xref: /netbsd-src/sys/dev/ic/hme.c (revision 9ddb6ab554e70fb9bbd90c3d96b812bc57755a14)
1 /*	$NetBSD: hme.c,v 1.87 2012/02/02 19:43:03 tls Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * HME Ethernet module driver.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.87 2012/02/02 19:43:03 tls Exp $");
38 
39 /* #define HMEDEBUG */
40 
41 #include "opt_inet.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/mbuf.h>
47 #include <sys/syslog.h>
48 #include <sys/socket.h>
49 #include <sys/device.h>
50 #include <sys/malloc.h>
51 #include <sys/ioctl.h>
52 #include <sys/errno.h>
53 #include <sys/rnd.h>
54 
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_ether.h>
58 #include <net/if_media.h>
59 
60 #ifdef INET
61 #include <net/if_vlanvar.h>
62 #include <netinet/in.h>
63 #include <netinet/if_inarp.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip.h>
67 #include <netinet/tcp.h>
68 #include <netinet/udp.h>
69 #endif
70 
71 
72 #include <net/bpf.h>
73 #include <net/bpfdesc.h>
74 
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 
78 #include <sys/bus.h>
79 
80 #include <dev/ic/hmereg.h>
81 #include <dev/ic/hmevar.h>
82 
83 static void	hme_start(struct ifnet *);
84 static void	hme_stop(struct ifnet *, int);
85 static int	hme_ioctl(struct ifnet *, u_long, void *);
86 static void	hme_tick(void *);
87 static void	hme_watchdog(struct ifnet *);
88 static bool	hme_shutdown(device_t, int);
89 static int	hme_init(struct ifnet *);
90 static void	hme_meminit(struct hme_softc *);
91 static void	hme_mifinit(struct hme_softc *);
92 static void	hme_reset(struct hme_softc *);
93 static void	hme_chipreset(struct hme_softc *);
94 static void	hme_setladrf(struct hme_softc *);
95 
96 /* MII methods & callbacks */
97 static int	hme_mii_readreg(device_t, int, int);
98 static void	hme_mii_writereg(device_t, int, int, int);
99 static void	hme_mii_statchg(device_t);
100 
101 static int	hme_mediachange(struct ifnet *);
102 
103 static struct mbuf *hme_get(struct hme_softc *, int, uint32_t);
104 static int	hme_put(struct hme_softc *, int, struct mbuf *);
105 static void	hme_read(struct hme_softc *, int, uint32_t);
106 static int	hme_eint(struct hme_softc *, u_int);
107 static int	hme_rint(struct hme_softc *);
108 static int	hme_tint(struct hme_softc *);
109 
110 #if 0
111 /* Default buffer copy routines */
112 static void	hme_copytobuf_contig(struct hme_softc *, void *, int, int);
113 static void	hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
114 #endif
115 
116 void
117 hme_config(struct hme_softc *sc)
118 {
119 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
120 	struct mii_data *mii = &sc->sc_mii;
121 	struct mii_softc *child;
122 	bus_dma_tag_t dmatag = sc->sc_dmatag;
123 	bus_dma_segment_t seg;
124 	bus_size_t size;
125 	int rseg, error;
126 
127 	/*
128 	 * HME common initialization.
129 	 *
130 	 * hme_softc fields that must be initialized by the front-end:
131 	 *
132 	 * the bus tag:
133 	 *	sc_bustag
134 	 *
135 	 * the DMA bus tag:
136 	 *	sc_dmatag
137 	 *
138 	 * the bus handles:
139 	 *	sc_seb		(Shared Ethernet Block registers)
140 	 *	sc_erx		(Receiver Unit registers)
141 	 *	sc_etx		(Transmitter Unit registers)
142 	 *	sc_mac		(MAC registers)
143 	 *	sc_mif		(Management Interface registers)
144 	 *
145 	 * the maximum bus burst size:
146 	 *	sc_burst
147 	 *
148 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
149 	 *	rb_membase, rb_dmabase)
150 	 *
151 	 * the local Ethernet address:
152 	 *	sc_enaddr
153 	 *
154 	 */
155 
156 	/* Make sure the chip is stopped. */
157 	hme_chipreset(sc);
158 
159 	/*
160 	 * Allocate descriptors and buffers
161 	 * XXX - do all this differently.. and more configurably,
162 	 * eg. use things as `dma_load_mbuf()' on transmit,
163 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
164 	 *     all the time) on the receiver side.
165 	 *
166 	 * Note: receive buffers must be 64-byte aligned.
167 	 * Also, apparently, the buffers must extend to a DMA burst
168 	 * boundary beyond the maximum packet size.
169 	 */
170 #define _HME_NDESC	128
171 #define _HME_BUFSZ	1600
172 
173 	/* Note: the # of descriptors must be a multiple of 16 */
174 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
175 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
176 
177 	/*
178 	 * Allocate DMA capable memory
179 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
180 	 * take this into account when calculating the size. Note that
181 	 * the maximum number of descriptors (256) occupies 2048 bytes,
182 	 * so we allocate that much regardless of _HME_NDESC.
183 	 */
184 	size =	2048 +					/* TX descriptors */
185 		2048 +					/* RX descriptors */
186 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
187 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* RX buffers */
188 
189 	/* Allocate DMA buffer */
190 	if ((error = bus_dmamem_alloc(dmatag, size,
191 				      2048, 0,
192 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
193 		aprint_error_dev(sc->sc_dev, "DMA buffer alloc error %d\n",
194 			error);
195 		return;
196 	}
197 
198 	/* Map DMA memory in CPU addressable space */
199 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
200 				    &sc->sc_rb.rb_membase,
201 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
202 		aprint_error_dev(sc->sc_dev, "DMA buffer map error %d\n",
203 			error);
204 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
205 		bus_dmamem_free(dmatag, &seg, rseg);
206 		return;
207 	}
208 
209 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
210 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
211 		aprint_error_dev(sc->sc_dev, "DMA map create error %d\n",
212 			error);
213 		return;
214 	}
215 
216 	/* Load the buffer */
217 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
218 	    sc->sc_rb.rb_membase, size, NULL,
219 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
220 		aprint_error_dev(sc->sc_dev, "DMA buffer map load error %d\n",
221 			error);
222 		bus_dmamem_free(dmatag, &seg, rseg);
223 		return;
224 	}
225 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
226 
227 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
228 	    ether_sprintf(sc->sc_enaddr));
229 
230 	/* Initialize ifnet structure. */
231 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
232 	ifp->if_softc = sc;
233 	ifp->if_start = hme_start;
234 	ifp->if_stop = hme_stop;
235 	ifp->if_ioctl = hme_ioctl;
236 	ifp->if_init = hme_init;
237 	ifp->if_watchdog = hme_watchdog;
238 	ifp->if_flags =
239 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
240 	sc->sc_if_flags = ifp->if_flags;
241 	ifp->if_capabilities |=
242 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
243 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
244 	IFQ_SET_READY(&ifp->if_snd);
245 
246 	/* Initialize ifmedia structures and MII info */
247 	mii->mii_ifp = ifp;
248 	mii->mii_readreg = hme_mii_readreg;
249 	mii->mii_writereg = hme_mii_writereg;
250 	mii->mii_statchg = hme_mii_statchg;
251 
252 	sc->sc_ethercom.ec_mii = mii;
253 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
254 
255 	hme_mifinit(sc);
256 
257 	/*
258 	 * Some HME's have an MII connector, as well as RJ45.  Try attaching
259 	 * the RJ45 (internal) PHY first, so that the MII PHY is always
260 	 * instance 1.
261 	 */
262 	mii_attach(sc->sc_dev, mii, 0xffffffff,
263 			HME_PHYAD_INTERNAL, MII_OFFSET_ANY, MIIF_FORCEANEG);
264 	mii_attach(sc->sc_dev, mii, 0xffffffff,
265 			HME_PHYAD_EXTERNAL, MII_OFFSET_ANY, MIIF_FORCEANEG);
266 
267 	child = LIST_FIRST(&mii->mii_phys);
268 	if (child == NULL) {
269 		/* No PHY attached */
270 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
271 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
272 	} else {
273 		/*
274 		 * Walk along the list of attached MII devices and
275 		 * establish an `MII instance' to `phy number'
276 		 * mapping. We'll use this mapping in media change
277 		 * requests to determine which phy to use to program
278 		 * the MIF configuration register.
279 		 */
280 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
281 			/*
282 			 * Note: we support just two PHYs: the built-in
283 			 * internal device and an external on the MII
284 			 * connector.
285 			 */
286 			if (child->mii_phy > 1 || child->mii_inst > 1) {
287 				aprint_error_dev(sc->sc_dev,
288 				    "cannot accommodate MII device %s"
289 				       " at phy %d, instance %d\n",
290 				       device_xname(child->mii_dev),
291 				       child->mii_phy, child->mii_inst);
292 				continue;
293 			}
294 
295 			sc->sc_phys[child->mii_inst] = child->mii_phy;
296 		}
297 
298 		/*
299 		 * Set the default media to auto negotiation if the phy has
300 		 * the auto negotiation capability.
301 		 * XXX; What to do otherwise?
302 		 */
303 		if (ifmedia_match(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0))
304 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
305 /*
306 		else
307 			ifmedia_set(&sc->sc_mii.mii_media, sc->sc_defaultmedia);
308 */
309 	}
310 
311 	/* claim 802.1q capability */
312 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
313 
314 	/* Attach the interface. */
315 	if_attach(ifp);
316 	ether_ifattach(ifp, sc->sc_enaddr);
317 
318 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, hme_shutdown))
319 		pmf_class_network_register(sc->sc_dev, ifp);
320 	else
321 		aprint_error_dev(sc->sc_dev,
322 		    "couldn't establish power handler\n");
323 
324 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
325 			  RND_TYPE_NET, 0);
326 
327 	callout_init(&sc->sc_tick_ch, 0);
328 }
329 
330 void
331 hme_tick(void *arg)
332 {
333 	struct hme_softc *sc = arg;
334 	int s;
335 
336 	s = splnet();
337 	mii_tick(&sc->sc_mii);
338 	splx(s);
339 
340 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
341 }
342 
343 void
344 hme_reset(struct hme_softc *sc)
345 {
346 	int s;
347 
348 	s = splnet();
349 	(void)hme_init(&sc->sc_ethercom.ec_if);
350 	splx(s);
351 }
352 
353 void
354 hme_chipreset(struct hme_softc *sc)
355 {
356 	bus_space_tag_t t = sc->sc_bustag;
357 	bus_space_handle_t seb = sc->sc_seb;
358 	int n;
359 
360 	/* Mask all interrupts */
361 	bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
362 
363 	/* Reset transmitter and receiver */
364 	bus_space_write_4(t, seb, HME_SEBI_RESET,
365 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
366 
367 	for (n = 0; n < 20; n++) {
368 		uint32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
369 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
370 			return;
371 		DELAY(20);
372 	}
373 
374 	printf("%s: %s: reset failed\n", device_xname(sc->sc_dev), __func__);
375 }
376 
377 void
378 hme_stop(struct ifnet *ifp, int disable)
379 {
380 	struct hme_softc *sc;
381 
382 	sc = ifp->if_softc;
383 
384 	ifp->if_timer = 0;
385 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
386 
387 	callout_stop(&sc->sc_tick_ch);
388 	mii_down(&sc->sc_mii);
389 
390 	hme_chipreset(sc);
391 }
392 
393 void
394 hme_meminit(struct hme_softc *sc)
395 {
396 	bus_addr_t txbufdma, rxbufdma;
397 	bus_addr_t dma;
398 	char *p;
399 	unsigned int ntbuf, nrbuf, i;
400 	struct hme_ring *hr = &sc->sc_rb;
401 
402 	p = hr->rb_membase;
403 	dma = hr->rb_dmabase;
404 
405 	ntbuf = hr->rb_ntbuf;
406 	nrbuf = hr->rb_nrbuf;
407 
408 	/*
409 	 * Allocate transmit descriptors
410 	 */
411 	hr->rb_txd = p;
412 	hr->rb_txddma = dma;
413 	p += ntbuf * HME_XD_SIZE;
414 	dma += ntbuf * HME_XD_SIZE;
415 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
416 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
417 	p = (void *)roundup((u_long)p, 2048);
418 
419 	/*
420 	 * Allocate receive descriptors
421 	 */
422 	hr->rb_rxd = p;
423 	hr->rb_rxddma = dma;
424 	p += nrbuf * HME_XD_SIZE;
425 	dma += nrbuf * HME_XD_SIZE;
426 	/* Again move forward to the next 2048 byte boundary.*/
427 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
428 	p = (void *)roundup((u_long)p, 2048);
429 
430 
431 	/*
432 	 * Allocate transmit buffers
433 	 */
434 	hr->rb_txbuf = p;
435 	txbufdma = dma;
436 	p += ntbuf * _HME_BUFSZ;
437 	dma += ntbuf * _HME_BUFSZ;
438 
439 	/*
440 	 * Allocate receive buffers
441 	 */
442 	hr->rb_rxbuf = p;
443 	rxbufdma = dma;
444 	p += nrbuf * _HME_BUFSZ;
445 	dma += nrbuf * _HME_BUFSZ;
446 
447 	/*
448 	 * Initialize transmit buffer descriptors
449 	 */
450 	for (i = 0; i < ntbuf; i++) {
451 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
452 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
453 	}
454 
455 	/*
456 	 * Initialize receive buffer descriptors
457 	 */
458 	for (i = 0; i < nrbuf; i++) {
459 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
460 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
461 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
462 	}
463 
464 	hr->rb_tdhead = hr->rb_tdtail = 0;
465 	hr->rb_td_nbusy = 0;
466 	hr->rb_rdtail = 0;
467 }
468 
469 /*
470  * Initialization of interface; set up initialization block
471  * and transmit/receive descriptor rings.
472  */
473 int
474 hme_init(struct ifnet *ifp)
475 {
476 	struct hme_softc *sc = ifp->if_softc;
477 	bus_space_tag_t t = sc->sc_bustag;
478 	bus_space_handle_t seb = sc->sc_seb;
479 	bus_space_handle_t etx = sc->sc_etx;
480 	bus_space_handle_t erx = sc->sc_erx;
481 	bus_space_handle_t mac = sc->sc_mac;
482 	uint8_t *ea;
483 	uint32_t v;
484 	int rc;
485 
486 	/*
487 	 * Initialization sequence. The numbered steps below correspond
488 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
489 	 * Channel Engine manual (part of the PCIO manual).
490 	 * See also the STP2002-STQ document from Sun Microsystems.
491 	 */
492 
493 	/* step 1 & 2. Reset the Ethernet Channel */
494 	hme_stop(ifp, 0);
495 
496 	/* Re-initialize the MIF */
497 	hme_mifinit(sc);
498 
499 	/* Call MI reset function if any */
500 	if (sc->sc_hwreset)
501 		(*sc->sc_hwreset)(sc);
502 
503 #if 0
504 	/* Mask all MIF interrupts, just in case */
505 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
506 #endif
507 
508 	/* step 3. Setup data structures in host memory */
509 	hme_meminit(sc);
510 
511 	/* step 4. TX MAC registers & counters */
512 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
513 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
514 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
515 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
516 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
517 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
518 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
519 	sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
520 
521 	/* Load station MAC address */
522 	ea = sc->sc_enaddr;
523 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
524 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
525 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
526 
527 	/*
528 	 * Init seed for backoff
529 	 * (source suggested by manual: low 10 bits of MAC address)
530 	 */
531 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
532 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
533 
534 
535 	/* Note: Accepting power-on default for other MAC registers here.. */
536 
537 
538 	/* step 5. RX MAC registers & counters */
539 	hme_setladrf(sc);
540 
541 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
542 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
543 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
544 
545 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
546 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
547 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
548 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
549 
550 	/* step 8. Global Configuration & Interrupt Mask */
551 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
552 			~(
553 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
554 			  HME_SEB_STAT_HOSTTOTX |
555 			  HME_SEB_STAT_RXTOHOST |
556 			  HME_SEB_STAT_TXALL |
557 			  HME_SEB_STAT_TXPERR |
558 			  HME_SEB_STAT_RCNTEXP |
559 			  HME_SEB_STAT_MIFIRQ |
560 			  HME_SEB_STAT_ALL_ERRORS ));
561 
562 	switch (sc->sc_burst) {
563 	default:
564 		v = 0;
565 		break;
566 	case 16:
567 		v = HME_SEB_CFG_BURST16;
568 		break;
569 	case 32:
570 		v = HME_SEB_CFG_BURST32;
571 		break;
572 	case 64:
573 		v = HME_SEB_CFG_BURST64;
574 		break;
575 	}
576 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
577 
578 	/* step 9. ETX Configuration: use mostly default values */
579 
580 	/* Enable DMA */
581 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
582 	v |= HME_ETX_CFG_DMAENABLE;
583 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
584 
585 	/* Transmit Descriptor ring size: in increments of 16 */
586 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
587 
588 
589 	/* step 10. ERX Configuration */
590 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
591 
592 	/* Encode Receive Descriptor ring size: four possible values */
593 	switch (_HME_NDESC /*XXX*/) {
594 	case 32:
595 		v |= HME_ERX_CFG_RINGSIZE32;
596 		break;
597 	case 64:
598 		v |= HME_ERX_CFG_RINGSIZE64;
599 		break;
600 	case 128:
601 		v |= HME_ERX_CFG_RINGSIZE128;
602 		break;
603 	case 256:
604 		v |= HME_ERX_CFG_RINGSIZE256;
605 		break;
606 	default:
607 		printf("hme: invalid Receive Descriptor ring size\n");
608 		break;
609 	}
610 
611 	/* Enable DMA */
612 	v |= HME_ERX_CFG_DMAENABLE;
613 
614 	/* set h/w rx checksum start offset (# of half-words) */
615 #ifdef INET
616 	v |= (((ETHER_HDR_LEN + sizeof(struct ip)) / sizeof(uint16_t))
617 		<< HME_ERX_CFG_CSUMSHIFT) &
618 		HME_ERX_CFG_CSUMSTART;
619 #endif
620 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
621 
622 	/* step 11. XIF Configuration */
623 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
624 	v |= HME_MAC_XIF_OE;
625 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
626 
627 	/* step 12. RX_MAC Configuration Register */
628 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
629 	v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
630 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
631 
632 	/* step 13. TX_MAC Configuration Register */
633 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
634 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
635 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
636 
637 	/* step 14. Issue Transmit Pending command */
638 
639 	/* Call MI initialization function if any */
640 	if (sc->sc_hwinit)
641 		(*sc->sc_hwinit)(sc);
642 
643 	/* Set the current media. */
644 	if ((rc = hme_mediachange(ifp)) != 0)
645 		return rc;
646 
647 	/* Start the one second timer. */
648 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
649 
650 	ifp->if_flags |= IFF_RUNNING;
651 	ifp->if_flags &= ~IFF_OACTIVE;
652 	sc->sc_if_flags = ifp->if_flags;
653 	ifp->if_timer = 0;
654 	hme_start(ifp);
655 	return 0;
656 }
657 
658 /*
659  * Routine to copy from mbuf chain to transmit buffer in
660  * network buffer memory.
661  * Returns the amount of data copied.
662  */
663 int
664 hme_put(struct hme_softc *sc, int ri, struct mbuf *m)
665 	/* ri:			 Ring index */
666 {
667 	struct mbuf *n;
668 	int len, tlen = 0;
669 	char *bp;
670 
671 	bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
672 	for (; m; m = n) {
673 		len = m->m_len;
674 		if (len == 0) {
675 			MFREE(m, n);
676 			continue;
677 		}
678 		memcpy(bp, mtod(m, void *), len);
679 		bp += len;
680 		tlen += len;
681 		MFREE(m, n);
682 	}
683 	return (tlen);
684 }
685 
686 /*
687  * Pull data off an interface.
688  * Len is length of data, with local net header stripped.
689  * We copy the data into mbufs.  When full cluster sized units are present
690  * we copy into clusters.
691  */
692 struct mbuf *
693 hme_get(struct hme_softc *sc, int ri, uint32_t flags)
694 {
695 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
696 	struct mbuf *m, *m0, *newm;
697 	char *bp;
698 	int len, totlen;
699 #ifdef INET
700 	int csum_flags;
701 #endif
702 
703 	totlen = HME_XD_DECODE_RSIZE(flags);
704 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
705 	if (m0 == 0)
706 		return (0);
707 	m0->m_pkthdr.rcvif = ifp;
708 	m0->m_pkthdr.len = totlen;
709 	len = MHLEN;
710 	m = m0;
711 
712 	bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
713 
714 	while (totlen > 0) {
715 		if (totlen >= MINCLSIZE) {
716 			MCLGET(m, M_DONTWAIT);
717 			if ((m->m_flags & M_EXT) == 0)
718 				goto bad;
719 			len = MCLBYTES;
720 		}
721 
722 		if (m == m0) {
723 			char *newdata = (char *)
724 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
725 			    sizeof(struct ether_header);
726 			len -= newdata - m->m_data;
727 			m->m_data = newdata;
728 		}
729 
730 		m->m_len = len = min(totlen, len);
731 		memcpy(mtod(m, void *), bp, len);
732 		bp += len;
733 
734 		totlen -= len;
735 		if (totlen > 0) {
736 			MGET(newm, M_DONTWAIT, MT_DATA);
737 			if (newm == 0)
738 				goto bad;
739 			len = MLEN;
740 			m = m->m_next = newm;
741 		}
742 	}
743 
744 #ifdef INET
745 	/* hardware checksum */
746 	csum_flags = 0;
747 	if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
748 		struct ether_header *eh;
749 		struct ether_vlan_header *evh;
750 		struct ip *ip;
751 		struct udphdr *uh;
752 		uint16_t *opts;
753 		int32_t hlen, pktlen;
754 		uint32_t csum_data;
755 
756 		eh = mtod(m0, struct ether_header *);
757 		if (ntohs(eh->ether_type) == ETHERTYPE_IP) {
758 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN);
759 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
760 		} else if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
761 			evh = (struct ether_vlan_header *)eh;
762 			if (ntohs(evh->evl_proto != ETHERTYPE_IP))
763 				goto swcsum;
764 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN +
765 			    ETHER_VLAN_ENCAP_LEN);
766 			pktlen = m0->m_pkthdr.len -
767 			    ETHER_HDR_LEN - ETHER_VLAN_ENCAP_LEN;
768 		} else
769 			goto swcsum;
770 
771 		/* IPv4 only */
772 		if (ip->ip_v != IPVERSION)
773 			goto swcsum;
774 
775 		hlen = ip->ip_hl << 2;
776 		if (hlen < sizeof(struct ip))
777 			goto swcsum;
778 
779 		/*
780 		 * bail if too short, has random trailing garbage, truncated,
781 		 * fragment, or has ethernet pad.
782 		 */
783 		if (ntohs(ip->ip_len) < hlen ||
784 		    ntohs(ip->ip_len) != pktlen ||
785 		    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
786 			goto swcsum;
787 
788 		switch (ip->ip_p) {
789 		case IPPROTO_TCP:
790 			if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0)
791 				goto swcsum;
792 			if (pktlen < (hlen + sizeof(struct tcphdr)))
793 				goto swcsum;
794 			csum_flags =
795 			    M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
796 			break;
797 		case IPPROTO_UDP:
798 			if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0)
799 				goto swcsum;
800 			if (pktlen < (hlen + sizeof(struct udphdr)))
801 				goto swcsum;
802 			uh = (struct udphdr *)((char *)ip + hlen);
803 			/* no checksum */
804 			if (uh->uh_sum == 0)
805 				goto swcsum;
806 			csum_flags =
807 			    M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
808 			break;
809 		default:
810 			goto swcsum;
811 		}
812 
813 		/* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
814 		csum_data = ~flags & HME_XD_RXCKSUM;
815 
816 		/*
817 		 * If data offset is different from RX cksum start offset,
818 		 * we have to deduct them.
819 		 */
820 		hlen = ((char *)ip + hlen) -
821 		    ((char *)eh + ETHER_HDR_LEN + sizeof(struct ip));
822 		if (hlen > 1) {
823 			uint32_t optsum;
824 
825 			optsum = 0;
826 			opts = (uint16_t *)((char *)eh +
827 			    ETHER_HDR_LEN + sizeof(struct ip));
828 
829 			while (hlen > 1) {
830 				optsum += ntohs(*opts++);
831 				hlen -= 2;
832 			}
833 			while (optsum >> 16)
834 				optsum = (optsum >> 16) + (optsum & 0xffff);
835 
836 			/* Deduct the ip opts sum from the hwsum. */
837 			csum_data += (uint16_t)~optsum;
838 
839 			while (csum_data >> 16)
840 				csum_data =
841 				    (csum_data >> 16) + (csum_data & 0xffff);
842 		}
843 		m0->m_pkthdr.csum_data = csum_data;
844 	}
845 swcsum:
846 	m0->m_pkthdr.csum_flags = csum_flags;
847 #endif
848 
849 	return (m0);
850 
851 bad:
852 	m_freem(m0);
853 	return (0);
854 }
855 
856 /*
857  * Pass a packet to the higher levels.
858  */
859 void
860 hme_read(struct hme_softc *sc, int ix, uint32_t flags)
861 {
862 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
863 	struct mbuf *m;
864 	int len;
865 
866 	len = HME_XD_DECODE_RSIZE(flags);
867 	if (len <= sizeof(struct ether_header) ||
868 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
869 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
870 	    ETHERMTU + sizeof(struct ether_header))) {
871 #ifdef HMEDEBUG
872 		printf("%s: invalid packet size %d; dropping\n",
873 		    device_xname(sc->sc_dev), len);
874 #endif
875 		ifp->if_ierrors++;
876 		return;
877 	}
878 
879 	/* Pull packet off interface. */
880 	m = hme_get(sc, ix, flags);
881 	if (m == 0) {
882 		ifp->if_ierrors++;
883 		return;
884 	}
885 
886 	ifp->if_ipackets++;
887 
888 	/*
889 	 * Check if there's a BPF listener on this interface.
890 	 * If so, hand off the raw packet to BPF.
891 	 */
892 	bpf_mtap(ifp, m);
893 
894 	/* Pass the packet up. */
895 	(*ifp->if_input)(ifp, m);
896 }
897 
898 void
899 hme_start(struct ifnet *ifp)
900 {
901 	struct hme_softc *sc = ifp->if_softc;
902 	void *txd = sc->sc_rb.rb_txd;
903 	struct mbuf *m;
904 	unsigned int txflags;
905 	unsigned int ri, len, obusy;
906 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
907 
908 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
909 		return;
910 
911 	ri = sc->sc_rb.rb_tdhead;
912 	obusy = sc->sc_rb.rb_td_nbusy;
913 
914 	for (;;) {
915 		IFQ_DEQUEUE(&ifp->if_snd, m);
916 		if (m == 0)
917 			break;
918 
919 		/*
920 		 * If BPF is listening on this interface, let it see the
921 		 * packet before we commit it to the wire.
922 		 */
923 		bpf_mtap(ifp, m);
924 
925 #ifdef INET
926 		/* collect bits for h/w csum, before hme_put frees the mbuf */
927 		if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
928 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
929 			struct ether_header *eh;
930 			uint16_t offset, start;
931 
932 			eh = mtod(m, struct ether_header *);
933 			switch (ntohs(eh->ether_type)) {
934 			case ETHERTYPE_IP:
935 				start = ETHER_HDR_LEN;
936 				break;
937 			case ETHERTYPE_VLAN:
938 				start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
939 				break;
940 			default:
941 				/* unsupported, drop it */
942 				m_free(m);
943 				continue;
944 			}
945 			start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
946 			offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
947 			    + start;
948 			txflags = HME_XD_TXCKSUM |
949 				  (offset << HME_XD_TXCSSTUFFSHIFT) |
950 		  		  (start << HME_XD_TXCSSTARTSHIFT);
951 		} else
952 #endif
953 			txflags = 0;
954 
955 		/*
956 		 * Copy the mbuf chain into the transmit buffer.
957 		 */
958 		len = hme_put(sc, ri, m);
959 
960 		/*
961 		 * Initialize transmit registers and start transmission
962 		 */
963 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
964 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
965 			HME_XD_ENCODE_TSIZE(len) | txflags);
966 
967 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
968 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
969 				  HME_ETX_TP_DMAWAKEUP);
970 
971 		if (++ri == ntbuf)
972 			ri = 0;
973 
974 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
975 			ifp->if_flags |= IFF_OACTIVE;
976 			break;
977 		}
978 	}
979 
980 	if (obusy != sc->sc_rb.rb_td_nbusy) {
981 		sc->sc_rb.rb_tdhead = ri;
982 		ifp->if_timer = 5;
983 	}
984 }
985 
986 /*
987  * Transmit interrupt.
988  */
989 int
990 hme_tint(struct hme_softc *sc)
991 {
992 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
993 	bus_space_tag_t t = sc->sc_bustag;
994 	bus_space_handle_t mac = sc->sc_mac;
995 	unsigned int ri, txflags;
996 
997 	/*
998 	 * Unload collision counters
999 	 */
1000 	ifp->if_collisions +=
1001 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
1002 		bus_space_read_4(t, mac, HME_MACI_FCCNT);
1003 	ifp->if_oerrors +=
1004 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
1005 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
1006 
1007 	/*
1008 	 * then clear the hardware counters.
1009 	 */
1010 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
1011 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
1012 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
1013 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
1014 
1015 	/* Fetch current position in the transmit ring */
1016 	ri = sc->sc_rb.rb_tdtail;
1017 
1018 	for (;;) {
1019 		if (sc->sc_rb.rb_td_nbusy <= 0)
1020 			break;
1021 
1022 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
1023 
1024 		if (txflags & HME_XD_OWN)
1025 			break;
1026 
1027 		ifp->if_flags &= ~IFF_OACTIVE;
1028 		ifp->if_opackets++;
1029 
1030 		if (++ri == sc->sc_rb.rb_ntbuf)
1031 			ri = 0;
1032 
1033 		--sc->sc_rb.rb_td_nbusy;
1034 	}
1035 
1036 	/* Update ring */
1037 	sc->sc_rb.rb_tdtail = ri;
1038 
1039 	hme_start(ifp);
1040 
1041 	if (sc->sc_rb.rb_td_nbusy == 0)
1042 		ifp->if_timer = 0;
1043 
1044 	return (1);
1045 }
1046 
1047 /*
1048  * Receive interrupt.
1049  */
1050 int
1051 hme_rint(struct hme_softc *sc)
1052 {
1053 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1054 	bus_space_tag_t t = sc->sc_bustag;
1055 	bus_space_handle_t mac = sc->sc_mac;
1056 	void *xdr = sc->sc_rb.rb_rxd;
1057 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
1058 	unsigned int ri;
1059 	uint32_t flags;
1060 
1061 	ri = sc->sc_rb.rb_rdtail;
1062 
1063 	/*
1064 	 * Process all buffers with valid data.
1065 	 */
1066 	for (;;) {
1067 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
1068 		if (flags & HME_XD_OWN)
1069 			break;
1070 
1071 		if (flags & HME_XD_OFL) {
1072 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
1073 					device_xname(sc->sc_dev), ri, flags);
1074 		} else
1075 			hme_read(sc, ri, flags);
1076 
1077 		/* This buffer can be used by the hardware again */
1078 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
1079 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
1080 
1081 		if (++ri == nrbuf)
1082 			ri = 0;
1083 	}
1084 
1085 	sc->sc_rb.rb_rdtail = ri;
1086 
1087 	/* Read error counters ... */
1088 	ifp->if_ierrors +=
1089 	    bus_space_read_4(t, mac, HME_MACI_STAT_LCNT) +
1090 	    bus_space_read_4(t, mac, HME_MACI_STAT_ACNT) +
1091 	    bus_space_read_4(t, mac, HME_MACI_STAT_CCNT) +
1092 	    bus_space_read_4(t, mac, HME_MACI_STAT_CVCNT);
1093 
1094 	/* ... then clear the hardware counters. */
1095 	bus_space_write_4(t, mac, HME_MACI_STAT_LCNT, 0);
1096 	bus_space_write_4(t, mac, HME_MACI_STAT_ACNT, 0);
1097 	bus_space_write_4(t, mac, HME_MACI_STAT_CCNT, 0);
1098 	bus_space_write_4(t, mac, HME_MACI_STAT_CVCNT, 0);
1099 	return (1);
1100 }
1101 
1102 int
1103 hme_eint(struct hme_softc *sc, u_int status)
1104 {
1105 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1106 	char bits[128];
1107 
1108 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
1109 		bus_space_tag_t t = sc->sc_bustag;
1110 		bus_space_handle_t mif = sc->sc_mif;
1111 		uint32_t cf, st, sm;
1112 		cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
1113 		st = bus_space_read_4(t, mif, HME_MIFI_STAT);
1114 		sm = bus_space_read_4(t, mif, HME_MIFI_SM);
1115 		printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
1116 			device_xname(sc->sc_dev), cf, st, sm);
1117 		return (1);
1118 	}
1119 
1120 	/* Receive error counters rolled over */
1121 	if (status & HME_SEB_STAT_ACNTEXP)
1122 		ifp->if_ierrors += 0xff;
1123 	if (status & HME_SEB_STAT_CCNTEXP)
1124 		ifp->if_ierrors += 0xff;
1125 	if (status & HME_SEB_STAT_LCNTEXP)
1126 		ifp->if_ierrors += 0xff;
1127 	if (status & HME_SEB_STAT_CVCNTEXP)
1128 		ifp->if_ierrors += 0xff;
1129 
1130 	/* RXTERR locks up the interface, so do a reset */
1131 	if (status & HME_SEB_STAT_RXTERR)
1132 		hme_reset(sc);
1133 
1134 	snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
1135 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1136 
1137 	return (1);
1138 }
1139 
1140 int
1141 hme_intr(void *v)
1142 {
1143 	struct hme_softc *sc = v;
1144 	bus_space_tag_t t = sc->sc_bustag;
1145 	bus_space_handle_t seb = sc->sc_seb;
1146 	uint32_t status;
1147 	int r = 0;
1148 
1149 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
1150 
1151 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
1152 		r |= hme_eint(sc, status);
1153 
1154 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
1155 		r |= hme_tint(sc);
1156 
1157 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
1158 		r |= hme_rint(sc);
1159 
1160 	rnd_add_uint32(&sc->rnd_source, status);
1161 
1162 	return (r);
1163 }
1164 
1165 
1166 void
1167 hme_watchdog(struct ifnet *ifp)
1168 {
1169 	struct hme_softc *sc = ifp->if_softc;
1170 
1171 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1172 	++ifp->if_oerrors;
1173 
1174 	hme_reset(sc);
1175 }
1176 
1177 /*
1178  * Initialize the MII Management Interface
1179  */
1180 void
1181 hme_mifinit(struct hme_softc *sc)
1182 {
1183 	bus_space_tag_t t = sc->sc_bustag;
1184 	bus_space_handle_t mif = sc->sc_mif;
1185 	bus_space_handle_t mac = sc->sc_mac;
1186 	int instance, phy;
1187 	uint32_t v;
1188 
1189 	if (sc->sc_mii.mii_media.ifm_cur != NULL) {
1190 		instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1191 		phy = sc->sc_phys[instance];
1192 	} else
1193 		/* No media set yet, pick phy arbitrarily.. */
1194 		phy = HME_PHYAD_EXTERNAL;
1195 
1196 	/* Configure the MIF in frame mode, no poll, current phy select */
1197 	v = 0;
1198 	if (phy == HME_PHYAD_EXTERNAL)
1199 		v |= HME_MIF_CFG_PHY;
1200 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1201 
1202 	/* If an external transceiver is selected, enable its MII drivers */
1203 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
1204 	v &= ~HME_MAC_XIF_MIIENABLE;
1205 	if (phy == HME_PHYAD_EXTERNAL)
1206 		v |= HME_MAC_XIF_MIIENABLE;
1207 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1208 }
1209 
1210 /*
1211  * MII interface
1212  */
1213 static int
1214 hme_mii_readreg(device_t self, int phy, int reg)
1215 {
1216 	struct hme_softc *sc = device_private(self);
1217 	bus_space_tag_t t = sc->sc_bustag;
1218 	bus_space_handle_t mif = sc->sc_mif;
1219 	bus_space_handle_t mac = sc->sc_mac;
1220 	uint32_t v, xif_cfg, mifi_cfg;
1221 	int n;
1222 
1223 	/* We can at most have two PHYs */
1224 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1225 		return (0);
1226 
1227 	/* Select the desired PHY in the MIF configuration register */
1228 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1229 	v &= ~HME_MIF_CFG_PHY;
1230 	if (phy == HME_PHYAD_EXTERNAL)
1231 		v |= HME_MIF_CFG_PHY;
1232 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1233 
1234 	/* Enable MII drivers on external transceiver */
1235 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1236 	if (phy == HME_PHYAD_EXTERNAL)
1237 		v |= HME_MAC_XIF_MIIENABLE;
1238 	else
1239 		v &= ~HME_MAC_XIF_MIIENABLE;
1240 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1241 
1242 #if 0
1243 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1244 	/*
1245 	 * Check whether a transceiver is connected by testing
1246 	 * the MIF configuration register's MDI_X bits. Note that
1247 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1248 	 */
1249 	mif_mdi_bit = 1 << (8 + (1 - phy));
1250 	delay(100);
1251 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1252 	if ((v & mif_mdi_bit) == 0)
1253 		return (0);
1254 #endif
1255 
1256 	/* Construct the frame command */
1257 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1258 	    HME_MIF_FO_TAMSB |
1259 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1260 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
1261 	    (reg << HME_MIF_FO_REGAD_SHIFT);
1262 
1263 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
1264 	for (n = 0; n < 100; n++) {
1265 		DELAY(1);
1266 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
1267 		if (v & HME_MIF_FO_TALSB) {
1268 			v &= HME_MIF_FO_DATA;
1269 			goto out;
1270 		}
1271 	}
1272 
1273 	v = 0;
1274 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1275 
1276 out:
1277 	/* Restore MIFI_CFG register */
1278 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1279 	/* Restore XIF register */
1280 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1281 	return (v);
1282 }
1283 
1284 static void
1285 hme_mii_writereg(device_t self, int phy, int reg, int val)
1286 {
1287 	struct hme_softc *sc = device_private(self);
1288 	bus_space_tag_t t = sc->sc_bustag;
1289 	bus_space_handle_t mif = sc->sc_mif;
1290 	bus_space_handle_t mac = sc->sc_mac;
1291 	uint32_t v, xif_cfg, mifi_cfg;
1292 	int n;
1293 
1294 	/* We can at most have two PHYs */
1295 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1296 		return;
1297 
1298 	/* Select the desired PHY in the MIF configuration register */
1299 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1300 	v &= ~HME_MIF_CFG_PHY;
1301 	if (phy == HME_PHYAD_EXTERNAL)
1302 		v |= HME_MIF_CFG_PHY;
1303 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1304 
1305 	/* Enable MII drivers on external transceiver */
1306 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1307 	if (phy == HME_PHYAD_EXTERNAL)
1308 		v |= HME_MAC_XIF_MIIENABLE;
1309 	else
1310 		v &= ~HME_MAC_XIF_MIIENABLE;
1311 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1312 
1313 #if 0
1314 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1315 	/*
1316 	 * Check whether a transceiver is connected by testing
1317 	 * the MIF configuration register's MDI_X bits. Note that
1318 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1319 	 */
1320 	mif_mdi_bit = 1 << (8 + (1 - phy));
1321 	delay(100);
1322 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1323 	if ((v & mif_mdi_bit) == 0)
1324 		return;
1325 #endif
1326 
1327 	/* Construct the frame command */
1328 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
1329 	    HME_MIF_FO_TAMSB				|
1330 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
1331 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
1332 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
1333 	    (val & HME_MIF_FO_DATA);
1334 
1335 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
1336 	for (n = 0; n < 100; n++) {
1337 		DELAY(1);
1338 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
1339 		if (v & HME_MIF_FO_TALSB)
1340 			goto out;
1341 	}
1342 
1343 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1344 out:
1345 	/* Restore MIFI_CFG register */
1346 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1347 	/* Restore XIF register */
1348 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1349 }
1350 
1351 static void
1352 hme_mii_statchg(device_t dev)
1353 {
1354 	struct hme_softc *sc = device_private(dev);
1355 	bus_space_tag_t t = sc->sc_bustag;
1356 	bus_space_handle_t mac = sc->sc_mac;
1357 	uint32_t v;
1358 
1359 #ifdef HMEDEBUG
1360 	if (sc->sc_debug)
1361 		printf("hme_mii_statchg: status change\n");
1362 #endif
1363 
1364 	/* Set the MAC Full Duplex bit appropriately */
1365 	/* Apparently the hme chip is SIMPLEX if working in full duplex mode,
1366 	   but not otherwise. */
1367 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1368 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1369 		v |= HME_MAC_TXCFG_FULLDPLX;
1370 		sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
1371 	} else {
1372 		v &= ~HME_MAC_TXCFG_FULLDPLX;
1373 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
1374 	}
1375 	sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
1376 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1377 }
1378 
1379 int
1380 hme_mediachange(struct ifnet *ifp)
1381 {
1382 	struct hme_softc *sc = ifp->if_softc;
1383 	bus_space_tag_t t = sc->sc_bustag;
1384 	bus_space_handle_t mif = sc->sc_mif;
1385 	bus_space_handle_t mac = sc->sc_mac;
1386 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1387 	int phy = sc->sc_phys[instance];
1388 	int rc;
1389 	uint32_t v;
1390 
1391 #ifdef HMEDEBUG
1392 	if (sc->sc_debug)
1393 		printf("hme_mediachange: phy = %d\n", phy);
1394 #endif
1395 
1396 	/* Select the current PHY in the MIF configuration register */
1397 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1398 	v &= ~HME_MIF_CFG_PHY;
1399 	if (phy == HME_PHYAD_EXTERNAL)
1400 		v |= HME_MIF_CFG_PHY;
1401 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1402 
1403 	/* If an external transceiver is selected, enable its MII drivers */
1404 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
1405 	v &= ~HME_MAC_XIF_MIIENABLE;
1406 	if (phy == HME_PHYAD_EXTERNAL)
1407 		v |= HME_MAC_XIF_MIIENABLE;
1408 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1409 
1410 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
1411 		return 0;
1412 	return rc;
1413 }
1414 
1415 /*
1416  * Process an ioctl request.
1417  */
1418 int
1419 hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
1420 {
1421 	struct hme_softc *sc = ifp->if_softc;
1422 	struct ifaddr *ifa = (struct ifaddr *)data;
1423 	int s, error = 0;
1424 
1425 	s = splnet();
1426 
1427 	switch (cmd) {
1428 
1429 	case SIOCINITIFADDR:
1430 		switch (ifa->ifa_addr->sa_family) {
1431 #ifdef INET
1432 		case AF_INET:
1433 			if (ifp->if_flags & IFF_UP)
1434 				hme_setladrf(sc);
1435 			else {
1436 				ifp->if_flags |= IFF_UP;
1437 				error = hme_init(ifp);
1438 			}
1439 			arp_ifinit(ifp, ifa);
1440 			break;
1441 #endif
1442 		default:
1443 			ifp->if_flags |= IFF_UP;
1444 			error = hme_init(ifp);
1445 			break;
1446 		}
1447 		break;
1448 
1449 	case SIOCSIFFLAGS:
1450 #ifdef HMEDEBUG
1451 		{
1452 			struct ifreq *ifr = data;
1453 			sc->sc_debug =
1454 			    (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
1455 		}
1456 #endif
1457 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1458 			break;
1459 
1460 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1461 		case IFF_RUNNING:
1462 			/*
1463 			 * If interface is marked down and it is running, then
1464 			 * stop it.
1465 			 */
1466 			hme_stop(ifp, 0);
1467 			ifp->if_flags &= ~IFF_RUNNING;
1468 			break;
1469 		case IFF_UP:
1470 			/*
1471 			 * If interface is marked up and it is stopped, then
1472 			 * start it.
1473 			 */
1474 			error = hme_init(ifp);
1475 			break;
1476 		case IFF_UP|IFF_RUNNING:
1477 			/*
1478 			 * If setting debug or promiscuous mode, do not reset
1479 			 * the chip; for everything else, call hme_init()
1480 			 * which will trigger a reset.
1481 			 */
1482 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
1483 			if (ifp->if_flags != sc->sc_if_flags) {
1484 				if ((ifp->if_flags & (~RESETIGN))
1485 				    == (sc->sc_if_flags & (~RESETIGN)))
1486 					hme_setladrf(sc);
1487 				else
1488 					error = hme_init(ifp);
1489 			}
1490 #undef RESETIGN
1491 			break;
1492 		case 0:
1493 			break;
1494 		}
1495 
1496 		if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
1497 			error = hme_init(ifp);
1498 
1499 		break;
1500 
1501 	default:
1502 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1503 			break;
1504 
1505 		error = 0;
1506 
1507 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1508 			;
1509 		else if (ifp->if_flags & IFF_RUNNING) {
1510 			/*
1511 			 * Multicast list has changed; set the hardware filter
1512 			 * accordingly.
1513 			 */
1514 			hme_setladrf(sc);
1515 		}
1516 		break;
1517 	}
1518 
1519 	sc->sc_if_flags = ifp->if_flags;
1520 	splx(s);
1521 	return (error);
1522 }
1523 
1524 bool
1525 hme_shutdown(device_t self, int howto)
1526 {
1527 	struct hme_softc *sc;
1528 	struct ifnet *ifp;
1529 
1530 	sc = device_private(self);
1531 	ifp = &sc->sc_ethercom.ec_if;
1532 	hme_stop(ifp, 1);
1533 
1534 	return true;
1535 }
1536 
1537 /*
1538  * Set up the logical address filter.
1539  */
1540 void
1541 hme_setladrf(struct hme_softc *sc)
1542 {
1543 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1544 	struct ether_multi *enm;
1545 	struct ether_multistep step;
1546 	struct ethercom *ec = &sc->sc_ethercom;
1547 	bus_space_tag_t t = sc->sc_bustag;
1548 	bus_space_handle_t mac = sc->sc_mac;
1549 	uint32_t v;
1550 	uint32_t crc;
1551 	uint32_t hash[4];
1552 
1553 	/* Clear hash table */
1554 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
1555 
1556 	/* Get current RX configuration */
1557 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1558 
1559 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
1560 		/* Turn on promiscuous mode; turn off the hash filter */
1561 		v |= HME_MAC_RXCFG_PMISC;
1562 		v &= ~HME_MAC_RXCFG_HENABLE;
1563 		ifp->if_flags |= IFF_ALLMULTI;
1564 		goto chipit;
1565 	}
1566 
1567 	/* Turn off promiscuous mode; turn on the hash filter */
1568 	v &= ~HME_MAC_RXCFG_PMISC;
1569 	v |= HME_MAC_RXCFG_HENABLE;
1570 
1571 	/*
1572 	 * Set up multicast address filter by passing all multicast addresses
1573 	 * through a crc generator, and then using the high order 6 bits as an
1574 	 * index into the 64 bit logical address filter.  The high order bit
1575 	 * selects the word, while the rest of the bits select the bit within
1576 	 * the word.
1577 	 */
1578 
1579 	ETHER_FIRST_MULTI(step, ec, enm);
1580 	while (enm != NULL) {
1581 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1582 			/*
1583 			 * We must listen to a range of multicast addresses.
1584 			 * For now, just accept all multicasts, rather than
1585 			 * trying to set only those filter bits needed to match
1586 			 * the range.  (At this time, the only use of address
1587 			 * ranges is for IP multicast routing, for which the
1588 			 * range is big enough to require all bits set.)
1589 			 */
1590 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1591 			ifp->if_flags |= IFF_ALLMULTI;
1592 			goto chipit;
1593 		}
1594 
1595 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1596 
1597 		/* Just want the 6 most significant bits. */
1598 		crc >>= 26;
1599 
1600 		/* Set the corresponding bit in the filter. */
1601 		hash[crc >> 4] |= 1 << (crc & 0xf);
1602 
1603 		ETHER_NEXT_MULTI(step, enm);
1604 	}
1605 
1606 	ifp->if_flags &= ~IFF_ALLMULTI;
1607 
1608 chipit:
1609 	/* Now load the hash table into the chip */
1610 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1611 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1612 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1613 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1614 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1615 }
1616 
1617 /*
1618  * Routines for accessing the transmit and receive buffers.
1619  * The various CPU and adapter configurations supported by this
1620  * driver require three different access methods for buffers
1621  * and descriptors:
1622  *	(1) contig (contiguous data; no padding),
1623  *	(2) gap2 (two bytes of data followed by two bytes of padding),
1624  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
1625  */
1626 
1627 #if 0
1628 /*
1629  * contig: contiguous data with no padding.
1630  *
1631  * Buffers may have any alignment.
1632  */
1633 
1634 void
1635 hme_copytobuf_contig(struct hme_softc *sc, void *from, int ri, int len)
1636 {
1637 	volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1638 
1639 	/*
1640 	 * Just call memcpy() to do the work.
1641 	 */
1642 	memcpy(buf, from, len);
1643 }
1644 
1645 void
1646 hme_copyfrombuf_contig(struct hme_softc *sc, void *to, int boff, int len)
1647 {
1648 	volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1649 
1650 	/*
1651 	 * Just call memcpy() to do the work.
1652 	 */
1653 	memcpy(to, buf, len);
1654 }
1655 #endif
1656