xref: /netbsd-src/sys/dev/ic/hme.c (revision d909946ca08dceb44d7d0f22ec9488679695d976)
1 /*	$NetBSD: hme.c,v 1.93 2016/06/10 13:27:13 ozaki-r Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * HME Ethernet module driver.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.93 2016/06/10 13:27:13 ozaki-r Exp $");
38 
39 /* #define HMEDEBUG */
40 
41 #include "opt_inet.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/mbuf.h>
47 #include <sys/syslog.h>
48 #include <sys/socket.h>
49 #include <sys/device.h>
50 #include <sys/malloc.h>
51 #include <sys/ioctl.h>
52 #include <sys/errno.h>
53 #include <sys/rndsource.h>
54 
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_ether.h>
58 #include <net/if_media.h>
59 
60 #ifdef INET
61 #include <net/if_vlanvar.h>
62 #include <netinet/in.h>
63 #include <netinet/if_inarp.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip.h>
67 #include <netinet/tcp.h>
68 #include <netinet/udp.h>
69 #endif
70 
71 
72 #include <net/bpf.h>
73 #include <net/bpfdesc.h>
74 
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 
78 #include <sys/bus.h>
79 
80 #include <dev/ic/hmereg.h>
81 #include <dev/ic/hmevar.h>
82 
83 static void	hme_start(struct ifnet *);
84 static void	hme_stop(struct ifnet *, int);
85 static int	hme_ioctl(struct ifnet *, u_long, void *);
86 static void	hme_tick(void *);
87 static void	hme_watchdog(struct ifnet *);
88 static bool	hme_shutdown(device_t, int);
89 static int	hme_init(struct ifnet *);
90 static void	hme_meminit(struct hme_softc *);
91 static void	hme_mifinit(struct hme_softc *);
92 static void	hme_reset(struct hme_softc *);
93 static void	hme_chipreset(struct hme_softc *);
94 static void	hme_setladrf(struct hme_softc *);
95 
96 /* MII methods & callbacks */
97 static int	hme_mii_readreg(device_t, int, int);
98 static void	hme_mii_writereg(device_t, int, int, int);
99 static void	hme_mii_statchg(struct ifnet *);
100 
101 static int	hme_mediachange(struct ifnet *);
102 
103 static struct mbuf *hme_get(struct hme_softc *, int, uint32_t);
104 static int	hme_put(struct hme_softc *, int, struct mbuf *);
105 static void	hme_read(struct hme_softc *, int, uint32_t);
106 static int	hme_eint(struct hme_softc *, u_int);
107 static int	hme_rint(struct hme_softc *);
108 static int	hme_tint(struct hme_softc *);
109 
110 #if 0
111 /* Default buffer copy routines */
112 static void	hme_copytobuf_contig(struct hme_softc *, void *, int, int);
113 static void	hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
114 #endif
115 
116 void
117 hme_config(struct hme_softc *sc)
118 {
119 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
120 	struct mii_data *mii = &sc->sc_mii;
121 	struct mii_softc *child;
122 	bus_dma_tag_t dmatag = sc->sc_dmatag;
123 	bus_dma_segment_t seg;
124 	bus_size_t size;
125 	int rseg, error;
126 
127 	/*
128 	 * HME common initialization.
129 	 *
130 	 * hme_softc fields that must be initialized by the front-end:
131 	 *
132 	 * the bus tag:
133 	 *	sc_bustag
134 	 *
135 	 * the DMA bus tag:
136 	 *	sc_dmatag
137 	 *
138 	 * the bus handles:
139 	 *	sc_seb		(Shared Ethernet Block registers)
140 	 *	sc_erx		(Receiver Unit registers)
141 	 *	sc_etx		(Transmitter Unit registers)
142 	 *	sc_mac		(MAC registers)
143 	 *	sc_mif		(Management Interface registers)
144 	 *
145 	 * the maximum bus burst size:
146 	 *	sc_burst
147 	 *
148 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
149 	 *	rb_membase, rb_dmabase)
150 	 *
151 	 * the local Ethernet address:
152 	 *	sc_enaddr
153 	 *
154 	 */
155 
156 	/* Make sure the chip is stopped. */
157 	hme_chipreset(sc);
158 
159 	/*
160 	 * Allocate descriptors and buffers
161 	 * XXX - do all this differently.. and more configurably,
162 	 * eg. use things as `dma_load_mbuf()' on transmit,
163 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
164 	 *     all the time) on the receiver side.
165 	 *
166 	 * Note: receive buffers must be 64-byte aligned.
167 	 * Also, apparently, the buffers must extend to a DMA burst
168 	 * boundary beyond the maximum packet size.
169 	 */
170 #define _HME_NDESC	128
171 #define _HME_BUFSZ	1600
172 
173 	/* Note: the # of descriptors must be a multiple of 16 */
174 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
175 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
176 
177 	/*
178 	 * Allocate DMA capable memory
179 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
180 	 * take this into account when calculating the size. Note that
181 	 * the maximum number of descriptors (256) occupies 2048 bytes,
182 	 * so we allocate that much regardless of _HME_NDESC.
183 	 */
184 	size =	2048 +					/* TX descriptors */
185 		2048 +					/* RX descriptors */
186 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
187 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* RX buffers */
188 
189 	/* Allocate DMA buffer */
190 	if ((error = bus_dmamem_alloc(dmatag, size,
191 				      2048, 0,
192 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
193 		aprint_error_dev(sc->sc_dev, "DMA buffer alloc error %d\n",
194 			error);
195 		return;
196 	}
197 
198 	/* Map DMA memory in CPU addressable space */
199 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
200 				    &sc->sc_rb.rb_membase,
201 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
202 		aprint_error_dev(sc->sc_dev, "DMA buffer map error %d\n",
203 			error);
204 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
205 		bus_dmamem_free(dmatag, &seg, rseg);
206 		return;
207 	}
208 
209 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
210 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
211 		aprint_error_dev(sc->sc_dev, "DMA map create error %d\n",
212 			error);
213 		return;
214 	}
215 
216 	/* Load the buffer */
217 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
218 	    sc->sc_rb.rb_membase, size, NULL,
219 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
220 		aprint_error_dev(sc->sc_dev, "DMA buffer map load error %d\n",
221 			error);
222 		bus_dmamem_free(dmatag, &seg, rseg);
223 		return;
224 	}
225 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
226 
227 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
228 	    ether_sprintf(sc->sc_enaddr));
229 
230 	/* Initialize ifnet structure. */
231 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
232 	ifp->if_softc = sc;
233 	ifp->if_start = hme_start;
234 	ifp->if_stop = hme_stop;
235 	ifp->if_ioctl = hme_ioctl;
236 	ifp->if_init = hme_init;
237 	ifp->if_watchdog = hme_watchdog;
238 	ifp->if_flags =
239 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
240 	sc->sc_if_flags = ifp->if_flags;
241 	ifp->if_capabilities |=
242 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
243 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
244 	IFQ_SET_READY(&ifp->if_snd);
245 
246 	/* Initialize ifmedia structures and MII info */
247 	mii->mii_ifp = ifp;
248 	mii->mii_readreg = hme_mii_readreg;
249 	mii->mii_writereg = hme_mii_writereg;
250 	mii->mii_statchg = hme_mii_statchg;
251 
252 	sc->sc_ethercom.ec_mii = mii;
253 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
254 
255 	hme_mifinit(sc);
256 
257 	mii_attach(sc->sc_dev, mii, 0xffffffff,
258 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
259 
260 	child = LIST_FIRST(&mii->mii_phys);
261 	if (child == NULL) {
262 		/* No PHY attached */
263 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
264 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
265 	} else {
266 		/*
267 		 * Walk along the list of attached MII devices and
268 		 * establish an `MII instance' to `phy number'
269 		 * mapping. We'll use this mapping in media change
270 		 * requests to determine which phy to use to program
271 		 * the MIF configuration register.
272 		 */
273 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
274 			/*
275 			 * Note: we support just two PHYs: the built-in
276 			 * internal device and an external on the MII
277 			 * connector.
278 			 */
279 			if (child->mii_phy > 1 || child->mii_inst > 1) {
280 				aprint_error_dev(sc->sc_dev,
281 				    "cannot accommodate MII device %s"
282 				       " at phy %d, instance %d\n",
283 				       device_xname(child->mii_dev),
284 				       child->mii_phy, child->mii_inst);
285 				continue;
286 			}
287 
288 			sc->sc_phys[child->mii_inst] = child->mii_phy;
289 		}
290 
291 		/*
292 		 * Set the default media to auto negotiation if the phy has
293 		 * the auto negotiation capability.
294 		 * XXX; What to do otherwise?
295 		 */
296 		if (ifmedia_match(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0))
297 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
298 /*
299 		else
300 			ifmedia_set(&sc->sc_mii.mii_media, sc->sc_defaultmedia);
301 */
302 	}
303 
304 	/* claim 802.1q capability */
305 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
306 
307 	/* Attach the interface. */
308 	if_attach(ifp);
309 	ether_ifattach(ifp, sc->sc_enaddr);
310 
311 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, hme_shutdown))
312 		pmf_class_network_register(sc->sc_dev, ifp);
313 	else
314 		aprint_error_dev(sc->sc_dev,
315 		    "couldn't establish power handler\n");
316 
317 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
318 			  RND_TYPE_NET, RND_FLAG_DEFAULT);
319 
320 	callout_init(&sc->sc_tick_ch, 0);
321 }
322 
323 void
324 hme_tick(void *arg)
325 {
326 	struct hme_softc *sc = arg;
327 	int s;
328 
329 	s = splnet();
330 	mii_tick(&sc->sc_mii);
331 	splx(s);
332 
333 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
334 }
335 
336 void
337 hme_reset(struct hme_softc *sc)
338 {
339 	int s;
340 
341 	s = splnet();
342 	(void)hme_init(&sc->sc_ethercom.ec_if);
343 	splx(s);
344 }
345 
346 void
347 hme_chipreset(struct hme_softc *sc)
348 {
349 	bus_space_tag_t t = sc->sc_bustag;
350 	bus_space_handle_t seb = sc->sc_seb;
351 	int n;
352 
353 	/* Mask all interrupts */
354 	bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
355 
356 	/* Reset transmitter and receiver */
357 	bus_space_write_4(t, seb, HME_SEBI_RESET,
358 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
359 
360 	for (n = 0; n < 20; n++) {
361 		uint32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
362 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
363 			return;
364 		DELAY(20);
365 	}
366 
367 	printf("%s: %s: reset failed\n", device_xname(sc->sc_dev), __func__);
368 }
369 
370 void
371 hme_stop(struct ifnet *ifp, int disable)
372 {
373 	struct hme_softc *sc;
374 
375 	sc = ifp->if_softc;
376 
377 	ifp->if_timer = 0;
378 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
379 
380 	callout_stop(&sc->sc_tick_ch);
381 	mii_down(&sc->sc_mii);
382 
383 	hme_chipreset(sc);
384 }
385 
386 void
387 hme_meminit(struct hme_softc *sc)
388 {
389 	bus_addr_t txbufdma, rxbufdma;
390 	bus_addr_t dma;
391 	char *p;
392 	unsigned int ntbuf, nrbuf, i;
393 	struct hme_ring *hr = &sc->sc_rb;
394 
395 	p = hr->rb_membase;
396 	dma = hr->rb_dmabase;
397 
398 	ntbuf = hr->rb_ntbuf;
399 	nrbuf = hr->rb_nrbuf;
400 
401 	/*
402 	 * Allocate transmit descriptors
403 	 */
404 	hr->rb_txd = p;
405 	hr->rb_txddma = dma;
406 	p += ntbuf * HME_XD_SIZE;
407 	dma += ntbuf * HME_XD_SIZE;
408 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
409 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
410 	p = (void *)roundup((u_long)p, 2048);
411 
412 	/*
413 	 * Allocate receive descriptors
414 	 */
415 	hr->rb_rxd = p;
416 	hr->rb_rxddma = dma;
417 	p += nrbuf * HME_XD_SIZE;
418 	dma += nrbuf * HME_XD_SIZE;
419 	/* Again move forward to the next 2048 byte boundary.*/
420 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
421 	p = (void *)roundup((u_long)p, 2048);
422 
423 
424 	/*
425 	 * Allocate transmit buffers
426 	 */
427 	hr->rb_txbuf = p;
428 	txbufdma = dma;
429 	p += ntbuf * _HME_BUFSZ;
430 	dma += ntbuf * _HME_BUFSZ;
431 
432 	/*
433 	 * Allocate receive buffers
434 	 */
435 	hr->rb_rxbuf = p;
436 	rxbufdma = dma;
437 	p += nrbuf * _HME_BUFSZ;
438 	dma += nrbuf * _HME_BUFSZ;
439 
440 	/*
441 	 * Initialize transmit buffer descriptors
442 	 */
443 	for (i = 0; i < ntbuf; i++) {
444 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
445 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
446 	}
447 
448 	/*
449 	 * Initialize receive buffer descriptors
450 	 */
451 	for (i = 0; i < nrbuf; i++) {
452 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
453 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
454 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
455 	}
456 
457 	hr->rb_tdhead = hr->rb_tdtail = 0;
458 	hr->rb_td_nbusy = 0;
459 	hr->rb_rdtail = 0;
460 }
461 
462 /*
463  * Initialization of interface; set up initialization block
464  * and transmit/receive descriptor rings.
465  */
466 int
467 hme_init(struct ifnet *ifp)
468 {
469 	struct hme_softc *sc = ifp->if_softc;
470 	bus_space_tag_t t = sc->sc_bustag;
471 	bus_space_handle_t seb = sc->sc_seb;
472 	bus_space_handle_t etx = sc->sc_etx;
473 	bus_space_handle_t erx = sc->sc_erx;
474 	bus_space_handle_t mac = sc->sc_mac;
475 	uint8_t *ea;
476 	uint32_t v;
477 	int rc;
478 
479 	/*
480 	 * Initialization sequence. The numbered steps below correspond
481 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
482 	 * Channel Engine manual (part of the PCIO manual).
483 	 * See also the STP2002-STQ document from Sun Microsystems.
484 	 */
485 
486 	/* step 1 & 2. Reset the Ethernet Channel */
487 	hme_stop(ifp, 0);
488 
489 	/* Re-initialize the MIF */
490 	hme_mifinit(sc);
491 
492 	/* Call MI reset function if any */
493 	if (sc->sc_hwreset)
494 		(*sc->sc_hwreset)(sc);
495 
496 #if 0
497 	/* Mask all MIF interrupts, just in case */
498 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
499 #endif
500 
501 	/* step 3. Setup data structures in host memory */
502 	hme_meminit(sc);
503 
504 	/* step 4. TX MAC registers & counters */
505 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
506 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
507 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
508 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
509 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
510 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
511 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
512 	sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
513 
514 	/* Load station MAC address */
515 	ea = sc->sc_enaddr;
516 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
517 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
518 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
519 
520 	/*
521 	 * Init seed for backoff
522 	 * (source suggested by manual: low 10 bits of MAC address)
523 	 */
524 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
525 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
526 
527 
528 	/* Note: Accepting power-on default for other MAC registers here.. */
529 
530 
531 	/* step 5. RX MAC registers & counters */
532 	hme_setladrf(sc);
533 
534 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
535 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
536 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
537 
538 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
539 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
540 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
541 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
542 
543 	/* step 8. Global Configuration & Interrupt Mask */
544 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
545 			~(
546 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
547 			  HME_SEB_STAT_HOSTTOTX |
548 			  HME_SEB_STAT_RXTOHOST |
549 			  HME_SEB_STAT_TXALL |
550 			  HME_SEB_STAT_TXPERR |
551 			  HME_SEB_STAT_RCNTEXP |
552 			  HME_SEB_STAT_MIFIRQ |
553 			  HME_SEB_STAT_ALL_ERRORS ));
554 
555 	switch (sc->sc_burst) {
556 	default:
557 		v = 0;
558 		break;
559 	case 16:
560 		v = HME_SEB_CFG_BURST16;
561 		break;
562 	case 32:
563 		v = HME_SEB_CFG_BURST32;
564 		break;
565 	case 64:
566 		v = HME_SEB_CFG_BURST64;
567 		break;
568 	}
569 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
570 
571 	/* step 9. ETX Configuration: use mostly default values */
572 
573 	/* Enable DMA */
574 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
575 	v |= HME_ETX_CFG_DMAENABLE;
576 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
577 
578 	/* Transmit Descriptor ring size: in increments of 16 */
579 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
580 
581 
582 	/* step 10. ERX Configuration */
583 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
584 
585 	/* Encode Receive Descriptor ring size: four possible values */
586 	switch (_HME_NDESC /*XXX*/) {
587 	case 32:
588 		v |= HME_ERX_CFG_RINGSIZE32;
589 		break;
590 	case 64:
591 		v |= HME_ERX_CFG_RINGSIZE64;
592 		break;
593 	case 128:
594 		v |= HME_ERX_CFG_RINGSIZE128;
595 		break;
596 	case 256:
597 		v |= HME_ERX_CFG_RINGSIZE256;
598 		break;
599 	default:
600 		printf("hme: invalid Receive Descriptor ring size\n");
601 		break;
602 	}
603 
604 	/* Enable DMA */
605 	v |= HME_ERX_CFG_DMAENABLE;
606 
607 	/* set h/w rx checksum start offset (# of half-words) */
608 #ifdef INET
609 	v |= (((ETHER_HDR_LEN + sizeof(struct ip)) / sizeof(uint16_t))
610 		<< HME_ERX_CFG_CSUMSHIFT) &
611 		HME_ERX_CFG_CSUMSTART;
612 #endif
613 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
614 
615 	/* step 11. XIF Configuration */
616 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
617 	v |= HME_MAC_XIF_OE;
618 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
619 
620 	/* step 12. RX_MAC Configuration Register */
621 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
622 	v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
623 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
624 
625 	/* step 13. TX_MAC Configuration Register */
626 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
627 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
628 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
629 
630 	/* step 14. Issue Transmit Pending command */
631 
632 	/* Call MI initialization function if any */
633 	if (sc->sc_hwinit)
634 		(*sc->sc_hwinit)(sc);
635 
636 	/* Set the current media. */
637 	if ((rc = hme_mediachange(ifp)) != 0)
638 		return rc;
639 
640 	/* Start the one second timer. */
641 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
642 
643 	ifp->if_flags |= IFF_RUNNING;
644 	ifp->if_flags &= ~IFF_OACTIVE;
645 	sc->sc_if_flags = ifp->if_flags;
646 	ifp->if_timer = 0;
647 	hme_start(ifp);
648 	return 0;
649 }
650 
651 /*
652  * Routine to copy from mbuf chain to transmit buffer in
653  * network buffer memory.
654  * Returns the amount of data copied.
655  */
656 int
657 hme_put(struct hme_softc *sc, int ri, struct mbuf *m)
658 	/* ri:			 Ring index */
659 {
660 	struct mbuf *n;
661 	int len, tlen = 0;
662 	char *bp;
663 
664 	bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
665 	for (; m; m = n) {
666 		len = m->m_len;
667 		if (len == 0) {
668 			MFREE(m, n);
669 			continue;
670 		}
671 		memcpy(bp, mtod(m, void *), len);
672 		bp += len;
673 		tlen += len;
674 		MFREE(m, n);
675 	}
676 	return (tlen);
677 }
678 
679 /*
680  * Pull data off an interface.
681  * Len is length of data, with local net header stripped.
682  * We copy the data into mbufs.  When full cluster sized units are present
683  * we copy into clusters.
684  */
685 struct mbuf *
686 hme_get(struct hme_softc *sc, int ri, uint32_t flags)
687 {
688 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
689 	struct mbuf *m, *m0, *newm;
690 	char *bp;
691 	int len, totlen;
692 #ifdef INET
693 	int csum_flags;
694 #endif
695 
696 	totlen = HME_XD_DECODE_RSIZE(flags);
697 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
698 	if (m0 == 0)
699 		return (0);
700 	m_set_rcvif(m0, ifp);
701 	m0->m_pkthdr.len = totlen;
702 	len = MHLEN;
703 	m = m0;
704 
705 	bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
706 
707 	while (totlen > 0) {
708 		if (totlen >= MINCLSIZE) {
709 			MCLGET(m, M_DONTWAIT);
710 			if ((m->m_flags & M_EXT) == 0)
711 				goto bad;
712 			len = MCLBYTES;
713 		}
714 
715 		if (m == m0) {
716 			char *newdata = (char *)
717 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
718 			    sizeof(struct ether_header);
719 			len -= newdata - m->m_data;
720 			m->m_data = newdata;
721 		}
722 
723 		m->m_len = len = min(totlen, len);
724 		memcpy(mtod(m, void *), bp, len);
725 		bp += len;
726 
727 		totlen -= len;
728 		if (totlen > 0) {
729 			MGET(newm, M_DONTWAIT, MT_DATA);
730 			if (newm == 0)
731 				goto bad;
732 			len = MLEN;
733 			m = m->m_next = newm;
734 		}
735 	}
736 
737 #ifdef INET
738 	/* hardware checksum */
739 	csum_flags = 0;
740 	if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
741 		struct ether_header *eh;
742 		struct ether_vlan_header *evh;
743 		struct ip *ip;
744 		struct udphdr *uh;
745 		uint16_t *opts;
746 		int32_t hlen, pktlen;
747 		uint32_t csum_data;
748 
749 		eh = mtod(m0, struct ether_header *);
750 		if (ntohs(eh->ether_type) == ETHERTYPE_IP) {
751 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN);
752 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
753 		} else if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
754 			evh = (struct ether_vlan_header *)eh;
755 			if (ntohs(evh->evl_proto != ETHERTYPE_IP))
756 				goto swcsum;
757 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN +
758 			    ETHER_VLAN_ENCAP_LEN);
759 			pktlen = m0->m_pkthdr.len -
760 			    ETHER_HDR_LEN - ETHER_VLAN_ENCAP_LEN;
761 		} else
762 			goto swcsum;
763 
764 		/* IPv4 only */
765 		if (ip->ip_v != IPVERSION)
766 			goto swcsum;
767 
768 		hlen = ip->ip_hl << 2;
769 		if (hlen < sizeof(struct ip))
770 			goto swcsum;
771 
772 		/*
773 		 * bail if too short, has random trailing garbage, truncated,
774 		 * fragment, or has ethernet pad.
775 		 */
776 		if (ntohs(ip->ip_len) < hlen ||
777 		    ntohs(ip->ip_len) != pktlen ||
778 		    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
779 			goto swcsum;
780 
781 		switch (ip->ip_p) {
782 		case IPPROTO_TCP:
783 			if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0)
784 				goto swcsum;
785 			if (pktlen < (hlen + sizeof(struct tcphdr)))
786 				goto swcsum;
787 			csum_flags =
788 			    M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
789 			break;
790 		case IPPROTO_UDP:
791 			if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0)
792 				goto swcsum;
793 			if (pktlen < (hlen + sizeof(struct udphdr)))
794 				goto swcsum;
795 			uh = (struct udphdr *)((char *)ip + hlen);
796 			/* no checksum */
797 			if (uh->uh_sum == 0)
798 				goto swcsum;
799 			csum_flags =
800 			    M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
801 			break;
802 		default:
803 			goto swcsum;
804 		}
805 
806 		/* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
807 		csum_data = ~flags & HME_XD_RXCKSUM;
808 
809 		/*
810 		 * If data offset is different from RX cksum start offset,
811 		 * we have to deduct them.
812 		 */
813 		hlen = ((char *)ip + hlen) -
814 		    ((char *)eh + ETHER_HDR_LEN + sizeof(struct ip));
815 		if (hlen > 1) {
816 			uint32_t optsum;
817 
818 			optsum = 0;
819 			opts = (uint16_t *)((char *)eh +
820 			    ETHER_HDR_LEN + sizeof(struct ip));
821 
822 			while (hlen > 1) {
823 				optsum += ntohs(*opts++);
824 				hlen -= 2;
825 			}
826 			while (optsum >> 16)
827 				optsum = (optsum >> 16) + (optsum & 0xffff);
828 
829 			/* Deduct the ip opts sum from the hwsum. */
830 			csum_data += (uint16_t)~optsum;
831 
832 			while (csum_data >> 16)
833 				csum_data =
834 				    (csum_data >> 16) + (csum_data & 0xffff);
835 		}
836 		m0->m_pkthdr.csum_data = csum_data;
837 	}
838 swcsum:
839 	m0->m_pkthdr.csum_flags = csum_flags;
840 #endif
841 
842 	return (m0);
843 
844 bad:
845 	m_freem(m0);
846 	return (0);
847 }
848 
849 /*
850  * Pass a packet to the higher levels.
851  */
852 void
853 hme_read(struct hme_softc *sc, int ix, uint32_t flags)
854 {
855 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
856 	struct mbuf *m;
857 	int len;
858 
859 	len = HME_XD_DECODE_RSIZE(flags);
860 	if (len <= sizeof(struct ether_header) ||
861 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
862 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
863 	    ETHERMTU + sizeof(struct ether_header))) {
864 #ifdef HMEDEBUG
865 		printf("%s: invalid packet size %d; dropping\n",
866 		    device_xname(sc->sc_dev), len);
867 #endif
868 		ifp->if_ierrors++;
869 		return;
870 	}
871 
872 	/* Pull packet off interface. */
873 	m = hme_get(sc, ix, flags);
874 	if (m == 0) {
875 		ifp->if_ierrors++;
876 		return;
877 	}
878 
879 	ifp->if_ipackets++;
880 
881 	/*
882 	 * Check if there's a BPF listener on this interface.
883 	 * If so, hand off the raw packet to BPF.
884 	 */
885 	bpf_mtap(ifp, m);
886 
887 	/* Pass the packet up. */
888 	if_percpuq_enqueue(ifp->if_percpuq, m);
889 }
890 
891 void
892 hme_start(struct ifnet *ifp)
893 {
894 	struct hme_softc *sc = ifp->if_softc;
895 	void *txd = sc->sc_rb.rb_txd;
896 	struct mbuf *m;
897 	unsigned int txflags;
898 	unsigned int ri, len, obusy;
899 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
900 
901 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
902 		return;
903 
904 	ri = sc->sc_rb.rb_tdhead;
905 	obusy = sc->sc_rb.rb_td_nbusy;
906 
907 	for (;;) {
908 		IFQ_DEQUEUE(&ifp->if_snd, m);
909 		if (m == 0)
910 			break;
911 
912 		/*
913 		 * If BPF is listening on this interface, let it see the
914 		 * packet before we commit it to the wire.
915 		 */
916 		bpf_mtap(ifp, m);
917 
918 #ifdef INET
919 		/* collect bits for h/w csum, before hme_put frees the mbuf */
920 		if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
921 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
922 			struct ether_header *eh;
923 			uint16_t offset, start;
924 
925 			eh = mtod(m, struct ether_header *);
926 			switch (ntohs(eh->ether_type)) {
927 			case ETHERTYPE_IP:
928 				start = ETHER_HDR_LEN;
929 				break;
930 			case ETHERTYPE_VLAN:
931 				start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
932 				break;
933 			default:
934 				/* unsupported, drop it */
935 				m_free(m);
936 				continue;
937 			}
938 			start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
939 			offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
940 			    + start;
941 			txflags = HME_XD_TXCKSUM |
942 				  (offset << HME_XD_TXCSSTUFFSHIFT) |
943 		  		  (start << HME_XD_TXCSSTARTSHIFT);
944 		} else
945 #endif
946 			txflags = 0;
947 
948 		/*
949 		 * Copy the mbuf chain into the transmit buffer.
950 		 */
951 		len = hme_put(sc, ri, m);
952 
953 		/*
954 		 * Initialize transmit registers and start transmission
955 		 */
956 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
957 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
958 			HME_XD_ENCODE_TSIZE(len) | txflags);
959 
960 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
961 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
962 				  HME_ETX_TP_DMAWAKEUP);
963 
964 		if (++ri == ntbuf)
965 			ri = 0;
966 
967 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
968 			ifp->if_flags |= IFF_OACTIVE;
969 			break;
970 		}
971 	}
972 
973 	if (obusy != sc->sc_rb.rb_td_nbusy) {
974 		sc->sc_rb.rb_tdhead = ri;
975 		ifp->if_timer = 5;
976 	}
977 }
978 
979 /*
980  * Transmit interrupt.
981  */
982 int
983 hme_tint(struct hme_softc *sc)
984 {
985 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
986 	bus_space_tag_t t = sc->sc_bustag;
987 	bus_space_handle_t mac = sc->sc_mac;
988 	unsigned int ri, txflags;
989 
990 	/*
991 	 * Unload collision counters
992 	 */
993 	ifp->if_collisions +=
994 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
995 		bus_space_read_4(t, mac, HME_MACI_FCCNT);
996 	ifp->if_oerrors +=
997 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
998 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
999 
1000 	/*
1001 	 * then clear the hardware counters.
1002 	 */
1003 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
1004 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
1005 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
1006 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
1007 
1008 	/* Fetch current position in the transmit ring */
1009 	ri = sc->sc_rb.rb_tdtail;
1010 
1011 	for (;;) {
1012 		if (sc->sc_rb.rb_td_nbusy <= 0)
1013 			break;
1014 
1015 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
1016 
1017 		if (txflags & HME_XD_OWN)
1018 			break;
1019 
1020 		ifp->if_flags &= ~IFF_OACTIVE;
1021 		ifp->if_opackets++;
1022 
1023 		if (++ri == sc->sc_rb.rb_ntbuf)
1024 			ri = 0;
1025 
1026 		--sc->sc_rb.rb_td_nbusy;
1027 	}
1028 
1029 	/* Update ring */
1030 	sc->sc_rb.rb_tdtail = ri;
1031 
1032 	hme_start(ifp);
1033 
1034 	if (sc->sc_rb.rb_td_nbusy == 0)
1035 		ifp->if_timer = 0;
1036 
1037 	return (1);
1038 }
1039 
1040 /*
1041  * Receive interrupt.
1042  */
1043 int
1044 hme_rint(struct hme_softc *sc)
1045 {
1046 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1047 	bus_space_tag_t t = sc->sc_bustag;
1048 	bus_space_handle_t mac = sc->sc_mac;
1049 	void *xdr = sc->sc_rb.rb_rxd;
1050 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
1051 	unsigned int ri;
1052 	uint32_t flags;
1053 
1054 	ri = sc->sc_rb.rb_rdtail;
1055 
1056 	/*
1057 	 * Process all buffers with valid data.
1058 	 */
1059 	for (;;) {
1060 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
1061 		if (flags & HME_XD_OWN)
1062 			break;
1063 
1064 		if (flags & HME_XD_OFL) {
1065 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
1066 					device_xname(sc->sc_dev), ri, flags);
1067 		} else
1068 			hme_read(sc, ri, flags);
1069 
1070 		/* This buffer can be used by the hardware again */
1071 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
1072 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
1073 
1074 		if (++ri == nrbuf)
1075 			ri = 0;
1076 	}
1077 
1078 	sc->sc_rb.rb_rdtail = ri;
1079 
1080 	/* Read error counters ... */
1081 	ifp->if_ierrors +=
1082 	    bus_space_read_4(t, mac, HME_MACI_STAT_LCNT) +
1083 	    bus_space_read_4(t, mac, HME_MACI_STAT_ACNT) +
1084 	    bus_space_read_4(t, mac, HME_MACI_STAT_CCNT) +
1085 	    bus_space_read_4(t, mac, HME_MACI_STAT_CVCNT);
1086 
1087 	/* ... then clear the hardware counters. */
1088 	bus_space_write_4(t, mac, HME_MACI_STAT_LCNT, 0);
1089 	bus_space_write_4(t, mac, HME_MACI_STAT_ACNT, 0);
1090 	bus_space_write_4(t, mac, HME_MACI_STAT_CCNT, 0);
1091 	bus_space_write_4(t, mac, HME_MACI_STAT_CVCNT, 0);
1092 	return (1);
1093 }
1094 
1095 int
1096 hme_eint(struct hme_softc *sc, u_int status)
1097 {
1098 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1099 	char bits[128];
1100 
1101 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
1102 		bus_space_tag_t t = sc->sc_bustag;
1103 		bus_space_handle_t mif = sc->sc_mif;
1104 		uint32_t cf, st, sm;
1105 		cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
1106 		st = bus_space_read_4(t, mif, HME_MIFI_STAT);
1107 		sm = bus_space_read_4(t, mif, HME_MIFI_SM);
1108 		printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
1109 			device_xname(sc->sc_dev), cf, st, sm);
1110 		return (1);
1111 	}
1112 
1113 	/* Receive error counters rolled over */
1114 	if (status & HME_SEB_STAT_ACNTEXP)
1115 		ifp->if_ierrors += 0xff;
1116 	if (status & HME_SEB_STAT_CCNTEXP)
1117 		ifp->if_ierrors += 0xff;
1118 	if (status & HME_SEB_STAT_LCNTEXP)
1119 		ifp->if_ierrors += 0xff;
1120 	if (status & HME_SEB_STAT_CVCNTEXP)
1121 		ifp->if_ierrors += 0xff;
1122 
1123 	/* RXTERR locks up the interface, so do a reset */
1124 	if (status & HME_SEB_STAT_RXTERR)
1125 		hme_reset(sc);
1126 
1127 	snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
1128 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1129 
1130 	return (1);
1131 }
1132 
1133 int
1134 hme_intr(void *v)
1135 {
1136 	struct hme_softc *sc = v;
1137 	bus_space_tag_t t = sc->sc_bustag;
1138 	bus_space_handle_t seb = sc->sc_seb;
1139 	uint32_t status;
1140 	int r = 0;
1141 
1142 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
1143 
1144 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
1145 		r |= hme_eint(sc, status);
1146 
1147 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
1148 		r |= hme_tint(sc);
1149 
1150 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
1151 		r |= hme_rint(sc);
1152 
1153 	rnd_add_uint32(&sc->rnd_source, status);
1154 
1155 	return (r);
1156 }
1157 
1158 
1159 void
1160 hme_watchdog(struct ifnet *ifp)
1161 {
1162 	struct hme_softc *sc = ifp->if_softc;
1163 
1164 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1165 	++ifp->if_oerrors;
1166 
1167 	hme_reset(sc);
1168 }
1169 
1170 /*
1171  * Initialize the MII Management Interface
1172  */
1173 void
1174 hme_mifinit(struct hme_softc *sc)
1175 {
1176 	bus_space_tag_t t = sc->sc_bustag;
1177 	bus_space_handle_t mif = sc->sc_mif;
1178 	bus_space_handle_t mac = sc->sc_mac;
1179 	int instance, phy;
1180 	uint32_t v;
1181 
1182 	if (sc->sc_mii.mii_media.ifm_cur != NULL) {
1183 		instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1184 		phy = sc->sc_phys[instance];
1185 	} else
1186 		/* No media set yet, pick phy arbitrarily.. */
1187 		phy = HME_PHYAD_EXTERNAL;
1188 
1189 	/* Configure the MIF in frame mode, no poll, current phy select */
1190 	v = 0;
1191 	if (phy == HME_PHYAD_EXTERNAL)
1192 		v |= HME_MIF_CFG_PHY;
1193 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1194 
1195 	/* If an external transceiver is selected, enable its MII drivers */
1196 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
1197 	v &= ~HME_MAC_XIF_MIIENABLE;
1198 	if (phy == HME_PHYAD_EXTERNAL)
1199 		v |= HME_MAC_XIF_MIIENABLE;
1200 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1201 }
1202 
1203 /*
1204  * MII interface
1205  */
1206 static int
1207 hme_mii_readreg(device_t self, int phy, int reg)
1208 {
1209 	struct hme_softc *sc = device_private(self);
1210 	bus_space_tag_t t = sc->sc_bustag;
1211 	bus_space_handle_t mif = sc->sc_mif;
1212 	bus_space_handle_t mac = sc->sc_mac;
1213 	uint32_t v, xif_cfg, mifi_cfg;
1214 	int n;
1215 
1216 	/* We can at most have two PHYs */
1217 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1218 		return (0);
1219 
1220 	/* Select the desired PHY in the MIF configuration register */
1221 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1222 	v &= ~HME_MIF_CFG_PHY;
1223 	if (phy == HME_PHYAD_EXTERNAL)
1224 		v |= HME_MIF_CFG_PHY;
1225 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1226 
1227 	/* Enable MII drivers on external transceiver */
1228 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1229 	if (phy == HME_PHYAD_EXTERNAL)
1230 		v |= HME_MAC_XIF_MIIENABLE;
1231 	else
1232 		v &= ~HME_MAC_XIF_MIIENABLE;
1233 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1234 
1235 #if 0
1236 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1237 	/*
1238 	 * Check whether a transceiver is connected by testing
1239 	 * the MIF configuration register's MDI_X bits. Note that
1240 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1241 	 */
1242 	mif_mdi_bit = 1 << (8 + (1 - phy));
1243 	delay(100);
1244 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1245 	if ((v & mif_mdi_bit) == 0)
1246 		return (0);
1247 #endif
1248 
1249 	/* Construct the frame command */
1250 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1251 	    HME_MIF_FO_TAMSB |
1252 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1253 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
1254 	    (reg << HME_MIF_FO_REGAD_SHIFT);
1255 
1256 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
1257 	for (n = 0; n < 100; n++) {
1258 		DELAY(1);
1259 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
1260 		if (v & HME_MIF_FO_TALSB) {
1261 			v &= HME_MIF_FO_DATA;
1262 			goto out;
1263 		}
1264 	}
1265 
1266 	v = 0;
1267 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1268 
1269 out:
1270 	/* Restore MIFI_CFG register */
1271 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1272 	/* Restore XIF register */
1273 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1274 	return (v);
1275 }
1276 
1277 static void
1278 hme_mii_writereg(device_t self, int phy, int reg, int val)
1279 {
1280 	struct hme_softc *sc = device_private(self);
1281 	bus_space_tag_t t = sc->sc_bustag;
1282 	bus_space_handle_t mif = sc->sc_mif;
1283 	bus_space_handle_t mac = sc->sc_mac;
1284 	uint32_t v, xif_cfg, mifi_cfg;
1285 	int n;
1286 
1287 	/* We can at most have two PHYs */
1288 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1289 		return;
1290 
1291 	/* Select the desired PHY in the MIF configuration register */
1292 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1293 	v &= ~HME_MIF_CFG_PHY;
1294 	if (phy == HME_PHYAD_EXTERNAL)
1295 		v |= HME_MIF_CFG_PHY;
1296 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1297 
1298 	/* Enable MII drivers on external transceiver */
1299 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1300 	if (phy == HME_PHYAD_EXTERNAL)
1301 		v |= HME_MAC_XIF_MIIENABLE;
1302 	else
1303 		v &= ~HME_MAC_XIF_MIIENABLE;
1304 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1305 
1306 #if 0
1307 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1308 	/*
1309 	 * Check whether a transceiver is connected by testing
1310 	 * the MIF configuration register's MDI_X bits. Note that
1311 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1312 	 */
1313 	mif_mdi_bit = 1 << (8 + (1 - phy));
1314 	delay(100);
1315 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1316 	if ((v & mif_mdi_bit) == 0)
1317 		return;
1318 #endif
1319 
1320 	/* Construct the frame command */
1321 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
1322 	    HME_MIF_FO_TAMSB				|
1323 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
1324 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
1325 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
1326 	    (val & HME_MIF_FO_DATA);
1327 
1328 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
1329 	for (n = 0; n < 100; n++) {
1330 		DELAY(1);
1331 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
1332 		if (v & HME_MIF_FO_TALSB)
1333 			goto out;
1334 	}
1335 
1336 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1337 out:
1338 	/* Restore MIFI_CFG register */
1339 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1340 	/* Restore XIF register */
1341 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1342 }
1343 
1344 static void
1345 hme_mii_statchg(struct ifnet *ifp)
1346 {
1347 	struct hme_softc *sc = ifp->if_softc;
1348 	bus_space_tag_t t = sc->sc_bustag;
1349 	bus_space_handle_t mac = sc->sc_mac;
1350 	uint32_t v;
1351 
1352 #ifdef HMEDEBUG
1353 	if (sc->sc_debug)
1354 		printf("hme_mii_statchg: status change\n");
1355 #endif
1356 
1357 	/* Set the MAC Full Duplex bit appropriately */
1358 	/* Apparently the hme chip is SIMPLEX if working in full duplex mode,
1359 	   but not otherwise. */
1360 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1361 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1362 		v |= HME_MAC_TXCFG_FULLDPLX;
1363 		sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
1364 	} else {
1365 		v &= ~HME_MAC_TXCFG_FULLDPLX;
1366 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
1367 	}
1368 	sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
1369 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1370 }
1371 
1372 int
1373 hme_mediachange(struct ifnet *ifp)
1374 {
1375 	struct hme_softc *sc = ifp->if_softc;
1376 	bus_space_tag_t t = sc->sc_bustag;
1377 	bus_space_handle_t mif = sc->sc_mif;
1378 	bus_space_handle_t mac = sc->sc_mac;
1379 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1380 	int phy = sc->sc_phys[instance];
1381 	int rc;
1382 	uint32_t v;
1383 
1384 #ifdef HMEDEBUG
1385 	if (sc->sc_debug)
1386 		printf("hme_mediachange: phy = %d\n", phy);
1387 #endif
1388 
1389 	/* Select the current PHY in the MIF configuration register */
1390 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1391 	v &= ~HME_MIF_CFG_PHY;
1392 	if (phy == HME_PHYAD_EXTERNAL)
1393 		v |= HME_MIF_CFG_PHY;
1394 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1395 
1396 	/* If an external transceiver is selected, enable its MII drivers */
1397 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
1398 	v &= ~HME_MAC_XIF_MIIENABLE;
1399 	if (phy == HME_PHYAD_EXTERNAL)
1400 		v |= HME_MAC_XIF_MIIENABLE;
1401 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1402 
1403 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
1404 		return 0;
1405 	return rc;
1406 }
1407 
1408 /*
1409  * Process an ioctl request.
1410  */
1411 int
1412 hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
1413 {
1414 	struct hme_softc *sc = ifp->if_softc;
1415 	struct ifaddr *ifa = (struct ifaddr *)data;
1416 	int s, error = 0;
1417 
1418 	s = splnet();
1419 
1420 	switch (cmd) {
1421 
1422 	case SIOCINITIFADDR:
1423 		switch (ifa->ifa_addr->sa_family) {
1424 #ifdef INET
1425 		case AF_INET:
1426 			if (ifp->if_flags & IFF_UP)
1427 				hme_setladrf(sc);
1428 			else {
1429 				ifp->if_flags |= IFF_UP;
1430 				error = hme_init(ifp);
1431 			}
1432 			arp_ifinit(ifp, ifa);
1433 			break;
1434 #endif
1435 		default:
1436 			ifp->if_flags |= IFF_UP;
1437 			error = hme_init(ifp);
1438 			break;
1439 		}
1440 		break;
1441 
1442 	case SIOCSIFFLAGS:
1443 #ifdef HMEDEBUG
1444 		{
1445 			struct ifreq *ifr = data;
1446 			sc->sc_debug =
1447 			    (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
1448 		}
1449 #endif
1450 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1451 			break;
1452 
1453 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1454 		case IFF_RUNNING:
1455 			/*
1456 			 * If interface is marked down and it is running, then
1457 			 * stop it.
1458 			 */
1459 			hme_stop(ifp, 0);
1460 			ifp->if_flags &= ~IFF_RUNNING;
1461 			break;
1462 		case IFF_UP:
1463 			/*
1464 			 * If interface is marked up and it is stopped, then
1465 			 * start it.
1466 			 */
1467 			error = hme_init(ifp);
1468 			break;
1469 		case IFF_UP|IFF_RUNNING:
1470 			/*
1471 			 * If setting debug or promiscuous mode, do not reset
1472 			 * the chip; for everything else, call hme_init()
1473 			 * which will trigger a reset.
1474 			 */
1475 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
1476 			if (ifp->if_flags != sc->sc_if_flags) {
1477 				if ((ifp->if_flags & (~RESETIGN))
1478 				    == (sc->sc_if_flags & (~RESETIGN)))
1479 					hme_setladrf(sc);
1480 				else
1481 					error = hme_init(ifp);
1482 			}
1483 #undef RESETIGN
1484 			break;
1485 		case 0:
1486 			break;
1487 		}
1488 
1489 		if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
1490 			error = hme_init(ifp);
1491 
1492 		break;
1493 
1494 	default:
1495 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1496 			break;
1497 
1498 		error = 0;
1499 
1500 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1501 			;
1502 		else if (ifp->if_flags & IFF_RUNNING) {
1503 			/*
1504 			 * Multicast list has changed; set the hardware filter
1505 			 * accordingly.
1506 			 */
1507 			hme_setladrf(sc);
1508 		}
1509 		break;
1510 	}
1511 
1512 	sc->sc_if_flags = ifp->if_flags;
1513 	splx(s);
1514 	return (error);
1515 }
1516 
1517 bool
1518 hme_shutdown(device_t self, int howto)
1519 {
1520 	struct hme_softc *sc;
1521 	struct ifnet *ifp;
1522 
1523 	sc = device_private(self);
1524 	ifp = &sc->sc_ethercom.ec_if;
1525 	hme_stop(ifp, 1);
1526 
1527 	return true;
1528 }
1529 
1530 /*
1531  * Set up the logical address filter.
1532  */
1533 void
1534 hme_setladrf(struct hme_softc *sc)
1535 {
1536 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1537 	struct ether_multi *enm;
1538 	struct ether_multistep step;
1539 	struct ethercom *ec = &sc->sc_ethercom;
1540 	bus_space_tag_t t = sc->sc_bustag;
1541 	bus_space_handle_t mac = sc->sc_mac;
1542 	uint32_t v;
1543 	uint32_t crc;
1544 	uint32_t hash[4];
1545 
1546 	/* Clear hash table */
1547 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
1548 
1549 	/* Get current RX configuration */
1550 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1551 
1552 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
1553 		/* Turn on promiscuous mode; turn off the hash filter */
1554 		v |= HME_MAC_RXCFG_PMISC;
1555 		v &= ~HME_MAC_RXCFG_HENABLE;
1556 		ifp->if_flags |= IFF_ALLMULTI;
1557 		goto chipit;
1558 	}
1559 
1560 	/* Turn off promiscuous mode; turn on the hash filter */
1561 	v &= ~HME_MAC_RXCFG_PMISC;
1562 	v |= HME_MAC_RXCFG_HENABLE;
1563 
1564 	/*
1565 	 * Set up multicast address filter by passing all multicast addresses
1566 	 * through a crc generator, and then using the high order 6 bits as an
1567 	 * index into the 64 bit logical address filter.  The high order bit
1568 	 * selects the word, while the rest of the bits select the bit within
1569 	 * the word.
1570 	 */
1571 
1572 	ETHER_FIRST_MULTI(step, ec, enm);
1573 	while (enm != NULL) {
1574 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1575 			/*
1576 			 * We must listen to a range of multicast addresses.
1577 			 * For now, just accept all multicasts, rather than
1578 			 * trying to set only those filter bits needed to match
1579 			 * the range.  (At this time, the only use of address
1580 			 * ranges is for IP multicast routing, for which the
1581 			 * range is big enough to require all bits set.)
1582 			 */
1583 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1584 			ifp->if_flags |= IFF_ALLMULTI;
1585 			goto chipit;
1586 		}
1587 
1588 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1589 
1590 		/* Just want the 6 most significant bits. */
1591 		crc >>= 26;
1592 
1593 		/* Set the corresponding bit in the filter. */
1594 		hash[crc >> 4] |= 1 << (crc & 0xf);
1595 
1596 		ETHER_NEXT_MULTI(step, enm);
1597 	}
1598 
1599 	ifp->if_flags &= ~IFF_ALLMULTI;
1600 
1601 chipit:
1602 	/* Now load the hash table into the chip */
1603 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1604 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1605 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1606 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1607 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1608 }
1609 
1610 /*
1611  * Routines for accessing the transmit and receive buffers.
1612  * The various CPU and adapter configurations supported by this
1613  * driver require three different access methods for buffers
1614  * and descriptors:
1615  *	(1) contig (contiguous data; no padding),
1616  *	(2) gap2 (two bytes of data followed by two bytes of padding),
1617  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
1618  */
1619 
1620 #if 0
1621 /*
1622  * contig: contiguous data with no padding.
1623  *
1624  * Buffers may have any alignment.
1625  */
1626 
1627 void
1628 hme_copytobuf_contig(struct hme_softc *sc, void *from, int ri, int len)
1629 {
1630 	volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1631 
1632 	/*
1633 	 * Just call memcpy() to do the work.
1634 	 */
1635 	memcpy(buf, from, len);
1636 }
1637 
1638 void
1639 hme_copyfrombuf_contig(struct hme_softc *sc, void *to, int boff, int len)
1640 {
1641 	volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1642 
1643 	/*
1644 	 * Just call memcpy() to do the work.
1645 	 */
1646 	memcpy(to, buf, len);
1647 }
1648 #endif
1649