1 /* $NetBSD: hme.c,v 1.37 2003/05/03 18:11:18 wiz Exp $ */ 2 3 /*- 4 * Copyright (c) 1999 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Paul Kranenburg. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /* 40 * HME Ethernet module driver. 41 */ 42 43 #include <sys/cdefs.h> 44 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.37 2003/05/03 18:11:18 wiz Exp $"); 45 46 #define HMEDEBUG 47 48 #include "opt_inet.h" 49 #include "opt_ns.h" 50 #include "bpfilter.h" 51 #include "rnd.h" 52 53 #include <sys/param.h> 54 #include <sys/systm.h> 55 #include <sys/kernel.h> 56 #include <sys/mbuf.h> 57 #include <sys/syslog.h> 58 #include <sys/socket.h> 59 #include <sys/device.h> 60 #include <sys/malloc.h> 61 #include <sys/ioctl.h> 62 #include <sys/errno.h> 63 #if NRND > 0 64 #include <sys/rnd.h> 65 #endif 66 67 #include <net/if.h> 68 #include <net/if_dl.h> 69 #include <net/if_ether.h> 70 #include <net/if_media.h> 71 72 #ifdef INET 73 #include <netinet/in.h> 74 #include <netinet/if_inarp.h> 75 #include <netinet/in_systm.h> 76 #include <netinet/in_var.h> 77 #include <netinet/ip.h> 78 #endif 79 80 #ifdef NS 81 #include <netns/ns.h> 82 #include <netns/ns_if.h> 83 #endif 84 85 #if NBPFILTER > 0 86 #include <net/bpf.h> 87 #include <net/bpfdesc.h> 88 #endif 89 90 #include <dev/mii/mii.h> 91 #include <dev/mii/miivar.h> 92 93 #include <machine/bus.h> 94 95 #include <dev/ic/hmereg.h> 96 #include <dev/ic/hmevar.h> 97 98 void hme_start __P((struct ifnet *)); 99 void hme_stop __P((struct hme_softc *)); 100 int hme_ioctl __P((struct ifnet *, u_long, caddr_t)); 101 void hme_tick __P((void *)); 102 void hme_watchdog __P((struct ifnet *)); 103 void hme_shutdown __P((void *)); 104 void hme_init __P((struct hme_softc *)); 105 void hme_meminit __P((struct hme_softc *)); 106 void hme_mifinit __P((struct hme_softc *)); 107 void hme_reset __P((struct hme_softc *)); 108 void hme_setladrf __P((struct hme_softc *)); 109 110 /* MII methods & callbacks */ 111 static int hme_mii_readreg __P((struct device *, int, int)); 112 static void hme_mii_writereg __P((struct device *, int, int, int)); 113 static void hme_mii_statchg __P((struct device *)); 114 115 int hme_mediachange __P((struct ifnet *)); 116 void hme_mediastatus __P((struct ifnet *, struct ifmediareq *)); 117 118 struct mbuf *hme_get __P((struct hme_softc *, int, int)); 119 int hme_put __P((struct hme_softc *, int, struct mbuf *)); 120 void hme_read __P((struct hme_softc *, int, int)); 121 int hme_eint __P((struct hme_softc *, u_int)); 122 int hme_rint __P((struct hme_softc *)); 123 int hme_tint __P((struct hme_softc *)); 124 125 static int ether_cmp __P((u_char *, u_char *)); 126 127 /* Default buffer copy routines */ 128 void hme_copytobuf_contig __P((struct hme_softc *, void *, int, int)); 129 void hme_copyfrombuf_contig __P((struct hme_softc *, void *, int, int)); 130 void hme_zerobuf_contig __P((struct hme_softc *, int, int)); 131 132 133 void 134 hme_config(sc) 135 struct hme_softc *sc; 136 { 137 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 138 struct mii_data *mii = &sc->sc_mii; 139 struct mii_softc *child; 140 bus_dma_tag_t dmatag = sc->sc_dmatag; 141 bus_dma_segment_t seg; 142 bus_size_t size; 143 int rseg, error; 144 145 /* 146 * HME common initialization. 147 * 148 * hme_softc fields that must be initialized by the front-end: 149 * 150 * the bus tag: 151 * sc_bustag 152 * 153 * the DMA bus tag: 154 * sc_dmatag 155 * 156 * the bus handles: 157 * sc_seb (Shared Ethernet Block registers) 158 * sc_erx (Receiver Unit registers) 159 * sc_etx (Transmitter Unit registers) 160 * sc_mac (MAC registers) 161 * sc_mif (Management Interface registers) 162 * 163 * the maximum bus burst size: 164 * sc_burst 165 * 166 * (notyet:DMA capable memory for the ring descriptors & packet buffers: 167 * rb_membase, rb_dmabase) 168 * 169 * the local Ethernet address: 170 * sc_enaddr 171 * 172 */ 173 174 /* Make sure the chip is stopped. */ 175 hme_stop(sc); 176 177 178 /* 179 * Allocate descriptors and buffers 180 * XXX - do all this differently.. and more configurably, 181 * eg. use things as `dma_load_mbuf()' on transmit, 182 * and a pool of `EXTMEM' mbufs (with buffers DMA-mapped 183 * all the time) on the reveiver side. 184 * 185 * Note: receive buffers must be 64-byte aligned. 186 * Also, apparently, the buffers must extend to a DMA burst 187 * boundary beyond the maximum packet size. 188 */ 189 #define _HME_NDESC 128 190 #define _HME_BUFSZ 1600 191 192 /* Note: the # of descriptors must be a multiple of 16 */ 193 sc->sc_rb.rb_ntbuf = _HME_NDESC; 194 sc->sc_rb.rb_nrbuf = _HME_NDESC; 195 196 /* 197 * Allocate DMA capable memory 198 * Buffer descriptors must be aligned on a 2048 byte boundary; 199 * take this into account when calculating the size. Note that 200 * the maximum number of descriptors (256) occupies 2048 bytes, 201 * so we allocate that much regardless of _HME_NDESC. 202 */ 203 size = 2048 + /* TX descriptors */ 204 2048 + /* RX descriptors */ 205 sc->sc_rb.rb_ntbuf * _HME_BUFSZ + /* TX buffers */ 206 sc->sc_rb.rb_nrbuf * _HME_BUFSZ; /* TX buffers */ 207 208 /* Allocate DMA buffer */ 209 if ((error = bus_dmamem_alloc(dmatag, size, 210 2048, 0, 211 &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) { 212 printf("%s: DMA buffer alloc error %d\n", 213 sc->sc_dev.dv_xname, error); 214 return; 215 } 216 217 /* Map DMA memory in CPU addressable space */ 218 if ((error = bus_dmamem_map(dmatag, &seg, rseg, size, 219 &sc->sc_rb.rb_membase, 220 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) { 221 printf("%s: DMA buffer map error %d\n", 222 sc->sc_dev.dv_xname, error); 223 bus_dmamap_unload(dmatag, sc->sc_dmamap); 224 bus_dmamem_free(dmatag, &seg, rseg); 225 return; 226 } 227 228 if ((error = bus_dmamap_create(dmatag, size, 1, size, 0, 229 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) { 230 printf("%s: DMA map create error %d\n", 231 sc->sc_dev.dv_xname, error); 232 return; 233 } 234 235 /* Load the buffer */ 236 if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap, 237 sc->sc_rb.rb_membase, size, NULL, 238 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) { 239 printf("%s: DMA buffer map load error %d\n", 240 sc->sc_dev.dv_xname, error); 241 bus_dmamem_free(dmatag, &seg, rseg); 242 return; 243 } 244 sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr; 245 246 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname, 247 ether_sprintf(sc->sc_enaddr)); 248 249 /* Initialize ifnet structure. */ 250 strcpy(ifp->if_xname, sc->sc_dev.dv_xname); 251 ifp->if_softc = sc; 252 ifp->if_start = hme_start; 253 ifp->if_ioctl = hme_ioctl; 254 ifp->if_watchdog = hme_watchdog; 255 ifp->if_flags = 256 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST; 257 IFQ_SET_READY(&ifp->if_snd); 258 259 /* Initialize ifmedia structures and MII info */ 260 mii->mii_ifp = ifp; 261 mii->mii_readreg = hme_mii_readreg; 262 mii->mii_writereg = hme_mii_writereg; 263 mii->mii_statchg = hme_mii_statchg; 264 265 ifmedia_init(&mii->mii_media, 0, hme_mediachange, hme_mediastatus); 266 267 hme_mifinit(sc); 268 269 mii_attach(&sc->sc_dev, mii, 0xffffffff, 270 MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG); 271 272 child = LIST_FIRST(&mii->mii_phys); 273 if (child == NULL) { 274 /* No PHY attached */ 275 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); 276 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL); 277 } else { 278 /* 279 * Walk along the list of attached MII devices and 280 * establish an `MII instance' to `phy number' 281 * mapping. We'll use this mapping in media change 282 * requests to determine which phy to use to program 283 * the MIF configuration register. 284 */ 285 for (; child != NULL; child = LIST_NEXT(child, mii_list)) { 286 /* 287 * Note: we support just two PHYs: the built-in 288 * internal device and an external on the MII 289 * connector. 290 */ 291 if (child->mii_phy > 1 || child->mii_inst > 1) { 292 printf("%s: cannot accomodate MII device %s" 293 " at phy %d, instance %d\n", 294 sc->sc_dev.dv_xname, 295 child->mii_dev.dv_xname, 296 child->mii_phy, child->mii_inst); 297 continue; 298 } 299 300 sc->sc_phys[child->mii_inst] = child->mii_phy; 301 } 302 303 /* 304 * XXX - we can really do the following ONLY if the 305 * phy indeed has the auto negotiation capability!! 306 */ 307 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO); 308 } 309 310 /* claim 802.1q capability */ 311 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; 312 313 /* Attach the interface. */ 314 if_attach(ifp); 315 ether_ifattach(ifp, sc->sc_enaddr); 316 317 sc->sc_sh = shutdownhook_establish(hme_shutdown, sc); 318 if (sc->sc_sh == NULL) 319 panic("hme_config: can't establish shutdownhook"); 320 321 #if NRND > 0 322 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname, 323 RND_TYPE_NET, 0); 324 #endif 325 326 callout_init(&sc->sc_tick_ch); 327 } 328 329 void 330 hme_tick(arg) 331 void *arg; 332 { 333 struct hme_softc *sc = arg; 334 int s; 335 336 s = splnet(); 337 mii_tick(&sc->sc_mii); 338 splx(s); 339 340 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc); 341 } 342 343 void 344 hme_reset(sc) 345 struct hme_softc *sc; 346 { 347 int s; 348 349 s = splnet(); 350 hme_init(sc); 351 splx(s); 352 } 353 354 void 355 hme_stop(sc) 356 struct hme_softc *sc; 357 { 358 bus_space_tag_t t = sc->sc_bustag; 359 bus_space_handle_t seb = sc->sc_seb; 360 int n; 361 362 callout_stop(&sc->sc_tick_ch); 363 mii_down(&sc->sc_mii); 364 365 /* Mask all interrupts */ 366 bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff); 367 368 /* Reset transmitter and receiver */ 369 bus_space_write_4(t, seb, HME_SEBI_RESET, 370 (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)); 371 372 for (n = 0; n < 20; n++) { 373 u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET); 374 if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0) 375 return; 376 DELAY(20); 377 } 378 379 printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname); 380 } 381 382 void 383 hme_meminit(sc) 384 struct hme_softc *sc; 385 { 386 bus_addr_t txbufdma, rxbufdma; 387 bus_addr_t dma; 388 caddr_t p; 389 unsigned int ntbuf, nrbuf, i; 390 struct hme_ring *hr = &sc->sc_rb; 391 392 p = hr->rb_membase; 393 dma = hr->rb_dmabase; 394 395 ntbuf = hr->rb_ntbuf; 396 nrbuf = hr->rb_nrbuf; 397 398 /* 399 * Allocate transmit descriptors 400 */ 401 hr->rb_txd = p; 402 hr->rb_txddma = dma; 403 p += ntbuf * HME_XD_SIZE; 404 dma += ntbuf * HME_XD_SIZE; 405 /* We have reserved descriptor space until the next 2048 byte boundary.*/ 406 dma = (bus_addr_t)roundup((u_long)dma, 2048); 407 p = (caddr_t)roundup((u_long)p, 2048); 408 409 /* 410 * Allocate receive descriptors 411 */ 412 hr->rb_rxd = p; 413 hr->rb_rxddma = dma; 414 p += nrbuf * HME_XD_SIZE; 415 dma += nrbuf * HME_XD_SIZE; 416 /* Again move forward to the next 2048 byte boundary.*/ 417 dma = (bus_addr_t)roundup((u_long)dma, 2048); 418 p = (caddr_t)roundup((u_long)p, 2048); 419 420 421 /* 422 * Allocate transmit buffers 423 */ 424 hr->rb_txbuf = p; 425 txbufdma = dma; 426 p += ntbuf * _HME_BUFSZ; 427 dma += ntbuf * _HME_BUFSZ; 428 429 /* 430 * Allocate receive buffers 431 */ 432 hr->rb_rxbuf = p; 433 rxbufdma = dma; 434 p += nrbuf * _HME_BUFSZ; 435 dma += nrbuf * _HME_BUFSZ; 436 437 /* 438 * Initialize transmit buffer descriptors 439 */ 440 for (i = 0; i < ntbuf; i++) { 441 HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ); 442 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0); 443 } 444 445 /* 446 * Initialize receive buffer descriptors 447 */ 448 for (i = 0; i < nrbuf; i++) { 449 HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ); 450 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i, 451 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ)); 452 } 453 454 hr->rb_tdhead = hr->rb_tdtail = 0; 455 hr->rb_td_nbusy = 0; 456 hr->rb_rdtail = 0; 457 } 458 459 /* 460 * Initialization of interface; set up initialization block 461 * and transmit/receive descriptor rings. 462 */ 463 void 464 hme_init(sc) 465 struct hme_softc *sc; 466 { 467 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 468 bus_space_tag_t t = sc->sc_bustag; 469 bus_space_handle_t seb = sc->sc_seb; 470 bus_space_handle_t etx = sc->sc_etx; 471 bus_space_handle_t erx = sc->sc_erx; 472 bus_space_handle_t mac = sc->sc_mac; 473 u_int8_t *ea; 474 u_int32_t v; 475 476 /* 477 * Initialization sequence. The numbered steps below correspond 478 * to the sequence outlined in section 6.3.5.1 in the Ethernet 479 * Channel Engine manual (part of the PCIO manual). 480 * See also the STP2002-STQ document from Sun Microsystems. 481 */ 482 483 /* step 1 & 2. Reset the Ethernet Channel */ 484 hme_stop(sc); 485 486 /* Re-initialize the MIF */ 487 hme_mifinit(sc); 488 489 /* Call MI reset function if any */ 490 if (sc->sc_hwreset) 491 (*sc->sc_hwreset)(sc); 492 493 #if 0 494 /* Mask all MIF interrupts, just in case */ 495 bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff); 496 #endif 497 498 /* step 3. Setup data structures in host memory */ 499 hme_meminit(sc); 500 501 /* step 4. TX MAC registers & counters */ 502 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0); 503 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0); 504 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0); 505 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0); 506 bus_space_write_4(t, mac, HME_MACI_TXSIZE, 507 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ? 508 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : 509 ETHER_MAX_LEN); 510 511 /* Load station MAC address */ 512 ea = sc->sc_enaddr; 513 bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]); 514 bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]); 515 bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]); 516 517 /* 518 * Init seed for backoff 519 * (source suggested by manual: low 10 bits of MAC address) 520 */ 521 v = ((ea[4] << 8) | ea[5]) & 0x3fff; 522 bus_space_write_4(t, mac, HME_MACI_RANDSEED, v); 523 524 525 /* Note: Accepting power-on default for other MAC registers here.. */ 526 527 528 /* step 5. RX MAC registers & counters */ 529 hme_setladrf(sc); 530 531 /* step 6 & 7. Program Descriptor Ring Base Addresses */ 532 bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma); 533 bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf); 534 535 bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma); 536 bus_space_write_4(t, mac, HME_MACI_RXSIZE, 537 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ? 538 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : 539 ETHER_MAX_LEN); 540 541 542 /* step 8. Global Configuration & Interrupt Mask */ 543 bus_space_write_4(t, seb, HME_SEBI_IMASK, 544 ~( 545 /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/ 546 HME_SEB_STAT_HOSTTOTX | 547 HME_SEB_STAT_RXTOHOST | 548 HME_SEB_STAT_TXALL | 549 HME_SEB_STAT_TXPERR | 550 HME_SEB_STAT_RCNTEXP | 551 /*HME_SEB_STAT_MIFIRQ |*/ 552 HME_SEB_STAT_ALL_ERRORS )); 553 554 switch (sc->sc_burst) { 555 default: 556 v = 0; 557 break; 558 case 16: 559 v = HME_SEB_CFG_BURST16; 560 break; 561 case 32: 562 v = HME_SEB_CFG_BURST32; 563 break; 564 case 64: 565 v = HME_SEB_CFG_BURST64; 566 break; 567 } 568 bus_space_write_4(t, seb, HME_SEBI_CFG, v); 569 570 /* step 9. ETX Configuration: use mostly default values */ 571 572 /* Enable DMA */ 573 v = bus_space_read_4(t, etx, HME_ETXI_CFG); 574 v |= HME_ETX_CFG_DMAENABLE; 575 bus_space_write_4(t, etx, HME_ETXI_CFG, v); 576 577 /* Transmit Descriptor ring size: in increments of 16 */ 578 bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1); 579 580 581 /* step 10. ERX Configuration */ 582 v = bus_space_read_4(t, erx, HME_ERXI_CFG); 583 584 /* Encode Receive Descriptor ring size: four possible values */ 585 switch (_HME_NDESC /*XXX*/) { 586 case 32: 587 v |= HME_ERX_CFG_RINGSIZE32; 588 break; 589 case 64: 590 v |= HME_ERX_CFG_RINGSIZE64; 591 break; 592 case 128: 593 v |= HME_ERX_CFG_RINGSIZE128; 594 break; 595 case 256: 596 v |= HME_ERX_CFG_RINGSIZE256; 597 break; 598 default: 599 printf("hme: invalid Receive Descriptor ring size\n"); 600 break; 601 } 602 603 /* Enable DMA */ 604 v |= HME_ERX_CFG_DMAENABLE; 605 bus_space_write_4(t, erx, HME_ERXI_CFG, v); 606 607 /* step 11. XIF Configuration */ 608 v = bus_space_read_4(t, mac, HME_MACI_XIF); 609 v |= HME_MAC_XIF_OE; 610 bus_space_write_4(t, mac, HME_MACI_XIF, v); 611 612 /* step 12. RX_MAC Configuration Register */ 613 v = bus_space_read_4(t, mac, HME_MACI_RXCFG); 614 v |= HME_MAC_RXCFG_ENABLE; 615 bus_space_write_4(t, mac, HME_MACI_RXCFG, v); 616 617 /* step 13. TX_MAC Configuration Register */ 618 v = bus_space_read_4(t, mac, HME_MACI_TXCFG); 619 v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP); 620 bus_space_write_4(t, mac, HME_MACI_TXCFG, v); 621 622 /* step 14. Issue Transmit Pending command */ 623 624 /* Call MI initialization function if any */ 625 if (sc->sc_hwinit) 626 (*sc->sc_hwinit)(sc); 627 628 /* Set the current media. */ 629 mii_mediachg(&sc->sc_mii); 630 631 /* Start the one second timer. */ 632 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc); 633 634 ifp->if_flags |= IFF_RUNNING; 635 ifp->if_flags &= ~IFF_OACTIVE; 636 ifp->if_timer = 0; 637 hme_start(ifp); 638 } 639 640 /* 641 * Compare two Ether/802 addresses for equality, inlined and unrolled for 642 * speed. 643 */ 644 static __inline__ int 645 ether_cmp(a, b) 646 u_char *a, *b; 647 { 648 649 if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] || 650 a[2] != b[2] || a[1] != b[1] || a[0] != b[0]) 651 return (0); 652 return (1); 653 } 654 655 656 /* 657 * Routine to copy from mbuf chain to transmit buffer in 658 * network buffer memory. 659 * Returns the amount of data copied. 660 */ 661 int 662 hme_put(sc, ri, m) 663 struct hme_softc *sc; 664 int ri; /* Ring index */ 665 struct mbuf *m; 666 { 667 struct mbuf *n; 668 int len, tlen = 0; 669 caddr_t bp; 670 671 bp = sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ; 672 for (; m; m = n) { 673 len = m->m_len; 674 if (len == 0) { 675 MFREE(m, n); 676 continue; 677 } 678 memcpy(bp, mtod(m, caddr_t), len); 679 bp += len; 680 tlen += len; 681 MFREE(m, n); 682 } 683 return (tlen); 684 } 685 686 /* 687 * Pull data off an interface. 688 * Len is length of data, with local net header stripped. 689 * We copy the data into mbufs. When full cluster sized units are present 690 * we copy into clusters. 691 */ 692 struct mbuf * 693 hme_get(sc, ri, totlen) 694 struct hme_softc *sc; 695 int ri, totlen; 696 { 697 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 698 struct mbuf *m, *m0, *newm; 699 caddr_t bp; 700 int len; 701 702 MGETHDR(m0, M_DONTWAIT, MT_DATA); 703 if (m0 == 0) 704 return (0); 705 m0->m_pkthdr.rcvif = ifp; 706 m0->m_pkthdr.len = totlen; 707 len = MHLEN; 708 m = m0; 709 710 bp = sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ; 711 712 while (totlen > 0) { 713 if (totlen >= MINCLSIZE) { 714 MCLGET(m, M_DONTWAIT); 715 if ((m->m_flags & M_EXT) == 0) 716 goto bad; 717 len = MCLBYTES; 718 } 719 720 if (m == m0) { 721 caddr_t newdata = (caddr_t) 722 ALIGN(m->m_data + sizeof(struct ether_header)) - 723 sizeof(struct ether_header); 724 len -= newdata - m->m_data; 725 m->m_data = newdata; 726 } 727 728 m->m_len = len = min(totlen, len); 729 memcpy(mtod(m, caddr_t), bp, len); 730 bp += len; 731 732 totlen -= len; 733 if (totlen > 0) { 734 MGET(newm, M_DONTWAIT, MT_DATA); 735 if (newm == 0) 736 goto bad; 737 len = MLEN; 738 m = m->m_next = newm; 739 } 740 } 741 742 return (m0); 743 744 bad: 745 m_freem(m0); 746 return (0); 747 } 748 749 /* 750 * Pass a packet to the higher levels. 751 */ 752 void 753 hme_read(sc, ix, len) 754 struct hme_softc *sc; 755 int ix, len; 756 { 757 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 758 struct mbuf *m; 759 760 if (len <= sizeof(struct ether_header) || 761 len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ? 762 ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) : 763 ETHERMTU + sizeof(struct ether_header))) { 764 #ifdef HMEDEBUG 765 printf("%s: invalid packet size %d; dropping\n", 766 sc->sc_dev.dv_xname, len); 767 #endif 768 ifp->if_ierrors++; 769 return; 770 } 771 772 /* Pull packet off interface. */ 773 m = hme_get(sc, ix, len); 774 if (m == 0) { 775 ifp->if_ierrors++; 776 return; 777 } 778 779 ifp->if_ipackets++; 780 781 #if NBPFILTER > 0 782 /* 783 * Check if there's a BPF listener on this interface. 784 * If so, hand off the raw packet to BPF. 785 */ 786 if (ifp->if_bpf) 787 bpf_mtap(ifp->if_bpf, m); 788 #endif 789 790 /* Pass the packet up. */ 791 (*ifp->if_input)(ifp, m); 792 } 793 794 void 795 hme_start(ifp) 796 struct ifnet *ifp; 797 { 798 struct hme_softc *sc = (struct hme_softc *)ifp->if_softc; 799 caddr_t txd = sc->sc_rb.rb_txd; 800 struct mbuf *m; 801 unsigned int ri, len; 802 unsigned int ntbuf = sc->sc_rb.rb_ntbuf; 803 804 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 805 return; 806 807 ri = sc->sc_rb.rb_tdhead; 808 809 for (;;) { 810 IFQ_DEQUEUE(&ifp->if_snd, m); 811 if (m == 0) 812 break; 813 814 #if NBPFILTER > 0 815 /* 816 * If BPF is listening on this interface, let it see the 817 * packet before we commit it to the wire. 818 */ 819 if (ifp->if_bpf) 820 bpf_mtap(ifp->if_bpf, m); 821 #endif 822 823 /* 824 * Copy the mbuf chain into the transmit buffer. 825 */ 826 len = hme_put(sc, ri, m); 827 828 /* 829 * Initialize transmit registers and start transmission 830 */ 831 HME_XD_SETFLAGS(sc->sc_pci, txd, ri, 832 HME_XD_OWN | HME_XD_SOP | HME_XD_EOP | 833 HME_XD_ENCODE_TSIZE(len)); 834 835 /*if (sc->sc_rb.rb_td_nbusy <= 0)*/ 836 bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING, 837 HME_ETX_TP_DMAWAKEUP); 838 839 if (++ri == ntbuf) 840 ri = 0; 841 842 if (++sc->sc_rb.rb_td_nbusy == ntbuf) { 843 ifp->if_flags |= IFF_OACTIVE; 844 break; 845 } 846 } 847 848 sc->sc_rb.rb_tdhead = ri; 849 } 850 851 /* 852 * Transmit interrupt. 853 */ 854 int 855 hme_tint(sc) 856 struct hme_softc *sc; 857 { 858 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 859 bus_space_tag_t t = sc->sc_bustag; 860 bus_space_handle_t mac = sc->sc_mac; 861 unsigned int ri, txflags; 862 863 /* 864 * Unload collision counters 865 */ 866 ifp->if_collisions += 867 bus_space_read_4(t, mac, HME_MACI_NCCNT) + 868 bus_space_read_4(t, mac, HME_MACI_FCCNT) + 869 bus_space_read_4(t, mac, HME_MACI_EXCNT) + 870 bus_space_read_4(t, mac, HME_MACI_LTCNT); 871 872 /* 873 * then clear the hardware counters. 874 */ 875 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0); 876 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0); 877 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0); 878 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0); 879 880 /* Fetch current position in the transmit ring */ 881 ri = sc->sc_rb.rb_tdtail; 882 883 for (;;) { 884 if (sc->sc_rb.rb_td_nbusy <= 0) 885 break; 886 887 txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri); 888 889 if (txflags & HME_XD_OWN) 890 break; 891 892 ifp->if_flags &= ~IFF_OACTIVE; 893 ifp->if_opackets++; 894 895 if (++ri == sc->sc_rb.rb_ntbuf) 896 ri = 0; 897 898 --sc->sc_rb.rb_td_nbusy; 899 } 900 901 /* Update ring */ 902 sc->sc_rb.rb_tdtail = ri; 903 904 hme_start(ifp); 905 906 if (sc->sc_rb.rb_td_nbusy == 0) 907 ifp->if_timer = 0; 908 909 return (1); 910 } 911 912 /* 913 * Receive interrupt. 914 */ 915 int 916 hme_rint(sc) 917 struct hme_softc *sc; 918 { 919 caddr_t xdr = sc->sc_rb.rb_rxd; 920 unsigned int nrbuf = sc->sc_rb.rb_nrbuf; 921 unsigned int ri, len; 922 u_int32_t flags; 923 924 ri = sc->sc_rb.rb_rdtail; 925 926 /* 927 * Process all buffers with valid data. 928 */ 929 for (;;) { 930 flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri); 931 if (flags & HME_XD_OWN) 932 break; 933 934 if (flags & HME_XD_OFL) { 935 printf("%s: buffer overflow, ri=%d; flags=0x%x\n", 936 sc->sc_dev.dv_xname, ri, flags); 937 } else { 938 len = HME_XD_DECODE_RSIZE(flags); 939 hme_read(sc, ri, len); 940 } 941 942 /* This buffer can be used by the hardware again */ 943 HME_XD_SETFLAGS(sc->sc_pci, xdr, ri, 944 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ)); 945 946 if (++ri == nrbuf) 947 ri = 0; 948 } 949 950 sc->sc_rb.rb_rdtail = ri; 951 952 return (1); 953 } 954 955 int 956 hme_eint(sc, status) 957 struct hme_softc *sc; 958 u_int status; 959 { 960 char bits[128]; 961 962 if ((status & HME_SEB_STAT_MIFIRQ) != 0) { 963 bus_space_tag_t t = sc->sc_bustag; 964 bus_space_handle_t mif = sc->sc_mif; 965 u_int32_t cf, st, sm; 966 cf = bus_space_read_4(t, mif, HME_MIFI_CFG); 967 st = bus_space_read_4(t, mif, HME_MIFI_STAT); 968 sm = bus_space_read_4(t, mif, HME_MIFI_SM); 969 printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n", 970 sc->sc_dev.dv_xname, cf, st, sm); 971 return (1); 972 } 973 974 printf("%s: status=%s\n", sc->sc_dev.dv_xname, 975 bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits))); 976 return (1); 977 } 978 979 int 980 hme_intr(v) 981 void *v; 982 { 983 struct hme_softc *sc = (struct hme_softc *)v; 984 bus_space_tag_t t = sc->sc_bustag; 985 bus_space_handle_t seb = sc->sc_seb; 986 u_int32_t status; 987 int r = 0; 988 989 status = bus_space_read_4(t, seb, HME_SEBI_STAT); 990 991 if ((status & HME_SEB_STAT_ALL_ERRORS) != 0) 992 r |= hme_eint(sc, status); 993 994 if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0) 995 r |= hme_tint(sc); 996 997 if ((status & HME_SEB_STAT_RXTOHOST) != 0) 998 r |= hme_rint(sc); 999 1000 return (r); 1001 } 1002 1003 1004 void 1005 hme_watchdog(ifp) 1006 struct ifnet *ifp; 1007 { 1008 struct hme_softc *sc = ifp->if_softc; 1009 1010 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname); 1011 ++ifp->if_oerrors; 1012 1013 hme_reset(sc); 1014 } 1015 1016 /* 1017 * Initialize the MII Management Interface 1018 */ 1019 void 1020 hme_mifinit(sc) 1021 struct hme_softc *sc; 1022 { 1023 bus_space_tag_t t = sc->sc_bustag; 1024 bus_space_handle_t mif = sc->sc_mif; 1025 bus_space_handle_t mac = sc->sc_mac; 1026 int instance, phy; 1027 u_int32_t v; 1028 1029 if (sc->sc_media.ifm_cur != NULL) { 1030 instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media); 1031 phy = sc->sc_phys[instance]; 1032 } else 1033 /* No media set yet, pick phy arbitrarily.. */ 1034 phy = HME_PHYAD_EXTERNAL; 1035 1036 /* Configure the MIF in frame mode, no poll, current phy select */ 1037 v = 0; 1038 if (phy == HME_PHYAD_EXTERNAL) 1039 v |= HME_MIF_CFG_PHY; 1040 bus_space_write_4(t, mif, HME_MIFI_CFG, v); 1041 1042 /* If an external transceiver is selected, enable its MII drivers */ 1043 v = bus_space_read_4(t, mac, HME_MACI_XIF); 1044 v &= ~HME_MAC_XIF_MIIENABLE; 1045 if (phy == HME_PHYAD_EXTERNAL) 1046 v |= HME_MAC_XIF_MIIENABLE; 1047 bus_space_write_4(t, mac, HME_MACI_XIF, v); 1048 } 1049 1050 /* 1051 * MII interface 1052 */ 1053 static int 1054 hme_mii_readreg(self, phy, reg) 1055 struct device *self; 1056 int phy, reg; 1057 { 1058 struct hme_softc *sc = (void *)self; 1059 bus_space_tag_t t = sc->sc_bustag; 1060 bus_space_handle_t mif = sc->sc_mif; 1061 bus_space_handle_t mac = sc->sc_mac; 1062 u_int32_t v, xif_cfg, mifi_cfg; 1063 int n; 1064 1065 /* We can at most have two PHYs */ 1066 if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL) 1067 return (0); 1068 1069 /* Select the desired PHY in the MIF configuration register */ 1070 v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG); 1071 v &= ~HME_MIF_CFG_PHY; 1072 if (phy == HME_PHYAD_EXTERNAL) 1073 v |= HME_MIF_CFG_PHY; 1074 bus_space_write_4(t, mif, HME_MIFI_CFG, v); 1075 1076 /* Enable MII drivers on external transceiver */ 1077 v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF); 1078 if (phy == HME_PHYAD_EXTERNAL) 1079 v |= HME_MAC_XIF_MIIENABLE; 1080 else 1081 v &= ~HME_MAC_XIF_MIIENABLE; 1082 bus_space_write_4(t, mac, HME_MACI_XIF, v); 1083 1084 #if 0 1085 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */ 1086 /* 1087 * Check whether a transceiver is connected by testing 1088 * the MIF configuration register's MDI_X bits. Note that 1089 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h 1090 */ 1091 mif_mdi_bit = 1 << (8 + (1 - phy)); 1092 delay(100); 1093 v = bus_space_read_4(t, mif, HME_MIFI_CFG); 1094 if ((v & mif_mdi_bit) == 0) 1095 return (0); 1096 #endif 1097 1098 /* Construct the frame command */ 1099 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) | 1100 HME_MIF_FO_TAMSB | 1101 (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) | 1102 (phy << HME_MIF_FO_PHYAD_SHIFT) | 1103 (reg << HME_MIF_FO_REGAD_SHIFT); 1104 1105 bus_space_write_4(t, mif, HME_MIFI_FO, v); 1106 for (n = 0; n < 100; n++) { 1107 DELAY(1); 1108 v = bus_space_read_4(t, mif, HME_MIFI_FO); 1109 if (v & HME_MIF_FO_TALSB) { 1110 v &= HME_MIF_FO_DATA; 1111 goto out; 1112 } 1113 } 1114 1115 v = 0; 1116 printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname); 1117 1118 out: 1119 /* Restore MIFI_CFG register */ 1120 bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg); 1121 /* Restore XIF register */ 1122 bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg); 1123 return (v); 1124 } 1125 1126 static void 1127 hme_mii_writereg(self, phy, reg, val) 1128 struct device *self; 1129 int phy, reg, val; 1130 { 1131 struct hme_softc *sc = (void *)self; 1132 bus_space_tag_t t = sc->sc_bustag; 1133 bus_space_handle_t mif = sc->sc_mif; 1134 bus_space_handle_t mac = sc->sc_mac; 1135 u_int32_t v, xif_cfg, mifi_cfg; 1136 int n; 1137 1138 /* We can at most have two PHYs */ 1139 if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL) 1140 return; 1141 1142 /* Select the desired PHY in the MIF configuration register */ 1143 v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG); 1144 v &= ~HME_MIF_CFG_PHY; 1145 if (phy == HME_PHYAD_EXTERNAL) 1146 v |= HME_MIF_CFG_PHY; 1147 bus_space_write_4(t, mif, HME_MIFI_CFG, v); 1148 1149 /* Enable MII drivers on external transceiver */ 1150 v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF); 1151 if (phy == HME_PHYAD_EXTERNAL) 1152 v |= HME_MAC_XIF_MIIENABLE; 1153 else 1154 v &= ~HME_MAC_XIF_MIIENABLE; 1155 bus_space_write_4(t, mac, HME_MACI_XIF, v); 1156 1157 #if 0 1158 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */ 1159 /* 1160 * Check whether a transceiver is connected by testing 1161 * the MIF configuration register's MDI_X bits. Note that 1162 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h 1163 */ 1164 mif_mdi_bit = 1 << (8 + (1 - phy)); 1165 delay(100); 1166 v = bus_space_read_4(t, mif, HME_MIFI_CFG); 1167 if ((v & mif_mdi_bit) == 0) 1168 return; 1169 #endif 1170 1171 /* Construct the frame command */ 1172 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) | 1173 HME_MIF_FO_TAMSB | 1174 (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) | 1175 (phy << HME_MIF_FO_PHYAD_SHIFT) | 1176 (reg << HME_MIF_FO_REGAD_SHIFT) | 1177 (val & HME_MIF_FO_DATA); 1178 1179 bus_space_write_4(t, mif, HME_MIFI_FO, v); 1180 for (n = 0; n < 100; n++) { 1181 DELAY(1); 1182 v = bus_space_read_4(t, mif, HME_MIFI_FO); 1183 if (v & HME_MIF_FO_TALSB) 1184 goto out; 1185 } 1186 1187 printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname); 1188 out: 1189 /* Restore MIFI_CFG register */ 1190 bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg); 1191 /* Restore XIF register */ 1192 bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg); 1193 } 1194 1195 static void 1196 hme_mii_statchg(dev) 1197 struct device *dev; 1198 { 1199 struct hme_softc *sc = (void *)dev; 1200 bus_space_tag_t t = sc->sc_bustag; 1201 bus_space_handle_t mac = sc->sc_mac; 1202 u_int32_t v; 1203 1204 #ifdef HMEDEBUG 1205 if (sc->sc_debug) 1206 printf("hme_mii_statchg: status change\n"); 1207 #endif 1208 1209 /* Set the MAC Full Duplex bit appropriately */ 1210 /* Apparently the hme chip is SIMPLEX if working in full duplex mode, 1211 but not otherwise. */ 1212 v = bus_space_read_4(t, mac, HME_MACI_TXCFG); 1213 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) { 1214 v |= HME_MAC_TXCFG_FULLDPLX; 1215 sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX; 1216 } else { 1217 v &= ~HME_MAC_TXCFG_FULLDPLX; 1218 sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX; 1219 } 1220 bus_space_write_4(t, mac, HME_MACI_TXCFG, v); 1221 } 1222 1223 int 1224 hme_mediachange(ifp) 1225 struct ifnet *ifp; 1226 { 1227 struct hme_softc *sc = ifp->if_softc; 1228 bus_space_tag_t t = sc->sc_bustag; 1229 bus_space_handle_t mif = sc->sc_mif; 1230 bus_space_handle_t mac = sc->sc_mac; 1231 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media); 1232 int phy = sc->sc_phys[instance]; 1233 u_int32_t v; 1234 1235 #ifdef HMEDEBUG 1236 if (sc->sc_debug) 1237 printf("hme_mediachange: phy = %d\n", phy); 1238 #endif 1239 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER) 1240 return (EINVAL); 1241 1242 /* Select the current PHY in the MIF configuration register */ 1243 v = bus_space_read_4(t, mif, HME_MIFI_CFG); 1244 v &= ~HME_MIF_CFG_PHY; 1245 if (phy == HME_PHYAD_EXTERNAL) 1246 v |= HME_MIF_CFG_PHY; 1247 bus_space_write_4(t, mif, HME_MIFI_CFG, v); 1248 1249 /* If an external transceiver is selected, enable its MII drivers */ 1250 v = bus_space_read_4(t, mac, HME_MACI_XIF); 1251 v &= ~HME_MAC_XIF_MIIENABLE; 1252 if (phy == HME_PHYAD_EXTERNAL) 1253 v |= HME_MAC_XIF_MIIENABLE; 1254 bus_space_write_4(t, mac, HME_MACI_XIF, v); 1255 1256 return (mii_mediachg(&sc->sc_mii)); 1257 } 1258 1259 void 1260 hme_mediastatus(ifp, ifmr) 1261 struct ifnet *ifp; 1262 struct ifmediareq *ifmr; 1263 { 1264 struct hme_softc *sc = ifp->if_softc; 1265 1266 if ((ifp->if_flags & IFF_UP) == 0) 1267 return; 1268 1269 mii_pollstat(&sc->sc_mii); 1270 ifmr->ifm_active = sc->sc_mii.mii_media_active; 1271 ifmr->ifm_status = sc->sc_mii.mii_media_status; 1272 } 1273 1274 /* 1275 * Process an ioctl request. 1276 */ 1277 int 1278 hme_ioctl(ifp, cmd, data) 1279 struct ifnet *ifp; 1280 u_long cmd; 1281 caddr_t data; 1282 { 1283 struct hme_softc *sc = ifp->if_softc; 1284 struct ifaddr *ifa = (struct ifaddr *)data; 1285 struct ifreq *ifr = (struct ifreq *)data; 1286 int s, error = 0; 1287 1288 s = splnet(); 1289 1290 switch (cmd) { 1291 1292 case SIOCSIFADDR: 1293 ifp->if_flags |= IFF_UP; 1294 1295 switch (ifa->ifa_addr->sa_family) { 1296 #ifdef INET 1297 case AF_INET: 1298 hme_init(sc); 1299 arp_ifinit(ifp, ifa); 1300 break; 1301 #endif 1302 #ifdef NS 1303 case AF_NS: 1304 { 1305 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr; 1306 1307 if (ns_nullhost(*ina)) 1308 ina->x_host = 1309 *(union ns_host *)LLADDR(ifp->if_sadl); 1310 else { 1311 memcpy(LLADDR(ifp->if_sadl), 1312 ina->x_host.c_host, sizeof(sc->sc_enaddr)); 1313 } 1314 /* Set new address. */ 1315 hme_init(sc); 1316 break; 1317 } 1318 #endif 1319 default: 1320 hme_init(sc); 1321 break; 1322 } 1323 break; 1324 1325 case SIOCSIFFLAGS: 1326 if ((ifp->if_flags & IFF_UP) == 0 && 1327 (ifp->if_flags & IFF_RUNNING) != 0) { 1328 /* 1329 * If interface is marked down and it is running, then 1330 * stop it. 1331 */ 1332 hme_stop(sc); 1333 ifp->if_flags &= ~IFF_RUNNING; 1334 } else if ((ifp->if_flags & IFF_UP) != 0 && 1335 (ifp->if_flags & IFF_RUNNING) == 0) { 1336 /* 1337 * If interface is marked up and it is stopped, then 1338 * start it. 1339 */ 1340 hme_init(sc); 1341 } else if ((ifp->if_flags & IFF_UP) != 0) { 1342 /* 1343 * Reset the interface to pick up changes in any other 1344 * flags that affect hardware registers. 1345 */ 1346 /*hme_stop(sc);*/ 1347 hme_init(sc); 1348 } 1349 #ifdef HMEDEBUG 1350 sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0; 1351 #endif 1352 break; 1353 1354 case SIOCADDMULTI: 1355 case SIOCDELMULTI: 1356 error = (cmd == SIOCADDMULTI) ? 1357 ether_addmulti(ifr, &sc->sc_ethercom) : 1358 ether_delmulti(ifr, &sc->sc_ethercom); 1359 1360 if (error == ENETRESET) { 1361 /* 1362 * Multicast list has changed; set the hardware filter 1363 * accordingly. 1364 */ 1365 hme_setladrf(sc); 1366 error = 0; 1367 } 1368 break; 1369 1370 case SIOCGIFMEDIA: 1371 case SIOCSIFMEDIA: 1372 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd); 1373 break; 1374 1375 default: 1376 error = EINVAL; 1377 break; 1378 } 1379 1380 splx(s); 1381 return (error); 1382 } 1383 1384 void 1385 hme_shutdown(arg) 1386 void *arg; 1387 { 1388 1389 hme_stop((struct hme_softc *)arg); 1390 } 1391 1392 /* 1393 * Set up the logical address filter. 1394 */ 1395 void 1396 hme_setladrf(sc) 1397 struct hme_softc *sc; 1398 { 1399 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1400 struct ether_multi *enm; 1401 struct ether_multistep step; 1402 struct ethercom *ec = &sc->sc_ethercom; 1403 bus_space_tag_t t = sc->sc_bustag; 1404 bus_space_handle_t mac = sc->sc_mac; 1405 u_char *cp; 1406 u_int32_t crc; 1407 u_int32_t hash[4]; 1408 u_int32_t v; 1409 int len; 1410 1411 /* Clear hash table */ 1412 hash[3] = hash[2] = hash[1] = hash[0] = 0; 1413 1414 /* Get current RX configuration */ 1415 v = bus_space_read_4(t, mac, HME_MACI_RXCFG); 1416 1417 if ((ifp->if_flags & IFF_PROMISC) != 0) { 1418 /* Turn on promiscuous mode; turn off the hash filter */ 1419 v |= HME_MAC_RXCFG_PMISC; 1420 v &= ~HME_MAC_RXCFG_HENABLE; 1421 ifp->if_flags |= IFF_ALLMULTI; 1422 goto chipit; 1423 } 1424 1425 /* Turn off promiscuous mode; turn on the hash filter */ 1426 v &= ~HME_MAC_RXCFG_PMISC; 1427 v |= HME_MAC_RXCFG_HENABLE; 1428 1429 /* 1430 * Set up multicast address filter by passing all multicast addresses 1431 * through a crc generator, and then using the high order 6 bits as an 1432 * index into the 64 bit logical address filter. The high order bit 1433 * selects the word, while the rest of the bits select the bit within 1434 * the word. 1435 */ 1436 1437 ETHER_FIRST_MULTI(step, ec, enm); 1438 while (enm != NULL) { 1439 if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) { 1440 /* 1441 * We must listen to a range of multicast addresses. 1442 * For now, just accept all multicasts, rather than 1443 * trying to set only those filter bits needed to match 1444 * the range. (At this time, the only use of address 1445 * ranges is for IP multicast routing, for which the 1446 * range is big enough to require all bits set.) 1447 */ 1448 hash[3] = hash[2] = hash[1] = hash[0] = 0xffff; 1449 ifp->if_flags |= IFF_ALLMULTI; 1450 goto chipit; 1451 } 1452 1453 cp = enm->enm_addrlo; 1454 crc = 0xffffffff; 1455 for (len = sizeof(enm->enm_addrlo); --len >= 0;) { 1456 int octet = *cp++; 1457 int i; 1458 1459 #define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */ 1460 for (i = 0; i < 8; i++) { 1461 if ((crc & 1) ^ (octet & 1)) { 1462 crc >>= 1; 1463 crc ^= MC_POLY_LE; 1464 } else { 1465 crc >>= 1; 1466 } 1467 octet >>= 1; 1468 } 1469 } 1470 /* Just want the 6 most significant bits. */ 1471 crc >>= 26; 1472 1473 /* Set the corresponding bit in the filter. */ 1474 hash[crc >> 4] |= 1 << (crc & 0xf); 1475 1476 ETHER_NEXT_MULTI(step, enm); 1477 } 1478 1479 ifp->if_flags &= ~IFF_ALLMULTI; 1480 1481 chipit: 1482 /* Now load the hash table into the chip */ 1483 bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]); 1484 bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]); 1485 bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]); 1486 bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]); 1487 bus_space_write_4(t, mac, HME_MACI_RXCFG, v); 1488 } 1489 1490 /* 1491 * Routines for accessing the transmit and receive buffers. 1492 * The various CPU and adapter configurations supported by this 1493 * driver require three different access methods for buffers 1494 * and descriptors: 1495 * (1) contig (contiguous data; no padding), 1496 * (2) gap2 (two bytes of data followed by two bytes of padding), 1497 * (3) gap16 (16 bytes of data followed by 16 bytes of padding). 1498 */ 1499 1500 #if 0 1501 /* 1502 * contig: contiguous data with no padding. 1503 * 1504 * Buffers may have any alignment. 1505 */ 1506 1507 void 1508 hme_copytobuf_contig(sc, from, ri, len) 1509 struct hme_softc *sc; 1510 void *from; 1511 int ri, len; 1512 { 1513 volatile caddr_t buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ); 1514 1515 /* 1516 * Just call memcpy() to do the work. 1517 */ 1518 memcpy(buf, from, len); 1519 } 1520 1521 void 1522 hme_copyfrombuf_contig(sc, to, boff, len) 1523 struct hme_softc *sc; 1524 void *to; 1525 int boff, len; 1526 { 1527 volatile caddr_t buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ); 1528 1529 /* 1530 * Just call memcpy() to do the work. 1531 */ 1532 memcpy(to, buf, len); 1533 } 1534 #endif 1535