xref: /netbsd-src/sys/dev/ic/hme.c (revision d710132b4b8ce7f7cccaaf660cb16aa16b4077a0)
1 /*	$NetBSD: hme.c,v 1.37 2003/05/03 18:11:18 wiz Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * HME Ethernet module driver.
41  */
42 
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.37 2003/05/03 18:11:18 wiz Exp $");
45 
46 #define HMEDEBUG
47 
48 #include "opt_inet.h"
49 #include "opt_ns.h"
50 #include "bpfilter.h"
51 #include "rnd.h"
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/mbuf.h>
57 #include <sys/syslog.h>
58 #include <sys/socket.h>
59 #include <sys/device.h>
60 #include <sys/malloc.h>
61 #include <sys/ioctl.h>
62 #include <sys/errno.h>
63 #if NRND > 0
64 #include <sys/rnd.h>
65 #endif
66 
67 #include <net/if.h>
68 #include <net/if_dl.h>
69 #include <net/if_ether.h>
70 #include <net/if_media.h>
71 
72 #ifdef INET
73 #include <netinet/in.h>
74 #include <netinet/if_inarp.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/in_var.h>
77 #include <netinet/ip.h>
78 #endif
79 
80 #ifdef NS
81 #include <netns/ns.h>
82 #include <netns/ns_if.h>
83 #endif
84 
85 #if NBPFILTER > 0
86 #include <net/bpf.h>
87 #include <net/bpfdesc.h>
88 #endif
89 
90 #include <dev/mii/mii.h>
91 #include <dev/mii/miivar.h>
92 
93 #include <machine/bus.h>
94 
95 #include <dev/ic/hmereg.h>
96 #include <dev/ic/hmevar.h>
97 
98 void		hme_start __P((struct ifnet *));
99 void		hme_stop __P((struct hme_softc *));
100 int		hme_ioctl __P((struct ifnet *, u_long, caddr_t));
101 void		hme_tick __P((void *));
102 void		hme_watchdog __P((struct ifnet *));
103 void		hme_shutdown __P((void *));
104 void		hme_init __P((struct hme_softc *));
105 void		hme_meminit __P((struct hme_softc *));
106 void		hme_mifinit __P((struct hme_softc *));
107 void		hme_reset __P((struct hme_softc *));
108 void		hme_setladrf __P((struct hme_softc *));
109 
110 /* MII methods & callbacks */
111 static int	hme_mii_readreg __P((struct device *, int, int));
112 static void	hme_mii_writereg __P((struct device *, int, int, int));
113 static void	hme_mii_statchg __P((struct device *));
114 
115 int		hme_mediachange __P((struct ifnet *));
116 void		hme_mediastatus __P((struct ifnet *, struct ifmediareq *));
117 
118 struct mbuf	*hme_get __P((struct hme_softc *, int, int));
119 int		hme_put __P((struct hme_softc *, int, struct mbuf *));
120 void		hme_read __P((struct hme_softc *, int, int));
121 int		hme_eint __P((struct hme_softc *, u_int));
122 int		hme_rint __P((struct hme_softc *));
123 int		hme_tint __P((struct hme_softc *));
124 
125 static int	ether_cmp __P((u_char *, u_char *));
126 
127 /* Default buffer copy routines */
128 void	hme_copytobuf_contig __P((struct hme_softc *, void *, int, int));
129 void	hme_copyfrombuf_contig __P((struct hme_softc *, void *, int, int));
130 void	hme_zerobuf_contig __P((struct hme_softc *, int, int));
131 
132 
133 void
134 hme_config(sc)
135 	struct hme_softc *sc;
136 {
137 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
138 	struct mii_data *mii = &sc->sc_mii;
139 	struct mii_softc *child;
140 	bus_dma_tag_t dmatag = sc->sc_dmatag;
141 	bus_dma_segment_t seg;
142 	bus_size_t size;
143 	int rseg, error;
144 
145 	/*
146 	 * HME common initialization.
147 	 *
148 	 * hme_softc fields that must be initialized by the front-end:
149 	 *
150 	 * the bus tag:
151 	 *	sc_bustag
152 	 *
153 	 * the DMA bus tag:
154 	 *	sc_dmatag
155 	 *
156 	 * the bus handles:
157 	 *	sc_seb		(Shared Ethernet Block registers)
158 	 *	sc_erx		(Receiver Unit registers)
159 	 *	sc_etx		(Transmitter Unit registers)
160 	 *	sc_mac		(MAC registers)
161 	 *	sc_mif		(Management Interface registers)
162 	 *
163 	 * the maximum bus burst size:
164 	 *	sc_burst
165 	 *
166 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
167 	 *	rb_membase, rb_dmabase)
168 	 *
169 	 * the local Ethernet address:
170 	 *	sc_enaddr
171 	 *
172 	 */
173 
174 	/* Make sure the chip is stopped. */
175 	hme_stop(sc);
176 
177 
178 	/*
179 	 * Allocate descriptors and buffers
180 	 * XXX - do all this differently.. and more configurably,
181 	 * eg. use things as `dma_load_mbuf()' on transmit,
182 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
183 	 *     all the time) on the reveiver side.
184 	 *
185 	 * Note: receive buffers must be 64-byte aligned.
186 	 * Also, apparently, the buffers must extend to a DMA burst
187 	 * boundary beyond the maximum packet size.
188 	 */
189 #define _HME_NDESC	128
190 #define _HME_BUFSZ	1600
191 
192 	/* Note: the # of descriptors must be a multiple of 16 */
193 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
194 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
195 
196 	/*
197 	 * Allocate DMA capable memory
198 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
199 	 * take this into account when calculating the size. Note that
200 	 * the maximum number of descriptors (256) occupies 2048 bytes,
201 	 * so we allocate that much regardless of _HME_NDESC.
202 	 */
203 	size =	2048 +					/* TX descriptors */
204 		2048 +					/* RX descriptors */
205 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
206 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* TX buffers */
207 
208 	/* Allocate DMA buffer */
209 	if ((error = bus_dmamem_alloc(dmatag, size,
210 				      2048, 0,
211 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
212 		printf("%s: DMA buffer alloc error %d\n",
213 			sc->sc_dev.dv_xname, error);
214 		return;
215 	}
216 
217 	/* Map DMA memory in CPU addressable space */
218 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
219 				    &sc->sc_rb.rb_membase,
220 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
221 		printf("%s: DMA buffer map error %d\n",
222 			sc->sc_dev.dv_xname, error);
223 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
224 		bus_dmamem_free(dmatag, &seg, rseg);
225 		return;
226 	}
227 
228 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
229 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
230 		printf("%s: DMA map create error %d\n",
231 			sc->sc_dev.dv_xname, error);
232 		return;
233 	}
234 
235 	/* Load the buffer */
236 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
237 	    sc->sc_rb.rb_membase, size, NULL,
238 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
239 		printf("%s: DMA buffer map load error %d\n",
240 			sc->sc_dev.dv_xname, error);
241 		bus_dmamem_free(dmatag, &seg, rseg);
242 		return;
243 	}
244 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
245 
246 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
247 	    ether_sprintf(sc->sc_enaddr));
248 
249 	/* Initialize ifnet structure. */
250 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
251 	ifp->if_softc = sc;
252 	ifp->if_start = hme_start;
253 	ifp->if_ioctl = hme_ioctl;
254 	ifp->if_watchdog = hme_watchdog;
255 	ifp->if_flags =
256 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
257 	IFQ_SET_READY(&ifp->if_snd);
258 
259 	/* Initialize ifmedia structures and MII info */
260 	mii->mii_ifp = ifp;
261 	mii->mii_readreg = hme_mii_readreg;
262 	mii->mii_writereg = hme_mii_writereg;
263 	mii->mii_statchg = hme_mii_statchg;
264 
265 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, hme_mediastatus);
266 
267 	hme_mifinit(sc);
268 
269 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
270 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
271 
272 	child = LIST_FIRST(&mii->mii_phys);
273 	if (child == NULL) {
274 		/* No PHY attached */
275 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
276 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
277 	} else {
278 		/*
279 		 * Walk along the list of attached MII devices and
280 		 * establish an `MII instance' to `phy number'
281 		 * mapping. We'll use this mapping in media change
282 		 * requests to determine which phy to use to program
283 		 * the MIF configuration register.
284 		 */
285 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
286 			/*
287 			 * Note: we support just two PHYs: the built-in
288 			 * internal device and an external on the MII
289 			 * connector.
290 			 */
291 			if (child->mii_phy > 1 || child->mii_inst > 1) {
292 				printf("%s: cannot accomodate MII device %s"
293 				       " at phy %d, instance %d\n",
294 				       sc->sc_dev.dv_xname,
295 				       child->mii_dev.dv_xname,
296 				       child->mii_phy, child->mii_inst);
297 				continue;
298 			}
299 
300 			sc->sc_phys[child->mii_inst] = child->mii_phy;
301 		}
302 
303 		/*
304 		 * XXX - we can really do the following ONLY if the
305 		 * phy indeed has the auto negotiation capability!!
306 		 */
307 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
308 	}
309 
310 	/* claim 802.1q capability */
311 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
312 
313 	/* Attach the interface. */
314 	if_attach(ifp);
315 	ether_ifattach(ifp, sc->sc_enaddr);
316 
317 	sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
318 	if (sc->sc_sh == NULL)
319 		panic("hme_config: can't establish shutdownhook");
320 
321 #if NRND > 0
322 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
323 			  RND_TYPE_NET, 0);
324 #endif
325 
326 	callout_init(&sc->sc_tick_ch);
327 }
328 
329 void
330 hme_tick(arg)
331 	void *arg;
332 {
333 	struct hme_softc *sc = arg;
334 	int s;
335 
336 	s = splnet();
337 	mii_tick(&sc->sc_mii);
338 	splx(s);
339 
340 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
341 }
342 
343 void
344 hme_reset(sc)
345 	struct hme_softc *sc;
346 {
347 	int s;
348 
349 	s = splnet();
350 	hme_init(sc);
351 	splx(s);
352 }
353 
354 void
355 hme_stop(sc)
356 	struct hme_softc *sc;
357 {
358 	bus_space_tag_t t = sc->sc_bustag;
359 	bus_space_handle_t seb = sc->sc_seb;
360 	int n;
361 
362 	callout_stop(&sc->sc_tick_ch);
363 	mii_down(&sc->sc_mii);
364 
365 	/* Mask all interrupts */
366 	bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
367 
368 	/* Reset transmitter and receiver */
369 	bus_space_write_4(t, seb, HME_SEBI_RESET,
370 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
371 
372 	for (n = 0; n < 20; n++) {
373 		u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
374 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
375 			return;
376 		DELAY(20);
377 	}
378 
379 	printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname);
380 }
381 
382 void
383 hme_meminit(sc)
384 	struct hme_softc *sc;
385 {
386 	bus_addr_t txbufdma, rxbufdma;
387 	bus_addr_t dma;
388 	caddr_t p;
389 	unsigned int ntbuf, nrbuf, i;
390 	struct hme_ring *hr = &sc->sc_rb;
391 
392 	p = hr->rb_membase;
393 	dma = hr->rb_dmabase;
394 
395 	ntbuf = hr->rb_ntbuf;
396 	nrbuf = hr->rb_nrbuf;
397 
398 	/*
399 	 * Allocate transmit descriptors
400 	 */
401 	hr->rb_txd = p;
402 	hr->rb_txddma = dma;
403 	p += ntbuf * HME_XD_SIZE;
404 	dma += ntbuf * HME_XD_SIZE;
405 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
406 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
407 	p = (caddr_t)roundup((u_long)p, 2048);
408 
409 	/*
410 	 * Allocate receive descriptors
411 	 */
412 	hr->rb_rxd = p;
413 	hr->rb_rxddma = dma;
414 	p += nrbuf * HME_XD_SIZE;
415 	dma += nrbuf * HME_XD_SIZE;
416 	/* Again move forward to the next 2048 byte boundary.*/
417 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
418 	p = (caddr_t)roundup((u_long)p, 2048);
419 
420 
421 	/*
422 	 * Allocate transmit buffers
423 	 */
424 	hr->rb_txbuf = p;
425 	txbufdma = dma;
426 	p += ntbuf * _HME_BUFSZ;
427 	dma += ntbuf * _HME_BUFSZ;
428 
429 	/*
430 	 * Allocate receive buffers
431 	 */
432 	hr->rb_rxbuf = p;
433 	rxbufdma = dma;
434 	p += nrbuf * _HME_BUFSZ;
435 	dma += nrbuf * _HME_BUFSZ;
436 
437 	/*
438 	 * Initialize transmit buffer descriptors
439 	 */
440 	for (i = 0; i < ntbuf; i++) {
441 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
442 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
443 	}
444 
445 	/*
446 	 * Initialize receive buffer descriptors
447 	 */
448 	for (i = 0; i < nrbuf; i++) {
449 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
450 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
451 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
452 	}
453 
454 	hr->rb_tdhead = hr->rb_tdtail = 0;
455 	hr->rb_td_nbusy = 0;
456 	hr->rb_rdtail = 0;
457 }
458 
459 /*
460  * Initialization of interface; set up initialization block
461  * and transmit/receive descriptor rings.
462  */
463 void
464 hme_init(sc)
465 	struct hme_softc *sc;
466 {
467 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
468 	bus_space_tag_t t = sc->sc_bustag;
469 	bus_space_handle_t seb = sc->sc_seb;
470 	bus_space_handle_t etx = sc->sc_etx;
471 	bus_space_handle_t erx = sc->sc_erx;
472 	bus_space_handle_t mac = sc->sc_mac;
473 	u_int8_t *ea;
474 	u_int32_t v;
475 
476 	/*
477 	 * Initialization sequence. The numbered steps below correspond
478 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
479 	 * Channel Engine manual (part of the PCIO manual).
480 	 * See also the STP2002-STQ document from Sun Microsystems.
481 	 */
482 
483 	/* step 1 & 2. Reset the Ethernet Channel */
484 	hme_stop(sc);
485 
486 	/* Re-initialize the MIF */
487 	hme_mifinit(sc);
488 
489 	/* Call MI reset function if any */
490 	if (sc->sc_hwreset)
491 		(*sc->sc_hwreset)(sc);
492 
493 #if 0
494 	/* Mask all MIF interrupts, just in case */
495 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
496 #endif
497 
498 	/* step 3. Setup data structures in host memory */
499 	hme_meminit(sc);
500 
501 	/* step 4. TX MAC registers & counters */
502 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
503 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
504 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
505 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
506 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
507 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
508 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN :
509             ETHER_MAX_LEN);
510 
511 	/* Load station MAC address */
512 	ea = sc->sc_enaddr;
513 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
514 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
515 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
516 
517 	/*
518 	 * Init seed for backoff
519 	 * (source suggested by manual: low 10 bits of MAC address)
520 	 */
521 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
522 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
523 
524 
525 	/* Note: Accepting power-on default for other MAC registers here.. */
526 
527 
528 	/* step 5. RX MAC registers & counters */
529 	hme_setladrf(sc);
530 
531 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
532 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
533 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
534 
535 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
536 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
537 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
538 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN :
539             ETHER_MAX_LEN);
540 
541 
542 	/* step 8. Global Configuration & Interrupt Mask */
543 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
544 			~(
545 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
546 			  HME_SEB_STAT_HOSTTOTX |
547 			  HME_SEB_STAT_RXTOHOST |
548 			  HME_SEB_STAT_TXALL |
549 			  HME_SEB_STAT_TXPERR |
550 			  HME_SEB_STAT_RCNTEXP |
551 			  /*HME_SEB_STAT_MIFIRQ |*/
552 			  HME_SEB_STAT_ALL_ERRORS ));
553 
554 	switch (sc->sc_burst) {
555 	default:
556 		v = 0;
557 		break;
558 	case 16:
559 		v = HME_SEB_CFG_BURST16;
560 		break;
561 	case 32:
562 		v = HME_SEB_CFG_BURST32;
563 		break;
564 	case 64:
565 		v = HME_SEB_CFG_BURST64;
566 		break;
567 	}
568 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
569 
570 	/* step 9. ETX Configuration: use mostly default values */
571 
572 	/* Enable DMA */
573 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
574 	v |= HME_ETX_CFG_DMAENABLE;
575 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
576 
577 	/* Transmit Descriptor ring size: in increments of 16 */
578 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
579 
580 
581 	/* step 10. ERX Configuration */
582 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
583 
584 	/* Encode Receive Descriptor ring size: four possible values */
585 	switch (_HME_NDESC /*XXX*/) {
586 	case 32:
587 		v |= HME_ERX_CFG_RINGSIZE32;
588 		break;
589 	case 64:
590 		v |= HME_ERX_CFG_RINGSIZE64;
591 		break;
592 	case 128:
593 		v |= HME_ERX_CFG_RINGSIZE128;
594 		break;
595 	case 256:
596 		v |= HME_ERX_CFG_RINGSIZE256;
597 		break;
598 	default:
599 		printf("hme: invalid Receive Descriptor ring size\n");
600 		break;
601 	}
602 
603 	/* Enable DMA */
604 	v |= HME_ERX_CFG_DMAENABLE;
605 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
606 
607 	/* step 11. XIF Configuration */
608 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
609 	v |= HME_MAC_XIF_OE;
610 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
611 
612 	/* step 12. RX_MAC Configuration Register */
613 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
614 	v |= HME_MAC_RXCFG_ENABLE;
615 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
616 
617 	/* step 13. TX_MAC Configuration Register */
618 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
619 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
620 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
621 
622 	/* step 14. Issue Transmit Pending command */
623 
624 	/* Call MI initialization function if any */
625 	if (sc->sc_hwinit)
626 		(*sc->sc_hwinit)(sc);
627 
628 	/* Set the current media. */
629 	mii_mediachg(&sc->sc_mii);
630 
631 	/* Start the one second timer. */
632 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
633 
634 	ifp->if_flags |= IFF_RUNNING;
635 	ifp->if_flags &= ~IFF_OACTIVE;
636 	ifp->if_timer = 0;
637 	hme_start(ifp);
638 }
639 
640 /*
641  * Compare two Ether/802 addresses for equality, inlined and unrolled for
642  * speed.
643  */
644 static __inline__ int
645 ether_cmp(a, b)
646 	u_char *a, *b;
647 {
648 
649 	if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
650 	    a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
651 		return (0);
652 	return (1);
653 }
654 
655 
656 /*
657  * Routine to copy from mbuf chain to transmit buffer in
658  * network buffer memory.
659  * Returns the amount of data copied.
660  */
661 int
662 hme_put(sc, ri, m)
663 	struct hme_softc *sc;
664 	int ri;			/* Ring index */
665 	struct mbuf *m;
666 {
667 	struct mbuf *n;
668 	int len, tlen = 0;
669 	caddr_t bp;
670 
671 	bp = sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
672 	for (; m; m = n) {
673 		len = m->m_len;
674 		if (len == 0) {
675 			MFREE(m, n);
676 			continue;
677 		}
678 		memcpy(bp, mtod(m, caddr_t), len);
679 		bp += len;
680 		tlen += len;
681 		MFREE(m, n);
682 	}
683 	return (tlen);
684 }
685 
686 /*
687  * Pull data off an interface.
688  * Len is length of data, with local net header stripped.
689  * We copy the data into mbufs.  When full cluster sized units are present
690  * we copy into clusters.
691  */
692 struct mbuf *
693 hme_get(sc, ri, totlen)
694 	struct hme_softc *sc;
695 	int ri, totlen;
696 {
697 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
698 	struct mbuf *m, *m0, *newm;
699 	caddr_t bp;
700 	int len;
701 
702 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
703 	if (m0 == 0)
704 		return (0);
705 	m0->m_pkthdr.rcvif = ifp;
706 	m0->m_pkthdr.len = totlen;
707 	len = MHLEN;
708 	m = m0;
709 
710 	bp = sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
711 
712 	while (totlen > 0) {
713 		if (totlen >= MINCLSIZE) {
714 			MCLGET(m, M_DONTWAIT);
715 			if ((m->m_flags & M_EXT) == 0)
716 				goto bad;
717 			len = MCLBYTES;
718 		}
719 
720 		if (m == m0) {
721 			caddr_t newdata = (caddr_t)
722 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
723 			    sizeof(struct ether_header);
724 			len -= newdata - m->m_data;
725 			m->m_data = newdata;
726 		}
727 
728 		m->m_len = len = min(totlen, len);
729 		memcpy(mtod(m, caddr_t), bp, len);
730 		bp += len;
731 
732 		totlen -= len;
733 		if (totlen > 0) {
734 			MGET(newm, M_DONTWAIT, MT_DATA);
735 			if (newm == 0)
736 				goto bad;
737 			len = MLEN;
738 			m = m->m_next = newm;
739 		}
740 	}
741 
742 	return (m0);
743 
744 bad:
745 	m_freem(m0);
746 	return (0);
747 }
748 
749 /*
750  * Pass a packet to the higher levels.
751  */
752 void
753 hme_read(sc, ix, len)
754 	struct hme_softc *sc;
755 	int ix, len;
756 {
757 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
758 	struct mbuf *m;
759 
760 	if (len <= sizeof(struct ether_header) ||
761 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
762 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
763 	    ETHERMTU + sizeof(struct ether_header))) {
764 #ifdef HMEDEBUG
765 		printf("%s: invalid packet size %d; dropping\n",
766 		    sc->sc_dev.dv_xname, len);
767 #endif
768 		ifp->if_ierrors++;
769 		return;
770 	}
771 
772 	/* Pull packet off interface. */
773 	m = hme_get(sc, ix, len);
774 	if (m == 0) {
775 		ifp->if_ierrors++;
776 		return;
777 	}
778 
779 	ifp->if_ipackets++;
780 
781 #if NBPFILTER > 0
782 	/*
783 	 * Check if there's a BPF listener on this interface.
784 	 * If so, hand off the raw packet to BPF.
785 	 */
786 	if (ifp->if_bpf)
787 		bpf_mtap(ifp->if_bpf, m);
788 #endif
789 
790 	/* Pass the packet up. */
791 	(*ifp->if_input)(ifp, m);
792 }
793 
794 void
795 hme_start(ifp)
796 	struct ifnet *ifp;
797 {
798 	struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
799 	caddr_t txd = sc->sc_rb.rb_txd;
800 	struct mbuf *m;
801 	unsigned int ri, len;
802 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
803 
804 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
805 		return;
806 
807 	ri = sc->sc_rb.rb_tdhead;
808 
809 	for (;;) {
810 		IFQ_DEQUEUE(&ifp->if_snd, m);
811 		if (m == 0)
812 			break;
813 
814 #if NBPFILTER > 0
815 		/*
816 		 * If BPF is listening on this interface, let it see the
817 		 * packet before we commit it to the wire.
818 		 */
819 		if (ifp->if_bpf)
820 			bpf_mtap(ifp->if_bpf, m);
821 #endif
822 
823 		/*
824 		 * Copy the mbuf chain into the transmit buffer.
825 		 */
826 		len = hme_put(sc, ri, m);
827 
828 		/*
829 		 * Initialize transmit registers and start transmission
830 		 */
831 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
832 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
833 			HME_XD_ENCODE_TSIZE(len));
834 
835 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
836 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
837 				  HME_ETX_TP_DMAWAKEUP);
838 
839 		if (++ri == ntbuf)
840 			ri = 0;
841 
842 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
843 			ifp->if_flags |= IFF_OACTIVE;
844 			break;
845 		}
846 	}
847 
848 	sc->sc_rb.rb_tdhead = ri;
849 }
850 
851 /*
852  * Transmit interrupt.
853  */
854 int
855 hme_tint(sc)
856 	struct hme_softc *sc;
857 {
858 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
859 	bus_space_tag_t t = sc->sc_bustag;
860 	bus_space_handle_t mac = sc->sc_mac;
861 	unsigned int ri, txflags;
862 
863 	/*
864 	 * Unload collision counters
865 	 */
866 	ifp->if_collisions +=
867 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
868 		bus_space_read_4(t, mac, HME_MACI_FCCNT) +
869 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
870 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
871 
872 	/*
873 	 * then clear the hardware counters.
874 	 */
875 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
876 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
877 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
878 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
879 
880 	/* Fetch current position in the transmit ring */
881 	ri = sc->sc_rb.rb_tdtail;
882 
883 	for (;;) {
884 		if (sc->sc_rb.rb_td_nbusy <= 0)
885 			break;
886 
887 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
888 
889 		if (txflags & HME_XD_OWN)
890 			break;
891 
892 		ifp->if_flags &= ~IFF_OACTIVE;
893 		ifp->if_opackets++;
894 
895 		if (++ri == sc->sc_rb.rb_ntbuf)
896 			ri = 0;
897 
898 		--sc->sc_rb.rb_td_nbusy;
899 	}
900 
901 	/* Update ring */
902 	sc->sc_rb.rb_tdtail = ri;
903 
904 	hme_start(ifp);
905 
906 	if (sc->sc_rb.rb_td_nbusy == 0)
907 		ifp->if_timer = 0;
908 
909 	return (1);
910 }
911 
912 /*
913  * Receive interrupt.
914  */
915 int
916 hme_rint(sc)
917 	struct hme_softc *sc;
918 {
919 	caddr_t xdr = sc->sc_rb.rb_rxd;
920 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
921 	unsigned int ri, len;
922 	u_int32_t flags;
923 
924 	ri = sc->sc_rb.rb_rdtail;
925 
926 	/*
927 	 * Process all buffers with valid data.
928 	 */
929 	for (;;) {
930 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
931 		if (flags & HME_XD_OWN)
932 			break;
933 
934 		if (flags & HME_XD_OFL) {
935 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
936 					sc->sc_dev.dv_xname, ri, flags);
937 		} else {
938 			len = HME_XD_DECODE_RSIZE(flags);
939 			hme_read(sc, ri, len);
940 		}
941 
942 		/* This buffer can be used by the hardware again */
943 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
944 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
945 
946 		if (++ri == nrbuf)
947 			ri = 0;
948 	}
949 
950 	sc->sc_rb.rb_rdtail = ri;
951 
952 	return (1);
953 }
954 
955 int
956 hme_eint(sc, status)
957 	struct hme_softc *sc;
958 	u_int status;
959 {
960 	char bits[128];
961 
962 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
963 		bus_space_tag_t t = sc->sc_bustag;
964 		bus_space_handle_t mif = sc->sc_mif;
965 		u_int32_t cf, st, sm;
966 		cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
967 		st = bus_space_read_4(t, mif, HME_MIFI_STAT);
968 		sm = bus_space_read_4(t, mif, HME_MIFI_SM);
969 		printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
970 			sc->sc_dev.dv_xname, cf, st, sm);
971 		return (1);
972 	}
973 
974 	printf("%s: status=%s\n", sc->sc_dev.dv_xname,
975 		bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
976 	return (1);
977 }
978 
979 int
980 hme_intr(v)
981 	void *v;
982 {
983 	struct hme_softc *sc = (struct hme_softc *)v;
984 	bus_space_tag_t t = sc->sc_bustag;
985 	bus_space_handle_t seb = sc->sc_seb;
986 	u_int32_t status;
987 	int r = 0;
988 
989 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
990 
991 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
992 		r |= hme_eint(sc, status);
993 
994 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
995 		r |= hme_tint(sc);
996 
997 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
998 		r |= hme_rint(sc);
999 
1000 	return (r);
1001 }
1002 
1003 
1004 void
1005 hme_watchdog(ifp)
1006 	struct ifnet *ifp;
1007 {
1008 	struct hme_softc *sc = ifp->if_softc;
1009 
1010 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1011 	++ifp->if_oerrors;
1012 
1013 	hme_reset(sc);
1014 }
1015 
1016 /*
1017  * Initialize the MII Management Interface
1018  */
1019 void
1020 hme_mifinit(sc)
1021 	struct hme_softc *sc;
1022 {
1023 	bus_space_tag_t t = sc->sc_bustag;
1024 	bus_space_handle_t mif = sc->sc_mif;
1025 	bus_space_handle_t mac = sc->sc_mac;
1026 	int instance, phy;
1027 	u_int32_t v;
1028 
1029 	if (sc->sc_media.ifm_cur != NULL) {
1030 		instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1031 		phy = sc->sc_phys[instance];
1032 	} else
1033 		/* No media set yet, pick phy arbitrarily.. */
1034 		phy = HME_PHYAD_EXTERNAL;
1035 
1036 	/* Configure the MIF in frame mode, no poll, current phy select */
1037 	v = 0;
1038 	if (phy == HME_PHYAD_EXTERNAL)
1039 		v |= HME_MIF_CFG_PHY;
1040 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1041 
1042 	/* If an external transceiver is selected, enable its MII drivers */
1043 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
1044 	v &= ~HME_MAC_XIF_MIIENABLE;
1045 	if (phy == HME_PHYAD_EXTERNAL)
1046 		v |= HME_MAC_XIF_MIIENABLE;
1047 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1048 }
1049 
1050 /*
1051  * MII interface
1052  */
1053 static int
1054 hme_mii_readreg(self, phy, reg)
1055 	struct device *self;
1056 	int phy, reg;
1057 {
1058 	struct hme_softc *sc = (void *)self;
1059 	bus_space_tag_t t = sc->sc_bustag;
1060 	bus_space_handle_t mif = sc->sc_mif;
1061 	bus_space_handle_t mac = sc->sc_mac;
1062 	u_int32_t v, xif_cfg, mifi_cfg;
1063 	int n;
1064 
1065 	/* We can at most have two PHYs */
1066 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1067 		return (0);
1068 
1069 	/* Select the desired PHY in the MIF configuration register */
1070 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1071 	v &= ~HME_MIF_CFG_PHY;
1072 	if (phy == HME_PHYAD_EXTERNAL)
1073 		v |= HME_MIF_CFG_PHY;
1074 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1075 
1076 	/* Enable MII drivers on external transceiver */
1077 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1078 	if (phy == HME_PHYAD_EXTERNAL)
1079 		v |= HME_MAC_XIF_MIIENABLE;
1080 	else
1081 		v &= ~HME_MAC_XIF_MIIENABLE;
1082 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1083 
1084 #if 0
1085 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1086 	/*
1087 	 * Check whether a transceiver is connected by testing
1088 	 * the MIF configuration register's MDI_X bits. Note that
1089 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1090 	 */
1091 	mif_mdi_bit = 1 << (8 + (1 - phy));
1092 	delay(100);
1093 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1094 	if ((v & mif_mdi_bit) == 0)
1095 		return (0);
1096 #endif
1097 
1098 	/* Construct the frame command */
1099 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1100 	    HME_MIF_FO_TAMSB |
1101 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1102 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
1103 	    (reg << HME_MIF_FO_REGAD_SHIFT);
1104 
1105 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
1106 	for (n = 0; n < 100; n++) {
1107 		DELAY(1);
1108 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
1109 		if (v & HME_MIF_FO_TALSB) {
1110 			v &= HME_MIF_FO_DATA;
1111 			goto out;
1112 		}
1113 	}
1114 
1115 	v = 0;
1116 	printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1117 
1118 out:
1119 	/* Restore MIFI_CFG register */
1120 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1121 	/* Restore XIF register */
1122 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1123 	return (v);
1124 }
1125 
1126 static void
1127 hme_mii_writereg(self, phy, reg, val)
1128 	struct device *self;
1129 	int phy, reg, val;
1130 {
1131 	struct hme_softc *sc = (void *)self;
1132 	bus_space_tag_t t = sc->sc_bustag;
1133 	bus_space_handle_t mif = sc->sc_mif;
1134 	bus_space_handle_t mac = sc->sc_mac;
1135 	u_int32_t v, xif_cfg, mifi_cfg;
1136 	int n;
1137 
1138 	/* We can at most have two PHYs */
1139 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1140 		return;
1141 
1142 	/* Select the desired PHY in the MIF configuration register */
1143 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1144 	v &= ~HME_MIF_CFG_PHY;
1145 	if (phy == HME_PHYAD_EXTERNAL)
1146 		v |= HME_MIF_CFG_PHY;
1147 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1148 
1149 	/* Enable MII drivers on external transceiver */
1150 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1151 	if (phy == HME_PHYAD_EXTERNAL)
1152 		v |= HME_MAC_XIF_MIIENABLE;
1153 	else
1154 		v &= ~HME_MAC_XIF_MIIENABLE;
1155 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1156 
1157 #if 0
1158 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1159 	/*
1160 	 * Check whether a transceiver is connected by testing
1161 	 * the MIF configuration register's MDI_X bits. Note that
1162 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1163 	 */
1164 	mif_mdi_bit = 1 << (8 + (1 - phy));
1165 	delay(100);
1166 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1167 	if ((v & mif_mdi_bit) == 0)
1168 		return;
1169 #endif
1170 
1171 	/* Construct the frame command */
1172 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
1173 	    HME_MIF_FO_TAMSB				|
1174 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
1175 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
1176 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
1177 	    (val & HME_MIF_FO_DATA);
1178 
1179 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
1180 	for (n = 0; n < 100; n++) {
1181 		DELAY(1);
1182 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
1183 		if (v & HME_MIF_FO_TALSB)
1184 			goto out;
1185 	}
1186 
1187 	printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1188 out:
1189 	/* Restore MIFI_CFG register */
1190 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1191 	/* Restore XIF register */
1192 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1193 }
1194 
1195 static void
1196 hme_mii_statchg(dev)
1197 	struct device *dev;
1198 {
1199 	struct hme_softc *sc = (void *)dev;
1200 	bus_space_tag_t t = sc->sc_bustag;
1201 	bus_space_handle_t mac = sc->sc_mac;
1202 	u_int32_t v;
1203 
1204 #ifdef HMEDEBUG
1205 	if (sc->sc_debug)
1206 		printf("hme_mii_statchg: status change\n");
1207 #endif
1208 
1209 	/* Set the MAC Full Duplex bit appropriately */
1210 	/* Apparently the hme chip is SIMPLEX if working in full duplex mode,
1211 	   but not otherwise. */
1212 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1213 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1214 		v |= HME_MAC_TXCFG_FULLDPLX;
1215 		sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
1216 	} else {
1217 		v &= ~HME_MAC_TXCFG_FULLDPLX;
1218 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
1219 	}
1220 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1221 }
1222 
1223 int
1224 hme_mediachange(ifp)
1225 	struct ifnet *ifp;
1226 {
1227 	struct hme_softc *sc = ifp->if_softc;
1228 	bus_space_tag_t t = sc->sc_bustag;
1229 	bus_space_handle_t mif = sc->sc_mif;
1230 	bus_space_handle_t mac = sc->sc_mac;
1231 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1232 	int phy = sc->sc_phys[instance];
1233 	u_int32_t v;
1234 
1235 #ifdef HMEDEBUG
1236 	if (sc->sc_debug)
1237 		printf("hme_mediachange: phy = %d\n", phy);
1238 #endif
1239 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1240 		return (EINVAL);
1241 
1242 	/* Select the current PHY in the MIF configuration register */
1243 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1244 	v &= ~HME_MIF_CFG_PHY;
1245 	if (phy == HME_PHYAD_EXTERNAL)
1246 		v |= HME_MIF_CFG_PHY;
1247 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1248 
1249 	/* If an external transceiver is selected, enable its MII drivers */
1250 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
1251 	v &= ~HME_MAC_XIF_MIIENABLE;
1252 	if (phy == HME_PHYAD_EXTERNAL)
1253 		v |= HME_MAC_XIF_MIIENABLE;
1254 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1255 
1256 	return (mii_mediachg(&sc->sc_mii));
1257 }
1258 
1259 void
1260 hme_mediastatus(ifp, ifmr)
1261 	struct ifnet *ifp;
1262 	struct ifmediareq *ifmr;
1263 {
1264 	struct hme_softc *sc = ifp->if_softc;
1265 
1266 	if ((ifp->if_flags & IFF_UP) == 0)
1267 		return;
1268 
1269 	mii_pollstat(&sc->sc_mii);
1270 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1271 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1272 }
1273 
1274 /*
1275  * Process an ioctl request.
1276  */
1277 int
1278 hme_ioctl(ifp, cmd, data)
1279 	struct ifnet *ifp;
1280 	u_long cmd;
1281 	caddr_t data;
1282 {
1283 	struct hme_softc *sc = ifp->if_softc;
1284 	struct ifaddr *ifa = (struct ifaddr *)data;
1285 	struct ifreq *ifr = (struct ifreq *)data;
1286 	int s, error = 0;
1287 
1288 	s = splnet();
1289 
1290 	switch (cmd) {
1291 
1292 	case SIOCSIFADDR:
1293 		ifp->if_flags |= IFF_UP;
1294 
1295 		switch (ifa->ifa_addr->sa_family) {
1296 #ifdef INET
1297 		case AF_INET:
1298 			hme_init(sc);
1299 			arp_ifinit(ifp, ifa);
1300 			break;
1301 #endif
1302 #ifdef NS
1303 		case AF_NS:
1304 		    {
1305 			struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1306 
1307 			if (ns_nullhost(*ina))
1308 				ina->x_host =
1309 				    *(union ns_host *)LLADDR(ifp->if_sadl);
1310 			else {
1311 				memcpy(LLADDR(ifp->if_sadl),
1312 				    ina->x_host.c_host, sizeof(sc->sc_enaddr));
1313 			}
1314 			/* Set new address. */
1315 			hme_init(sc);
1316 			break;
1317 		    }
1318 #endif
1319 		default:
1320 			hme_init(sc);
1321 			break;
1322 		}
1323 		break;
1324 
1325 	case SIOCSIFFLAGS:
1326 		if ((ifp->if_flags & IFF_UP) == 0 &&
1327 		    (ifp->if_flags & IFF_RUNNING) != 0) {
1328 			/*
1329 			 * If interface is marked down and it is running, then
1330 			 * stop it.
1331 			 */
1332 			hme_stop(sc);
1333 			ifp->if_flags &= ~IFF_RUNNING;
1334 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
1335 		    	   (ifp->if_flags & IFF_RUNNING) == 0) {
1336 			/*
1337 			 * If interface is marked up and it is stopped, then
1338 			 * start it.
1339 			 */
1340 			hme_init(sc);
1341 		} else if ((ifp->if_flags & IFF_UP) != 0) {
1342 			/*
1343 			 * Reset the interface to pick up changes in any other
1344 			 * flags that affect hardware registers.
1345 			 */
1346 			/*hme_stop(sc);*/
1347 			hme_init(sc);
1348 		}
1349 #ifdef HMEDEBUG
1350 		sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
1351 #endif
1352 		break;
1353 
1354 	case SIOCADDMULTI:
1355 	case SIOCDELMULTI:
1356 		error = (cmd == SIOCADDMULTI) ?
1357 		    ether_addmulti(ifr, &sc->sc_ethercom) :
1358 		    ether_delmulti(ifr, &sc->sc_ethercom);
1359 
1360 		if (error == ENETRESET) {
1361 			/*
1362 			 * Multicast list has changed; set the hardware filter
1363 			 * accordingly.
1364 			 */
1365 			hme_setladrf(sc);
1366 			error = 0;
1367 		}
1368 		break;
1369 
1370 	case SIOCGIFMEDIA:
1371 	case SIOCSIFMEDIA:
1372 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1373 		break;
1374 
1375 	default:
1376 		error = EINVAL;
1377 		break;
1378 	}
1379 
1380 	splx(s);
1381 	return (error);
1382 }
1383 
1384 void
1385 hme_shutdown(arg)
1386 	void *arg;
1387 {
1388 
1389 	hme_stop((struct hme_softc *)arg);
1390 }
1391 
1392 /*
1393  * Set up the logical address filter.
1394  */
1395 void
1396 hme_setladrf(sc)
1397 	struct hme_softc *sc;
1398 {
1399 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1400 	struct ether_multi *enm;
1401 	struct ether_multistep step;
1402 	struct ethercom *ec = &sc->sc_ethercom;
1403 	bus_space_tag_t t = sc->sc_bustag;
1404 	bus_space_handle_t mac = sc->sc_mac;
1405 	u_char *cp;
1406 	u_int32_t crc;
1407 	u_int32_t hash[4];
1408 	u_int32_t v;
1409 	int len;
1410 
1411 	/* Clear hash table */
1412 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
1413 
1414 	/* Get current RX configuration */
1415 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1416 
1417 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
1418 		/* Turn on promiscuous mode; turn off the hash filter */
1419 		v |= HME_MAC_RXCFG_PMISC;
1420 		v &= ~HME_MAC_RXCFG_HENABLE;
1421 		ifp->if_flags |= IFF_ALLMULTI;
1422 		goto chipit;
1423 	}
1424 
1425 	/* Turn off promiscuous mode; turn on the hash filter */
1426 	v &= ~HME_MAC_RXCFG_PMISC;
1427 	v |= HME_MAC_RXCFG_HENABLE;
1428 
1429 	/*
1430 	 * Set up multicast address filter by passing all multicast addresses
1431 	 * through a crc generator, and then using the high order 6 bits as an
1432 	 * index into the 64 bit logical address filter.  The high order bit
1433 	 * selects the word, while the rest of the bits select the bit within
1434 	 * the word.
1435 	 */
1436 
1437 	ETHER_FIRST_MULTI(step, ec, enm);
1438 	while (enm != NULL) {
1439 		if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
1440 			/*
1441 			 * We must listen to a range of multicast addresses.
1442 			 * For now, just accept all multicasts, rather than
1443 			 * trying to set only those filter bits needed to match
1444 			 * the range.  (At this time, the only use of address
1445 			 * ranges is for IP multicast routing, for which the
1446 			 * range is big enough to require all bits set.)
1447 			 */
1448 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1449 			ifp->if_flags |= IFF_ALLMULTI;
1450 			goto chipit;
1451 		}
1452 
1453 		cp = enm->enm_addrlo;
1454 		crc = 0xffffffff;
1455 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1456 			int octet = *cp++;
1457 			int i;
1458 
1459 #define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
1460 			for (i = 0; i < 8; i++) {
1461 				if ((crc & 1) ^ (octet & 1)) {
1462 					crc >>= 1;
1463 					crc ^= MC_POLY_LE;
1464 				} else {
1465 					crc >>= 1;
1466 				}
1467 				octet >>= 1;
1468 			}
1469 		}
1470 		/* Just want the 6 most significant bits. */
1471 		crc >>= 26;
1472 
1473 		/* Set the corresponding bit in the filter. */
1474 		hash[crc >> 4] |= 1 << (crc & 0xf);
1475 
1476 		ETHER_NEXT_MULTI(step, enm);
1477 	}
1478 
1479 	ifp->if_flags &= ~IFF_ALLMULTI;
1480 
1481 chipit:
1482 	/* Now load the hash table into the chip */
1483 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1484 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1485 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1486 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1487 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1488 }
1489 
1490 /*
1491  * Routines for accessing the transmit and receive buffers.
1492  * The various CPU and adapter configurations supported by this
1493  * driver require three different access methods for buffers
1494  * and descriptors:
1495  *	(1) contig (contiguous data; no padding),
1496  *	(2) gap2 (two bytes of data followed by two bytes of padding),
1497  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
1498  */
1499 
1500 #if 0
1501 /*
1502  * contig: contiguous data with no padding.
1503  *
1504  * Buffers may have any alignment.
1505  */
1506 
1507 void
1508 hme_copytobuf_contig(sc, from, ri, len)
1509 	struct hme_softc *sc;
1510 	void *from;
1511 	int ri, len;
1512 {
1513 	volatile caddr_t buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1514 
1515 	/*
1516 	 * Just call memcpy() to do the work.
1517 	 */
1518 	memcpy(buf, from, len);
1519 }
1520 
1521 void
1522 hme_copyfrombuf_contig(sc, to, boff, len)
1523 	struct hme_softc *sc;
1524 	void *to;
1525 	int boff, len;
1526 {
1527 	volatile caddr_t buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1528 
1529 	/*
1530 	 * Just call memcpy() to do the work.
1531 	 */
1532 	memcpy(to, buf, len);
1533 }
1534 #endif
1535