xref: /netbsd-src/sys/dev/ic/hme.c (revision c38e7cc395b1472a774ff828e46123de44c628e9)
1 /*	$NetBSD: hme.c,v 1.96 2017/05/23 02:19:14 ozaki-r Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * HME Ethernet module driver.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.96 2017/05/23 02:19:14 ozaki-r Exp $");
38 
39 /* #define HMEDEBUG */
40 
41 #include "opt_inet.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/mbuf.h>
47 #include <sys/syslog.h>
48 #include <sys/socket.h>
49 #include <sys/device.h>
50 #include <sys/malloc.h>
51 #include <sys/ioctl.h>
52 #include <sys/errno.h>
53 #include <sys/rndsource.h>
54 
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_ether.h>
58 #include <net/if_media.h>
59 
60 #ifdef INET
61 #include <net/if_vlanvar.h>
62 #include <netinet/in.h>
63 #include <netinet/if_inarp.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip.h>
67 #include <netinet/tcp.h>
68 #include <netinet/udp.h>
69 #endif
70 
71 
72 #include <net/bpf.h>
73 #include <net/bpfdesc.h>
74 
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 
78 #include <sys/bus.h>
79 
80 #include <dev/ic/hmereg.h>
81 #include <dev/ic/hmevar.h>
82 
83 static void	hme_start(struct ifnet *);
84 static void	hme_stop(struct ifnet *, int);
85 static int	hme_ioctl(struct ifnet *, u_long, void *);
86 static void	hme_tick(void *);
87 static void	hme_watchdog(struct ifnet *);
88 static bool	hme_shutdown(device_t, int);
89 static int	hme_init(struct ifnet *);
90 static void	hme_meminit(struct hme_softc *);
91 static void	hme_mifinit(struct hme_softc *);
92 static void	hme_reset(struct hme_softc *);
93 static void	hme_chipreset(struct hme_softc *);
94 static void	hme_setladrf(struct hme_softc *);
95 
96 /* MII methods & callbacks */
97 static int	hme_mii_readreg(device_t, int, int);
98 static void	hme_mii_writereg(device_t, int, int, int);
99 static void	hme_mii_statchg(struct ifnet *);
100 
101 static int	hme_mediachange(struct ifnet *);
102 
103 static struct mbuf *hme_get(struct hme_softc *, int, uint32_t);
104 static int	hme_put(struct hme_softc *, int, struct mbuf *);
105 static void	hme_read(struct hme_softc *, int, uint32_t);
106 static int	hme_eint(struct hme_softc *, u_int);
107 static int	hme_rint(struct hme_softc *);
108 static int	hme_tint(struct hme_softc *);
109 
110 #if 0
111 /* Default buffer copy routines */
112 static void	hme_copytobuf_contig(struct hme_softc *, void *, int, int);
113 static void	hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
114 #endif
115 
116 void
117 hme_config(struct hme_softc *sc)
118 {
119 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
120 	struct mii_data *mii = &sc->sc_mii;
121 	struct mii_softc *child;
122 	bus_dma_tag_t dmatag = sc->sc_dmatag;
123 	bus_dma_segment_t seg;
124 	bus_size_t size;
125 	int rseg, error;
126 
127 	/*
128 	 * HME common initialization.
129 	 *
130 	 * hme_softc fields that must be initialized by the front-end:
131 	 *
132 	 * the bus tag:
133 	 *	sc_bustag
134 	 *
135 	 * the DMA bus tag:
136 	 *	sc_dmatag
137 	 *
138 	 * the bus handles:
139 	 *	sc_seb		(Shared Ethernet Block registers)
140 	 *	sc_erx		(Receiver Unit registers)
141 	 *	sc_etx		(Transmitter Unit registers)
142 	 *	sc_mac		(MAC registers)
143 	 *	sc_mif		(Management Interface registers)
144 	 *
145 	 * the maximum bus burst size:
146 	 *	sc_burst
147 	 *
148 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
149 	 *	rb_membase, rb_dmabase)
150 	 *
151 	 * the local Ethernet address:
152 	 *	sc_enaddr
153 	 *
154 	 */
155 
156 	/* Make sure the chip is stopped. */
157 	hme_chipreset(sc);
158 
159 	/*
160 	 * Allocate descriptors and buffers
161 	 * XXX - do all this differently.. and more configurably,
162 	 * eg. use things as `dma_load_mbuf()' on transmit,
163 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
164 	 *     all the time) on the receiver side.
165 	 *
166 	 * Note: receive buffers must be 64-byte aligned.
167 	 * Also, apparently, the buffers must extend to a DMA burst
168 	 * boundary beyond the maximum packet size.
169 	 */
170 #define _HME_NDESC	128
171 #define _HME_BUFSZ	1600
172 
173 	/* Note: the # of descriptors must be a multiple of 16 */
174 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
175 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
176 
177 	/*
178 	 * Allocate DMA capable memory
179 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
180 	 * take this into account when calculating the size. Note that
181 	 * the maximum number of descriptors (256) occupies 2048 bytes,
182 	 * so we allocate that much regardless of _HME_NDESC.
183 	 */
184 	size =	2048 +					/* TX descriptors */
185 		2048 +					/* RX descriptors */
186 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
187 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* RX buffers */
188 
189 	/* Allocate DMA buffer */
190 	if ((error = bus_dmamem_alloc(dmatag, size,
191 				      2048, 0,
192 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
193 		aprint_error_dev(sc->sc_dev, "DMA buffer alloc error %d\n",
194 			error);
195 		return;
196 	}
197 
198 	/* Map DMA memory in CPU addressable space */
199 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
200 				    &sc->sc_rb.rb_membase,
201 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
202 		aprint_error_dev(sc->sc_dev, "DMA buffer map error %d\n",
203 			error);
204 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
205 		bus_dmamem_free(dmatag, &seg, rseg);
206 		return;
207 	}
208 
209 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
210 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
211 		aprint_error_dev(sc->sc_dev, "DMA map create error %d\n",
212 			error);
213 		return;
214 	}
215 
216 	/* Load the buffer */
217 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
218 	    sc->sc_rb.rb_membase, size, NULL,
219 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
220 		aprint_error_dev(sc->sc_dev, "DMA buffer map load error %d\n",
221 			error);
222 		bus_dmamem_free(dmatag, &seg, rseg);
223 		return;
224 	}
225 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
226 
227 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
228 	    ether_sprintf(sc->sc_enaddr));
229 
230 	/* Initialize ifnet structure. */
231 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
232 	ifp->if_softc = sc;
233 	ifp->if_start = hme_start;
234 	ifp->if_stop = hme_stop;
235 	ifp->if_ioctl = hme_ioctl;
236 	ifp->if_init = hme_init;
237 	ifp->if_watchdog = hme_watchdog;
238 	ifp->if_flags =
239 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
240 	sc->sc_if_flags = ifp->if_flags;
241 	ifp->if_capabilities |=
242 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
243 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
244 	IFQ_SET_READY(&ifp->if_snd);
245 
246 	/* Initialize ifmedia structures and MII info */
247 	mii->mii_ifp = ifp;
248 	mii->mii_readreg = hme_mii_readreg;
249 	mii->mii_writereg = hme_mii_writereg;
250 	mii->mii_statchg = hme_mii_statchg;
251 
252 	sc->sc_ethercom.ec_mii = mii;
253 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
254 
255 	hme_mifinit(sc);
256 
257 	mii_attach(sc->sc_dev, mii, 0xffffffff,
258 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
259 
260 	child = LIST_FIRST(&mii->mii_phys);
261 	if (child == NULL) {
262 		/* No PHY attached */
263 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
264 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
265 	} else {
266 		/*
267 		 * Walk along the list of attached MII devices and
268 		 * establish an `MII instance' to `phy number'
269 		 * mapping. We'll use this mapping in media change
270 		 * requests to determine which phy to use to program
271 		 * the MIF configuration register.
272 		 */
273 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
274 			/*
275 			 * Note: we support just two PHYs: the built-in
276 			 * internal device and an external on the MII
277 			 * connector.
278 			 */
279 			if (child->mii_phy > 1 || child->mii_inst > 1) {
280 				aprint_error_dev(sc->sc_dev,
281 				    "cannot accommodate MII device %s"
282 				       " at phy %d, instance %d\n",
283 				       device_xname(child->mii_dev),
284 				       child->mii_phy, child->mii_inst);
285 				continue;
286 			}
287 
288 			sc->sc_phys[child->mii_inst] = child->mii_phy;
289 		}
290 
291 		/*
292 		 * Set the default media to auto negotiation if the phy has
293 		 * the auto negotiation capability.
294 		 * XXX; What to do otherwise?
295 		 */
296 		if (ifmedia_match(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0))
297 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
298 /*
299 		else
300 			ifmedia_set(&sc->sc_mii.mii_media, sc->sc_defaultmedia);
301 */
302 	}
303 
304 	/* claim 802.1q capability */
305 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
306 
307 	/* Attach the interface. */
308 	if_attach(ifp);
309 	if_deferred_start_init(ifp, NULL);
310 	ether_ifattach(ifp, sc->sc_enaddr);
311 
312 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, hme_shutdown))
313 		pmf_class_network_register(sc->sc_dev, ifp);
314 	else
315 		aprint_error_dev(sc->sc_dev,
316 		    "couldn't establish power handler\n");
317 
318 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
319 			  RND_TYPE_NET, RND_FLAG_DEFAULT);
320 
321 	callout_init(&sc->sc_tick_ch, 0);
322 }
323 
324 void
325 hme_tick(void *arg)
326 {
327 	struct hme_softc *sc = arg;
328 	int s;
329 
330 	s = splnet();
331 	mii_tick(&sc->sc_mii);
332 	splx(s);
333 
334 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
335 }
336 
337 void
338 hme_reset(struct hme_softc *sc)
339 {
340 	int s;
341 
342 	s = splnet();
343 	(void)hme_init(&sc->sc_ethercom.ec_if);
344 	splx(s);
345 }
346 
347 void
348 hme_chipreset(struct hme_softc *sc)
349 {
350 	bus_space_tag_t t = sc->sc_bustag;
351 	bus_space_handle_t seb = sc->sc_seb;
352 	int n;
353 
354 	/* Mask all interrupts */
355 	bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
356 
357 	/* Reset transmitter and receiver */
358 	bus_space_write_4(t, seb, HME_SEBI_RESET,
359 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
360 
361 	for (n = 0; n < 20; n++) {
362 		uint32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
363 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
364 			return;
365 		DELAY(20);
366 	}
367 
368 	printf("%s: %s: reset failed\n", device_xname(sc->sc_dev), __func__);
369 }
370 
371 void
372 hme_stop(struct ifnet *ifp, int disable)
373 {
374 	struct hme_softc *sc;
375 
376 	sc = ifp->if_softc;
377 
378 	ifp->if_timer = 0;
379 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
380 
381 	callout_stop(&sc->sc_tick_ch);
382 	mii_down(&sc->sc_mii);
383 
384 	hme_chipreset(sc);
385 }
386 
387 void
388 hme_meminit(struct hme_softc *sc)
389 {
390 	bus_addr_t txbufdma, rxbufdma;
391 	bus_addr_t dma;
392 	char *p;
393 	unsigned int ntbuf, nrbuf, i;
394 	struct hme_ring *hr = &sc->sc_rb;
395 
396 	p = hr->rb_membase;
397 	dma = hr->rb_dmabase;
398 
399 	ntbuf = hr->rb_ntbuf;
400 	nrbuf = hr->rb_nrbuf;
401 
402 	/*
403 	 * Allocate transmit descriptors
404 	 */
405 	hr->rb_txd = p;
406 	hr->rb_txddma = dma;
407 	p += ntbuf * HME_XD_SIZE;
408 	dma += ntbuf * HME_XD_SIZE;
409 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
410 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
411 	p = (void *)roundup((u_long)p, 2048);
412 
413 	/*
414 	 * Allocate receive descriptors
415 	 */
416 	hr->rb_rxd = p;
417 	hr->rb_rxddma = dma;
418 	p += nrbuf * HME_XD_SIZE;
419 	dma += nrbuf * HME_XD_SIZE;
420 	/* Again move forward to the next 2048 byte boundary.*/
421 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
422 	p = (void *)roundup((u_long)p, 2048);
423 
424 
425 	/*
426 	 * Allocate transmit buffers
427 	 */
428 	hr->rb_txbuf = p;
429 	txbufdma = dma;
430 	p += ntbuf * _HME_BUFSZ;
431 	dma += ntbuf * _HME_BUFSZ;
432 
433 	/*
434 	 * Allocate receive buffers
435 	 */
436 	hr->rb_rxbuf = p;
437 	rxbufdma = dma;
438 	p += nrbuf * _HME_BUFSZ;
439 	dma += nrbuf * _HME_BUFSZ;
440 
441 	/*
442 	 * Initialize transmit buffer descriptors
443 	 */
444 	for (i = 0; i < ntbuf; i++) {
445 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
446 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
447 	}
448 
449 	/*
450 	 * Initialize receive buffer descriptors
451 	 */
452 	for (i = 0; i < nrbuf; i++) {
453 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
454 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
455 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
456 	}
457 
458 	hr->rb_tdhead = hr->rb_tdtail = 0;
459 	hr->rb_td_nbusy = 0;
460 	hr->rb_rdtail = 0;
461 }
462 
463 /*
464  * Initialization of interface; set up initialization block
465  * and transmit/receive descriptor rings.
466  */
467 int
468 hme_init(struct ifnet *ifp)
469 {
470 	struct hme_softc *sc = ifp->if_softc;
471 	bus_space_tag_t t = sc->sc_bustag;
472 	bus_space_handle_t seb = sc->sc_seb;
473 	bus_space_handle_t etx = sc->sc_etx;
474 	bus_space_handle_t erx = sc->sc_erx;
475 	bus_space_handle_t mac = sc->sc_mac;
476 	uint8_t *ea;
477 	uint32_t v;
478 	int rc;
479 
480 	/*
481 	 * Initialization sequence. The numbered steps below correspond
482 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
483 	 * Channel Engine manual (part of the PCIO manual).
484 	 * See also the STP2002-STQ document from Sun Microsystems.
485 	 */
486 
487 	/* step 1 & 2. Reset the Ethernet Channel */
488 	hme_stop(ifp, 0);
489 
490 	/* Re-initialize the MIF */
491 	hme_mifinit(sc);
492 
493 	/* Call MI reset function if any */
494 	if (sc->sc_hwreset)
495 		(*sc->sc_hwreset)(sc);
496 
497 #if 0
498 	/* Mask all MIF interrupts, just in case */
499 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
500 #endif
501 
502 	/* step 3. Setup data structures in host memory */
503 	hme_meminit(sc);
504 
505 	/* step 4. TX MAC registers & counters */
506 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
507 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
508 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
509 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
510 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
511 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
512 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
513 	sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
514 
515 	/* Load station MAC address */
516 	ea = sc->sc_enaddr;
517 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
518 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
519 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
520 
521 	/*
522 	 * Init seed for backoff
523 	 * (source suggested by manual: low 10 bits of MAC address)
524 	 */
525 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
526 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
527 
528 
529 	/* Note: Accepting power-on default for other MAC registers here.. */
530 
531 
532 	/* step 5. RX MAC registers & counters */
533 	hme_setladrf(sc);
534 
535 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
536 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
537 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
538 
539 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
540 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
541 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
542 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
543 
544 	/* step 8. Global Configuration & Interrupt Mask */
545 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
546 			~(
547 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
548 			  HME_SEB_STAT_HOSTTOTX |
549 			  HME_SEB_STAT_RXTOHOST |
550 			  HME_SEB_STAT_TXALL |
551 			  HME_SEB_STAT_TXPERR |
552 			  HME_SEB_STAT_RCNTEXP |
553 			  HME_SEB_STAT_MIFIRQ |
554 			  HME_SEB_STAT_ALL_ERRORS ));
555 
556 	switch (sc->sc_burst) {
557 	default:
558 		v = 0;
559 		break;
560 	case 16:
561 		v = HME_SEB_CFG_BURST16;
562 		break;
563 	case 32:
564 		v = HME_SEB_CFG_BURST32;
565 		break;
566 	case 64:
567 		v = HME_SEB_CFG_BURST64;
568 		break;
569 	}
570 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
571 
572 	/* step 9. ETX Configuration: use mostly default values */
573 
574 	/* Enable DMA */
575 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
576 	v |= HME_ETX_CFG_DMAENABLE;
577 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
578 
579 	/* Transmit Descriptor ring size: in increments of 16 */
580 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
581 
582 
583 	/* step 10. ERX Configuration */
584 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
585 
586 	/* Encode Receive Descriptor ring size: four possible values */
587 	switch (_HME_NDESC /*XXX*/) {
588 	case 32:
589 		v |= HME_ERX_CFG_RINGSIZE32;
590 		break;
591 	case 64:
592 		v |= HME_ERX_CFG_RINGSIZE64;
593 		break;
594 	case 128:
595 		v |= HME_ERX_CFG_RINGSIZE128;
596 		break;
597 	case 256:
598 		v |= HME_ERX_CFG_RINGSIZE256;
599 		break;
600 	default:
601 		printf("hme: invalid Receive Descriptor ring size\n");
602 		break;
603 	}
604 
605 	/* Enable DMA */
606 	v |= HME_ERX_CFG_DMAENABLE;
607 
608 	/* set h/w rx checksum start offset (# of half-words) */
609 #ifdef INET
610 	v |= (((ETHER_HDR_LEN + sizeof(struct ip)) / sizeof(uint16_t))
611 		<< HME_ERX_CFG_CSUMSHIFT) &
612 		HME_ERX_CFG_CSUMSTART;
613 #endif
614 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
615 
616 	/* step 11. XIF Configuration */
617 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
618 	v |= HME_MAC_XIF_OE;
619 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
620 
621 	/* step 12. RX_MAC Configuration Register */
622 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
623 	v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
624 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
625 
626 	/* step 13. TX_MAC Configuration Register */
627 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
628 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
629 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
630 
631 	/* step 14. Issue Transmit Pending command */
632 
633 	/* Call MI initialization function if any */
634 	if (sc->sc_hwinit)
635 		(*sc->sc_hwinit)(sc);
636 
637 	/* Set the current media. */
638 	if ((rc = hme_mediachange(ifp)) != 0)
639 		return rc;
640 
641 	/* Start the one second timer. */
642 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
643 
644 	ifp->if_flags |= IFF_RUNNING;
645 	ifp->if_flags &= ~IFF_OACTIVE;
646 	sc->sc_if_flags = ifp->if_flags;
647 	ifp->if_timer = 0;
648 	hme_start(ifp);
649 	return 0;
650 }
651 
652 /*
653  * Routine to copy from mbuf chain to transmit buffer in
654  * network buffer memory.
655  * Returns the amount of data copied.
656  */
657 int
658 hme_put(struct hme_softc *sc, int ri, struct mbuf *m)
659 	/* ri:			 Ring index */
660 {
661 	struct mbuf *n;
662 	int len, tlen = 0;
663 	char *bp;
664 
665 	bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
666 	for (; m; m = n) {
667 		len = m->m_len;
668 		if (len == 0) {
669 			n = m_free(m);
670 			continue;
671 		}
672 		memcpy(bp, mtod(m, void *), len);
673 		bp += len;
674 		tlen += len;
675 		n = m_free(m);
676 	}
677 	return (tlen);
678 }
679 
680 /*
681  * Pull data off an interface.
682  * Len is length of data, with local net header stripped.
683  * We copy the data into mbufs.  When full cluster sized units are present
684  * we copy into clusters.
685  */
686 struct mbuf *
687 hme_get(struct hme_softc *sc, int ri, uint32_t flags)
688 {
689 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
690 	struct mbuf *m, *m0, *newm;
691 	char *bp;
692 	int len, totlen;
693 #ifdef INET
694 	int csum_flags;
695 #endif
696 
697 	totlen = HME_XD_DECODE_RSIZE(flags);
698 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
699 	if (m0 == 0)
700 		return (0);
701 	m_set_rcvif(m0, ifp);
702 	m0->m_pkthdr.len = totlen;
703 	len = MHLEN;
704 	m = m0;
705 
706 	bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
707 
708 	while (totlen > 0) {
709 		if (totlen >= MINCLSIZE) {
710 			MCLGET(m, M_DONTWAIT);
711 			if ((m->m_flags & M_EXT) == 0)
712 				goto bad;
713 			len = MCLBYTES;
714 		}
715 
716 		if (m == m0) {
717 			char *newdata = (char *)
718 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
719 			    sizeof(struct ether_header);
720 			len -= newdata - m->m_data;
721 			m->m_data = newdata;
722 		}
723 
724 		m->m_len = len = min(totlen, len);
725 		memcpy(mtod(m, void *), bp, len);
726 		bp += len;
727 
728 		totlen -= len;
729 		if (totlen > 0) {
730 			MGET(newm, M_DONTWAIT, MT_DATA);
731 			if (newm == 0)
732 				goto bad;
733 			len = MLEN;
734 			m = m->m_next = newm;
735 		}
736 	}
737 
738 #ifdef INET
739 	/* hardware checksum */
740 	csum_flags = 0;
741 	if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
742 		struct ether_header *eh;
743 		struct ether_vlan_header *evh;
744 		struct ip *ip;
745 		struct udphdr *uh;
746 		uint16_t *opts;
747 		int32_t hlen, pktlen;
748 		uint32_t csum_data;
749 
750 		eh = mtod(m0, struct ether_header *);
751 		if (ntohs(eh->ether_type) == ETHERTYPE_IP) {
752 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN);
753 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
754 		} else if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
755 			evh = (struct ether_vlan_header *)eh;
756 			if (ntohs(evh->evl_proto != ETHERTYPE_IP))
757 				goto swcsum;
758 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN +
759 			    ETHER_VLAN_ENCAP_LEN);
760 			pktlen = m0->m_pkthdr.len -
761 			    ETHER_HDR_LEN - ETHER_VLAN_ENCAP_LEN;
762 		} else
763 			goto swcsum;
764 
765 		/* IPv4 only */
766 		if (ip->ip_v != IPVERSION)
767 			goto swcsum;
768 
769 		hlen = ip->ip_hl << 2;
770 		if (hlen < sizeof(struct ip))
771 			goto swcsum;
772 
773 		/*
774 		 * bail if too short, has random trailing garbage, truncated,
775 		 * fragment, or has ethernet pad.
776 		 */
777 		if (ntohs(ip->ip_len) < hlen ||
778 		    ntohs(ip->ip_len) != pktlen ||
779 		    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
780 			goto swcsum;
781 
782 		switch (ip->ip_p) {
783 		case IPPROTO_TCP:
784 			if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0)
785 				goto swcsum;
786 			if (pktlen < (hlen + sizeof(struct tcphdr)))
787 				goto swcsum;
788 			csum_flags =
789 			    M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
790 			break;
791 		case IPPROTO_UDP:
792 			if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0)
793 				goto swcsum;
794 			if (pktlen < (hlen + sizeof(struct udphdr)))
795 				goto swcsum;
796 			uh = (struct udphdr *)((char *)ip + hlen);
797 			/* no checksum */
798 			if (uh->uh_sum == 0)
799 				goto swcsum;
800 			csum_flags =
801 			    M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
802 			break;
803 		default:
804 			goto swcsum;
805 		}
806 
807 		/* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
808 		csum_data = ~flags & HME_XD_RXCKSUM;
809 
810 		/*
811 		 * If data offset is different from RX cksum start offset,
812 		 * we have to deduct them.
813 		 */
814 		hlen = ((char *)ip + hlen) -
815 		    ((char *)eh + ETHER_HDR_LEN + sizeof(struct ip));
816 		if (hlen > 1) {
817 			uint32_t optsum;
818 
819 			optsum = 0;
820 			opts = (uint16_t *)((char *)eh +
821 			    ETHER_HDR_LEN + sizeof(struct ip));
822 
823 			while (hlen > 1) {
824 				optsum += ntohs(*opts++);
825 				hlen -= 2;
826 			}
827 			while (optsum >> 16)
828 				optsum = (optsum >> 16) + (optsum & 0xffff);
829 
830 			/* Deduct the ip opts sum from the hwsum. */
831 			csum_data += (uint16_t)~optsum;
832 
833 			while (csum_data >> 16)
834 				csum_data =
835 				    (csum_data >> 16) + (csum_data & 0xffff);
836 		}
837 		m0->m_pkthdr.csum_data = csum_data;
838 	}
839 swcsum:
840 	m0->m_pkthdr.csum_flags = csum_flags;
841 #endif
842 
843 	return (m0);
844 
845 bad:
846 	m_freem(m0);
847 	return (0);
848 }
849 
850 /*
851  * Pass a packet to the higher levels.
852  */
853 void
854 hme_read(struct hme_softc *sc, int ix, uint32_t flags)
855 {
856 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
857 	struct mbuf *m;
858 	int len;
859 
860 	len = HME_XD_DECODE_RSIZE(flags);
861 	if (len <= sizeof(struct ether_header) ||
862 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
863 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
864 	    ETHERMTU + sizeof(struct ether_header))) {
865 #ifdef HMEDEBUG
866 		printf("%s: invalid packet size %d; dropping\n",
867 		    device_xname(sc->sc_dev), len);
868 #endif
869 		ifp->if_ierrors++;
870 		return;
871 	}
872 
873 	/* Pull packet off interface. */
874 	m = hme_get(sc, ix, flags);
875 	if (m == 0) {
876 		ifp->if_ierrors++;
877 		return;
878 	}
879 
880 	/* Pass the packet up. */
881 	if_percpuq_enqueue(ifp->if_percpuq, m);
882 }
883 
884 void
885 hme_start(struct ifnet *ifp)
886 {
887 	struct hme_softc *sc = ifp->if_softc;
888 	void *txd = sc->sc_rb.rb_txd;
889 	struct mbuf *m;
890 	unsigned int txflags;
891 	unsigned int ri, len, obusy;
892 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
893 
894 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
895 		return;
896 
897 	ri = sc->sc_rb.rb_tdhead;
898 	obusy = sc->sc_rb.rb_td_nbusy;
899 
900 	for (;;) {
901 		IFQ_DEQUEUE(&ifp->if_snd, m);
902 		if (m == 0)
903 			break;
904 
905 		/*
906 		 * If BPF is listening on this interface, let it see the
907 		 * packet before we commit it to the wire.
908 		 */
909 		bpf_mtap(ifp, m);
910 
911 #ifdef INET
912 		/* collect bits for h/w csum, before hme_put frees the mbuf */
913 		if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
914 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
915 			struct ether_header *eh;
916 			uint16_t offset, start;
917 
918 			eh = mtod(m, struct ether_header *);
919 			switch (ntohs(eh->ether_type)) {
920 			case ETHERTYPE_IP:
921 				start = ETHER_HDR_LEN;
922 				break;
923 			case ETHERTYPE_VLAN:
924 				start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
925 				break;
926 			default:
927 				/* unsupported, drop it */
928 				m_free(m);
929 				continue;
930 			}
931 			start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
932 			offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
933 			    + start;
934 			txflags = HME_XD_TXCKSUM |
935 				  (offset << HME_XD_TXCSSTUFFSHIFT) |
936 		  		  (start << HME_XD_TXCSSTARTSHIFT);
937 		} else
938 #endif
939 			txflags = 0;
940 
941 		/*
942 		 * Copy the mbuf chain into the transmit buffer.
943 		 */
944 		len = hme_put(sc, ri, m);
945 
946 		/*
947 		 * Initialize transmit registers and start transmission
948 		 */
949 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
950 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
951 			HME_XD_ENCODE_TSIZE(len) | txflags);
952 
953 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
954 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
955 				  HME_ETX_TP_DMAWAKEUP);
956 
957 		if (++ri == ntbuf)
958 			ri = 0;
959 
960 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
961 			ifp->if_flags |= IFF_OACTIVE;
962 			break;
963 		}
964 	}
965 
966 	if (obusy != sc->sc_rb.rb_td_nbusy) {
967 		sc->sc_rb.rb_tdhead = ri;
968 		ifp->if_timer = 5;
969 	}
970 }
971 
972 /*
973  * Transmit interrupt.
974  */
975 int
976 hme_tint(struct hme_softc *sc)
977 {
978 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
979 	bus_space_tag_t t = sc->sc_bustag;
980 	bus_space_handle_t mac = sc->sc_mac;
981 	unsigned int ri, txflags;
982 
983 	/*
984 	 * Unload collision counters
985 	 */
986 	ifp->if_collisions +=
987 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
988 		bus_space_read_4(t, mac, HME_MACI_FCCNT);
989 	ifp->if_oerrors +=
990 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
991 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
992 
993 	/*
994 	 * then clear the hardware counters.
995 	 */
996 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
997 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
998 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
999 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
1000 
1001 	/* Fetch current position in the transmit ring */
1002 	ri = sc->sc_rb.rb_tdtail;
1003 
1004 	for (;;) {
1005 		if (sc->sc_rb.rb_td_nbusy <= 0)
1006 			break;
1007 
1008 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
1009 
1010 		if (txflags & HME_XD_OWN)
1011 			break;
1012 
1013 		ifp->if_flags &= ~IFF_OACTIVE;
1014 		ifp->if_opackets++;
1015 
1016 		if (++ri == sc->sc_rb.rb_ntbuf)
1017 			ri = 0;
1018 
1019 		--sc->sc_rb.rb_td_nbusy;
1020 	}
1021 
1022 	/* Update ring */
1023 	sc->sc_rb.rb_tdtail = ri;
1024 
1025 	if_schedule_deferred_start(ifp);
1026 
1027 	if (sc->sc_rb.rb_td_nbusy == 0)
1028 		ifp->if_timer = 0;
1029 
1030 	return (1);
1031 }
1032 
1033 /*
1034  * Receive interrupt.
1035  */
1036 int
1037 hme_rint(struct hme_softc *sc)
1038 {
1039 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1040 	bus_space_tag_t t = sc->sc_bustag;
1041 	bus_space_handle_t mac = sc->sc_mac;
1042 	void *xdr = sc->sc_rb.rb_rxd;
1043 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
1044 	unsigned int ri;
1045 	uint32_t flags;
1046 
1047 	ri = sc->sc_rb.rb_rdtail;
1048 
1049 	/*
1050 	 * Process all buffers with valid data.
1051 	 */
1052 	for (;;) {
1053 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
1054 		if (flags & HME_XD_OWN)
1055 			break;
1056 
1057 		if (flags & HME_XD_OFL) {
1058 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
1059 					device_xname(sc->sc_dev), ri, flags);
1060 		} else
1061 			hme_read(sc, ri, flags);
1062 
1063 		/* This buffer can be used by the hardware again */
1064 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
1065 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
1066 
1067 		if (++ri == nrbuf)
1068 			ri = 0;
1069 	}
1070 
1071 	sc->sc_rb.rb_rdtail = ri;
1072 
1073 	/* Read error counters ... */
1074 	ifp->if_ierrors +=
1075 	    bus_space_read_4(t, mac, HME_MACI_STAT_LCNT) +
1076 	    bus_space_read_4(t, mac, HME_MACI_STAT_ACNT) +
1077 	    bus_space_read_4(t, mac, HME_MACI_STAT_CCNT) +
1078 	    bus_space_read_4(t, mac, HME_MACI_STAT_CVCNT);
1079 
1080 	/* ... then clear the hardware counters. */
1081 	bus_space_write_4(t, mac, HME_MACI_STAT_LCNT, 0);
1082 	bus_space_write_4(t, mac, HME_MACI_STAT_ACNT, 0);
1083 	bus_space_write_4(t, mac, HME_MACI_STAT_CCNT, 0);
1084 	bus_space_write_4(t, mac, HME_MACI_STAT_CVCNT, 0);
1085 	return (1);
1086 }
1087 
1088 int
1089 hme_eint(struct hme_softc *sc, u_int status)
1090 {
1091 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1092 	char bits[128];
1093 
1094 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
1095 		bus_space_tag_t t = sc->sc_bustag;
1096 		bus_space_handle_t mif = sc->sc_mif;
1097 		uint32_t cf, st, sm;
1098 		cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
1099 		st = bus_space_read_4(t, mif, HME_MIFI_STAT);
1100 		sm = bus_space_read_4(t, mif, HME_MIFI_SM);
1101 		printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
1102 			device_xname(sc->sc_dev), cf, st, sm);
1103 		return (1);
1104 	}
1105 
1106 	/* Receive error counters rolled over */
1107 	if (status & HME_SEB_STAT_ACNTEXP)
1108 		ifp->if_ierrors += 0xff;
1109 	if (status & HME_SEB_STAT_CCNTEXP)
1110 		ifp->if_ierrors += 0xff;
1111 	if (status & HME_SEB_STAT_LCNTEXP)
1112 		ifp->if_ierrors += 0xff;
1113 	if (status & HME_SEB_STAT_CVCNTEXP)
1114 		ifp->if_ierrors += 0xff;
1115 
1116 	/* RXTERR locks up the interface, so do a reset */
1117 	if (status & HME_SEB_STAT_RXTERR)
1118 		hme_reset(sc);
1119 
1120 	snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
1121 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1122 
1123 	return (1);
1124 }
1125 
1126 int
1127 hme_intr(void *v)
1128 {
1129 	struct hme_softc *sc = v;
1130 	bus_space_tag_t t = sc->sc_bustag;
1131 	bus_space_handle_t seb = sc->sc_seb;
1132 	uint32_t status;
1133 	int r = 0;
1134 
1135 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
1136 
1137 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
1138 		r |= hme_eint(sc, status);
1139 
1140 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
1141 		r |= hme_tint(sc);
1142 
1143 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
1144 		r |= hme_rint(sc);
1145 
1146 	rnd_add_uint32(&sc->rnd_source, status);
1147 
1148 	return (r);
1149 }
1150 
1151 
1152 void
1153 hme_watchdog(struct ifnet *ifp)
1154 {
1155 	struct hme_softc *sc = ifp->if_softc;
1156 
1157 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1158 	++ifp->if_oerrors;
1159 
1160 	hme_reset(sc);
1161 }
1162 
1163 /*
1164  * Initialize the MII Management Interface
1165  */
1166 void
1167 hme_mifinit(struct hme_softc *sc)
1168 {
1169 	bus_space_tag_t t = sc->sc_bustag;
1170 	bus_space_handle_t mif = sc->sc_mif;
1171 	bus_space_handle_t mac = sc->sc_mac;
1172 	int instance, phy;
1173 	uint32_t v;
1174 
1175 	if (sc->sc_mii.mii_media.ifm_cur != NULL) {
1176 		instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1177 		phy = sc->sc_phys[instance];
1178 	} else
1179 		/* No media set yet, pick phy arbitrarily.. */
1180 		phy = HME_PHYAD_EXTERNAL;
1181 
1182 	/* Configure the MIF in frame mode, no poll, current phy select */
1183 	v = 0;
1184 	if (phy == HME_PHYAD_EXTERNAL)
1185 		v |= HME_MIF_CFG_PHY;
1186 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1187 
1188 	/* If an external transceiver is selected, enable its MII drivers */
1189 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
1190 	v &= ~HME_MAC_XIF_MIIENABLE;
1191 	if (phy == HME_PHYAD_EXTERNAL)
1192 		v |= HME_MAC_XIF_MIIENABLE;
1193 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1194 }
1195 
1196 /*
1197  * MII interface
1198  */
1199 static int
1200 hme_mii_readreg(device_t self, int phy, int reg)
1201 {
1202 	struct hme_softc *sc = device_private(self);
1203 	bus_space_tag_t t = sc->sc_bustag;
1204 	bus_space_handle_t mif = sc->sc_mif;
1205 	bus_space_handle_t mac = sc->sc_mac;
1206 	uint32_t v, xif_cfg, mifi_cfg;
1207 	int n;
1208 
1209 	/* We can at most have two PHYs */
1210 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1211 		return (0);
1212 
1213 	/* Select the desired PHY in the MIF configuration register */
1214 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1215 	v &= ~HME_MIF_CFG_PHY;
1216 	if (phy == HME_PHYAD_EXTERNAL)
1217 		v |= HME_MIF_CFG_PHY;
1218 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1219 
1220 	/* Enable MII drivers on external transceiver */
1221 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1222 	if (phy == HME_PHYAD_EXTERNAL)
1223 		v |= HME_MAC_XIF_MIIENABLE;
1224 	else
1225 		v &= ~HME_MAC_XIF_MIIENABLE;
1226 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1227 
1228 #if 0
1229 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1230 	/*
1231 	 * Check whether a transceiver is connected by testing
1232 	 * the MIF configuration register's MDI_X bits. Note that
1233 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1234 	 */
1235 	mif_mdi_bit = 1 << (8 + (1 - phy));
1236 	delay(100);
1237 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1238 	if ((v & mif_mdi_bit) == 0)
1239 		return (0);
1240 #endif
1241 
1242 	/* Construct the frame command */
1243 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1244 	    HME_MIF_FO_TAMSB |
1245 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1246 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
1247 	    (reg << HME_MIF_FO_REGAD_SHIFT);
1248 
1249 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
1250 	for (n = 0; n < 100; n++) {
1251 		DELAY(1);
1252 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
1253 		if (v & HME_MIF_FO_TALSB) {
1254 			v &= HME_MIF_FO_DATA;
1255 			goto out;
1256 		}
1257 	}
1258 
1259 	v = 0;
1260 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1261 
1262 out:
1263 	/* Restore MIFI_CFG register */
1264 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1265 	/* Restore XIF register */
1266 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1267 	return (v);
1268 }
1269 
1270 static void
1271 hme_mii_writereg(device_t self, int phy, int reg, int val)
1272 {
1273 	struct hme_softc *sc = device_private(self);
1274 	bus_space_tag_t t = sc->sc_bustag;
1275 	bus_space_handle_t mif = sc->sc_mif;
1276 	bus_space_handle_t mac = sc->sc_mac;
1277 	uint32_t v, xif_cfg, mifi_cfg;
1278 	int n;
1279 
1280 	/* We can at most have two PHYs */
1281 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1282 		return;
1283 
1284 	/* Select the desired PHY in the MIF configuration register */
1285 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1286 	v &= ~HME_MIF_CFG_PHY;
1287 	if (phy == HME_PHYAD_EXTERNAL)
1288 		v |= HME_MIF_CFG_PHY;
1289 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1290 
1291 	/* Enable MII drivers on external transceiver */
1292 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1293 	if (phy == HME_PHYAD_EXTERNAL)
1294 		v |= HME_MAC_XIF_MIIENABLE;
1295 	else
1296 		v &= ~HME_MAC_XIF_MIIENABLE;
1297 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1298 
1299 #if 0
1300 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1301 	/*
1302 	 * Check whether a transceiver is connected by testing
1303 	 * the MIF configuration register's MDI_X bits. Note that
1304 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1305 	 */
1306 	mif_mdi_bit = 1 << (8 + (1 - phy));
1307 	delay(100);
1308 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1309 	if ((v & mif_mdi_bit) == 0)
1310 		return;
1311 #endif
1312 
1313 	/* Construct the frame command */
1314 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
1315 	    HME_MIF_FO_TAMSB				|
1316 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
1317 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
1318 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
1319 	    (val & HME_MIF_FO_DATA);
1320 
1321 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
1322 	for (n = 0; n < 100; n++) {
1323 		DELAY(1);
1324 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
1325 		if (v & HME_MIF_FO_TALSB)
1326 			goto out;
1327 	}
1328 
1329 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1330 out:
1331 	/* Restore MIFI_CFG register */
1332 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1333 	/* Restore XIF register */
1334 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1335 }
1336 
1337 static void
1338 hme_mii_statchg(struct ifnet *ifp)
1339 {
1340 	struct hme_softc *sc = ifp->if_softc;
1341 	bus_space_tag_t t = sc->sc_bustag;
1342 	bus_space_handle_t mac = sc->sc_mac;
1343 	uint32_t v;
1344 
1345 #ifdef HMEDEBUG
1346 	if (sc->sc_debug)
1347 		printf("hme_mii_statchg: status change\n");
1348 #endif
1349 
1350 	/* Set the MAC Full Duplex bit appropriately */
1351 	/* Apparently the hme chip is SIMPLEX if working in full duplex mode,
1352 	   but not otherwise. */
1353 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1354 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1355 		v |= HME_MAC_TXCFG_FULLDPLX;
1356 		sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
1357 	} else {
1358 		v &= ~HME_MAC_TXCFG_FULLDPLX;
1359 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
1360 	}
1361 	sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
1362 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1363 }
1364 
1365 int
1366 hme_mediachange(struct ifnet *ifp)
1367 {
1368 	struct hme_softc *sc = ifp->if_softc;
1369 	bus_space_tag_t t = sc->sc_bustag;
1370 	bus_space_handle_t mif = sc->sc_mif;
1371 	bus_space_handle_t mac = sc->sc_mac;
1372 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1373 	int phy = sc->sc_phys[instance];
1374 	int rc;
1375 	uint32_t v;
1376 
1377 #ifdef HMEDEBUG
1378 	if (sc->sc_debug)
1379 		printf("hme_mediachange: phy = %d\n", phy);
1380 #endif
1381 
1382 	/* Select the current PHY in the MIF configuration register */
1383 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1384 	v &= ~HME_MIF_CFG_PHY;
1385 	if (phy == HME_PHYAD_EXTERNAL)
1386 		v |= HME_MIF_CFG_PHY;
1387 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1388 
1389 	/* If an external transceiver is selected, enable its MII drivers */
1390 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
1391 	v &= ~HME_MAC_XIF_MIIENABLE;
1392 	if (phy == HME_PHYAD_EXTERNAL)
1393 		v |= HME_MAC_XIF_MIIENABLE;
1394 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1395 
1396 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
1397 		return 0;
1398 	return rc;
1399 }
1400 
1401 /*
1402  * Process an ioctl request.
1403  */
1404 int
1405 hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
1406 {
1407 	struct hme_softc *sc = ifp->if_softc;
1408 	struct ifaddr *ifa = (struct ifaddr *)data;
1409 	int s, error = 0;
1410 
1411 	s = splnet();
1412 
1413 	switch (cmd) {
1414 
1415 	case SIOCINITIFADDR:
1416 		switch (ifa->ifa_addr->sa_family) {
1417 #ifdef INET
1418 		case AF_INET:
1419 			if (ifp->if_flags & IFF_UP)
1420 				hme_setladrf(sc);
1421 			else {
1422 				ifp->if_flags |= IFF_UP;
1423 				error = hme_init(ifp);
1424 			}
1425 			arp_ifinit(ifp, ifa);
1426 			break;
1427 #endif
1428 		default:
1429 			ifp->if_flags |= IFF_UP;
1430 			error = hme_init(ifp);
1431 			break;
1432 		}
1433 		break;
1434 
1435 	case SIOCSIFFLAGS:
1436 #ifdef HMEDEBUG
1437 		{
1438 			struct ifreq *ifr = data;
1439 			sc->sc_debug =
1440 			    (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
1441 		}
1442 #endif
1443 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1444 			break;
1445 
1446 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1447 		case IFF_RUNNING:
1448 			/*
1449 			 * If interface is marked down and it is running, then
1450 			 * stop it.
1451 			 */
1452 			hme_stop(ifp, 0);
1453 			ifp->if_flags &= ~IFF_RUNNING;
1454 			break;
1455 		case IFF_UP:
1456 			/*
1457 			 * If interface is marked up and it is stopped, then
1458 			 * start it.
1459 			 */
1460 			error = hme_init(ifp);
1461 			break;
1462 		case IFF_UP|IFF_RUNNING:
1463 			/*
1464 			 * If setting debug or promiscuous mode, do not reset
1465 			 * the chip; for everything else, call hme_init()
1466 			 * which will trigger a reset.
1467 			 */
1468 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
1469 			if (ifp->if_flags != sc->sc_if_flags) {
1470 				if ((ifp->if_flags & (~RESETIGN))
1471 				    == (sc->sc_if_flags & (~RESETIGN)))
1472 					hme_setladrf(sc);
1473 				else
1474 					error = hme_init(ifp);
1475 			}
1476 #undef RESETIGN
1477 			break;
1478 		case 0:
1479 			break;
1480 		}
1481 
1482 		if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
1483 			error = hme_init(ifp);
1484 
1485 		break;
1486 
1487 	default:
1488 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1489 			break;
1490 
1491 		error = 0;
1492 
1493 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1494 			;
1495 		else if (ifp->if_flags & IFF_RUNNING) {
1496 			/*
1497 			 * Multicast list has changed; set the hardware filter
1498 			 * accordingly.
1499 			 */
1500 			hme_setladrf(sc);
1501 		}
1502 		break;
1503 	}
1504 
1505 	sc->sc_if_flags = ifp->if_flags;
1506 	splx(s);
1507 	return (error);
1508 }
1509 
1510 bool
1511 hme_shutdown(device_t self, int howto)
1512 {
1513 	struct hme_softc *sc;
1514 	struct ifnet *ifp;
1515 
1516 	sc = device_private(self);
1517 	ifp = &sc->sc_ethercom.ec_if;
1518 	hme_stop(ifp, 1);
1519 
1520 	return true;
1521 }
1522 
1523 /*
1524  * Set up the logical address filter.
1525  */
1526 void
1527 hme_setladrf(struct hme_softc *sc)
1528 {
1529 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1530 	struct ether_multi *enm;
1531 	struct ether_multistep step;
1532 	struct ethercom *ec = &sc->sc_ethercom;
1533 	bus_space_tag_t t = sc->sc_bustag;
1534 	bus_space_handle_t mac = sc->sc_mac;
1535 	uint32_t v;
1536 	uint32_t crc;
1537 	uint32_t hash[4];
1538 
1539 	/* Clear hash table */
1540 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
1541 
1542 	/* Get current RX configuration */
1543 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1544 
1545 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
1546 		/* Turn on promiscuous mode; turn off the hash filter */
1547 		v |= HME_MAC_RXCFG_PMISC;
1548 		v &= ~HME_MAC_RXCFG_HENABLE;
1549 		ifp->if_flags |= IFF_ALLMULTI;
1550 		goto chipit;
1551 	}
1552 
1553 	/* Turn off promiscuous mode; turn on the hash filter */
1554 	v &= ~HME_MAC_RXCFG_PMISC;
1555 	v |= HME_MAC_RXCFG_HENABLE;
1556 
1557 	/*
1558 	 * Set up multicast address filter by passing all multicast addresses
1559 	 * through a crc generator, and then using the high order 6 bits as an
1560 	 * index into the 64 bit logical address filter.  The high order bit
1561 	 * selects the word, while the rest of the bits select the bit within
1562 	 * the word.
1563 	 */
1564 
1565 	ETHER_FIRST_MULTI(step, ec, enm);
1566 	while (enm != NULL) {
1567 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1568 			/*
1569 			 * We must listen to a range of multicast addresses.
1570 			 * For now, just accept all multicasts, rather than
1571 			 * trying to set only those filter bits needed to match
1572 			 * the range.  (At this time, the only use of address
1573 			 * ranges is for IP multicast routing, for which the
1574 			 * range is big enough to require all bits set.)
1575 			 */
1576 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1577 			ifp->if_flags |= IFF_ALLMULTI;
1578 			goto chipit;
1579 		}
1580 
1581 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1582 
1583 		/* Just want the 6 most significant bits. */
1584 		crc >>= 26;
1585 
1586 		/* Set the corresponding bit in the filter. */
1587 		hash[crc >> 4] |= 1 << (crc & 0xf);
1588 
1589 		ETHER_NEXT_MULTI(step, enm);
1590 	}
1591 
1592 	ifp->if_flags &= ~IFF_ALLMULTI;
1593 
1594 chipit:
1595 	/* Now load the hash table into the chip */
1596 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1597 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1598 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1599 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1600 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1601 }
1602 
1603 /*
1604  * Routines for accessing the transmit and receive buffers.
1605  * The various CPU and adapter configurations supported by this
1606  * driver require three different access methods for buffers
1607  * and descriptors:
1608  *	(1) contig (contiguous data; no padding),
1609  *	(2) gap2 (two bytes of data followed by two bytes of padding),
1610  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
1611  */
1612 
1613 #if 0
1614 /*
1615  * contig: contiguous data with no padding.
1616  *
1617  * Buffers may have any alignment.
1618  */
1619 
1620 void
1621 hme_copytobuf_contig(struct hme_softc *sc, void *from, int ri, int len)
1622 {
1623 	volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1624 
1625 	/*
1626 	 * Just call memcpy() to do the work.
1627 	 */
1628 	memcpy(buf, from, len);
1629 }
1630 
1631 void
1632 hme_copyfrombuf_contig(struct hme_softc *sc, void *to, int boff, int len)
1633 {
1634 	volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1635 
1636 	/*
1637 	 * Just call memcpy() to do the work.
1638 	 */
1639 	memcpy(to, buf, len);
1640 }
1641 #endif
1642