xref: /netbsd-src/sys/dev/ic/hme.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: hme.c,v 1.99 2018/06/26 06:48:00 msaitoh Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * HME Ethernet module driver.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.99 2018/06/26 06:48:00 msaitoh Exp $");
38 
39 /* #define HMEDEBUG */
40 
41 #include "opt_inet.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/mbuf.h>
47 #include <sys/syslog.h>
48 #include <sys/socket.h>
49 #include <sys/device.h>
50 #include <sys/malloc.h>
51 #include <sys/ioctl.h>
52 #include <sys/errno.h>
53 #include <sys/rndsource.h>
54 
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_ether.h>
58 #include <net/if_media.h>
59 #include <net/bpf.h>
60 
61 #ifdef INET
62 #include <net/if_vlanvar.h>
63 #include <netinet/in.h>
64 #include <netinet/if_inarp.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/tcp.h>
69 #include <netinet/udp.h>
70 #endif
71 
72 #include <dev/mii/mii.h>
73 #include <dev/mii/miivar.h>
74 
75 #include <sys/bus.h>
76 
77 #include <dev/ic/hmereg.h>
78 #include <dev/ic/hmevar.h>
79 
80 static void	hme_start(struct ifnet *);
81 static void	hme_stop(struct ifnet *, int);
82 static int	hme_ioctl(struct ifnet *, u_long, void *);
83 static void	hme_tick(void *);
84 static void	hme_watchdog(struct ifnet *);
85 static bool	hme_shutdown(device_t, int);
86 static int	hme_init(struct ifnet *);
87 static void	hme_meminit(struct hme_softc *);
88 static void	hme_mifinit(struct hme_softc *);
89 static void	hme_reset(struct hme_softc *);
90 static void	hme_chipreset(struct hme_softc *);
91 static void	hme_setladrf(struct hme_softc *);
92 
93 /* MII methods & callbacks */
94 static int	hme_mii_readreg(device_t, int, int);
95 static void	hme_mii_writereg(device_t, int, int, int);
96 static void	hme_mii_statchg(struct ifnet *);
97 
98 static int	hme_mediachange(struct ifnet *);
99 
100 static struct mbuf *hme_get(struct hme_softc *, int, uint32_t);
101 static int	hme_put(struct hme_softc *, int, struct mbuf *);
102 static void	hme_read(struct hme_softc *, int, uint32_t);
103 static int	hme_eint(struct hme_softc *, u_int);
104 static int	hme_rint(struct hme_softc *);
105 static int	hme_tint(struct hme_softc *);
106 
107 #if 0
108 /* Default buffer copy routines */
109 static void	hme_copytobuf_contig(struct hme_softc *, void *, int, int);
110 static void	hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
111 #endif
112 
113 void
114 hme_config(struct hme_softc *sc)
115 {
116 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
117 	struct mii_data *mii = &sc->sc_mii;
118 	struct mii_softc *child;
119 	bus_dma_tag_t dmatag = sc->sc_dmatag;
120 	bus_dma_segment_t seg;
121 	bus_size_t size;
122 	int rseg, error;
123 
124 	/*
125 	 * HME common initialization.
126 	 *
127 	 * hme_softc fields that must be initialized by the front-end:
128 	 *
129 	 * the bus tag:
130 	 *	sc_bustag
131 	 *
132 	 * the DMA bus tag:
133 	 *	sc_dmatag
134 	 *
135 	 * the bus handles:
136 	 *	sc_seb		(Shared Ethernet Block registers)
137 	 *	sc_erx		(Receiver Unit registers)
138 	 *	sc_etx		(Transmitter Unit registers)
139 	 *	sc_mac		(MAC registers)
140 	 *	sc_mif		(Management Interface registers)
141 	 *
142 	 * the maximum bus burst size:
143 	 *	sc_burst
144 	 *
145 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
146 	 *	rb_membase, rb_dmabase)
147 	 *
148 	 * the local Ethernet address:
149 	 *	sc_enaddr
150 	 *
151 	 */
152 
153 	/* Make sure the chip is stopped. */
154 	hme_chipreset(sc);
155 
156 	/*
157 	 * Allocate descriptors and buffers
158 	 * XXX - do all this differently.. and more configurably,
159 	 * eg. use things as `dma_load_mbuf()' on transmit,
160 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
161 	 *     all the time) on the receiver side.
162 	 *
163 	 * Note: receive buffers must be 64-byte aligned.
164 	 * Also, apparently, the buffers must extend to a DMA burst
165 	 * boundary beyond the maximum packet size.
166 	 */
167 #define _HME_NDESC	128
168 #define _HME_BUFSZ	1600
169 
170 	/* Note: the # of descriptors must be a multiple of 16 */
171 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
172 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
173 
174 	/*
175 	 * Allocate DMA capable memory
176 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
177 	 * take this into account when calculating the size. Note that
178 	 * the maximum number of descriptors (256) occupies 2048 bytes,
179 	 * so we allocate that much regardless of _HME_NDESC.
180 	 */
181 	size =	2048 +					/* TX descriptors */
182 		2048 +					/* RX descriptors */
183 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
184 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* RX buffers */
185 
186 	/* Allocate DMA buffer */
187 	if ((error = bus_dmamem_alloc(dmatag, size,
188 				      2048, 0,
189 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
190 		aprint_error_dev(sc->sc_dev, "DMA buffer alloc error %d\n",
191 			error);
192 		return;
193 	}
194 
195 	/* Map DMA memory in CPU addressable space */
196 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
197 				    &sc->sc_rb.rb_membase,
198 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
199 		aprint_error_dev(sc->sc_dev, "DMA buffer map error %d\n",
200 			error);
201 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
202 		bus_dmamem_free(dmatag, &seg, rseg);
203 		return;
204 	}
205 
206 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
207 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
208 		aprint_error_dev(sc->sc_dev, "DMA map create error %d\n",
209 			error);
210 		return;
211 	}
212 
213 	/* Load the buffer */
214 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
215 	    sc->sc_rb.rb_membase, size, NULL,
216 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
217 		aprint_error_dev(sc->sc_dev, "DMA buffer map load error %d\n",
218 			error);
219 		bus_dmamem_free(dmatag, &seg, rseg);
220 		return;
221 	}
222 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
223 
224 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
225 	    ether_sprintf(sc->sc_enaddr));
226 
227 	/* Initialize ifnet structure. */
228 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
229 	ifp->if_softc = sc;
230 	ifp->if_start = hme_start;
231 	ifp->if_stop = hme_stop;
232 	ifp->if_ioctl = hme_ioctl;
233 	ifp->if_init = hme_init;
234 	ifp->if_watchdog = hme_watchdog;
235 	ifp->if_flags =
236 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
237 	sc->sc_if_flags = ifp->if_flags;
238 	ifp->if_capabilities |=
239 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
240 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
241 	IFQ_SET_READY(&ifp->if_snd);
242 
243 	/* Initialize ifmedia structures and MII info */
244 	mii->mii_ifp = ifp;
245 	mii->mii_readreg = hme_mii_readreg;
246 	mii->mii_writereg = hme_mii_writereg;
247 	mii->mii_statchg = hme_mii_statchg;
248 
249 	sc->sc_ethercom.ec_mii = mii;
250 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
251 
252 	hme_mifinit(sc);
253 
254 	mii_attach(sc->sc_dev, mii, 0xffffffff,
255 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
256 
257 	child = LIST_FIRST(&mii->mii_phys);
258 	if (child == NULL) {
259 		/* No PHY attached */
260 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
261 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
262 	} else {
263 		/*
264 		 * Walk along the list of attached MII devices and
265 		 * establish an `MII instance' to `phy number'
266 		 * mapping. We'll use this mapping in media change
267 		 * requests to determine which phy to use to program
268 		 * the MIF configuration register.
269 		 */
270 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
271 			/*
272 			 * Note: we support just two PHYs: the built-in
273 			 * internal device and an external on the MII
274 			 * connector.
275 			 */
276 			if (child->mii_phy > 1 || child->mii_inst > 1) {
277 				aprint_error_dev(sc->sc_dev,
278 				    "cannot accommodate MII device %s"
279 				       " at phy %d, instance %d\n",
280 				       device_xname(child->mii_dev),
281 				       child->mii_phy, child->mii_inst);
282 				continue;
283 			}
284 
285 			sc->sc_phys[child->mii_inst] = child->mii_phy;
286 		}
287 
288 		/*
289 		 * Set the default media to auto negotiation if the phy has
290 		 * the auto negotiation capability.
291 		 * XXX; What to do otherwise?
292 		 */
293 		if (ifmedia_match(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0))
294 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
295 /*
296 		else
297 			ifmedia_set(&sc->sc_mii.mii_media, sc->sc_defaultmedia);
298 */
299 	}
300 
301 	/* claim 802.1q capability */
302 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
303 
304 	/* Attach the interface. */
305 	if_attach(ifp);
306 	if_deferred_start_init(ifp, NULL);
307 	ether_ifattach(ifp, sc->sc_enaddr);
308 
309 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, hme_shutdown))
310 		pmf_class_network_register(sc->sc_dev, ifp);
311 	else
312 		aprint_error_dev(sc->sc_dev,
313 		    "couldn't establish power handler\n");
314 
315 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
316 			  RND_TYPE_NET, RND_FLAG_DEFAULT);
317 
318 	callout_init(&sc->sc_tick_ch, 0);
319 }
320 
321 void
322 hme_tick(void *arg)
323 {
324 	struct hme_softc *sc = arg;
325 	int s;
326 
327 	s = splnet();
328 	mii_tick(&sc->sc_mii);
329 	splx(s);
330 
331 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
332 }
333 
334 void
335 hme_reset(struct hme_softc *sc)
336 {
337 	int s;
338 
339 	s = splnet();
340 	(void)hme_init(&sc->sc_ethercom.ec_if);
341 	splx(s);
342 }
343 
344 void
345 hme_chipreset(struct hme_softc *sc)
346 {
347 	bus_space_tag_t t = sc->sc_bustag;
348 	bus_space_handle_t seb = sc->sc_seb;
349 	int n;
350 
351 	/* Mask all interrupts */
352 	bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
353 
354 	/* Reset transmitter and receiver */
355 	bus_space_write_4(t, seb, HME_SEBI_RESET,
356 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
357 
358 	for (n = 0; n < 20; n++) {
359 		uint32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
360 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
361 			return;
362 		DELAY(20);
363 	}
364 
365 	printf("%s: %s: reset failed\n", device_xname(sc->sc_dev), __func__);
366 }
367 
368 void
369 hme_stop(struct ifnet *ifp, int disable)
370 {
371 	struct hme_softc *sc;
372 
373 	sc = ifp->if_softc;
374 
375 	ifp->if_timer = 0;
376 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
377 
378 	callout_stop(&sc->sc_tick_ch);
379 	mii_down(&sc->sc_mii);
380 
381 	hme_chipreset(sc);
382 }
383 
384 void
385 hme_meminit(struct hme_softc *sc)
386 {
387 	bus_addr_t txbufdma, rxbufdma;
388 	bus_addr_t dma;
389 	char *p;
390 	unsigned int ntbuf, nrbuf, i;
391 	struct hme_ring *hr = &sc->sc_rb;
392 
393 	p = hr->rb_membase;
394 	dma = hr->rb_dmabase;
395 
396 	ntbuf = hr->rb_ntbuf;
397 	nrbuf = hr->rb_nrbuf;
398 
399 	/*
400 	 * Allocate transmit descriptors
401 	 */
402 	hr->rb_txd = p;
403 	hr->rb_txddma = dma;
404 	p += ntbuf * HME_XD_SIZE;
405 	dma += ntbuf * HME_XD_SIZE;
406 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
407 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
408 	p = (void *)roundup((u_long)p, 2048);
409 
410 	/*
411 	 * Allocate receive descriptors
412 	 */
413 	hr->rb_rxd = p;
414 	hr->rb_rxddma = dma;
415 	p += nrbuf * HME_XD_SIZE;
416 	dma += nrbuf * HME_XD_SIZE;
417 	/* Again move forward to the next 2048 byte boundary.*/
418 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
419 	p = (void *)roundup((u_long)p, 2048);
420 
421 
422 	/*
423 	 * Allocate transmit buffers
424 	 */
425 	hr->rb_txbuf = p;
426 	txbufdma = dma;
427 	p += ntbuf * _HME_BUFSZ;
428 	dma += ntbuf * _HME_BUFSZ;
429 
430 	/*
431 	 * Allocate receive buffers
432 	 */
433 	hr->rb_rxbuf = p;
434 	rxbufdma = dma;
435 	p += nrbuf * _HME_BUFSZ;
436 	dma += nrbuf * _HME_BUFSZ;
437 
438 	/*
439 	 * Initialize transmit buffer descriptors
440 	 */
441 	for (i = 0; i < ntbuf; i++) {
442 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
443 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
444 	}
445 
446 	/*
447 	 * Initialize receive buffer descriptors
448 	 */
449 	for (i = 0; i < nrbuf; i++) {
450 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
451 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
452 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
453 	}
454 
455 	hr->rb_tdhead = hr->rb_tdtail = 0;
456 	hr->rb_td_nbusy = 0;
457 	hr->rb_rdtail = 0;
458 }
459 
460 /*
461  * Initialization of interface; set up initialization block
462  * and transmit/receive descriptor rings.
463  */
464 int
465 hme_init(struct ifnet *ifp)
466 {
467 	struct hme_softc *sc = ifp->if_softc;
468 	bus_space_tag_t t = sc->sc_bustag;
469 	bus_space_handle_t seb = sc->sc_seb;
470 	bus_space_handle_t etx = sc->sc_etx;
471 	bus_space_handle_t erx = sc->sc_erx;
472 	bus_space_handle_t mac = sc->sc_mac;
473 	uint8_t *ea;
474 	uint32_t v;
475 	int rc;
476 
477 	/*
478 	 * Initialization sequence. The numbered steps below correspond
479 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
480 	 * Channel Engine manual (part of the PCIO manual).
481 	 * See also the STP2002-STQ document from Sun Microsystems.
482 	 */
483 
484 	/* step 1 & 2. Reset the Ethernet Channel */
485 	hme_stop(ifp, 0);
486 
487 	/* Re-initialize the MIF */
488 	hme_mifinit(sc);
489 
490 	/* Call MI reset function if any */
491 	if (sc->sc_hwreset)
492 		(*sc->sc_hwreset)(sc);
493 
494 #if 0
495 	/* Mask all MIF interrupts, just in case */
496 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
497 #endif
498 
499 	/* step 3. Setup data structures in host memory */
500 	hme_meminit(sc);
501 
502 	/* step 4. TX MAC registers & counters */
503 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
504 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
505 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
506 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
507 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
508 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
509 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
510 	sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
511 
512 	/* Load station MAC address */
513 	ea = sc->sc_enaddr;
514 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
515 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
516 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
517 
518 	/*
519 	 * Init seed for backoff
520 	 * (source suggested by manual: low 10 bits of MAC address)
521 	 */
522 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
523 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
524 
525 
526 	/* Note: Accepting power-on default for other MAC registers here.. */
527 
528 
529 	/* step 5. RX MAC registers & counters */
530 	hme_setladrf(sc);
531 
532 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
533 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
534 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
535 
536 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
537 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
538 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
539 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
540 
541 	/* step 8. Global Configuration & Interrupt Mask */
542 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
543 			~(
544 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
545 			  HME_SEB_STAT_HOSTTOTX |
546 			  HME_SEB_STAT_RXTOHOST |
547 			  HME_SEB_STAT_TXALL |
548 			  HME_SEB_STAT_TXPERR |
549 			  HME_SEB_STAT_RCNTEXP |
550 			  HME_SEB_STAT_MIFIRQ |
551 			  HME_SEB_STAT_ALL_ERRORS ));
552 
553 	switch (sc->sc_burst) {
554 	default:
555 		v = 0;
556 		break;
557 	case 16:
558 		v = HME_SEB_CFG_BURST16;
559 		break;
560 	case 32:
561 		v = HME_SEB_CFG_BURST32;
562 		break;
563 	case 64:
564 		v = HME_SEB_CFG_BURST64;
565 		break;
566 	}
567 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
568 
569 	/* step 9. ETX Configuration: use mostly default values */
570 
571 	/* Enable DMA */
572 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
573 	v |= HME_ETX_CFG_DMAENABLE;
574 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
575 
576 	/* Transmit Descriptor ring size: in increments of 16 */
577 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
578 
579 
580 	/* step 10. ERX Configuration */
581 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
582 
583 	/* Encode Receive Descriptor ring size: four possible values */
584 	switch (_HME_NDESC /*XXX*/) {
585 	case 32:
586 		v |= HME_ERX_CFG_RINGSIZE32;
587 		break;
588 	case 64:
589 		v |= HME_ERX_CFG_RINGSIZE64;
590 		break;
591 	case 128:
592 		v |= HME_ERX_CFG_RINGSIZE128;
593 		break;
594 	case 256:
595 		v |= HME_ERX_CFG_RINGSIZE256;
596 		break;
597 	default:
598 		printf("hme: invalid Receive Descriptor ring size\n");
599 		break;
600 	}
601 
602 	/* Enable DMA */
603 	v |= HME_ERX_CFG_DMAENABLE;
604 
605 	/* set h/w rx checksum start offset (# of half-words) */
606 #ifdef INET
607 	v |= (((ETHER_HDR_LEN + sizeof(struct ip)) / sizeof(uint16_t))
608 		<< HME_ERX_CFG_CSUMSHIFT) &
609 		HME_ERX_CFG_CSUMSTART;
610 #endif
611 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
612 
613 	/* step 11. XIF Configuration */
614 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
615 	v |= HME_MAC_XIF_OE;
616 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
617 
618 	/* step 12. RX_MAC Configuration Register */
619 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
620 	v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
621 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
622 
623 	/* step 13. TX_MAC Configuration Register */
624 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
625 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
626 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
627 
628 	/* step 14. Issue Transmit Pending command */
629 
630 	/* Call MI initialization function if any */
631 	if (sc->sc_hwinit)
632 		(*sc->sc_hwinit)(sc);
633 
634 	/* Set the current media. */
635 	if ((rc = hme_mediachange(ifp)) != 0)
636 		return rc;
637 
638 	/* Start the one second timer. */
639 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
640 
641 	ifp->if_flags |= IFF_RUNNING;
642 	ifp->if_flags &= ~IFF_OACTIVE;
643 	sc->sc_if_flags = ifp->if_flags;
644 	ifp->if_timer = 0;
645 	hme_start(ifp);
646 	return 0;
647 }
648 
649 /*
650  * Routine to copy from mbuf chain to transmit buffer in
651  * network buffer memory.
652  * Returns the amount of data copied.
653  */
654 int
655 hme_put(struct hme_softc *sc, int ri, struct mbuf *m)
656 	/* ri:			 Ring index */
657 {
658 	struct mbuf *n;
659 	int len, tlen = 0;
660 	char *bp;
661 
662 	bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
663 	for (; m; m = n) {
664 		len = m->m_len;
665 		if (len == 0) {
666 			n = m_free(m);
667 			continue;
668 		}
669 		memcpy(bp, mtod(m, void *), len);
670 		bp += len;
671 		tlen += len;
672 		n = m_free(m);
673 	}
674 	return (tlen);
675 }
676 
677 /*
678  * Pull data off an interface.
679  * Len is length of data, with local net header stripped.
680  * We copy the data into mbufs.  When full cluster sized units are present
681  * we copy into clusters.
682  */
683 struct mbuf *
684 hme_get(struct hme_softc *sc, int ri, uint32_t flags)
685 {
686 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
687 	struct mbuf *m, *m0, *newm;
688 	char *bp;
689 	int len, totlen;
690 #ifdef INET
691 	int csum_flags;
692 #endif
693 
694 	totlen = HME_XD_DECODE_RSIZE(flags);
695 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
696 	if (m0 == 0)
697 		return (0);
698 	m_set_rcvif(m0, ifp);
699 	m0->m_pkthdr.len = totlen;
700 	len = MHLEN;
701 	m = m0;
702 
703 	bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
704 
705 	while (totlen > 0) {
706 		if (totlen >= MINCLSIZE) {
707 			MCLGET(m, M_DONTWAIT);
708 			if ((m->m_flags & M_EXT) == 0)
709 				goto bad;
710 			len = MCLBYTES;
711 		}
712 
713 		if (m == m0) {
714 			char *newdata = (char *)
715 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
716 			    sizeof(struct ether_header);
717 			len -= newdata - m->m_data;
718 			m->m_data = newdata;
719 		}
720 
721 		m->m_len = len = min(totlen, len);
722 		memcpy(mtod(m, void *), bp, len);
723 		bp += len;
724 
725 		totlen -= len;
726 		if (totlen > 0) {
727 			MGET(newm, M_DONTWAIT, MT_DATA);
728 			if (newm == 0)
729 				goto bad;
730 			len = MLEN;
731 			m = m->m_next = newm;
732 		}
733 	}
734 
735 #ifdef INET
736 	/* hardware checksum */
737 	csum_flags = 0;
738 	if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
739 		struct ether_header *eh;
740 		struct ether_vlan_header *evh;
741 		struct ip *ip;
742 		struct udphdr *uh;
743 		uint16_t *opts;
744 		int32_t hlen, pktlen;
745 		uint32_t csum_data;
746 
747 		eh = mtod(m0, struct ether_header *);
748 		if (ntohs(eh->ether_type) == ETHERTYPE_IP) {
749 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN);
750 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
751 		} else if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
752 			evh = (struct ether_vlan_header *)eh;
753 			if (ntohs(evh->evl_proto) != ETHERTYPE_IP)
754 				goto swcsum;
755 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN +
756 			    ETHER_VLAN_ENCAP_LEN);
757 			pktlen = m0->m_pkthdr.len -
758 			    ETHER_HDR_LEN - ETHER_VLAN_ENCAP_LEN;
759 		} else
760 			goto swcsum;
761 
762 		/* IPv4 only */
763 		if (ip->ip_v != IPVERSION)
764 			goto swcsum;
765 
766 		hlen = ip->ip_hl << 2;
767 		if (hlen < sizeof(struct ip))
768 			goto swcsum;
769 
770 		/*
771 		 * bail if too short, has random trailing garbage, truncated,
772 		 * fragment, or has ethernet pad.
773 		 */
774 		if (ntohs(ip->ip_len) < hlen ||
775 		    ntohs(ip->ip_len) != pktlen ||
776 		    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
777 			goto swcsum;
778 
779 		switch (ip->ip_p) {
780 		case IPPROTO_TCP:
781 			if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0)
782 				goto swcsum;
783 			if (pktlen < (hlen + sizeof(struct tcphdr)))
784 				goto swcsum;
785 			csum_flags =
786 			    M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
787 			break;
788 		case IPPROTO_UDP:
789 			if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0)
790 				goto swcsum;
791 			if (pktlen < (hlen + sizeof(struct udphdr)))
792 				goto swcsum;
793 			uh = (struct udphdr *)((char *)ip + hlen);
794 			/* no checksum */
795 			if (uh->uh_sum == 0)
796 				goto swcsum;
797 			csum_flags =
798 			    M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
799 			break;
800 		default:
801 			goto swcsum;
802 		}
803 
804 		/* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
805 		csum_data = ~flags & HME_XD_RXCKSUM;
806 
807 		/*
808 		 * If data offset is different from RX cksum start offset,
809 		 * we have to deduct them.
810 		 */
811 		hlen = ((char *)ip + hlen) -
812 		    ((char *)eh + ETHER_HDR_LEN + sizeof(struct ip));
813 		if (hlen > 1) {
814 			uint32_t optsum;
815 
816 			optsum = 0;
817 			opts = (uint16_t *)((char *)eh +
818 			    ETHER_HDR_LEN + sizeof(struct ip));
819 
820 			while (hlen > 1) {
821 				optsum += ntohs(*opts++);
822 				hlen -= 2;
823 			}
824 			while (optsum >> 16)
825 				optsum = (optsum >> 16) + (optsum & 0xffff);
826 
827 			/* Deduct the ip opts sum from the hwsum. */
828 			csum_data += (uint16_t)~optsum;
829 
830 			while (csum_data >> 16)
831 				csum_data =
832 				    (csum_data >> 16) + (csum_data & 0xffff);
833 		}
834 		m0->m_pkthdr.csum_data = csum_data;
835 	}
836 swcsum:
837 	m0->m_pkthdr.csum_flags = csum_flags;
838 #endif
839 
840 	return (m0);
841 
842 bad:
843 	m_freem(m0);
844 	return (0);
845 }
846 
847 /*
848  * Pass a packet to the higher levels.
849  */
850 void
851 hme_read(struct hme_softc *sc, int ix, uint32_t flags)
852 {
853 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
854 	struct mbuf *m;
855 	int len;
856 
857 	len = HME_XD_DECODE_RSIZE(flags);
858 	if (len <= sizeof(struct ether_header) ||
859 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
860 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
861 	    ETHERMTU + sizeof(struct ether_header))) {
862 #ifdef HMEDEBUG
863 		printf("%s: invalid packet size %d; dropping\n",
864 		    device_xname(sc->sc_dev), len);
865 #endif
866 		ifp->if_ierrors++;
867 		return;
868 	}
869 
870 	/* Pull packet off interface. */
871 	m = hme_get(sc, ix, flags);
872 	if (m == 0) {
873 		ifp->if_ierrors++;
874 		return;
875 	}
876 
877 	/* Pass the packet up. */
878 	if_percpuq_enqueue(ifp->if_percpuq, m);
879 }
880 
881 void
882 hme_start(struct ifnet *ifp)
883 {
884 	struct hme_softc *sc = ifp->if_softc;
885 	void *txd = sc->sc_rb.rb_txd;
886 	struct mbuf *m;
887 	unsigned int txflags;
888 	unsigned int ri, len, obusy;
889 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
890 
891 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
892 		return;
893 
894 	ri = sc->sc_rb.rb_tdhead;
895 	obusy = sc->sc_rb.rb_td_nbusy;
896 
897 	for (;;) {
898 		IFQ_DEQUEUE(&ifp->if_snd, m);
899 		if (m == 0)
900 			break;
901 
902 		/*
903 		 * If BPF is listening on this interface, let it see the
904 		 * packet before we commit it to the wire.
905 		 */
906 		bpf_mtap(ifp, m, BPF_D_OUT);
907 
908 #ifdef INET
909 		/* collect bits for h/w csum, before hme_put frees the mbuf */
910 		if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
911 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
912 			struct ether_header *eh;
913 			uint16_t offset, start;
914 
915 			eh = mtod(m, struct ether_header *);
916 			switch (ntohs(eh->ether_type)) {
917 			case ETHERTYPE_IP:
918 				start = ETHER_HDR_LEN;
919 				break;
920 			case ETHERTYPE_VLAN:
921 				start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
922 				break;
923 			default:
924 				/* unsupported, drop it */
925 				m_free(m);
926 				continue;
927 			}
928 			start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
929 			offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
930 			    + start;
931 			txflags = HME_XD_TXCKSUM |
932 				  (offset << HME_XD_TXCSSTUFFSHIFT) |
933 		  		  (start << HME_XD_TXCSSTARTSHIFT);
934 		} else
935 #endif
936 			txflags = 0;
937 
938 		/*
939 		 * Copy the mbuf chain into the transmit buffer.
940 		 */
941 		len = hme_put(sc, ri, m);
942 
943 		/*
944 		 * Initialize transmit registers and start transmission
945 		 */
946 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
947 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
948 			HME_XD_ENCODE_TSIZE(len) | txflags);
949 
950 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
951 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
952 				  HME_ETX_TP_DMAWAKEUP);
953 
954 		if (++ri == ntbuf)
955 			ri = 0;
956 
957 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
958 			ifp->if_flags |= IFF_OACTIVE;
959 			break;
960 		}
961 	}
962 
963 	if (obusy != sc->sc_rb.rb_td_nbusy) {
964 		sc->sc_rb.rb_tdhead = ri;
965 		ifp->if_timer = 5;
966 	}
967 }
968 
969 /*
970  * Transmit interrupt.
971  */
972 int
973 hme_tint(struct hme_softc *sc)
974 {
975 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
976 	bus_space_tag_t t = sc->sc_bustag;
977 	bus_space_handle_t mac = sc->sc_mac;
978 	unsigned int ri, txflags;
979 
980 	/*
981 	 * Unload collision counters
982 	 */
983 	ifp->if_collisions +=
984 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
985 		bus_space_read_4(t, mac, HME_MACI_FCCNT);
986 	ifp->if_oerrors +=
987 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
988 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
989 
990 	/*
991 	 * then clear the hardware counters.
992 	 */
993 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
994 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
995 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
996 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
997 
998 	/* Fetch current position in the transmit ring */
999 	ri = sc->sc_rb.rb_tdtail;
1000 
1001 	for (;;) {
1002 		if (sc->sc_rb.rb_td_nbusy <= 0)
1003 			break;
1004 
1005 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
1006 
1007 		if (txflags & HME_XD_OWN)
1008 			break;
1009 
1010 		ifp->if_flags &= ~IFF_OACTIVE;
1011 		ifp->if_opackets++;
1012 
1013 		if (++ri == sc->sc_rb.rb_ntbuf)
1014 			ri = 0;
1015 
1016 		--sc->sc_rb.rb_td_nbusy;
1017 	}
1018 
1019 	/* Update ring */
1020 	sc->sc_rb.rb_tdtail = ri;
1021 
1022 	if_schedule_deferred_start(ifp);
1023 
1024 	if (sc->sc_rb.rb_td_nbusy == 0)
1025 		ifp->if_timer = 0;
1026 
1027 	return (1);
1028 }
1029 
1030 /*
1031  * Receive interrupt.
1032  */
1033 int
1034 hme_rint(struct hme_softc *sc)
1035 {
1036 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1037 	bus_space_tag_t t = sc->sc_bustag;
1038 	bus_space_handle_t mac = sc->sc_mac;
1039 	void *xdr = sc->sc_rb.rb_rxd;
1040 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
1041 	unsigned int ri;
1042 	uint32_t flags;
1043 
1044 	ri = sc->sc_rb.rb_rdtail;
1045 
1046 	/*
1047 	 * Process all buffers with valid data.
1048 	 */
1049 	for (;;) {
1050 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
1051 		if (flags & HME_XD_OWN)
1052 			break;
1053 
1054 		if (flags & HME_XD_OFL) {
1055 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
1056 					device_xname(sc->sc_dev), ri, flags);
1057 		} else
1058 			hme_read(sc, ri, flags);
1059 
1060 		/* This buffer can be used by the hardware again */
1061 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
1062 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
1063 
1064 		if (++ri == nrbuf)
1065 			ri = 0;
1066 	}
1067 
1068 	sc->sc_rb.rb_rdtail = ri;
1069 
1070 	/* Read error counters ... */
1071 	ifp->if_ierrors +=
1072 	    bus_space_read_4(t, mac, HME_MACI_STAT_LCNT) +
1073 	    bus_space_read_4(t, mac, HME_MACI_STAT_ACNT) +
1074 	    bus_space_read_4(t, mac, HME_MACI_STAT_CCNT) +
1075 	    bus_space_read_4(t, mac, HME_MACI_STAT_CVCNT);
1076 
1077 	/* ... then clear the hardware counters. */
1078 	bus_space_write_4(t, mac, HME_MACI_STAT_LCNT, 0);
1079 	bus_space_write_4(t, mac, HME_MACI_STAT_ACNT, 0);
1080 	bus_space_write_4(t, mac, HME_MACI_STAT_CCNT, 0);
1081 	bus_space_write_4(t, mac, HME_MACI_STAT_CVCNT, 0);
1082 	return (1);
1083 }
1084 
1085 int
1086 hme_eint(struct hme_softc *sc, u_int status)
1087 {
1088 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1089 	char bits[128];
1090 
1091 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
1092 		bus_space_tag_t t = sc->sc_bustag;
1093 		bus_space_handle_t mif = sc->sc_mif;
1094 		uint32_t cf, st, sm;
1095 		cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
1096 		st = bus_space_read_4(t, mif, HME_MIFI_STAT);
1097 		sm = bus_space_read_4(t, mif, HME_MIFI_SM);
1098 		printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
1099 			device_xname(sc->sc_dev), cf, st, sm);
1100 		return (1);
1101 	}
1102 
1103 	/* Receive error counters rolled over */
1104 	if (status & HME_SEB_STAT_ACNTEXP)
1105 		ifp->if_ierrors += 0xff;
1106 	if (status & HME_SEB_STAT_CCNTEXP)
1107 		ifp->if_ierrors += 0xff;
1108 	if (status & HME_SEB_STAT_LCNTEXP)
1109 		ifp->if_ierrors += 0xff;
1110 	if (status & HME_SEB_STAT_CVCNTEXP)
1111 		ifp->if_ierrors += 0xff;
1112 
1113 	/* RXTERR locks up the interface, so do a reset */
1114 	if (status & HME_SEB_STAT_RXTERR)
1115 		hme_reset(sc);
1116 
1117 	snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
1118 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1119 
1120 	return (1);
1121 }
1122 
1123 int
1124 hme_intr(void *v)
1125 {
1126 	struct hme_softc *sc = v;
1127 	bus_space_tag_t t = sc->sc_bustag;
1128 	bus_space_handle_t seb = sc->sc_seb;
1129 	uint32_t status;
1130 	int r = 0;
1131 
1132 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
1133 
1134 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
1135 		r |= hme_eint(sc, status);
1136 
1137 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
1138 		r |= hme_tint(sc);
1139 
1140 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
1141 		r |= hme_rint(sc);
1142 
1143 	rnd_add_uint32(&sc->rnd_source, status);
1144 
1145 	return (r);
1146 }
1147 
1148 
1149 void
1150 hme_watchdog(struct ifnet *ifp)
1151 {
1152 	struct hme_softc *sc = ifp->if_softc;
1153 
1154 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1155 	++ifp->if_oerrors;
1156 
1157 	hme_reset(sc);
1158 }
1159 
1160 /*
1161  * Initialize the MII Management Interface
1162  */
1163 void
1164 hme_mifinit(struct hme_softc *sc)
1165 {
1166 	bus_space_tag_t t = sc->sc_bustag;
1167 	bus_space_handle_t mif = sc->sc_mif;
1168 	bus_space_handle_t mac = sc->sc_mac;
1169 	int instance, phy;
1170 	uint32_t v;
1171 
1172 	if (sc->sc_mii.mii_media.ifm_cur != NULL) {
1173 		instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1174 		phy = sc->sc_phys[instance];
1175 	} else
1176 		/* No media set yet, pick phy arbitrarily.. */
1177 		phy = HME_PHYAD_EXTERNAL;
1178 
1179 	/* Configure the MIF in frame mode, no poll, current phy select */
1180 	v = 0;
1181 	if (phy == HME_PHYAD_EXTERNAL)
1182 		v |= HME_MIF_CFG_PHY;
1183 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1184 
1185 	/* If an external transceiver is selected, enable its MII drivers */
1186 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
1187 	v &= ~HME_MAC_XIF_MIIENABLE;
1188 	if (phy == HME_PHYAD_EXTERNAL)
1189 		v |= HME_MAC_XIF_MIIENABLE;
1190 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1191 }
1192 
1193 /*
1194  * MII interface
1195  */
1196 static int
1197 hme_mii_readreg(device_t self, int phy, int reg)
1198 {
1199 	struct hme_softc *sc = device_private(self);
1200 	bus_space_tag_t t = sc->sc_bustag;
1201 	bus_space_handle_t mif = sc->sc_mif;
1202 	bus_space_handle_t mac = sc->sc_mac;
1203 	uint32_t v, xif_cfg, mifi_cfg;
1204 	int n;
1205 
1206 	/* We can at most have two PHYs */
1207 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1208 		return (0);
1209 
1210 	/* Select the desired PHY in the MIF configuration register */
1211 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1212 	v &= ~HME_MIF_CFG_PHY;
1213 	if (phy == HME_PHYAD_EXTERNAL)
1214 		v |= HME_MIF_CFG_PHY;
1215 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1216 
1217 	/* Enable MII drivers on external transceiver */
1218 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1219 	if (phy == HME_PHYAD_EXTERNAL)
1220 		v |= HME_MAC_XIF_MIIENABLE;
1221 	else
1222 		v &= ~HME_MAC_XIF_MIIENABLE;
1223 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1224 
1225 #if 0
1226 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1227 	/*
1228 	 * Check whether a transceiver is connected by testing
1229 	 * the MIF configuration register's MDI_X bits. Note that
1230 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1231 	 */
1232 	mif_mdi_bit = 1 << (8 + (1 - phy));
1233 	delay(100);
1234 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1235 	if ((v & mif_mdi_bit) == 0)
1236 		return (0);
1237 #endif
1238 
1239 	/* Construct the frame command */
1240 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1241 	    HME_MIF_FO_TAMSB |
1242 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1243 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
1244 	    (reg << HME_MIF_FO_REGAD_SHIFT);
1245 
1246 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
1247 	for (n = 0; n < 100; n++) {
1248 		DELAY(1);
1249 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
1250 		if (v & HME_MIF_FO_TALSB) {
1251 			v &= HME_MIF_FO_DATA;
1252 			goto out;
1253 		}
1254 	}
1255 
1256 	v = 0;
1257 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1258 
1259 out:
1260 	/* Restore MIFI_CFG register */
1261 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1262 	/* Restore XIF register */
1263 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1264 	return (v);
1265 }
1266 
1267 static void
1268 hme_mii_writereg(device_t self, int phy, int reg, int val)
1269 {
1270 	struct hme_softc *sc = device_private(self);
1271 	bus_space_tag_t t = sc->sc_bustag;
1272 	bus_space_handle_t mif = sc->sc_mif;
1273 	bus_space_handle_t mac = sc->sc_mac;
1274 	uint32_t v, xif_cfg, mifi_cfg;
1275 	int n;
1276 
1277 	/* We can at most have two PHYs */
1278 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1279 		return;
1280 
1281 	/* Select the desired PHY in the MIF configuration register */
1282 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1283 	v &= ~HME_MIF_CFG_PHY;
1284 	if (phy == HME_PHYAD_EXTERNAL)
1285 		v |= HME_MIF_CFG_PHY;
1286 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1287 
1288 	/* Enable MII drivers on external transceiver */
1289 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1290 	if (phy == HME_PHYAD_EXTERNAL)
1291 		v |= HME_MAC_XIF_MIIENABLE;
1292 	else
1293 		v &= ~HME_MAC_XIF_MIIENABLE;
1294 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1295 
1296 #if 0
1297 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1298 	/*
1299 	 * Check whether a transceiver is connected by testing
1300 	 * the MIF configuration register's MDI_X bits. Note that
1301 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1302 	 */
1303 	mif_mdi_bit = 1 << (8 + (1 - phy));
1304 	delay(100);
1305 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1306 	if ((v & mif_mdi_bit) == 0)
1307 		return;
1308 #endif
1309 
1310 	/* Construct the frame command */
1311 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
1312 	    HME_MIF_FO_TAMSB				|
1313 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
1314 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
1315 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
1316 	    (val & HME_MIF_FO_DATA);
1317 
1318 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
1319 	for (n = 0; n < 100; n++) {
1320 		DELAY(1);
1321 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
1322 		if (v & HME_MIF_FO_TALSB)
1323 			goto out;
1324 	}
1325 
1326 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1327 out:
1328 	/* Restore MIFI_CFG register */
1329 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1330 	/* Restore XIF register */
1331 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1332 }
1333 
1334 static void
1335 hme_mii_statchg(struct ifnet *ifp)
1336 {
1337 	struct hme_softc *sc = ifp->if_softc;
1338 	bus_space_tag_t t = sc->sc_bustag;
1339 	bus_space_handle_t mac = sc->sc_mac;
1340 	uint32_t v;
1341 
1342 #ifdef HMEDEBUG
1343 	if (sc->sc_debug)
1344 		printf("hme_mii_statchg: status change\n");
1345 #endif
1346 
1347 	/* Set the MAC Full Duplex bit appropriately */
1348 	/* Apparently the hme chip is SIMPLEX if working in full duplex mode,
1349 	   but not otherwise. */
1350 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1351 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1352 		v |= HME_MAC_TXCFG_FULLDPLX;
1353 		sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
1354 	} else {
1355 		v &= ~HME_MAC_TXCFG_FULLDPLX;
1356 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
1357 	}
1358 	sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
1359 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1360 }
1361 
1362 int
1363 hme_mediachange(struct ifnet *ifp)
1364 {
1365 	struct hme_softc *sc = ifp->if_softc;
1366 	bus_space_tag_t t = sc->sc_bustag;
1367 	bus_space_handle_t mif = sc->sc_mif;
1368 	bus_space_handle_t mac = sc->sc_mac;
1369 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1370 	int phy = sc->sc_phys[instance];
1371 	int rc;
1372 	uint32_t v;
1373 
1374 #ifdef HMEDEBUG
1375 	if (sc->sc_debug)
1376 		printf("hme_mediachange: phy = %d\n", phy);
1377 #endif
1378 
1379 	/* Select the current PHY in the MIF configuration register */
1380 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1381 	v &= ~HME_MIF_CFG_PHY;
1382 	if (phy == HME_PHYAD_EXTERNAL)
1383 		v |= HME_MIF_CFG_PHY;
1384 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1385 
1386 	/* If an external transceiver is selected, enable its MII drivers */
1387 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
1388 	v &= ~HME_MAC_XIF_MIIENABLE;
1389 	if (phy == HME_PHYAD_EXTERNAL)
1390 		v |= HME_MAC_XIF_MIIENABLE;
1391 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1392 
1393 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
1394 		return 0;
1395 	return rc;
1396 }
1397 
1398 /*
1399  * Process an ioctl request.
1400  */
1401 int
1402 hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
1403 {
1404 	struct hme_softc *sc = ifp->if_softc;
1405 	struct ifaddr *ifa = (struct ifaddr *)data;
1406 	int s, error = 0;
1407 
1408 	s = splnet();
1409 
1410 	switch (cmd) {
1411 
1412 	case SIOCINITIFADDR:
1413 		switch (ifa->ifa_addr->sa_family) {
1414 #ifdef INET
1415 		case AF_INET:
1416 			if (ifp->if_flags & IFF_UP)
1417 				hme_setladrf(sc);
1418 			else {
1419 				ifp->if_flags |= IFF_UP;
1420 				error = hme_init(ifp);
1421 			}
1422 			arp_ifinit(ifp, ifa);
1423 			break;
1424 #endif
1425 		default:
1426 			ifp->if_flags |= IFF_UP;
1427 			error = hme_init(ifp);
1428 			break;
1429 		}
1430 		break;
1431 
1432 	case SIOCSIFFLAGS:
1433 #ifdef HMEDEBUG
1434 		{
1435 			struct ifreq *ifr = data;
1436 			sc->sc_debug =
1437 			    (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
1438 		}
1439 #endif
1440 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1441 			break;
1442 
1443 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1444 		case IFF_RUNNING:
1445 			/*
1446 			 * If interface is marked down and it is running, then
1447 			 * stop it.
1448 			 */
1449 			hme_stop(ifp, 0);
1450 			ifp->if_flags &= ~IFF_RUNNING;
1451 			break;
1452 		case IFF_UP:
1453 			/*
1454 			 * If interface is marked up and it is stopped, then
1455 			 * start it.
1456 			 */
1457 			error = hme_init(ifp);
1458 			break;
1459 		case IFF_UP|IFF_RUNNING:
1460 			/*
1461 			 * If setting debug or promiscuous mode, do not reset
1462 			 * the chip; for everything else, call hme_init()
1463 			 * which will trigger a reset.
1464 			 */
1465 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
1466 			if (ifp->if_flags != sc->sc_if_flags) {
1467 				if ((ifp->if_flags & (~RESETIGN))
1468 				    == (sc->sc_if_flags & (~RESETIGN)))
1469 					hme_setladrf(sc);
1470 				else
1471 					error = hme_init(ifp);
1472 			}
1473 #undef RESETIGN
1474 			break;
1475 		case 0:
1476 			break;
1477 		}
1478 
1479 		if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
1480 			error = hme_init(ifp);
1481 
1482 		break;
1483 
1484 	default:
1485 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1486 			break;
1487 
1488 		error = 0;
1489 
1490 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1491 			;
1492 		else if (ifp->if_flags & IFF_RUNNING) {
1493 			/*
1494 			 * Multicast list has changed; set the hardware filter
1495 			 * accordingly.
1496 			 */
1497 			hme_setladrf(sc);
1498 		}
1499 		break;
1500 	}
1501 
1502 	sc->sc_if_flags = ifp->if_flags;
1503 	splx(s);
1504 	return (error);
1505 }
1506 
1507 bool
1508 hme_shutdown(device_t self, int howto)
1509 {
1510 	struct hme_softc *sc;
1511 	struct ifnet *ifp;
1512 
1513 	sc = device_private(self);
1514 	ifp = &sc->sc_ethercom.ec_if;
1515 	hme_stop(ifp, 1);
1516 
1517 	return true;
1518 }
1519 
1520 /*
1521  * Set up the logical address filter.
1522  */
1523 void
1524 hme_setladrf(struct hme_softc *sc)
1525 {
1526 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1527 	struct ether_multi *enm;
1528 	struct ether_multistep step;
1529 	struct ethercom *ec = &sc->sc_ethercom;
1530 	bus_space_tag_t t = sc->sc_bustag;
1531 	bus_space_handle_t mac = sc->sc_mac;
1532 	uint32_t v;
1533 	uint32_t crc;
1534 	uint32_t hash[4];
1535 
1536 	/* Clear hash table */
1537 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
1538 
1539 	/* Get current RX configuration */
1540 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1541 
1542 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
1543 		/* Turn on promiscuous mode; turn off the hash filter */
1544 		v |= HME_MAC_RXCFG_PMISC;
1545 		v &= ~HME_MAC_RXCFG_HENABLE;
1546 		ifp->if_flags |= IFF_ALLMULTI;
1547 		goto chipit;
1548 	}
1549 
1550 	/* Turn off promiscuous mode; turn on the hash filter */
1551 	v &= ~HME_MAC_RXCFG_PMISC;
1552 	v |= HME_MAC_RXCFG_HENABLE;
1553 
1554 	/*
1555 	 * Set up multicast address filter by passing all multicast addresses
1556 	 * through a crc generator, and then using the high order 6 bits as an
1557 	 * index into the 64 bit logical address filter.  The high order bit
1558 	 * selects the word, while the rest of the bits select the bit within
1559 	 * the word.
1560 	 */
1561 
1562 	ETHER_FIRST_MULTI(step, ec, enm);
1563 	while (enm != NULL) {
1564 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1565 			/*
1566 			 * We must listen to a range of multicast addresses.
1567 			 * For now, just accept all multicasts, rather than
1568 			 * trying to set only those filter bits needed to match
1569 			 * the range.  (At this time, the only use of address
1570 			 * ranges is for IP multicast routing, for which the
1571 			 * range is big enough to require all bits set.)
1572 			 */
1573 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1574 			ifp->if_flags |= IFF_ALLMULTI;
1575 			goto chipit;
1576 		}
1577 
1578 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1579 
1580 		/* Just want the 6 most significant bits. */
1581 		crc >>= 26;
1582 
1583 		/* Set the corresponding bit in the filter. */
1584 		hash[crc >> 4] |= 1 << (crc & 0xf);
1585 
1586 		ETHER_NEXT_MULTI(step, enm);
1587 	}
1588 
1589 	ifp->if_flags &= ~IFF_ALLMULTI;
1590 
1591 chipit:
1592 	/* Now load the hash table into the chip */
1593 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1594 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1595 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1596 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1597 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1598 }
1599 
1600 /*
1601  * Routines for accessing the transmit and receive buffers.
1602  * The various CPU and adapter configurations supported by this
1603  * driver require three different access methods for buffers
1604  * and descriptors:
1605  *	(1) contig (contiguous data; no padding),
1606  *	(2) gap2 (two bytes of data followed by two bytes of padding),
1607  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
1608  */
1609 
1610 #if 0
1611 /*
1612  * contig: contiguous data with no padding.
1613  *
1614  * Buffers may have any alignment.
1615  */
1616 
1617 void
1618 hme_copytobuf_contig(struct hme_softc *sc, void *from, int ri, int len)
1619 {
1620 	volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1621 
1622 	/*
1623 	 * Just call memcpy() to do the work.
1624 	 */
1625 	memcpy(buf, from, len);
1626 }
1627 
1628 void
1629 hme_copyfrombuf_contig(struct hme_softc *sc, void *to, int boff, int len)
1630 {
1631 	volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1632 
1633 	/*
1634 	 * Just call memcpy() to do the work.
1635 	 */
1636 	memcpy(to, buf, len);
1637 }
1638 #endif
1639