xref: /netbsd-src/sys/dev/ic/hme.c (revision ce2c90c7c172d95d2402a5b3d96d8f8e6d138a21)
1 /*	$NetBSD: hme.c,v 1.54 2006/09/07 02:40:32 dogcow Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * HME Ethernet module driver.
41  */
42 
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.54 2006/09/07 02:40:32 dogcow Exp $");
45 
46 /* #define HMEDEBUG */
47 
48 #include "opt_inet.h"
49 #include "bpfilter.h"
50 #include "rnd.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/kernel.h>
55 #include <sys/mbuf.h>
56 #include <sys/syslog.h>
57 #include <sys/socket.h>
58 #include <sys/device.h>
59 #include <sys/malloc.h>
60 #include <sys/ioctl.h>
61 #include <sys/errno.h>
62 #if NRND > 0
63 #include <sys/rnd.h>
64 #endif
65 
66 #include <net/if.h>
67 #include <net/if_dl.h>
68 #include <net/if_ether.h>
69 #include <net/if_media.h>
70 
71 #ifdef INET
72 #include <netinet/in.h>
73 #include <netinet/if_inarp.h>
74 #include <netinet/in_systm.h>
75 #include <netinet/in_var.h>
76 #include <netinet/ip.h>
77 #include <netinet/tcp.h>
78 #include <netinet/udp.h>
79 #endif
80 
81 
82 #if NBPFILTER > 0
83 #include <net/bpf.h>
84 #include <net/bpfdesc.h>
85 #endif
86 
87 #include <dev/mii/mii.h>
88 #include <dev/mii/miivar.h>
89 
90 #include <machine/bus.h>
91 
92 #include <dev/ic/hmereg.h>
93 #include <dev/ic/hmevar.h>
94 
95 void		hme_start(struct ifnet *);
96 void		hme_stop(struct hme_softc *);
97 int		hme_ioctl(struct ifnet *, u_long, caddr_t);
98 void		hme_tick(void *);
99 void		hme_watchdog(struct ifnet *);
100 void		hme_shutdown(void *);
101 void		hme_init(struct hme_softc *);
102 void		hme_meminit(struct hme_softc *);
103 void		hme_mifinit(struct hme_softc *);
104 void		hme_reset(struct hme_softc *);
105 void		hme_setladrf(struct hme_softc *);
106 
107 /* MII methods & callbacks */
108 static int	hme_mii_readreg(struct device *, int, int);
109 static void	hme_mii_writereg(struct device *, int, int, int);
110 static void	hme_mii_statchg(struct device *);
111 
112 int		hme_mediachange(struct ifnet *);
113 void		hme_mediastatus(struct ifnet *, struct ifmediareq *);
114 
115 struct mbuf	*hme_get(struct hme_softc *, int, uint32_t);
116 int		hme_put(struct hme_softc *, int, struct mbuf *);
117 void		hme_read(struct hme_softc *, int, uint32_t);
118 int		hme_eint(struct hme_softc *, u_int);
119 int		hme_rint(struct hme_softc *);
120 int		hme_tint(struct hme_softc *);
121 
122 static int	ether_cmp(u_char *, u_char *);
123 
124 /* Default buffer copy routines */
125 void	hme_copytobuf_contig(struct hme_softc *, void *, int, int);
126 void	hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
127 void	hme_zerobuf_contig(struct hme_softc *, int, int);
128 
129 
130 void
131 hme_config(sc)
132 	struct hme_softc *sc;
133 {
134 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
135 	struct mii_data *mii = &sc->sc_mii;
136 	struct mii_softc *child;
137 	bus_dma_tag_t dmatag = sc->sc_dmatag;
138 	bus_dma_segment_t seg;
139 	bus_size_t size;
140 	int rseg, error;
141 
142 	/*
143 	 * HME common initialization.
144 	 *
145 	 * hme_softc fields that must be initialized by the front-end:
146 	 *
147 	 * the bus tag:
148 	 *	sc_bustag
149 	 *
150 	 * the DMA bus tag:
151 	 *	sc_dmatag
152 	 *
153 	 * the bus handles:
154 	 *	sc_seb		(Shared Ethernet Block registers)
155 	 *	sc_erx		(Receiver Unit registers)
156 	 *	sc_etx		(Transmitter Unit registers)
157 	 *	sc_mac		(MAC registers)
158 	 *	sc_mif		(Management Interface registers)
159 	 *
160 	 * the maximum bus burst size:
161 	 *	sc_burst
162 	 *
163 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
164 	 *	rb_membase, rb_dmabase)
165 	 *
166 	 * the local Ethernet address:
167 	 *	sc_enaddr
168 	 *
169 	 */
170 
171 	/* Make sure the chip is stopped. */
172 	hme_stop(sc);
173 
174 
175 	/*
176 	 * Allocate descriptors and buffers
177 	 * XXX - do all this differently.. and more configurably,
178 	 * eg. use things as `dma_load_mbuf()' on transmit,
179 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
180 	 *     all the time) on the receiver side.
181 	 *
182 	 * Note: receive buffers must be 64-byte aligned.
183 	 * Also, apparently, the buffers must extend to a DMA burst
184 	 * boundary beyond the maximum packet size.
185 	 */
186 #define _HME_NDESC	128
187 #define _HME_BUFSZ	1600
188 
189 	/* Note: the # of descriptors must be a multiple of 16 */
190 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
191 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
192 
193 	/*
194 	 * Allocate DMA capable memory
195 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
196 	 * take this into account when calculating the size. Note that
197 	 * the maximum number of descriptors (256) occupies 2048 bytes,
198 	 * so we allocate that much regardless of _HME_NDESC.
199 	 */
200 	size =	2048 +					/* TX descriptors */
201 		2048 +					/* RX descriptors */
202 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
203 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* RX buffers */
204 
205 	/* Allocate DMA buffer */
206 	if ((error = bus_dmamem_alloc(dmatag, size,
207 				      2048, 0,
208 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
209 		printf("%s: DMA buffer alloc error %d\n",
210 			sc->sc_dev.dv_xname, error);
211 		return;
212 	}
213 
214 	/* Map DMA memory in CPU addressable space */
215 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
216 				    &sc->sc_rb.rb_membase,
217 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
218 		printf("%s: DMA buffer map error %d\n",
219 			sc->sc_dev.dv_xname, error);
220 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
221 		bus_dmamem_free(dmatag, &seg, rseg);
222 		return;
223 	}
224 
225 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
226 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
227 		printf("%s: DMA map create error %d\n",
228 			sc->sc_dev.dv_xname, error);
229 		return;
230 	}
231 
232 	/* Load the buffer */
233 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
234 	    sc->sc_rb.rb_membase, size, NULL,
235 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
236 		printf("%s: DMA buffer map load error %d\n",
237 			sc->sc_dev.dv_xname, error);
238 		bus_dmamem_free(dmatag, &seg, rseg);
239 		return;
240 	}
241 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
242 
243 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
244 	    ether_sprintf(sc->sc_enaddr));
245 
246 	/* Initialize ifnet structure. */
247 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
248 	ifp->if_softc = sc;
249 	ifp->if_start = hme_start;
250 	ifp->if_ioctl = hme_ioctl;
251 	ifp->if_watchdog = hme_watchdog;
252 	ifp->if_flags =
253 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
254 	sc->sc_if_flags = ifp->if_flags;
255 	ifp->if_capabilities |=
256 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
257 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
258 	IFQ_SET_READY(&ifp->if_snd);
259 
260 	/* Initialize ifmedia structures and MII info */
261 	mii->mii_ifp = ifp;
262 	mii->mii_readreg = hme_mii_readreg;
263 	mii->mii_writereg = hme_mii_writereg;
264 	mii->mii_statchg = hme_mii_statchg;
265 
266 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, hme_mediastatus);
267 
268 	hme_mifinit(sc);
269 
270 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
271 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
272 
273 	child = LIST_FIRST(&mii->mii_phys);
274 	if (child == NULL) {
275 		/* No PHY attached */
276 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
277 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
278 	} else {
279 		/*
280 		 * Walk along the list of attached MII devices and
281 		 * establish an `MII instance' to `phy number'
282 		 * mapping. We'll use this mapping in media change
283 		 * requests to determine which phy to use to program
284 		 * the MIF configuration register.
285 		 */
286 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
287 			/*
288 			 * Note: we support just two PHYs: the built-in
289 			 * internal device and an external on the MII
290 			 * connector.
291 			 */
292 			if (child->mii_phy > 1 || child->mii_inst > 1) {
293 				printf("%s: cannot accomodate MII device %s"
294 				       " at phy %d, instance %d\n",
295 				       sc->sc_dev.dv_xname,
296 				       child->mii_dev.dv_xname,
297 				       child->mii_phy, child->mii_inst);
298 				continue;
299 			}
300 
301 			sc->sc_phys[child->mii_inst] = child->mii_phy;
302 		}
303 
304 		/*
305 		 * XXX - we can really do the following ONLY if the
306 		 * phy indeed has the auto negotiation capability!!
307 		 */
308 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
309 	}
310 
311 	/* claim 802.1q capability */
312 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
313 
314 	/* Attach the interface. */
315 	if_attach(ifp);
316 	ether_ifattach(ifp, sc->sc_enaddr);
317 
318 	sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
319 	if (sc->sc_sh == NULL)
320 		panic("hme_config: can't establish shutdownhook");
321 
322 #if NRND > 0
323 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
324 			  RND_TYPE_NET, 0);
325 #endif
326 
327 	callout_init(&sc->sc_tick_ch);
328 }
329 
330 void
331 hme_tick(arg)
332 	void *arg;
333 {
334 	struct hme_softc *sc = arg;
335 	int s;
336 
337 	s = splnet();
338 	mii_tick(&sc->sc_mii);
339 	splx(s);
340 
341 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
342 }
343 
344 void
345 hme_reset(sc)
346 	struct hme_softc *sc;
347 {
348 	int s;
349 
350 	s = splnet();
351 	hme_init(sc);
352 	splx(s);
353 }
354 
355 void
356 hme_stop(sc)
357 	struct hme_softc *sc;
358 {
359 	bus_space_tag_t t = sc->sc_bustag;
360 	bus_space_handle_t seb = sc->sc_seb;
361 	int n;
362 
363 	callout_stop(&sc->sc_tick_ch);
364 	mii_down(&sc->sc_mii);
365 
366 	/* Mask all interrupts */
367 	bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
368 
369 	/* Reset transmitter and receiver */
370 	bus_space_write_4(t, seb, HME_SEBI_RESET,
371 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
372 
373 	for (n = 0; n < 20; n++) {
374 		u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
375 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
376 			return;
377 		DELAY(20);
378 	}
379 
380 	printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname);
381 }
382 
383 void
384 hme_meminit(sc)
385 	struct hme_softc *sc;
386 {
387 	bus_addr_t txbufdma, rxbufdma;
388 	bus_addr_t dma;
389 	caddr_t p;
390 	unsigned int ntbuf, nrbuf, i;
391 	struct hme_ring *hr = &sc->sc_rb;
392 
393 	p = hr->rb_membase;
394 	dma = hr->rb_dmabase;
395 
396 	ntbuf = hr->rb_ntbuf;
397 	nrbuf = hr->rb_nrbuf;
398 
399 	/*
400 	 * Allocate transmit descriptors
401 	 */
402 	hr->rb_txd = p;
403 	hr->rb_txddma = dma;
404 	p += ntbuf * HME_XD_SIZE;
405 	dma += ntbuf * HME_XD_SIZE;
406 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
407 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
408 	p = (caddr_t)roundup((u_long)p, 2048);
409 
410 	/*
411 	 * Allocate receive descriptors
412 	 */
413 	hr->rb_rxd = p;
414 	hr->rb_rxddma = dma;
415 	p += nrbuf * HME_XD_SIZE;
416 	dma += nrbuf * HME_XD_SIZE;
417 	/* Again move forward to the next 2048 byte boundary.*/
418 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
419 	p = (caddr_t)roundup((u_long)p, 2048);
420 
421 
422 	/*
423 	 * Allocate transmit buffers
424 	 */
425 	hr->rb_txbuf = p;
426 	txbufdma = dma;
427 	p += ntbuf * _HME_BUFSZ;
428 	dma += ntbuf * _HME_BUFSZ;
429 
430 	/*
431 	 * Allocate receive buffers
432 	 */
433 	hr->rb_rxbuf = p;
434 	rxbufdma = dma;
435 	p += nrbuf * _HME_BUFSZ;
436 	dma += nrbuf * _HME_BUFSZ;
437 
438 	/*
439 	 * Initialize transmit buffer descriptors
440 	 */
441 	for (i = 0; i < ntbuf; i++) {
442 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
443 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
444 	}
445 
446 	/*
447 	 * Initialize receive buffer descriptors
448 	 */
449 	for (i = 0; i < nrbuf; i++) {
450 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
451 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
452 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
453 	}
454 
455 	hr->rb_tdhead = hr->rb_tdtail = 0;
456 	hr->rb_td_nbusy = 0;
457 	hr->rb_rdtail = 0;
458 }
459 
460 /*
461  * Initialization of interface; set up initialization block
462  * and transmit/receive descriptor rings.
463  */
464 void
465 hme_init(sc)
466 	struct hme_softc *sc;
467 {
468 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
469 	bus_space_tag_t t = sc->sc_bustag;
470 	bus_space_handle_t seb = sc->sc_seb;
471 	bus_space_handle_t etx = sc->sc_etx;
472 	bus_space_handle_t erx = sc->sc_erx;
473 	bus_space_handle_t mac = sc->sc_mac;
474 	u_int8_t *ea;
475 	u_int32_t v;
476 
477 	/*
478 	 * Initialization sequence. The numbered steps below correspond
479 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
480 	 * Channel Engine manual (part of the PCIO manual).
481 	 * See also the STP2002-STQ document from Sun Microsystems.
482 	 */
483 
484 	/* step 1 & 2. Reset the Ethernet Channel */
485 	hme_stop(sc);
486 
487 	/* Re-initialize the MIF */
488 	hme_mifinit(sc);
489 
490 	/* Call MI reset function if any */
491 	if (sc->sc_hwreset)
492 		(*sc->sc_hwreset)(sc);
493 
494 #if 0
495 	/* Mask all MIF interrupts, just in case */
496 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
497 #endif
498 
499 	/* step 3. Setup data structures in host memory */
500 	hme_meminit(sc);
501 
502 	/* step 4. TX MAC registers & counters */
503 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
504 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
505 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
506 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
507 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
508 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
509 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
510 	sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
511 
512 	/* Load station MAC address */
513 	ea = sc->sc_enaddr;
514 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
515 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
516 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
517 
518 	/*
519 	 * Init seed for backoff
520 	 * (source suggested by manual: low 10 bits of MAC address)
521 	 */
522 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
523 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
524 
525 
526 	/* Note: Accepting power-on default for other MAC registers here.. */
527 
528 
529 	/* step 5. RX MAC registers & counters */
530 	hme_setladrf(sc);
531 
532 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
533 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
534 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
535 
536 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
537 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
538 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
539 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
540 
541 	/* step 8. Global Configuration & Interrupt Mask */
542 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
543 			~(
544 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
545 			  HME_SEB_STAT_HOSTTOTX |
546 			  HME_SEB_STAT_RXTOHOST |
547 			  HME_SEB_STAT_TXALL |
548 			  HME_SEB_STAT_TXPERR |
549 			  HME_SEB_STAT_RCNTEXP |
550 			  /*HME_SEB_STAT_MIFIRQ |*/
551 			  HME_SEB_STAT_ALL_ERRORS ));
552 
553 	switch (sc->sc_burst) {
554 	default:
555 		v = 0;
556 		break;
557 	case 16:
558 		v = HME_SEB_CFG_BURST16;
559 		break;
560 	case 32:
561 		v = HME_SEB_CFG_BURST32;
562 		break;
563 	case 64:
564 		v = HME_SEB_CFG_BURST64;
565 		break;
566 	}
567 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
568 
569 	/* step 9. ETX Configuration: use mostly default values */
570 
571 	/* Enable DMA */
572 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
573 	v |= HME_ETX_CFG_DMAENABLE;
574 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
575 
576 	/* Transmit Descriptor ring size: in increments of 16 */
577 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
578 
579 
580 	/* step 10. ERX Configuration */
581 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
582 
583 	/* Encode Receive Descriptor ring size: four possible values */
584 	switch (_HME_NDESC /*XXX*/) {
585 	case 32:
586 		v |= HME_ERX_CFG_RINGSIZE32;
587 		break;
588 	case 64:
589 		v |= HME_ERX_CFG_RINGSIZE64;
590 		break;
591 	case 128:
592 		v |= HME_ERX_CFG_RINGSIZE128;
593 		break;
594 	case 256:
595 		v |= HME_ERX_CFG_RINGSIZE256;
596 		break;
597 	default:
598 		printf("hme: invalid Receive Descriptor ring size\n");
599 		break;
600 	}
601 
602 	/* Enable DMA */
603 	v |= HME_ERX_CFG_DMAENABLE;
604 
605 	/* set h/w rx checksum start offset (# of half-words) */
606 #ifdef INET
607 	v |= (((ETHER_HDR_LEN + sizeof(struct ip) +
608 		((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
609 		ETHER_VLAN_ENCAP_LEN : 0)) / 2) << HME_ERX_CFG_CSUMSHIFT) &
610 		HME_ERX_CFG_CSUMSTART;
611 #endif
612 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
613 
614 	/* step 11. XIF Configuration */
615 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
616 	v |= HME_MAC_XIF_OE;
617 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
618 
619 	/* step 12. RX_MAC Configuration Register */
620 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
621 	v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
622 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
623 
624 	/* step 13. TX_MAC Configuration Register */
625 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
626 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
627 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
628 
629 	/* step 14. Issue Transmit Pending command */
630 
631 	/* Call MI initialization function if any */
632 	if (sc->sc_hwinit)
633 		(*sc->sc_hwinit)(sc);
634 
635 	/* Set the current media. */
636 	mii_mediachg(&sc->sc_mii);
637 
638 	/* Start the one second timer. */
639 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
640 
641 	ifp->if_flags |= IFF_RUNNING;
642 	ifp->if_flags &= ~IFF_OACTIVE;
643 	sc->sc_if_flags = ifp->if_flags;
644 	ifp->if_timer = 0;
645 	hme_start(ifp);
646 }
647 
648 /*
649  * Compare two Ether/802 addresses for equality, inlined and unrolled for
650  * speed.
651  */
652 static inline int
653 ether_cmp(a, b)
654 	u_char *a, *b;
655 {
656 
657 	if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
658 	    a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
659 		return (0);
660 	return (1);
661 }
662 
663 
664 /*
665  * Routine to copy from mbuf chain to transmit buffer in
666  * network buffer memory.
667  * Returns the amount of data copied.
668  */
669 int
670 hme_put(sc, ri, m)
671 	struct hme_softc *sc;
672 	int ri;			/* Ring index */
673 	struct mbuf *m;
674 {
675 	struct mbuf *n;
676 	int len, tlen = 0;
677 	caddr_t bp;
678 
679 	bp = sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
680 	for (; m; m = n) {
681 		len = m->m_len;
682 		if (len == 0) {
683 			MFREE(m, n);
684 			continue;
685 		}
686 		memcpy(bp, mtod(m, caddr_t), len);
687 		bp += len;
688 		tlen += len;
689 		MFREE(m, n);
690 	}
691 	return (tlen);
692 }
693 
694 /*
695  * Pull data off an interface.
696  * Len is length of data, with local net header stripped.
697  * We copy the data into mbufs.  When full cluster sized units are present
698  * we copy into clusters.
699  */
700 struct mbuf *
701 hme_get(sc, ri, flags)
702 	struct hme_softc *sc;
703 	int ri;
704 	u_int32_t flags;
705 {
706 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
707 	struct mbuf *m, *m0, *newm;
708 	caddr_t bp;
709 	int len, totlen;
710 
711 	totlen = HME_XD_DECODE_RSIZE(flags);
712 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
713 	if (m0 == 0)
714 		return (0);
715 	m0->m_pkthdr.rcvif = ifp;
716 	m0->m_pkthdr.len = totlen;
717 	len = MHLEN;
718 	m = m0;
719 
720 	bp = sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
721 
722 	while (totlen > 0) {
723 		if (totlen >= MINCLSIZE) {
724 			MCLGET(m, M_DONTWAIT);
725 			if ((m->m_flags & M_EXT) == 0)
726 				goto bad;
727 			len = MCLBYTES;
728 		}
729 
730 		if (m == m0) {
731 			caddr_t newdata = (caddr_t)
732 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
733 			    sizeof(struct ether_header);
734 			len -= newdata - m->m_data;
735 			m->m_data = newdata;
736 		}
737 
738 		m->m_len = len = min(totlen, len);
739 		memcpy(mtod(m, caddr_t), bp, len);
740 		bp += len;
741 
742 		totlen -= len;
743 		if (totlen > 0) {
744 			MGET(newm, M_DONTWAIT, MT_DATA);
745 			if (newm == 0)
746 				goto bad;
747 			len = MLEN;
748 			m = m->m_next = newm;
749 		}
750 	}
751 
752 #ifdef INET
753 	/* hardware checksum */
754 	if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
755 		struct ether_header *eh;
756 		struct ip *ip;
757 		struct udphdr *uh;
758 		uint16_t *opts;
759 		int32_t hlen, pktlen;
760 		uint32_t temp;
761 
762 		if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
763 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN -
764 				ETHER_VLAN_ENCAP_LEN;
765 			eh = (struct ether_header *) mtod(m0, caddr_t) +
766 				ETHER_VLAN_ENCAP_LEN;
767 		} else {
768 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
769 			eh = mtod(m0, struct ether_header *);
770 		}
771 		if (ntohs(eh->ether_type) != ETHERTYPE_IP)
772 			goto swcsum;
773 		ip = (struct ip *) ((caddr_t) eh + ETHER_HDR_LEN);
774 
775 		/* IPv4 only */
776 		if (ip->ip_v != IPVERSION)
777 			goto swcsum;
778 
779 		hlen = ip->ip_hl << 2;
780 		if (hlen < sizeof(struct ip))
781 			goto swcsum;
782 
783 		/*
784 		 * bail if too short, has random trailing garbage, truncated,
785 		 * fragment, or has ethernet pad.
786 		 */
787 		if ((ntohs(ip->ip_len) < hlen) || (ntohs(ip->ip_len) != pktlen)
788 		    || (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
789 			goto swcsum;
790 
791 		switch (ip->ip_p) {
792 		case IPPROTO_TCP:
793 			if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
794 				goto swcsum;
795 			if (pktlen < (hlen + sizeof(struct tcphdr)))
796 				goto swcsum;
797 			m0->m_pkthdr.csum_flags = M_CSUM_TCPv4;
798 			break;
799 		case IPPROTO_UDP:
800 			if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
801 				goto swcsum;
802 			if (pktlen < (hlen + sizeof(struct udphdr)))
803 				goto swcsum;
804 			uh = (struct udphdr *)((caddr_t)ip + hlen);
805 			/* no checksum */
806 			if (uh->uh_sum == 0)
807 				goto swcsum;
808 			m0->m_pkthdr.csum_flags = M_CSUM_UDPv4;
809 			break;
810 		default:
811 			goto swcsum;
812 		}
813 
814 		/* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
815 		m0->m_pkthdr.csum_data = (~flags) & HME_XD_RXCKSUM;
816 
817 		/* if the pkt had ip options, we have to deduct them */
818 		if (hlen > sizeof(struct ip)) {
819 			uint32_t optsum;
820 
821 			optsum = 0;
822 			temp = hlen - sizeof(struct ip);
823 			opts = (uint16_t *) ((caddr_t) ip + sizeof(struct ip));
824 
825 			while (temp > 1) {
826 				optsum += ntohs(*opts++);
827 				temp -= 2;
828 			}
829 			while (optsum >> 16)
830 				optsum = (optsum >> 16) + (optsum & 0xffff);
831 
832 			/* Deduct the ip opts sum from the hwsum (rfc 1624). */
833 			m0->m_pkthdr.csum_data = ~((~m0->m_pkthdr.csum_data) -
834 						   ~optsum);
835 
836 			while (m0->m_pkthdr.csum_data >> 16)
837 				m0->m_pkthdr.csum_data =
838 					(m0->m_pkthdr.csum_data >> 16) +
839 					(m0->m_pkthdr.csum_data & 0xffff);
840 		}
841 
842 		m0->m_pkthdr.csum_flags |= M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
843 	}
844 swcsum:
845 		m0->m_pkthdr.csum_flags = 0;
846 #endif
847 
848 	return (m0);
849 
850 bad:
851 	m_freem(m0);
852 	return (0);
853 }
854 
855 /*
856  * Pass a packet to the higher levels.
857  */
858 void
859 hme_read(sc, ix, flags)
860 	struct hme_softc *sc;
861 	int ix;
862 	u_int32_t flags;
863 {
864 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
865 	struct mbuf *m;
866 	int len;
867 
868 	len = HME_XD_DECODE_RSIZE(flags);
869 	if (len <= sizeof(struct ether_header) ||
870 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
871 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
872 	    ETHERMTU + sizeof(struct ether_header))) {
873 #ifdef HMEDEBUG
874 		printf("%s: invalid packet size %d; dropping\n",
875 		    sc->sc_dev.dv_xname, len);
876 #endif
877 		ifp->if_ierrors++;
878 		return;
879 	}
880 
881 	/* Pull packet off interface. */
882 	m = hme_get(sc, ix, flags);
883 	if (m == 0) {
884 		ifp->if_ierrors++;
885 		return;
886 	}
887 
888 	ifp->if_ipackets++;
889 
890 #if NBPFILTER > 0
891 	/*
892 	 * Check if there's a BPF listener on this interface.
893 	 * If so, hand off the raw packet to BPF.
894 	 */
895 	if (ifp->if_bpf)
896 		bpf_mtap(ifp->if_bpf, m);
897 #endif
898 
899 	/* Pass the packet up. */
900 	(*ifp->if_input)(ifp, m);
901 }
902 
903 void
904 hme_start(ifp)
905 	struct ifnet *ifp;
906 {
907 	struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
908 	caddr_t txd = sc->sc_rb.rb_txd;
909 	struct mbuf *m;
910 	unsigned int txflags;
911 	unsigned int ri, len;
912 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
913 
914 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
915 		return;
916 
917 	ri = sc->sc_rb.rb_tdhead;
918 
919 	for (;;) {
920 		IFQ_DEQUEUE(&ifp->if_snd, m);
921 		if (m == 0)
922 			break;
923 
924 #if NBPFILTER > 0
925 		/*
926 		 * If BPF is listening on this interface, let it see the
927 		 * packet before we commit it to the wire.
928 		 */
929 		if (ifp->if_bpf)
930 			bpf_mtap(ifp->if_bpf, m);
931 #endif
932 
933 #ifdef INET
934 		/* collect bits for h/w csum, before hme_put frees the mbuf */
935 		if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
936 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
937 			struct ether_header *eh;
938 			uint16_t offset, start;
939 
940 			eh = mtod(m, struct ether_header *);
941 			switch (ntohs(eh->ether_type)) {
942 			case ETHERTYPE_IP:
943 				start = ETHER_HDR_LEN;
944 				break;
945 			case ETHERTYPE_VLAN:
946 				start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
947 				break;
948 			default:
949 				/* unsupported, drop it */
950 				m_free(m);
951 				continue;
952 			}
953 			start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
954 			offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
955 			    + start;
956 			txflags = HME_XD_TXCKSUM |
957 				  (offset << HME_XD_TXCSSTUFFSHIFT) |
958 		  		  (start << HME_XD_TXCSSTARTSHIFT);
959 		} else
960 #endif
961 			txflags = 0;
962 
963 		/*
964 		 * Copy the mbuf chain into the transmit buffer.
965 		 */
966 		len = hme_put(sc, ri, m);
967 
968 		/*
969 		 * Initialize transmit registers and start transmission
970 		 */
971 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
972 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
973 			HME_XD_ENCODE_TSIZE(len) | txflags);
974 
975 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
976 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
977 				  HME_ETX_TP_DMAWAKEUP);
978 
979 		if (++ri == ntbuf)
980 			ri = 0;
981 
982 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
983 			ifp->if_flags |= IFF_OACTIVE;
984 			break;
985 		}
986 	}
987 
988 	sc->sc_rb.rb_tdhead = ri;
989 }
990 
991 /*
992  * Transmit interrupt.
993  */
994 int
995 hme_tint(sc)
996 	struct hme_softc *sc;
997 {
998 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
999 	bus_space_tag_t t = sc->sc_bustag;
1000 	bus_space_handle_t mac = sc->sc_mac;
1001 	unsigned int ri, txflags;
1002 
1003 	/*
1004 	 * Unload collision counters
1005 	 */
1006 	ifp->if_collisions +=
1007 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
1008 		bus_space_read_4(t, mac, HME_MACI_FCCNT) +
1009 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
1010 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
1011 
1012 	/*
1013 	 * then clear the hardware counters.
1014 	 */
1015 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
1016 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
1017 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
1018 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
1019 
1020 	/* Fetch current position in the transmit ring */
1021 	ri = sc->sc_rb.rb_tdtail;
1022 
1023 	for (;;) {
1024 		if (sc->sc_rb.rb_td_nbusy <= 0)
1025 			break;
1026 
1027 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
1028 
1029 		if (txflags & HME_XD_OWN)
1030 			break;
1031 
1032 		ifp->if_flags &= ~IFF_OACTIVE;
1033 		ifp->if_opackets++;
1034 
1035 		if (++ri == sc->sc_rb.rb_ntbuf)
1036 			ri = 0;
1037 
1038 		--sc->sc_rb.rb_td_nbusy;
1039 	}
1040 
1041 	/* Update ring */
1042 	sc->sc_rb.rb_tdtail = ri;
1043 
1044 	hme_start(ifp);
1045 
1046 	if (sc->sc_rb.rb_td_nbusy == 0)
1047 		ifp->if_timer = 0;
1048 
1049 	return (1);
1050 }
1051 
1052 /*
1053  * Receive interrupt.
1054  */
1055 int
1056 hme_rint(sc)
1057 	struct hme_softc *sc;
1058 {
1059 	caddr_t xdr = sc->sc_rb.rb_rxd;
1060 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
1061 	unsigned int ri;
1062 	u_int32_t flags;
1063 
1064 	ri = sc->sc_rb.rb_rdtail;
1065 
1066 	/*
1067 	 * Process all buffers with valid data.
1068 	 */
1069 	for (;;) {
1070 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
1071 		if (flags & HME_XD_OWN)
1072 			break;
1073 
1074 		if (flags & HME_XD_OFL) {
1075 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
1076 					sc->sc_dev.dv_xname, ri, flags);
1077 		} else
1078 			hme_read(sc, ri, flags);
1079 
1080 		/* This buffer can be used by the hardware again */
1081 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
1082 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
1083 
1084 		if (++ri == nrbuf)
1085 			ri = 0;
1086 	}
1087 
1088 	sc->sc_rb.rb_rdtail = ri;
1089 
1090 	return (1);
1091 }
1092 
1093 int
1094 hme_eint(sc, status)
1095 	struct hme_softc *sc;
1096 	u_int status;
1097 {
1098 	char bits[128];
1099 
1100 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
1101 		bus_space_tag_t t = sc->sc_bustag;
1102 		bus_space_handle_t mif = sc->sc_mif;
1103 		u_int32_t cf, st, sm;
1104 		cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
1105 		st = bus_space_read_4(t, mif, HME_MIFI_STAT);
1106 		sm = bus_space_read_4(t, mif, HME_MIFI_SM);
1107 		printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
1108 			sc->sc_dev.dv_xname, cf, st, sm);
1109 		return (1);
1110 	}
1111 
1112 	printf("%s: status=%s\n", sc->sc_dev.dv_xname,
1113 		bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
1114 	return (1);
1115 }
1116 
1117 int
1118 hme_intr(v)
1119 	void *v;
1120 {
1121 	struct hme_softc *sc = (struct hme_softc *)v;
1122 	bus_space_tag_t t = sc->sc_bustag;
1123 	bus_space_handle_t seb = sc->sc_seb;
1124 	u_int32_t status;
1125 	int r = 0;
1126 
1127 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
1128 
1129 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
1130 		r |= hme_eint(sc, status);
1131 
1132 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
1133 		r |= hme_tint(sc);
1134 
1135 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
1136 		r |= hme_rint(sc);
1137 
1138 #if NRND > 0
1139 	rnd_add_uint32(&sc->rnd_source, status);
1140 #endif
1141 
1142 	return (r);
1143 }
1144 
1145 
1146 void
1147 hme_watchdog(ifp)
1148 	struct ifnet *ifp;
1149 {
1150 	struct hme_softc *sc = ifp->if_softc;
1151 
1152 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1153 	++ifp->if_oerrors;
1154 
1155 	hme_reset(sc);
1156 }
1157 
1158 /*
1159  * Initialize the MII Management Interface
1160  */
1161 void
1162 hme_mifinit(sc)
1163 	struct hme_softc *sc;
1164 {
1165 	bus_space_tag_t t = sc->sc_bustag;
1166 	bus_space_handle_t mif = sc->sc_mif;
1167 	bus_space_handle_t mac = sc->sc_mac;
1168 	int instance, phy;
1169 	u_int32_t v;
1170 
1171 	if (sc->sc_media.ifm_cur != NULL) {
1172 		instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1173 		phy = sc->sc_phys[instance];
1174 	} else
1175 		/* No media set yet, pick phy arbitrarily.. */
1176 		phy = HME_PHYAD_EXTERNAL;
1177 
1178 	/* Configure the MIF in frame mode, no poll, current phy select */
1179 	v = 0;
1180 	if (phy == HME_PHYAD_EXTERNAL)
1181 		v |= HME_MIF_CFG_PHY;
1182 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1183 
1184 	/* If an external transceiver is selected, enable its MII drivers */
1185 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
1186 	v &= ~HME_MAC_XIF_MIIENABLE;
1187 	if (phy == HME_PHYAD_EXTERNAL)
1188 		v |= HME_MAC_XIF_MIIENABLE;
1189 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1190 }
1191 
1192 /*
1193  * MII interface
1194  */
1195 static int
1196 hme_mii_readreg(self, phy, reg)
1197 	struct device *self;
1198 	int phy, reg;
1199 {
1200 	struct hme_softc *sc = (void *)self;
1201 	bus_space_tag_t t = sc->sc_bustag;
1202 	bus_space_handle_t mif = sc->sc_mif;
1203 	bus_space_handle_t mac = sc->sc_mac;
1204 	u_int32_t v, xif_cfg, mifi_cfg;
1205 	int n;
1206 
1207 	/* We can at most have two PHYs */
1208 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1209 		return (0);
1210 
1211 	/* Select the desired PHY in the MIF configuration register */
1212 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1213 	v &= ~HME_MIF_CFG_PHY;
1214 	if (phy == HME_PHYAD_EXTERNAL)
1215 		v |= HME_MIF_CFG_PHY;
1216 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1217 
1218 	/* Enable MII drivers on external transceiver */
1219 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1220 	if (phy == HME_PHYAD_EXTERNAL)
1221 		v |= HME_MAC_XIF_MIIENABLE;
1222 	else
1223 		v &= ~HME_MAC_XIF_MIIENABLE;
1224 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1225 
1226 #if 0
1227 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1228 	/*
1229 	 * Check whether a transceiver is connected by testing
1230 	 * the MIF configuration register's MDI_X bits. Note that
1231 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1232 	 */
1233 	mif_mdi_bit = 1 << (8 + (1 - phy));
1234 	delay(100);
1235 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1236 	if ((v & mif_mdi_bit) == 0)
1237 		return (0);
1238 #endif
1239 
1240 	/* Construct the frame command */
1241 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1242 	    HME_MIF_FO_TAMSB |
1243 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1244 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
1245 	    (reg << HME_MIF_FO_REGAD_SHIFT);
1246 
1247 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
1248 	for (n = 0; n < 100; n++) {
1249 		DELAY(1);
1250 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
1251 		if (v & HME_MIF_FO_TALSB) {
1252 			v &= HME_MIF_FO_DATA;
1253 			goto out;
1254 		}
1255 	}
1256 
1257 	v = 0;
1258 	printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1259 
1260 out:
1261 	/* Restore MIFI_CFG register */
1262 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1263 	/* Restore XIF register */
1264 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1265 	return (v);
1266 }
1267 
1268 static void
1269 hme_mii_writereg(self, phy, reg, val)
1270 	struct device *self;
1271 	int phy, reg, val;
1272 {
1273 	struct hme_softc *sc = (void *)self;
1274 	bus_space_tag_t t = sc->sc_bustag;
1275 	bus_space_handle_t mif = sc->sc_mif;
1276 	bus_space_handle_t mac = sc->sc_mac;
1277 	u_int32_t v, xif_cfg, mifi_cfg;
1278 	int n;
1279 
1280 	/* We can at most have two PHYs */
1281 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1282 		return;
1283 
1284 	/* Select the desired PHY in the MIF configuration register */
1285 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1286 	v &= ~HME_MIF_CFG_PHY;
1287 	if (phy == HME_PHYAD_EXTERNAL)
1288 		v |= HME_MIF_CFG_PHY;
1289 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1290 
1291 	/* Enable MII drivers on external transceiver */
1292 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1293 	if (phy == HME_PHYAD_EXTERNAL)
1294 		v |= HME_MAC_XIF_MIIENABLE;
1295 	else
1296 		v &= ~HME_MAC_XIF_MIIENABLE;
1297 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1298 
1299 #if 0
1300 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1301 	/*
1302 	 * Check whether a transceiver is connected by testing
1303 	 * the MIF configuration register's MDI_X bits. Note that
1304 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1305 	 */
1306 	mif_mdi_bit = 1 << (8 + (1 - phy));
1307 	delay(100);
1308 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1309 	if ((v & mif_mdi_bit) == 0)
1310 		return;
1311 #endif
1312 
1313 	/* Construct the frame command */
1314 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
1315 	    HME_MIF_FO_TAMSB				|
1316 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
1317 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
1318 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
1319 	    (val & HME_MIF_FO_DATA);
1320 
1321 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
1322 	for (n = 0; n < 100; n++) {
1323 		DELAY(1);
1324 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
1325 		if (v & HME_MIF_FO_TALSB)
1326 			goto out;
1327 	}
1328 
1329 	printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1330 out:
1331 	/* Restore MIFI_CFG register */
1332 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1333 	/* Restore XIF register */
1334 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1335 }
1336 
1337 static void
1338 hme_mii_statchg(dev)
1339 	struct device *dev;
1340 {
1341 	struct hme_softc *sc = (void *)dev;
1342 	bus_space_tag_t t = sc->sc_bustag;
1343 	bus_space_handle_t mac = sc->sc_mac;
1344 	u_int32_t v;
1345 
1346 #ifdef HMEDEBUG
1347 	if (sc->sc_debug)
1348 		printf("hme_mii_statchg: status change\n");
1349 #endif
1350 
1351 	/* Set the MAC Full Duplex bit appropriately */
1352 	/* Apparently the hme chip is SIMPLEX if working in full duplex mode,
1353 	   but not otherwise. */
1354 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1355 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1356 		v |= HME_MAC_TXCFG_FULLDPLX;
1357 		sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
1358 	} else {
1359 		v &= ~HME_MAC_TXCFG_FULLDPLX;
1360 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
1361 	}
1362 	sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
1363 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1364 }
1365 
1366 int
1367 hme_mediachange(ifp)
1368 	struct ifnet *ifp;
1369 {
1370 	struct hme_softc *sc = ifp->if_softc;
1371 	bus_space_tag_t t = sc->sc_bustag;
1372 	bus_space_handle_t mif = sc->sc_mif;
1373 	bus_space_handle_t mac = sc->sc_mac;
1374 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1375 	int phy = sc->sc_phys[instance];
1376 	u_int32_t v;
1377 
1378 #ifdef HMEDEBUG
1379 	if (sc->sc_debug)
1380 		printf("hme_mediachange: phy = %d\n", phy);
1381 #endif
1382 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1383 		return (EINVAL);
1384 
1385 	/* Select the current PHY in the MIF configuration register */
1386 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1387 	v &= ~HME_MIF_CFG_PHY;
1388 	if (phy == HME_PHYAD_EXTERNAL)
1389 		v |= HME_MIF_CFG_PHY;
1390 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1391 
1392 	/* If an external transceiver is selected, enable its MII drivers */
1393 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
1394 	v &= ~HME_MAC_XIF_MIIENABLE;
1395 	if (phy == HME_PHYAD_EXTERNAL)
1396 		v |= HME_MAC_XIF_MIIENABLE;
1397 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1398 
1399 	return (mii_mediachg(&sc->sc_mii));
1400 }
1401 
1402 void
1403 hme_mediastatus(ifp, ifmr)
1404 	struct ifnet *ifp;
1405 	struct ifmediareq *ifmr;
1406 {
1407 	struct hme_softc *sc = ifp->if_softc;
1408 
1409 	if ((ifp->if_flags & IFF_UP) == 0)
1410 		return;
1411 
1412 	mii_pollstat(&sc->sc_mii);
1413 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1414 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1415 }
1416 
1417 /*
1418  * Process an ioctl request.
1419  */
1420 int
1421 hme_ioctl(ifp, cmd, data)
1422 	struct ifnet *ifp;
1423 	u_long cmd;
1424 	caddr_t data;
1425 {
1426 	struct hme_softc *sc = ifp->if_softc;
1427 	struct ifaddr *ifa = (struct ifaddr *)data;
1428 	struct ifreq *ifr = (struct ifreq *)data;
1429 	int s, error = 0;
1430 
1431 	s = splnet();
1432 
1433 	switch (cmd) {
1434 
1435 	case SIOCSIFADDR:
1436 		switch (ifa->ifa_addr->sa_family) {
1437 #ifdef INET
1438 		case AF_INET:
1439 			if (ifp->if_flags & IFF_UP)
1440 				hme_setladrf(sc);
1441 			else {
1442 				ifp->if_flags |= IFF_UP;
1443 				hme_init(sc);
1444 			}
1445 			arp_ifinit(ifp, ifa);
1446 			break;
1447 #endif
1448 		default:
1449 			ifp->if_flags |= IFF_UP;
1450 			hme_init(sc);
1451 			break;
1452 		}
1453 		break;
1454 
1455 	case SIOCSIFFLAGS:
1456 #ifdef HMEDEBUG
1457 		sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
1458 #endif
1459 
1460 		if ((ifp->if_flags & IFF_UP) == 0 &&
1461 		    (ifp->if_flags & IFF_RUNNING) != 0) {
1462 			/*
1463 			 * If interface is marked down and it is running, then
1464 			 * stop it.
1465 			 */
1466 			hme_stop(sc);
1467 			ifp->if_flags &= ~IFF_RUNNING;
1468 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
1469 		    	   (ifp->if_flags & IFF_RUNNING) == 0) {
1470 			/*
1471 			 * If interface is marked up and it is stopped, then
1472 			 * start it.
1473 			 */
1474 			hme_init(sc);
1475 		} else if ((ifp->if_flags & IFF_UP) != 0) {
1476 			/*
1477 			 * If setting debug or promiscuous mode, do not reset
1478 			 * the chip; for everything else, call hme_init()
1479 			 * which will trigger a reset.
1480 			 */
1481 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
1482 			if (ifp->if_flags != sc->sc_if_flags) {
1483 				if ((ifp->if_flags & (~RESETIGN))
1484 				    == (sc->sc_if_flags & (~RESETIGN)))
1485 					hme_setladrf(sc);
1486 				else
1487 					hme_init(sc);
1488 			}
1489 #undef RESETIGN
1490 		}
1491 
1492 		if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
1493 			hme_init(sc);
1494 
1495 		break;
1496 
1497 	case SIOCADDMULTI:
1498 	case SIOCDELMULTI:
1499 		error = (cmd == SIOCADDMULTI) ?
1500 		    ether_addmulti(ifr, &sc->sc_ethercom) :
1501 		    ether_delmulti(ifr, &sc->sc_ethercom);
1502 
1503 		if (error == ENETRESET) {
1504 			/*
1505 			 * Multicast list has changed; set the hardware filter
1506 			 * accordingly.
1507 			 */
1508 			if (ifp->if_flags & IFF_RUNNING)
1509 				hme_setladrf(sc);
1510 			error = 0;
1511 		}
1512 		break;
1513 
1514 	case SIOCGIFMEDIA:
1515 	case SIOCSIFMEDIA:
1516 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1517 		break;
1518 
1519 	default:
1520 		error = EINVAL;
1521 		break;
1522 	}
1523 
1524 	sc->sc_if_flags = ifp->if_flags;
1525 	splx(s);
1526 	return (error);
1527 }
1528 
1529 void
1530 hme_shutdown(arg)
1531 	void *arg;
1532 {
1533 
1534 	hme_stop((struct hme_softc *)arg);
1535 }
1536 
1537 /*
1538  * Set up the logical address filter.
1539  */
1540 void
1541 hme_setladrf(sc)
1542 	struct hme_softc *sc;
1543 {
1544 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1545 	struct ether_multi *enm;
1546 	struct ether_multistep step;
1547 	struct ethercom *ec = &sc->sc_ethercom;
1548 	bus_space_tag_t t = sc->sc_bustag;
1549 	bus_space_handle_t mac = sc->sc_mac;
1550 	u_char *cp;
1551 	u_int32_t crc;
1552 	u_int32_t hash[4];
1553 	u_int32_t v;
1554 	int len;
1555 
1556 	/* Clear hash table */
1557 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
1558 
1559 	/* Get current RX configuration */
1560 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1561 
1562 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
1563 		/* Turn on promiscuous mode; turn off the hash filter */
1564 		v |= HME_MAC_RXCFG_PMISC;
1565 		v &= ~HME_MAC_RXCFG_HENABLE;
1566 		ifp->if_flags |= IFF_ALLMULTI;
1567 		goto chipit;
1568 	}
1569 
1570 	/* Turn off promiscuous mode; turn on the hash filter */
1571 	v &= ~HME_MAC_RXCFG_PMISC;
1572 	v |= HME_MAC_RXCFG_HENABLE;
1573 
1574 	/*
1575 	 * Set up multicast address filter by passing all multicast addresses
1576 	 * through a crc generator, and then using the high order 6 bits as an
1577 	 * index into the 64 bit logical address filter.  The high order bit
1578 	 * selects the word, while the rest of the bits select the bit within
1579 	 * the word.
1580 	 */
1581 
1582 	ETHER_FIRST_MULTI(step, ec, enm);
1583 	while (enm != NULL) {
1584 		if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
1585 			/*
1586 			 * We must listen to a range of multicast addresses.
1587 			 * For now, just accept all multicasts, rather than
1588 			 * trying to set only those filter bits needed to match
1589 			 * the range.  (At this time, the only use of address
1590 			 * ranges is for IP multicast routing, for which the
1591 			 * range is big enough to require all bits set.)
1592 			 */
1593 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1594 			ifp->if_flags |= IFF_ALLMULTI;
1595 			goto chipit;
1596 		}
1597 
1598 		cp = enm->enm_addrlo;
1599 		crc = 0xffffffff;
1600 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1601 			int octet = *cp++;
1602 			int i;
1603 
1604 #define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
1605 			for (i = 0; i < 8; i++) {
1606 				if ((crc & 1) ^ (octet & 1)) {
1607 					crc >>= 1;
1608 					crc ^= MC_POLY_LE;
1609 				} else {
1610 					crc >>= 1;
1611 				}
1612 				octet >>= 1;
1613 			}
1614 		}
1615 		/* Just want the 6 most significant bits. */
1616 		crc >>= 26;
1617 
1618 		/* Set the corresponding bit in the filter. */
1619 		hash[crc >> 4] |= 1 << (crc & 0xf);
1620 
1621 		ETHER_NEXT_MULTI(step, enm);
1622 	}
1623 
1624 	ifp->if_flags &= ~IFF_ALLMULTI;
1625 
1626 chipit:
1627 	/* Now load the hash table into the chip */
1628 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1629 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1630 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1631 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1632 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1633 }
1634 
1635 /*
1636  * Routines for accessing the transmit and receive buffers.
1637  * The various CPU and adapter configurations supported by this
1638  * driver require three different access methods for buffers
1639  * and descriptors:
1640  *	(1) contig (contiguous data; no padding),
1641  *	(2) gap2 (two bytes of data followed by two bytes of padding),
1642  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
1643  */
1644 
1645 #if 0
1646 /*
1647  * contig: contiguous data with no padding.
1648  *
1649  * Buffers may have any alignment.
1650  */
1651 
1652 void
1653 hme_copytobuf_contig(sc, from, ri, len)
1654 	struct hme_softc *sc;
1655 	void *from;
1656 	int ri, len;
1657 {
1658 	volatile caddr_t buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1659 
1660 	/*
1661 	 * Just call memcpy() to do the work.
1662 	 */
1663 	memcpy(buf, from, len);
1664 }
1665 
1666 void
1667 hme_copyfrombuf_contig(sc, to, boff, len)
1668 	struct hme_softc *sc;
1669 	void *to;
1670 	int boff, len;
1671 {
1672 	volatile caddr_t buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1673 
1674 	/*
1675 	 * Just call memcpy() to do the work.
1676 	 */
1677 	memcpy(to, buf, len);
1678 }
1679 #endif
1680