->rb_td_nbusy = 0;
448 	hr->rb_rdtail = 0;
449 }
450 
451 /*
452  * Initialization of interface; set up initialization block
453  * and transmit/receive descriptor rings.
454  */
455 void
456 hme_init(sc)
457 	struct hme_softc *sc;
458 {
459 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
460 	bus_space_tag_t t = sc->sc_bustag;
461 	bus_space_handle_t seb = sc->sc_seb;
462 	bus_space_handle_t etx = sc->sc_etx;
463 	bus_space_handle_t erx = sc->sc_erx;
464 	bus_space_handle_t mac = sc->sc_mac;
465 	bus_space_handle_t mif = sc->sc_mif;
466 	u_int8_t *ea;
467 	u_int32_t v;
468 
469 	/*
470 	 * Initialization sequence. The numbered steps below correspond
471 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
472 	 * Channel Engine manual (part of the PCIO manual).
473 	 * See also the STP2002-STQ document from Sun Microsystems.
474 	 */
475 
476 	/* step 1 & 2. Reset the Ethernet Channel */
477 	hme_stop(sc);
478 
479 	/* Re-initialize the MIF */
480 	hme_mifinit(sc);
481 
482 	/* Call MI reset function if any */
483 	if (sc->sc_hwreset)
484 		(*sc->sc_hwreset)(sc);
485 
486 #if 0
487 	/* Mask all MIF interrupts, just in case */
488 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
489 #endif
490 
491 	/* step 3. Setup data structures in host memory */
492 	hme_meminit(sc);
493 
494 	/* step 4. TX MAC registers & counters */
495 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
496 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
497 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
498 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
499 
500 	/* Load station MAC address */
501 	ea = sc->sc_enaddr;
502 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
503 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
504 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
505 
506 	/*
507 	 * Init seed for backoff
508 	 * (source suggested by manual: low 10 bits of MAC address)
509 	 */
510 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
511 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
512 
513 
514 	/* Note: Accepting power-on default for other MAC registers here.. */
515 
516 
517 	/* step 5. RX MAC registers & counters */
518 	hme_setladrf(sc);
519 
520 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
521 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
522 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
523 
524 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
525 
526 
527 	/* step 8. Global Configuration & Interrupt Mask */
528 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
529 			~(
530 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
531 			  HME_SEB_STAT_HOSTTOTX |
532 			  HME_SEB_STAT_RXTOHOST |
533 			  HME_SEB_STAT_TXALL |
534 			  HME_SEB_STAT_TXPERR |
535 			  HME_SEB_STAT_RCNTEXP |
536 			  HME_SEB_STAT_ALL_ERRORS ));
537 
538 	switch (sc->sc_burst) {
539 	default:
540 		v = 0;
541 		break;
542 	case 16:
543 		v = HME_SEB_CFG_BURST16;
544 		break;
545 	case 32:
546 		v = HME_SEB_CFG_BURST32;
547 		break;
548 	case 64:
549 		v = HME_SEB_CFG_BURST64;
550 		break;
551 	}
552 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
553 
554 	/* step 9. ETX Configuration: use mostly default values */
555 
556 	/* Enable DMA */
557 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
558 	v |= HME_ETX_CFG_DMAENABLE;
559 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
560 
561 	/* Transmit Descriptor ring size: in increments of 16 */
562 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
563 
564 
565 	/* step 10. ERX Configuration */
566 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
567 
568 	/* Encode Receive Descriptor ring size: four possible values */
569 	switch (_HME_NDESC /*XXX*/) {
570 	case 32:
571 		v |= HME_ERX_CFG_RINGSIZE32;
572 		break;
573 	case 64:
574 		v |= HME_ERX_CFG_RINGSIZE64;
575 		break;
576 	case 128:
577 		v |= HME_ERX_CFG_RINGSIZE128;
578 		break;
579 	case 256:
580 		v |= HME_ERX_CFG_RINGSIZE256;
581 		break;
582 	default:
583 		printf("hme: invalid Receive Descriptor ring size\n");
584 		break;
585 	}
586 
587 	/* Enable DMA */
588 	v |= HME_ERX_CFG_DMAENABLE;
589 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
590 
591 	/* step 11. XIF Configuration */
592 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
593 	v |= HME_MAC_XIF_OE;
594 	/* If an external transceiver is connected, enable its MII drivers */
595 	if ((bus_space_read_4(t, mif, HME_MIFI_CFG) & HME_MIF_CFG_MDI1) != 0)
596 		v |= HME_MAC_XIF_MIIENABLE;
597 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
598 
599 
600 	/* step 12. RX_MAC Configuration Register */
601 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
602 	v |= HME_MAC_RXCFG_ENABLE;
603 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
604 
605 	/* step 13. TX_MAC Configuration Register */
606 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
607 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
608 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
609 
610 	/* step 14. Issue Transmit Pending command */
611 
612 	/* Call MI initialization function if any */
613 	if (sc->sc_hwinit)
614 		(*sc->sc_hwinit)(sc);
615 
616 	ifp->if_flags |= IFF_RUNNING;
617 	ifp->if_flags &= ~IFF_OACTIVE;
618 	ifp->if_timer = 0;
619 	hme_start(ifp);
620 }
621 
622 /*
623  * Compare two Ether/802 addresses for equality, inlined and unrolled for
624  * speed.
625  */
626 static __inline__ int
627 ether_cmp(a, b)
628 	u_char *a, *b;
629 {
630 
631 	if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
632 	    a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
633 		return (0);
634 	return (1);
635 }
636 
637 
638 /*
639  * Routine to copy from mbuf chain to transmit buffer in
640  * network buffer memory.
641  * Returns the amount of data copied.
642  */
643 int
644 hme_put(sc, ri, m)
645 	struct hme_softc *sc;
646 	int ri;			/* Ring index */
647 	struct mbuf *m;
648 {
649 	struct mbuf *n;
650 	int len, tlen = 0;
651 	caddr_t bp;
652 
653 	bp = sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
654 	for (; m; m = n) {
655 		len = m->m_len;
656 		if (len == 0) {
657 			MFREE(m, n);
658 			continue;
659 		}
660 		bcopy(mtod(m, caddr_t), bp, len);
661 		bp += len;
662 		tlen += len;
663 		MFREE(m, n);
664 	}
665 	return (tlen);
666 }
667 
668 /*
669  * Pull data off an interface.
670  * Len is length of data, with local net header stripped.
671  * We copy the data into mbufs.  When full cluster sized units are present
672  * we copy into clusters.
673  */
674 struct mbuf *
675 hme_get(sc, ri, totlen)
676 	struct hme_softc *sc;
677 	int ri, totlen;
678 {
679 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
680 	struct mbuf *m, *m0, *newm;
681 	caddr_t bp;
682 	int len;
683 
684 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
685 	if (m0 == 0)
686 		return (0);
687 	m0->m_pkthdr.rcvif = ifp;
688 	m0->m_pkthdr.len = totlen;
689 	len = MHLEN;
690 	m = m0;
691 
692 	bp = sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
693 
694 	while (totlen > 0) {
695 		if (totlen >= MINCLSIZE) {
696 			MCLGET(m, M_DONTWAIT);
697 			if ((m->m_flags & M_EXT) == 0)
698 				goto bad;
699 			len = MCLBYTES;
700 		}
701 
702 		if (m == m0) {
703 			caddr_t newdata = (caddr_t)
704 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
705 			    sizeof(struct ether_header);
706 			len -= newdata - m->m_data;
707 			m->m_data = newdata;
708 		}
709 
710 		m->m_len = len = min(totlen, len);
711 		bcopy(bp, mtod(m, caddr_t), len);
712 		bp += len;
713 
714 		totlen -= len;
715 		if (totlen > 0) {
716 			MGET(newm, M_DONTWAIT, MT_DATA);
717 			if (newm == 0)
718 				goto bad;
719 			len = MLEN;
720 			m = m->m_next = newm;
721 		}
722 	}
723 
724 	return (m0);
725 
726 bad:
727 	m_freem(m0);
728 	return (0);
729 }
730 
731 /*
732  * Pass a packet to the higher levels.
733  */
734 void
735 hme_read(sc, ix, len)
736 	struct hme_softc *sc;
737 	int ix, len;
738 {
739 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
740 	struct mbuf *m;
741 
742 	if (len <= sizeof(struct ether_header) ||
743 	    len > ETHERMTU + sizeof(struct ether_header)) {
744 #ifdef HMEDEBUG
745 		printf("%s: invalid packet size %d; dropping\n",
746 		    sc->sc_dev.dv_xname, len);
747 #endif
748 		ifp->if_ierrors++;
749 		return;
750 	}
751 
752 	/* Pull packet off interface. */
753 	m = hme_get(sc, ix, len);
754 	if (m == 0) {
755 		ifp->if_ierrors++;
756 		return;
757 	}
758 
759 	ifp->if_ipackets++;
760 
761 #if NBPFILTER > 0
762 	/*
763 	 * Check if there's a BPF listener on this interface.
764 	 * If so, hand off the raw packet to BPF.
765 	 */
766 	if (ifp->if_bpf) {
767 		struct ether_header *eh;
768 
769 		bpf_mtap(ifp->if_bpf, m);
770 
771 		/*
772 		 * Note that the interface cannot be in promiscuous mode if
773 		 * there are no BPF listeners.  And if we are in promiscuous
774 		 * mode, we have to check if this packet is really ours.
775 		 */
776 
777 		/* We assume that the header fit entirely in one mbuf. */
778 		eh = mtod(m, struct ether_header *);
779 
780 		if ((ifp->if_flags & IFF_PROMISC) != 0 &&
781 		    (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
782 		    ether_cmp(eh->ether_dhost, sc->sc_enaddr) == 0) {
783 			m_freem(m);
784 			return;
785 		}
786 	}
787 #endif
788 
789 	/* Pass the packet up. */
790 	(*ifp->if_input)(ifp, m);
791 }
792 
793 void
794 hme_start(ifp)
795 	struct ifnet *ifp;
796 {
797 	struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
798 	caddr_t txd = sc->sc_rb.rb_txd;
799 	struct mbuf *m;
800 	unsigned int ri, len;
801 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
802 
803 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
804 		return;
805 
806 	ri = sc->sc_rb.rb_tdhead;
807 
808 	for (;;) {
809 		IF_DEQUEUE(&ifp->if_snd, m);
810 		if (m == 0)
811 			break;
812 
813 #if NBPFILTER > 0
814 		/*
815 		 * If BPF is listening on this interface, let it see the
816 		 * packet before we commit it to the wire.
817 		 */
818 		if (ifp->if_bpf)
819 			bpf_mtap(ifp->if_bpf, m);
820 #endif
821 
822 		/*
823 		 * Copy the mbuf chain into the transmit buffer.
824 		 */
825 		len = hme_put(sc, ri, m);
826 
827 		/*
828 		 * Initialize transmit registers and start transmission
829 		 */
830 		HME_XD_SETFLAGS(txd, ri,
831 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
832 			HME_XD_ENCODE_TSIZE(len));
833 
834 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
835 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
836 				  HME_ETX_TP_DMAWAKEUP);
837 
838 		if (++ri == ntbuf)
839 			ri = 0;
840 
841 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
842 			ifp->if_flags |= IFF_OACTIVE;
843 			break;
844 		}
845 	}
846 
847 	sc->sc_rb.rb_tdhead = ri;
848 }
849 
850 /*
851  * Transmit interrupt.
852  */
853 int
854 hme_tint(sc)
855 	struct hme_softc *sc;
856 {
857 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
858 	bus_space_tag_t t = sc->sc_bustag;
859 	bus_space_handle_t mac = sc->sc_mac;
860 	unsigned int ri, txflags;
861 
862 	/*
863 	 * Unload collision counters
864 	 */
865 	ifp->if_collisions +=
866 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
867 		bus_space_read_4(t, mac, HME_MACI_FCCNT) +
868 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
869 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
870 
871 	/*
872 	 * then clear the hardware counters.
873 	 */
874 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
875 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
876 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
877 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
878 
879 	/* Fetch current position in the transmit ring */
880 	ri = sc->sc_rb.rb_tdtail;
881 
882 	for (;;) {
883 		if (sc->sc_rb.rb_td_nbusy <= 0)
884 			break;
885 
886 		txflags = HME_XD_GETFLAGS(sc->sc_rb.rb_txd, ri);
887 
888 		if (txflags & HME_XD_OWN)
889 			break;
890 
891 		ifp->if_flags &= ~IFF_OACTIVE;
892 		ifp->if_opackets++;
893 
894 		if (++ri == sc->sc_rb.rb_ntbuf)
895 			ri = 0;
896 
897 		--sc->sc_rb.rb_td_nbusy;
898 	}
899 
900 	/* Update ring */
901 	sc->sc_rb.rb_tdtail = ri;
902 
903 	hme_start(ifp);
904 
905 	if (sc->sc_rb.rb_td_nbusy == 0)
906 		ifp->if_timer = 0;
907 
908 	return (1);
909 }
910 
911 /*
912  * Receive interrupt.
913  */
914 int
915 hme_rint(sc)
916 	struct hme_softc *sc;
917 {
918 	caddr_t xdr = sc->sc_rb.rb_rxd;
919 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
920 	unsigned int ri, len;
921 	u_int32_t flags;
922 
923 	ri = sc->sc_rb.rb_rdtail;
924 
925 	/*
926 	 * Process all buffers with valid data.
927 	 */
928 	for (;;) {
929 		flags = HME_XD_GETFLAGS(xdr, ri);
930 		if (flags & HME_XD_OWN)
931 			break;
932 
933 		if (flags & HME_XD_OFL) {
934 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
935 					sc->sc_dev.dv_xname, ri, flags);
936 		} else {
937 			len = HME_XD_DECODE_RSIZE(flags);
938 			hme_read(sc, ri, len);
939 		}
940 
941 		/* This buffer can be used by the hardware again */
942 		HME_XD_SETFLAGS(xdr, ri,
943 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
944 
945 		if (++ri == nrbuf)
946 			ri = 0;
947 	}
948 
949 	sc->sc_rb.rb_rdtail = ri;
950 
951 	return (1);
952 }
953 
954 int
955 hme_eint(sc, status)
956 	struct hme_softc *sc;
957 	u_int status;
958 {
959 	char bits[128];
960 
961 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
962 		printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
963 		return (1);
964 	}
965 
966 	printf("%s: status=%s\n", sc->sc_dev.dv_xname,
967 		bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
968 	return (1);
969 }
970 
971 int
972 hme_intr(v)
973 	void *v;
974 {
975 	struct hme_softc *sc = (struct hme_softc *)v;
976 	bus_space_tag_t t = sc->sc_bustag;
977 	bus_space_handle_t seb = sc->sc_seb;
978 	u_int32_t status;
979 	int r = 0;
980 
981 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
982 
983 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
984 		r |= hme_eint(sc, status);
985 
986 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
987 		r |= hme_tint(sc);
988 
989 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
990 		r |= hme_rint(sc);
991 
992 	return (r);
993 }
994 
995 
996 void
997 hme_watchdog(ifp)
998 	struct ifnet *ifp;
999 {
1000 	struct hme_softc *sc = ifp->if_softc;
1001 
1002 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1003 	++ifp->if_oerrors;
1004 
1005 	hme_reset(sc);
1006 }
1007 
1008 /*
1009  * Initialize the MII Management Interface
1010  */
1011 void
1012 hme_mifinit(sc)
1013 	struct hme_softc *sc;
1014 {
1015 	bus_space_tag_t t = sc->sc_bustag;
1016 	bus_space_handle_t mif = sc->sc_mif;
1017 	u_int32_t v;
1018 
1019 	/* Configure the MIF in frame mode */
1020 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1021 	v &= ~HME_MIF_CFG_BBMODE;
1022 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1023 }
1024 
1025 /*
1026  * MII interface
1027  */
1028 static int
1029 hme_mii_readreg(self, phy, reg)
1030 	struct device *self;
1031 	int phy, reg;
1032 {
1033 	struct hme_softc *sc = (void *)self;
1034 	bus_space_tag_t t = sc->sc_bustag;
1035 	bus_space_handle_t mif = sc->sc_mif;
1036 	int n;
1037 	u_int32_t v;
1038 
1039 	/* Select the desired PHY in the MIF configuration register */
1040 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1041 	/* Clear PHY select bit */
1042 	v &= ~HME_MIF_CFG_PHY;
1043 	if (phy == HME_PHYAD_EXTERNAL)
1044 		/* Set PHY select bit to get at external device */
1045 		v |= HME_MIF_CFG_PHY;
1046 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1047 
1048 	/* Construct the frame command */
1049 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1050 	    HME_MIF_FO_TAMSB |
1051 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1052 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
1053 	    (reg << HME_MIF_FO_REGAD_SHIFT);
1054 
1055 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
1056 	for (n = 0; n < 100; n++) {
1057 		DELAY(1);
1058 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
1059 		if (v & HME_MIF_FO_TALSB)
1060 			return (v & HME_MIF_FO_DATA);
1061 	}
1062 
1063 	printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1064 	return (0);
1065 }
1066 
1067 static void
1068 hme_mii_writereg(self, phy, reg, val)
1069 	struct device *self;
1070 	int phy, reg, val;
1071 {
1072 	struct hme_softc *sc = (void *)self;
1073 	bus_space_tag_t t = sc->sc_bustag;
1074 	bus_space_handle_t mif = sc->sc_mif;
1075 	int n;
1076 	u_int32_t v;
1077 
1078 	/* Select the desired PHY in the MIF configuration register */
1079 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1080 	/* Clear PHY select bit */
1081 	v &= ~HME_MIF_CFG_PHY;
1082 	if (phy == HME_PHYAD_EXTERNAL)
1083 		/* Set PHY select bit to get at external device */
1084 		v |= HME_MIF_CFG_PHY;
1085 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1086 
1087 	/* Construct the frame command */
1088 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
1089 	    HME_MIF_FO_TAMSB				|
1090 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
1091 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
1092 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
1093 	    (val & HME_MIF_FO_DATA);
1094 
1095 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
1096 	for (n = 0; n < 100; n++) {
1097 		DELAY(1);
1098 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
1099 		if (v & HME_MIF_FO_TALSB)
1100 			return;
1101 	}
1102 
1103 	printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1104 }
1105 
1106 static void
1107 hme_mii_statchg(dev)
1108 	struct device *dev;
1109 {
1110 	struct hme_softc *sc = (void *)dev;
1111 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1112 	int phy = sc->sc_phys[instance];
1113 	bus_space_tag_t t = sc->sc_bustag;
1114 	bus_space_handle_t mif = sc->sc_mif;
1115 	bus_space_handle_t mac = sc->sc_mac;
1116 	u_int32_t v;
1117 
1118 #ifdef HMEDEBUG
1119 	if (sc->sc_debug)
1120 		printf("hme_mii_statchg: status change: phy = %d\n", phy);
1121 #endif
1122 
1123 	/* Select the current PHY in the MIF configuration register */
1124 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1125 	v &= ~HME_MIF_CFG_PHY;
1126 	if (phy == HME_PHYAD_EXTERNAL)
1127 		v |= HME_MIF_CFG_PHY;
1128 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1129 
1130 	/* Set the MAC Full Duplex bit appropriately */
1131 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1132 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1133 		v |= HME_MAC_TXCFG_FULLDPLX;
1134 	else
1135 		v &= ~HME_MAC_TXCFG_FULLDPLX;
1136 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1137 
1138 	/* If an external transceiver is selected, enable its MII drivers */
1139 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
1140 	v &= ~HME_MAC_XIF_MIIENABLE;
1141 	if (phy == HME_PHYAD_EXTERNAL)
1142 		v |= HME_MAC_XIF_MIIENABLE;
1143 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1144 }
1145 
1146 int
1147 hme_mediachange(ifp)
1148 	struct ifnet *ifp;
1149 {
1150 	struct hme_softc *sc = ifp->if_softc;
1151 
1152 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1153 		return (EINVAL);
1154 
1155 	return (mii_mediachg(&sc->sc_mii));
1156 }
1157 
1158 void
1159 hme_mediastatus(ifp, ifmr)
1160 	struct ifnet *ifp;
1161 	struct ifmediareq *ifmr;
1162 {
1163 	struct hme_softc *sc = ifp->if_softc;
1164 
1165 	if ((ifp->if_flags & IFF_UP) == 0)
1166 		return;
1167 
1168 	mii_pollstat(&sc->sc_mii);
1169 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1170 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1171 }
1172 
1173 /*
1174  * Process an ioctl request.
1175  */
1176 int
1177 hme_ioctl(ifp, cmd, data)
1178 	struct ifnet *ifp;
1179 	u_long cmd;
1180 	caddr_t data;
1181 {
1182 	struct hme_softc *sc = ifp->if_softc;
1183 	struct ifaddr *ifa = (struct ifaddr *)data;
1184 	struct ifreq *ifr = (struct ifreq *)data;
1185 	int s, error = 0;
1186 
1187 	s = splnet();
1188 
1189 	switch (cmd) {
1190 
1191 	case SIOCSIFADDR:
1192 		ifp->if_flags |= IFF_UP;
1193 
1194 		switch (ifa->ifa_addr->sa_family) {
1195 #ifdef INET
1196 		case AF_INET:
1197 			hme_init(sc);
1198 			arp_ifinit(ifp, ifa);
1199 			break;
1200 #endif
1201 #ifdef NS
1202 		case AF_NS:
1203 		    {
1204 			struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1205 
1206 			if (ns_nullhost(*ina))
1207 				ina->x_host =
1208 				    *(union ns_host *)LLADDR(ifp->if_sadl);
1209 			else {
1210 				bcopy(ina->x_host.c_host,
1211 				    LLADDR(ifp->if_sadl),
1212 				    sizeof(sc->sc_enaddr));
1213 			}
1214 			/* Set new address. */
1215 			hme_init(sc);
1216 			break;
1217 		    }
1218 #endif
1219 		default:
1220 			hme_init(sc);
1221 			break;
1222 		}
1223 		break;
1224 
1225 	case SIOCSIFFLAGS:
1226 		if ((ifp->if_flags & IFF_UP) == 0 &&
1227 		    (ifp->if_flags & IFF_RUNNING) != 0) {
1228 			/*
1229 			 * If interface is marked down and it is running, then
1230 			 * stop it.
1231 			 */
1232 			hme_stop(sc);
1233 			ifp->if_flags &= ~IFF_RUNNING;
1234 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
1235 		    	   (ifp->if_flags & IFF_RUNNING) == 0) {
1236 			/*
1237 			 * If interface is marked up and it is stopped, then
1238 			 * start it.
1239 			 */
1240 			hme_init(sc);
1241 		} else if ((ifp->if_flags & IFF_UP) != 0) {
1242 			/*
1243 			 * Reset the interface to pick up changes in any other
1244 			 * flags that affect hardware registers.
1245 			 */
1246 			/*hme_stop(sc);*/
1247 			hme_init(sc);
1248 		}
1249 #ifdef HMEDEBUG
1250 		sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
1251 #endif
1252 		break;
1253 
1254 	case SIOCADDMULTI:
1255 	case SIOCDELMULTI:
1256 		error = (cmd == SIOCADDMULTI) ?
1257 		    ether_addmulti(ifr, &sc->sc_ethercom) :
1258 		    ether_delmulti(ifr, &sc->sc_ethercom);
1259 
1260 		if (error == ENETRESET) {
1261 			/*
1262 			 * Multicast list has changed; set the hardware filter
1263 			 * accordingly.
1264 			 */
1265 			hme_setladrf(sc);
1266 			error = 0;
1267 		}
1268 		break;
1269 
1270 	case SIOCGIFMEDIA:
1271 	case SIOCSIFMEDIA:
1272 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1273 		break;
1274 
1275 	default:
1276 		error = EINVAL;
1277 		break;
1278 	}
1279 
1280 	splx(s);
1281 	return (error);
1282 }
1283 
1284 void
1285 hme_shutdown(arg)
1286 	void *arg;
1287 {
1288 
1289 	hme_stop((struct hme_softc *)arg);
1290 }
1291 
1292 /*
1293  * Set up the logical address filter.
1294  */
1295 void
1296 hme_setladrf(sc)
1297 	struct hme_softc *sc;
1298 {
1299 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1300 	struct ether_multi *enm;
1301 	struct ether_multistep step;
1302 	struct ethercom *ec = &sc->sc_ethercom;
1303 	bus_space_tag_t t = sc->sc_bustag;
1304 	bus_space_handle_t mac = sc->sc_mac;
1305 	u_char *cp;
1306 	u_int32_t crc;
1307 	u_int32_t hash[4];
1308 	int len;
1309 
1310 	/*
1311 	 * Set up multicast address filter by passing all multicast addresses
1312 	 * through a crc generator, and then using the high order 6 bits as an
1313 	 * index into the 64 bit logical address filter.  The high order bit
1314 	 * selects the word, while the rest of the bits select the bit within
1315 	 * the word.
1316 	 */
1317 
1318 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
1319 		u_int32_t v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1320 		v |= HME_MAC_RXCFG_PMISC;
1321 		bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1322 		goto allmulti;
1323 	}
1324 
1325 	/* Clear hash table */
1326 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
1327 	ETHER_FIRST_MULTI(step, ec, enm);
1328 	while (enm != NULL) {
1329 		if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
1330 			/*
1331 			 * We must listen to a range of multicast addresses.
1332 			 * For now, just accept all multicasts, rather than
1333 			 * trying to set only those filter bits needed to match
1334 			 * the range.  (At this time, the only use of address
1335 			 * ranges is for IP multicast routing, for which the
1336 			 * range is big enough to require all bits set.)
1337 			 */
1338 			goto allmulti;
1339 		}
1340 
1341 		cp = enm->enm_addrlo;
1342 		crc = 0xffffffff;
1343 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1344 			int octet = *cp++;
1345 			int i;
1346 
1347 #define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
1348 			for (i = 0; i < 8; i++) {
1349 				if ((crc & 1) ^ (octet & 1)) {
1350 					crc >>= 1;
1351 					crc ^= MC_POLY_LE;
1352 				} else {
1353 					crc >>= 1;
1354 				}
1355 				octet >>= 1;
1356 			}
1357 		}
1358 		/* Just want the 6 most significant bits. */
1359 		crc >>= 26;
1360 
1361 		/* Set the corresponding bit in the filter. */
1362 		hash[crc >> 4] |= 1 << (crc & 0xf);
1363 
1364 		ETHER_NEXT_MULTI(step, enm);
1365 	}
1366 
1367 	/* Now load the hash table onto the chip */
1368 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1369 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1370 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1371 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1372 
1373 	ifp->if_flags &= ~IFF_ALLMULTI;
1374 	return;
1375 
1376 allmulti:
1377 	ifp->if_flags |= IFF_ALLMULTI;
1378 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, 0xffff);
1379 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, 0xffff);
1380 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, 0xffff);
1381 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, 0xffff);
1382 }
1383 
1384 /*
1385  * Routines for accessing the transmit and receive buffers.
1386  * The various CPU and adapter configurations supported by this
1387  * driver require three different access methods for buffers
1388  * and descriptors:
1389  *	(1) contig (contiguous data; no padding),
1390  *	(2) gap2 (two bytes of data followed by two bytes of padding),
1391  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
1392  */
1393 
1394 #if 0
1395 /*
1396  * contig: contiguous data with no padding.
1397  *
1398  * Buffers may have any alignment.
1399  */
1400 
1401 void
1402 hme_copytobuf_contig(sc, from, ri, len)
1403 	struct hme_softc *sc;
1404 	void *from;
1405 	int ri, len;
1406 {
1407 	volatile caddr_t buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1408 
1409 	/*
1410 	 * Just call bcopy() to do the work.
1411 	 */
1412 	bcopy(from, buf, len);
1413 }
1414 
1415 void
1416 hme_copyfrombuf_contig(sc, to, boff, len)
1417 	struct hme_softc *sc;
1418 	void *to;
1419 	int boff, len;
1420 {
1421 	volatile caddr_t buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1422 
1423 	/*
1424 	 * Just call bcopy() to do the work.
1425 	 */
1426 	bcopy(buf, to, len);
1427 }
1428 #endif
1429