xref: /netbsd-src/sys/dev/ic/hme.c (revision 93bf6008f8b7982c1d1a9486e4a4a0e687fe36eb)
1 /*	$NetBSD: hme.c,v 1.76 2009/04/16 14:39:11 tsutsui Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * HME Ethernet module driver.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.76 2009/04/16 14:39:11 tsutsui Exp $");
38 
39 /* #define HMEDEBUG */
40 
41 #include "opt_inet.h"
42 #include "bpfilter.h"
43 #include "rnd.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/kernel.h>
48 #include <sys/mbuf.h>
49 #include <sys/syslog.h>
50 #include <sys/socket.h>
51 #include <sys/device.h>
52 #include <sys/malloc.h>
53 #include <sys/ioctl.h>
54 #include <sys/errno.h>
55 #if NRND > 0
56 #include <sys/rnd.h>
57 #endif
58 
59 #include <net/if.h>
60 #include <net/if_dl.h>
61 #include <net/if_ether.h>
62 #include <net/if_media.h>
63 
64 #ifdef INET
65 #include <net/if_vlanvar.h>
66 #include <netinet/in.h>
67 #include <netinet/if_inarp.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/in_var.h>
70 #include <netinet/ip.h>
71 #include <netinet/tcp.h>
72 #include <netinet/udp.h>
73 #endif
74 
75 
76 #if NBPFILTER > 0
77 #include <net/bpf.h>
78 #include <net/bpfdesc.h>
79 #endif
80 
81 #include <dev/mii/mii.h>
82 #include <dev/mii/miivar.h>
83 
84 #include <sys/bus.h>
85 
86 #include <dev/ic/hmereg.h>
87 #include <dev/ic/hmevar.h>
88 
89 void		hme_start(struct ifnet *);
90 void		hme_stop(struct hme_softc *,bool);
91 int		hme_ioctl(struct ifnet *, u_long, void *);
92 void		hme_tick(void *);
93 void		hme_watchdog(struct ifnet *);
94 void		hme_shutdown(void *);
95 int		hme_init(struct hme_softc *);
96 void		hme_meminit(struct hme_softc *);
97 void		hme_mifinit(struct hme_softc *);
98 void		hme_reset(struct hme_softc *);
99 void		hme_setladrf(struct hme_softc *);
100 
101 /* MII methods & callbacks */
102 static int	hme_mii_readreg(struct device *, int, int);
103 static void	hme_mii_writereg(struct device *, int, int, int);
104 static void	hme_mii_statchg(struct device *);
105 
106 int		hme_mediachange(struct ifnet *);
107 
108 struct mbuf	*hme_get(struct hme_softc *, int, uint32_t);
109 int		hme_put(struct hme_softc *, int, struct mbuf *);
110 void		hme_read(struct hme_softc *, int, uint32_t);
111 int		hme_eint(struct hme_softc *, u_int);
112 int		hme_rint(struct hme_softc *);
113 int		hme_tint(struct hme_softc *);
114 
115 /* Default buffer copy routines */
116 void	hme_copytobuf_contig(struct hme_softc *, void *, int, int);
117 void	hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
118 void	hme_zerobuf_contig(struct hme_softc *, int, int);
119 
120 
121 void
122 hme_config(struct hme_softc *sc)
123 {
124 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
125 	struct mii_data *mii = &sc->sc_mii;
126 	struct mii_softc *child;
127 	bus_dma_tag_t dmatag = sc->sc_dmatag;
128 	bus_dma_segment_t seg;
129 	bus_size_t size;
130 	int rseg, error;
131 
132 	/*
133 	 * HME common initialization.
134 	 *
135 	 * hme_softc fields that must be initialized by the front-end:
136 	 *
137 	 * the bus tag:
138 	 *	sc_bustag
139 	 *
140 	 * the DMA bus tag:
141 	 *	sc_dmatag
142 	 *
143 	 * the bus handles:
144 	 *	sc_seb		(Shared Ethernet Block registers)
145 	 *	sc_erx		(Receiver Unit registers)
146 	 *	sc_etx		(Transmitter Unit registers)
147 	 *	sc_mac		(MAC registers)
148 	 *	sc_mif		(Management Interface registers)
149 	 *
150 	 * the maximum bus burst size:
151 	 *	sc_burst
152 	 *
153 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
154 	 *	rb_membase, rb_dmabase)
155 	 *
156 	 * the local Ethernet address:
157 	 *	sc_enaddr
158 	 *
159 	 */
160 
161 	/* Make sure the chip is stopped. */
162 	hme_stop(sc, true);
163 
164 
165 	/*
166 	 * Allocate descriptors and buffers
167 	 * XXX - do all this differently.. and more configurably,
168 	 * eg. use things as `dma_load_mbuf()' on transmit,
169 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
170 	 *     all the time) on the receiver side.
171 	 *
172 	 * Note: receive buffers must be 64-byte aligned.
173 	 * Also, apparently, the buffers must extend to a DMA burst
174 	 * boundary beyond the maximum packet size.
175 	 */
176 #define _HME_NDESC	128
177 #define _HME_BUFSZ	1600
178 
179 	/* Note: the # of descriptors must be a multiple of 16 */
180 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
181 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
182 
183 	/*
184 	 * Allocate DMA capable memory
185 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
186 	 * take this into account when calculating the size. Note that
187 	 * the maximum number of descriptors (256) occupies 2048 bytes,
188 	 * so we allocate that much regardless of _HME_NDESC.
189 	 */
190 	size =	2048 +					/* TX descriptors */
191 		2048 +					/* RX descriptors */
192 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
193 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* RX buffers */
194 
195 	/* Allocate DMA buffer */
196 	if ((error = bus_dmamem_alloc(dmatag, size,
197 				      2048, 0,
198 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
199 		aprint_error_dev(&sc->sc_dev, "DMA buffer alloc error %d\n",
200 			error);
201 		return;
202 	}
203 
204 	/* Map DMA memory in CPU addressable space */
205 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
206 				    &sc->sc_rb.rb_membase,
207 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
208 		aprint_error_dev(&sc->sc_dev, "DMA buffer map error %d\n",
209 			error);
210 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
211 		bus_dmamem_free(dmatag, &seg, rseg);
212 		return;
213 	}
214 
215 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
216 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
217 		aprint_error_dev(&sc->sc_dev, "DMA map create error %d\n",
218 			error);
219 		return;
220 	}
221 
222 	/* Load the buffer */
223 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
224 	    sc->sc_rb.rb_membase, size, NULL,
225 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
226 		aprint_error_dev(&sc->sc_dev, "DMA buffer map load error %d\n",
227 			error);
228 		bus_dmamem_free(dmatag, &seg, rseg);
229 		return;
230 	}
231 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
232 
233 	printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
234 	    ether_sprintf(sc->sc_enaddr));
235 
236 	/* Initialize ifnet structure. */
237 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
238 	ifp->if_softc = sc;
239 	ifp->if_start = hme_start;
240 	ifp->if_ioctl = hme_ioctl;
241 	ifp->if_watchdog = hme_watchdog;
242 	ifp->if_flags =
243 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
244 	sc->sc_if_flags = ifp->if_flags;
245 	ifp->if_capabilities |=
246 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
247 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
248 	IFQ_SET_READY(&ifp->if_snd);
249 
250 	/* Initialize ifmedia structures and MII info */
251 	mii->mii_ifp = ifp;
252 	mii->mii_readreg = hme_mii_readreg;
253 	mii->mii_writereg = hme_mii_writereg;
254 	mii->mii_statchg = hme_mii_statchg;
255 
256 	sc->sc_ethercom.ec_mii = mii;
257 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
258 
259 	hme_mifinit(sc);
260 
261 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
262 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
263 
264 	child = LIST_FIRST(&mii->mii_phys);
265 	if (child == NULL) {
266 		/* No PHY attached */
267 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
268 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
269 	} else {
270 		/*
271 		 * Walk along the list of attached MII devices and
272 		 * establish an `MII instance' to `phy number'
273 		 * mapping. We'll use this mapping in media change
274 		 * requests to determine which phy to use to program
275 		 * the MIF configuration register.
276 		 */
277 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
278 			/*
279 			 * Note: we support just two PHYs: the built-in
280 			 * internal device and an external on the MII
281 			 * connector.
282 			 */
283 			if (child->mii_phy > 1 || child->mii_inst > 1) {
284 				aprint_error_dev(&sc->sc_dev, "cannot accommodate MII device %s"
285 				       " at phy %d, instance %d\n",
286 				       device_xname(child->mii_dev),
287 				       child->mii_phy, child->mii_inst);
288 				continue;
289 			}
290 
291 			sc->sc_phys[child->mii_inst] = child->mii_phy;
292 		}
293 
294 		/*
295 		 * XXX - we can really do the following ONLY if the
296 		 * phy indeed has the auto negotiation capability!!
297 		 */
298 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
299 	}
300 
301 	/* claim 802.1q capability */
302 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
303 
304 	/* Attach the interface. */
305 	if_attach(ifp);
306 	ether_ifattach(ifp, sc->sc_enaddr);
307 
308 	sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
309 	if (sc->sc_sh == NULL)
310 		panic("hme_config: can't establish shutdownhook");
311 
312 #if NRND > 0
313 	rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
314 			  RND_TYPE_NET, 0);
315 #endif
316 
317 	callout_init(&sc->sc_tick_ch, 0);
318 }
319 
320 void
321 hme_tick(void *arg)
322 {
323 	struct hme_softc *sc = arg;
324 	int s;
325 
326 	s = splnet();
327 	mii_tick(&sc->sc_mii);
328 	splx(s);
329 
330 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
331 }
332 
333 void
334 hme_reset(struct hme_softc *sc)
335 {
336 	int s;
337 
338 	s = splnet();
339 	(void)hme_init(sc);
340 	splx(s);
341 }
342 
343 void
344 hme_stop(struct hme_softc *sc, bool chip_only)
345 {
346 	bus_space_tag_t t = sc->sc_bustag;
347 	bus_space_handle_t seb = sc->sc_seb;
348 	int n;
349 
350 	if (!chip_only) {
351 		callout_stop(&sc->sc_tick_ch);
352 		mii_down(&sc->sc_mii);
353 	}
354 
355 	/* Mask all interrupts */
356 	bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
357 
358 	/* Reset transmitter and receiver */
359 	bus_space_write_4(t, seb, HME_SEBI_RESET,
360 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
361 
362 	for (n = 0; n < 20; n++) {
363 		uint32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
364 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
365 			return;
366 		DELAY(20);
367 	}
368 
369 	printf("%s: hme_stop: reset failed\n", device_xname(&sc->sc_dev));
370 }
371 
372 void
373 hme_meminit(struct hme_softc *sc)
374 {
375 	bus_addr_t txbufdma, rxbufdma;
376 	bus_addr_t dma;
377 	char *p;
378 	unsigned int ntbuf, nrbuf, i;
379 	struct hme_ring *hr = &sc->sc_rb;
380 
381 	p = hr->rb_membase;
382 	dma = hr->rb_dmabase;
383 
384 	ntbuf = hr->rb_ntbuf;
385 	nrbuf = hr->rb_nrbuf;
386 
387 	/*
388 	 * Allocate transmit descriptors
389 	 */
390 	hr->rb_txd = p;
391 	hr->rb_txddma = dma;
392 	p += ntbuf * HME_XD_SIZE;
393 	dma += ntbuf * HME_XD_SIZE;
394 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
395 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
396 	p = (void *)roundup((u_long)p, 2048);
397 
398 	/*
399 	 * Allocate receive descriptors
400 	 */
401 	hr->rb_rxd = p;
402 	hr->rb_rxddma = dma;
403 	p += nrbuf * HME_XD_SIZE;
404 	dma += nrbuf * HME_XD_SIZE;
405 	/* Again move forward to the next 2048 byte boundary.*/
406 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
407 	p = (void *)roundup((u_long)p, 2048);
408 
409 
410 	/*
411 	 * Allocate transmit buffers
412 	 */
413 	hr->rb_txbuf = p;
414 	txbufdma = dma;
415 	p += ntbuf * _HME_BUFSZ;
416 	dma += ntbuf * _HME_BUFSZ;
417 
418 	/*
419 	 * Allocate receive buffers
420 	 */
421 	hr->rb_rxbuf = p;
422 	rxbufdma = dma;
423 	p += nrbuf * _HME_BUFSZ;
424 	dma += nrbuf * _HME_BUFSZ;
425 
426 	/*
427 	 * Initialize transmit buffer descriptors
428 	 */
429 	for (i = 0; i < ntbuf; i++) {
430 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
431 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
432 	}
433 
434 	/*
435 	 * Initialize receive buffer descriptors
436 	 */
437 	for (i = 0; i < nrbuf; i++) {
438 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
439 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
440 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
441 	}
442 
443 	hr->rb_tdhead = hr->rb_tdtail = 0;
444 	hr->rb_td_nbusy = 0;
445 	hr->rb_rdtail = 0;
446 }
447 
448 /*
449  * Initialization of interface; set up initialization block
450  * and transmit/receive descriptor rings.
451  */
452 int
453 hme_init(struct hme_softc *sc)
454 {
455 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
456 	bus_space_tag_t t = sc->sc_bustag;
457 	bus_space_handle_t seb = sc->sc_seb;
458 	bus_space_handle_t etx = sc->sc_etx;
459 	bus_space_handle_t erx = sc->sc_erx;
460 	bus_space_handle_t mac = sc->sc_mac;
461 	uint8_t *ea;
462 	uint32_t v;
463 	int rc;
464 
465 	/*
466 	 * Initialization sequence. The numbered steps below correspond
467 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
468 	 * Channel Engine manual (part of the PCIO manual).
469 	 * See also the STP2002-STQ document from Sun Microsystems.
470 	 */
471 
472 	/* step 1 & 2. Reset the Ethernet Channel */
473 	hme_stop(sc, false);
474 
475 	/* Re-initialize the MIF */
476 	hme_mifinit(sc);
477 
478 	/* Call MI reset function if any */
479 	if (sc->sc_hwreset)
480 		(*sc->sc_hwreset)(sc);
481 
482 #if 0
483 	/* Mask all MIF interrupts, just in case */
484 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
485 #endif
486 
487 	/* step 3. Setup data structures in host memory */
488 	hme_meminit(sc);
489 
490 	/* step 4. TX MAC registers & counters */
491 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
492 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
493 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
494 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
495 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
496 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
497 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
498 	sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
499 
500 	/* Load station MAC address */
501 	ea = sc->sc_enaddr;
502 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
503 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
504 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
505 
506 	/*
507 	 * Init seed for backoff
508 	 * (source suggested by manual: low 10 bits of MAC address)
509 	 */
510 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
511 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
512 
513 
514 	/* Note: Accepting power-on default for other MAC registers here.. */
515 
516 
517 	/* step 5. RX MAC registers & counters */
518 	hme_setladrf(sc);
519 
520 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
521 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
522 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
523 
524 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
525 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
526 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
527 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
528 
529 	/* step 8. Global Configuration & Interrupt Mask */
530 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
531 			~(
532 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
533 			  HME_SEB_STAT_HOSTTOTX |
534 			  HME_SEB_STAT_RXTOHOST |
535 			  HME_SEB_STAT_TXALL |
536 			  HME_SEB_STAT_TXPERR |
537 			  HME_SEB_STAT_RCNTEXP |
538 			  /*HME_SEB_STAT_MIFIRQ |*/
539 			  HME_SEB_STAT_ALL_ERRORS ));
540 
541 	switch (sc->sc_burst) {
542 	default:
543 		v = 0;
544 		break;
545 	case 16:
546 		v = HME_SEB_CFG_BURST16;
547 		break;
548 	case 32:
549 		v = HME_SEB_CFG_BURST32;
550 		break;
551 	case 64:
552 		v = HME_SEB_CFG_BURST64;
553 		break;
554 	}
555 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
556 
557 	/* step 9. ETX Configuration: use mostly default values */
558 
559 	/* Enable DMA */
560 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
561 	v |= HME_ETX_CFG_DMAENABLE;
562 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
563 
564 	/* Transmit Descriptor ring size: in increments of 16 */
565 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
566 
567 
568 	/* step 10. ERX Configuration */
569 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
570 
571 	/* Encode Receive Descriptor ring size: four possible values */
572 	switch (_HME_NDESC /*XXX*/) {
573 	case 32:
574 		v |= HME_ERX_CFG_RINGSIZE32;
575 		break;
576 	case 64:
577 		v |= HME_ERX_CFG_RINGSIZE64;
578 		break;
579 	case 128:
580 		v |= HME_ERX_CFG_RINGSIZE128;
581 		break;
582 	case 256:
583 		v |= HME_ERX_CFG_RINGSIZE256;
584 		break;
585 	default:
586 		printf("hme: invalid Receive Descriptor ring size\n");
587 		break;
588 	}
589 
590 	/* Enable DMA */
591 	v |= HME_ERX_CFG_DMAENABLE;
592 
593 	/* set h/w rx checksum start offset (# of half-words) */
594 #ifdef INET
595 	v |= (((ETHER_HDR_LEN + sizeof(struct ip)) / sizeof(uint16_t))
596 		<< HME_ERX_CFG_CSUMSHIFT) &
597 		HME_ERX_CFG_CSUMSTART;
598 #endif
599 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
600 
601 	/* step 11. XIF Configuration */
602 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
603 	v |= HME_MAC_XIF_OE;
604 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
605 
606 	/* step 12. RX_MAC Configuration Register */
607 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
608 	v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
609 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
610 
611 	/* step 13. TX_MAC Configuration Register */
612 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
613 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
614 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
615 
616 	/* step 14. Issue Transmit Pending command */
617 
618 	/* Call MI initialization function if any */
619 	if (sc->sc_hwinit)
620 		(*sc->sc_hwinit)(sc);
621 
622 	/* Set the current media. */
623 	if ((rc = hme_mediachange(ifp)) != 0)
624 		return rc;
625 
626 	/* Start the one second timer. */
627 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
628 
629 	ifp->if_flags |= IFF_RUNNING;
630 	ifp->if_flags &= ~IFF_OACTIVE;
631 	sc->sc_if_flags = ifp->if_flags;
632 	ifp->if_timer = 0;
633 	hme_start(ifp);
634 	return 0;
635 }
636 
637 /*
638  * Routine to copy from mbuf chain to transmit buffer in
639  * network buffer memory.
640  * Returns the amount of data copied.
641  */
642 int
643 hme_put(struct hme_softc *sc, int ri, struct mbuf *m)
644 	/* ri:			 Ring index */
645 {
646 	struct mbuf *n;
647 	int len, tlen = 0;
648 	char *bp;
649 
650 	bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
651 	for (; m; m = n) {
652 		len = m->m_len;
653 		if (len == 0) {
654 			MFREE(m, n);
655 			continue;
656 		}
657 		memcpy(bp, mtod(m, void *), len);
658 		bp += len;
659 		tlen += len;
660 		MFREE(m, n);
661 	}
662 	return (tlen);
663 }
664 
665 /*
666  * Pull data off an interface.
667  * Len is length of data, with local net header stripped.
668  * We copy the data into mbufs.  When full cluster sized units are present
669  * we copy into clusters.
670  */
671 struct mbuf *
672 hme_get(struct hme_softc *sc, int ri, uint32_t flags)
673 {
674 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
675 	struct mbuf *m, *m0, *newm;
676 	char *bp;
677 	int len, totlen;
678 #ifdef INET
679 	int csum_flags;
680 #endif
681 
682 	totlen = HME_XD_DECODE_RSIZE(flags);
683 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
684 	if (m0 == 0)
685 		return (0);
686 	m0->m_pkthdr.rcvif = ifp;
687 	m0->m_pkthdr.len = totlen;
688 	len = MHLEN;
689 	m = m0;
690 
691 	bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
692 
693 	while (totlen > 0) {
694 		if (totlen >= MINCLSIZE) {
695 			MCLGET(m, M_DONTWAIT);
696 			if ((m->m_flags & M_EXT) == 0)
697 				goto bad;
698 			len = MCLBYTES;
699 		}
700 
701 		if (m == m0) {
702 			char *newdata = (char *)
703 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
704 			    sizeof(struct ether_header);
705 			len -= newdata - m->m_data;
706 			m->m_data = newdata;
707 		}
708 
709 		m->m_len = len = min(totlen, len);
710 		memcpy(mtod(m, void *), bp, len);
711 		bp += len;
712 
713 		totlen -= len;
714 		if (totlen > 0) {
715 			MGET(newm, M_DONTWAIT, MT_DATA);
716 			if (newm == 0)
717 				goto bad;
718 			len = MLEN;
719 			m = m->m_next = newm;
720 		}
721 	}
722 
723 #ifdef INET
724 	/* hardware checksum */
725 	csum_flags = 0;
726 	if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
727 		struct ether_header *eh;
728 		struct ether_vlan_header *evh;
729 		struct ip *ip;
730 		struct udphdr *uh;
731 		uint16_t *opts;
732 		int32_t hlen, pktlen;
733 		uint32_t csum_data;
734 
735 		eh = mtod(m0, struct ether_header *);
736 		if (ntohs(eh->ether_type) == ETHERTYPE_IP) {
737 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN);
738 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
739 		} else if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
740 			evh = (struct ether_vlan_header *)eh;
741 			if (ntohs(evh->evl_proto != ETHERTYPE_IP))
742 				goto swcsum;
743 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN +
744 			    ETHER_VLAN_ENCAP_LEN);
745 			pktlen = m0->m_pkthdr.len -
746 			    ETHER_HDR_LEN - ETHER_VLAN_ENCAP_LEN;
747 		} else
748 			goto swcsum;
749 
750 		/* IPv4 only */
751 		if (ip->ip_v != IPVERSION)
752 			goto swcsum;
753 
754 		hlen = ip->ip_hl << 2;
755 		if (hlen < sizeof(struct ip))
756 			goto swcsum;
757 
758 		/*
759 		 * bail if too short, has random trailing garbage, truncated,
760 		 * fragment, or has ethernet pad.
761 		 */
762 		if (ntohs(ip->ip_len) < hlen ||
763 		    ntohs(ip->ip_len) != pktlen ||
764 		    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
765 			goto swcsum;
766 
767 		switch (ip->ip_p) {
768 		case IPPROTO_TCP:
769 			if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0)
770 				goto swcsum;
771 			if (pktlen < (hlen + sizeof(struct tcphdr)))
772 				goto swcsum;
773 			csum_flags =
774 			    M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
775 			break;
776 		case IPPROTO_UDP:
777 			if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0)
778 				goto swcsum;
779 			if (pktlen < (hlen + sizeof(struct udphdr)))
780 				goto swcsum;
781 			uh = (struct udphdr *)((char *)ip + hlen);
782 			/* no checksum */
783 			if (uh->uh_sum == 0)
784 				goto swcsum;
785 			csum_flags =
786 			    M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
787 			break;
788 		default:
789 			goto swcsum;
790 		}
791 
792 		/* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
793 		csum_data = ~flags & HME_XD_RXCKSUM;
794 
795 		/*
796 		 * If data offset is different from RX cksum start offset,
797 		 * we have to deduct them.
798 		 */
799 		hlen = ((char *)ip + hlen) -
800 		    ((char *)eh + ETHER_HDR_LEN + sizeof(struct ip));
801 		if (hlen > 1) {
802 			uint32_t optsum;
803 
804 			optsum = 0;
805 			opts = (uint16_t *)((char *)eh +
806 			    ETHER_HDR_LEN + sizeof(struct ip));
807 
808 			while (hlen > 1) {
809 				optsum += ntohs(*opts++);
810 				hlen -= 2;
811 			}
812 			while (optsum >> 16)
813 				optsum = (optsum >> 16) + (optsum & 0xffff);
814 
815 			/* Deduct the ip opts sum from the hwsum. */
816 			csum_data += (uint16_t)~optsum;
817 
818 			while (csum_data >> 16)
819 				csum_data =
820 				    (csum_data >> 16) + (csum_data & 0xffff);
821 		}
822 		m0->m_pkthdr.csum_data = csum_data;
823 	}
824 swcsum:
825 	m0->m_pkthdr.csum_flags = csum_flags;
826 #endif
827 
828 	return (m0);
829 
830 bad:
831 	m_freem(m0);
832 	return (0);
833 }
834 
835 /*
836  * Pass a packet to the higher levels.
837  */
838 void
839 hme_read(struct hme_softc *sc, int ix, uint32_t flags)
840 {
841 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
842 	struct mbuf *m;
843 	int len;
844 
845 	len = HME_XD_DECODE_RSIZE(flags);
846 	if (len <= sizeof(struct ether_header) ||
847 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
848 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
849 	    ETHERMTU + sizeof(struct ether_header))) {
850 #ifdef HMEDEBUG
851 		printf("%s: invalid packet size %d; dropping\n",
852 		    device_xname(&sc->sc_dev), len);
853 #endif
854 		ifp->if_ierrors++;
855 		return;
856 	}
857 
858 	/* Pull packet off interface. */
859 	m = hme_get(sc, ix, flags);
860 	if (m == 0) {
861 		ifp->if_ierrors++;
862 		return;
863 	}
864 
865 	ifp->if_ipackets++;
866 
867 #if NBPFILTER > 0
868 	/*
869 	 * Check if there's a BPF listener on this interface.
870 	 * If so, hand off the raw packet to BPF.
871 	 */
872 	if (ifp->if_bpf)
873 		bpf_mtap(ifp->if_bpf, m);
874 #endif
875 
876 	/* Pass the packet up. */
877 	(*ifp->if_input)(ifp, m);
878 }
879 
880 void
881 hme_start(struct ifnet *ifp)
882 {
883 	struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
884 	void *txd = sc->sc_rb.rb_txd;
885 	struct mbuf *m;
886 	unsigned int txflags;
887 	unsigned int ri, len;
888 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
889 
890 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
891 		return;
892 
893 	ri = sc->sc_rb.rb_tdhead;
894 
895 	for (;;) {
896 		IFQ_DEQUEUE(&ifp->if_snd, m);
897 		if (m == 0)
898 			break;
899 
900 #if NBPFILTER > 0
901 		/*
902 		 * If BPF is listening on this interface, let it see the
903 		 * packet before we commit it to the wire.
904 		 */
905 		if (ifp->if_bpf)
906 			bpf_mtap(ifp->if_bpf, m);
907 #endif
908 
909 #ifdef INET
910 		/* collect bits for h/w csum, before hme_put frees the mbuf */
911 		if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
912 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
913 			struct ether_header *eh;
914 			uint16_t offset, start;
915 
916 			eh = mtod(m, struct ether_header *);
917 			switch (ntohs(eh->ether_type)) {
918 			case ETHERTYPE_IP:
919 				start = ETHER_HDR_LEN;
920 				break;
921 			case ETHERTYPE_VLAN:
922 				start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
923 				break;
924 			default:
925 				/* unsupported, drop it */
926 				m_free(m);
927 				continue;
928 			}
929 			start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
930 			offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
931 			    + start;
932 			txflags = HME_XD_TXCKSUM |
933 				  (offset << HME_XD_TXCSSTUFFSHIFT) |
934 		  		  (start << HME_XD_TXCSSTARTSHIFT);
935 		} else
936 #endif
937 			txflags = 0;
938 
939 		/*
940 		 * Copy the mbuf chain into the transmit buffer.
941 		 */
942 		len = hme_put(sc, ri, m);
943 
944 		/*
945 		 * Initialize transmit registers and start transmission
946 		 */
947 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
948 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
949 			HME_XD_ENCODE_TSIZE(len) | txflags);
950 
951 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
952 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
953 				  HME_ETX_TP_DMAWAKEUP);
954 
955 		if (++ri == ntbuf)
956 			ri = 0;
957 
958 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
959 			ifp->if_flags |= IFF_OACTIVE;
960 			break;
961 		}
962 	}
963 
964 	sc->sc_rb.rb_tdhead = ri;
965 }
966 
967 /*
968  * Transmit interrupt.
969  */
970 int
971 hme_tint(struct hme_softc *sc)
972 {
973 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
974 	bus_space_tag_t t = sc->sc_bustag;
975 	bus_space_handle_t mac = sc->sc_mac;
976 	unsigned int ri, txflags;
977 
978 	/*
979 	 * Unload collision counters
980 	 */
981 	ifp->if_collisions +=
982 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
983 		bus_space_read_4(t, mac, HME_MACI_FCCNT) +
984 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
985 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
986 
987 	/*
988 	 * then clear the hardware counters.
989 	 */
990 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
991 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
992 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
993 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
994 
995 	/* Fetch current position in the transmit ring */
996 	ri = sc->sc_rb.rb_tdtail;
997 
998 	for (;;) {
999 		if (sc->sc_rb.rb_td_nbusy <= 0)
1000 			break;
1001 
1002 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
1003 
1004 		if (txflags & HME_XD_OWN)
1005 			break;
1006 
1007 		ifp->if_flags &= ~IFF_OACTIVE;
1008 		ifp->if_opackets++;
1009 
1010 		if (++ri == sc->sc_rb.rb_ntbuf)
1011 			ri = 0;
1012 
1013 		--sc->sc_rb.rb_td_nbusy;
1014 	}
1015 
1016 	/* Update ring */
1017 	sc->sc_rb.rb_tdtail = ri;
1018 
1019 	hme_start(ifp);
1020 
1021 	if (sc->sc_rb.rb_td_nbusy == 0)
1022 		ifp->if_timer = 0;
1023 
1024 	return (1);
1025 }
1026 
1027 /*
1028  * Receive interrupt.
1029  */
1030 int
1031 hme_rint(struct hme_softc *sc)
1032 {
1033 	void *xdr = sc->sc_rb.rb_rxd;
1034 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
1035 	unsigned int ri;
1036 	uint32_t flags;
1037 
1038 	ri = sc->sc_rb.rb_rdtail;
1039 
1040 	/*
1041 	 * Process all buffers with valid data.
1042 	 */
1043 	for (;;) {
1044 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
1045 		if (flags & HME_XD_OWN)
1046 			break;
1047 
1048 		if (flags & HME_XD_OFL) {
1049 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
1050 					device_xname(&sc->sc_dev), ri, flags);
1051 		} else
1052 			hme_read(sc, ri, flags);
1053 
1054 		/* This buffer can be used by the hardware again */
1055 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
1056 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
1057 
1058 		if (++ri == nrbuf)
1059 			ri = 0;
1060 	}
1061 
1062 	sc->sc_rb.rb_rdtail = ri;
1063 
1064 	return (1);
1065 }
1066 
1067 int
1068 hme_eint(struct hme_softc *sc, u_int status)
1069 {
1070 	char bits[128];
1071 
1072 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
1073 		bus_space_tag_t t = sc->sc_bustag;
1074 		bus_space_handle_t mif = sc->sc_mif;
1075 		uint32_t cf, st, sm;
1076 		cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
1077 		st = bus_space_read_4(t, mif, HME_MIFI_STAT);
1078 		sm = bus_space_read_4(t, mif, HME_MIFI_SM);
1079 		printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
1080 			device_xname(&sc->sc_dev), cf, st, sm);
1081 		return (1);
1082 	}
1083 	snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
1084 	printf("%s: status=%s\n", device_xname(&sc->sc_dev), bits);
1085 
1086 	return (1);
1087 }
1088 
1089 int
1090 hme_intr(void *v)
1091 {
1092 	struct hme_softc *sc = (struct hme_softc *)v;
1093 	bus_space_tag_t t = sc->sc_bustag;
1094 	bus_space_handle_t seb = sc->sc_seb;
1095 	uint32_t status;
1096 	int r = 0;
1097 
1098 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
1099 
1100 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
1101 		r |= hme_eint(sc, status);
1102 
1103 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
1104 		r |= hme_tint(sc);
1105 
1106 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
1107 		r |= hme_rint(sc);
1108 
1109 #if NRND > 0
1110 	rnd_add_uint32(&sc->rnd_source, status);
1111 #endif
1112 
1113 	return (r);
1114 }
1115 
1116 
1117 void
1118 hme_watchdog(struct ifnet *ifp)
1119 {
1120 	struct hme_softc *sc = ifp->if_softc;
1121 
1122 	log(LOG_ERR, "%s: device timeout\n", device_xname(&sc->sc_dev));
1123 	++ifp->if_oerrors;
1124 
1125 	hme_reset(sc);
1126 }
1127 
1128 /*
1129  * Initialize the MII Management Interface
1130  */
1131 void
1132 hme_mifinit(struct hme_softc *sc)
1133 {
1134 	bus_space_tag_t t = sc->sc_bustag;
1135 	bus_space_handle_t mif = sc->sc_mif;
1136 	bus_space_handle_t mac = sc->sc_mac;
1137 	int instance, phy;
1138 	uint32_t v;
1139 
1140 	if (sc->sc_mii.mii_media.ifm_cur != NULL) {
1141 		instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1142 		phy = sc->sc_phys[instance];
1143 	} else
1144 		/* No media set yet, pick phy arbitrarily.. */
1145 		phy = HME_PHYAD_EXTERNAL;
1146 
1147 	/* Configure the MIF in frame mode, no poll, current phy select */
1148 	v = 0;
1149 	if (phy == HME_PHYAD_EXTERNAL)
1150 		v |= HME_MIF_CFG_PHY;
1151 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1152 
1153 	/* If an external transceiver is selected, enable its MII drivers */
1154 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
1155 	v &= ~HME_MAC_XIF_MIIENABLE;
1156 	if (phy == HME_PHYAD_EXTERNAL)
1157 		v |= HME_MAC_XIF_MIIENABLE;
1158 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1159 }
1160 
1161 /*
1162  * MII interface
1163  */
1164 static int
1165 hme_mii_readreg(struct device *self, int phy, int reg)
1166 {
1167 	struct hme_softc *sc = (void *)self;
1168 	bus_space_tag_t t = sc->sc_bustag;
1169 	bus_space_handle_t mif = sc->sc_mif;
1170 	bus_space_handle_t mac = sc->sc_mac;
1171 	uint32_t v, xif_cfg, mifi_cfg;
1172 	int n;
1173 
1174 	/* We can at most have two PHYs */
1175 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1176 		return (0);
1177 
1178 	/* Select the desired PHY in the MIF configuration register */
1179 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1180 	v &= ~HME_MIF_CFG_PHY;
1181 	if (phy == HME_PHYAD_EXTERNAL)
1182 		v |= HME_MIF_CFG_PHY;
1183 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1184 
1185 	/* Enable MII drivers on external transceiver */
1186 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1187 	if (phy == HME_PHYAD_EXTERNAL)
1188 		v |= HME_MAC_XIF_MIIENABLE;
1189 	else
1190 		v &= ~HME_MAC_XIF_MIIENABLE;
1191 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1192 
1193 #if 0
1194 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1195 	/*
1196 	 * Check whether a transceiver is connected by testing
1197 	 * the MIF configuration register's MDI_X bits. Note that
1198 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1199 	 */
1200 	mif_mdi_bit = 1 << (8 + (1 - phy));
1201 	delay(100);
1202 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1203 	if ((v & mif_mdi_bit) == 0)
1204 		return (0);
1205 #endif
1206 
1207 	/* Construct the frame command */
1208 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1209 	    HME_MIF_FO_TAMSB |
1210 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1211 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
1212 	    (reg << HME_MIF_FO_REGAD_SHIFT);
1213 
1214 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
1215 	for (n = 0; n < 100; n++) {
1216 		DELAY(1);
1217 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
1218 		if (v & HME_MIF_FO_TALSB) {
1219 			v &= HME_MIF_FO_DATA;
1220 			goto out;
1221 		}
1222 	}
1223 
1224 	v = 0;
1225 	printf("%s: mii_read timeout\n", device_xname(&sc->sc_dev));
1226 
1227 out:
1228 	/* Restore MIFI_CFG register */
1229 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1230 	/* Restore XIF register */
1231 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1232 	return (v);
1233 }
1234 
1235 static void
1236 hme_mii_writereg(struct device *self, int phy, int reg, int val)
1237 {
1238 	struct hme_softc *sc = (void *)self;
1239 	bus_space_tag_t t = sc->sc_bustag;
1240 	bus_space_handle_t mif = sc->sc_mif;
1241 	bus_space_handle_t mac = sc->sc_mac;
1242 	uint32_t v, xif_cfg, mifi_cfg;
1243 	int n;
1244 
1245 	/* We can at most have two PHYs */
1246 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1247 		return;
1248 
1249 	/* Select the desired PHY in the MIF configuration register */
1250 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1251 	v &= ~HME_MIF_CFG_PHY;
1252 	if (phy == HME_PHYAD_EXTERNAL)
1253 		v |= HME_MIF_CFG_PHY;
1254 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1255 
1256 	/* Enable MII drivers on external transceiver */
1257 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1258 	if (phy == HME_PHYAD_EXTERNAL)
1259 		v |= HME_MAC_XIF_MIIENABLE;
1260 	else
1261 		v &= ~HME_MAC_XIF_MIIENABLE;
1262 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1263 
1264 #if 0
1265 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1266 	/*
1267 	 * Check whether a transceiver is connected by testing
1268 	 * the MIF configuration register's MDI_X bits. Note that
1269 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1270 	 */
1271 	mif_mdi_bit = 1 << (8 + (1 - phy));
1272 	delay(100);
1273 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1274 	if ((v & mif_mdi_bit) == 0)
1275 		return;
1276 #endif
1277 
1278 	/* Construct the frame command */
1279 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
1280 	    HME_MIF_FO_TAMSB				|
1281 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
1282 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
1283 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
1284 	    (val & HME_MIF_FO_DATA);
1285 
1286 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
1287 	for (n = 0; n < 100; n++) {
1288 		DELAY(1);
1289 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
1290 		if (v & HME_MIF_FO_TALSB)
1291 			goto out;
1292 	}
1293 
1294 	printf("%s: mii_write timeout\n", device_xname(&sc->sc_dev));
1295 out:
1296 	/* Restore MIFI_CFG register */
1297 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1298 	/* Restore XIF register */
1299 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1300 }
1301 
1302 static void
1303 hme_mii_statchg(struct device *dev)
1304 {
1305 	struct hme_softc *sc = (void *)dev;
1306 	bus_space_tag_t t = sc->sc_bustag;
1307 	bus_space_handle_t mac = sc->sc_mac;
1308 	uint32_t v;
1309 
1310 #ifdef HMEDEBUG
1311 	if (sc->sc_debug)
1312 		printf("hme_mii_statchg: status change\n");
1313 #endif
1314 
1315 	/* Set the MAC Full Duplex bit appropriately */
1316 	/* Apparently the hme chip is SIMPLEX if working in full duplex mode,
1317 	   but not otherwise. */
1318 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1319 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1320 		v |= HME_MAC_TXCFG_FULLDPLX;
1321 		sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
1322 	} else {
1323 		v &= ~HME_MAC_TXCFG_FULLDPLX;
1324 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
1325 	}
1326 	sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
1327 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1328 }
1329 
1330 int
1331 hme_mediachange(struct ifnet *ifp)
1332 {
1333 	struct hme_softc *sc = ifp->if_softc;
1334 	bus_space_tag_t t = sc->sc_bustag;
1335 	bus_space_handle_t mif = sc->sc_mif;
1336 	bus_space_handle_t mac = sc->sc_mac;
1337 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1338 	int phy = sc->sc_phys[instance];
1339 	int rc;
1340 	uint32_t v;
1341 
1342 #ifdef HMEDEBUG
1343 	if (sc->sc_debug)
1344 		printf("hme_mediachange: phy = %d\n", phy);
1345 #endif
1346 
1347 	/* Select the current PHY in the MIF configuration register */
1348 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1349 	v &= ~HME_MIF_CFG_PHY;
1350 	if (phy == HME_PHYAD_EXTERNAL)
1351 		v |= HME_MIF_CFG_PHY;
1352 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1353 
1354 	/* If an external transceiver is selected, enable its MII drivers */
1355 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
1356 	v &= ~HME_MAC_XIF_MIIENABLE;
1357 	if (phy == HME_PHYAD_EXTERNAL)
1358 		v |= HME_MAC_XIF_MIIENABLE;
1359 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1360 
1361 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
1362 		return 0;
1363 	return rc;
1364 }
1365 
1366 /*
1367  * Process an ioctl request.
1368  */
1369 int
1370 hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
1371 {
1372 	struct hme_softc *sc = ifp->if_softc;
1373 	struct ifaddr *ifa = (struct ifaddr *)data;
1374 	int s, error = 0;
1375 
1376 	s = splnet();
1377 
1378 	switch (cmd) {
1379 
1380 	case SIOCINITIFADDR:
1381 		switch (ifa->ifa_addr->sa_family) {
1382 #ifdef INET
1383 		case AF_INET:
1384 			if (ifp->if_flags & IFF_UP)
1385 				hme_setladrf(sc);
1386 			else {
1387 				ifp->if_flags |= IFF_UP;
1388 				error = hme_init(sc);
1389 			}
1390 			arp_ifinit(ifp, ifa);
1391 			break;
1392 #endif
1393 		default:
1394 			ifp->if_flags |= IFF_UP;
1395 			error = hme_init(sc);
1396 			break;
1397 		}
1398 		break;
1399 
1400 	case SIOCSIFFLAGS:
1401 #ifdef HMEDEBUG
1402 		{
1403 			struct ifreq *ifr = data;
1404 			sc->sc_debug =
1405 			    (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
1406 		}
1407 #endif
1408 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1409 			break;
1410 
1411 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1412 		case IFF_RUNNING:
1413 			/*
1414 			 * If interface is marked down and it is running, then
1415 			 * stop it.
1416 			 */
1417 			hme_stop(sc, false);
1418 			ifp->if_flags &= ~IFF_RUNNING;
1419 			break;
1420 		case IFF_UP:
1421 			/*
1422 			 * If interface is marked up and it is stopped, then
1423 			 * start it.
1424 			 */
1425 			error = hme_init(sc);
1426 			break;
1427 		case IFF_UP|IFF_RUNNING:
1428 			/*
1429 			 * If setting debug or promiscuous mode, do not reset
1430 			 * the chip; for everything else, call hme_init()
1431 			 * which will trigger a reset.
1432 			 */
1433 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
1434 			if (ifp->if_flags != sc->sc_if_flags) {
1435 				if ((ifp->if_flags & (~RESETIGN))
1436 				    == (sc->sc_if_flags & (~RESETIGN)))
1437 					hme_setladrf(sc);
1438 				else
1439 					error = hme_init(sc);
1440 			}
1441 #undef RESETIGN
1442 			break;
1443 		case 0:
1444 			break;
1445 		}
1446 
1447 		if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
1448 			error = hme_init(sc);
1449 
1450 		break;
1451 
1452 	default:
1453 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1454 			break;
1455 
1456 		error = 0;
1457 
1458 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1459 			;
1460 		else if (ifp->if_flags & IFF_RUNNING) {
1461 			/*
1462 			 * Multicast list has changed; set the hardware filter
1463 			 * accordingly.
1464 			 */
1465 			hme_setladrf(sc);
1466 		}
1467 		break;
1468 	}
1469 
1470 	sc->sc_if_flags = ifp->if_flags;
1471 	splx(s);
1472 	return (error);
1473 }
1474 
1475 void
1476 hme_shutdown(void *arg)
1477 {
1478 
1479 	hme_stop((struct hme_softc *)arg, false);
1480 }
1481 
1482 /*
1483  * Set up the logical address filter.
1484  */
1485 void
1486 hme_setladrf(struct hme_softc *sc)
1487 {
1488 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1489 	struct ether_multi *enm;
1490 	struct ether_multistep step;
1491 	struct ethercom *ec = &sc->sc_ethercom;
1492 	bus_space_tag_t t = sc->sc_bustag;
1493 	bus_space_handle_t mac = sc->sc_mac;
1494 	u_char *cp;
1495 	uint32_t crc;
1496 	uint32_t hash[4];
1497 	uint32_t v;
1498 	int len;
1499 
1500 	/* Clear hash table */
1501 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
1502 
1503 	/* Get current RX configuration */
1504 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1505 
1506 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
1507 		/* Turn on promiscuous mode; turn off the hash filter */
1508 		v |= HME_MAC_RXCFG_PMISC;
1509 		v &= ~HME_MAC_RXCFG_HENABLE;
1510 		ifp->if_flags |= IFF_ALLMULTI;
1511 		goto chipit;
1512 	}
1513 
1514 	/* Turn off promiscuous mode; turn on the hash filter */
1515 	v &= ~HME_MAC_RXCFG_PMISC;
1516 	v |= HME_MAC_RXCFG_HENABLE;
1517 
1518 	/*
1519 	 * Set up multicast address filter by passing all multicast addresses
1520 	 * through a crc generator, and then using the high order 6 bits as an
1521 	 * index into the 64 bit logical address filter.  The high order bit
1522 	 * selects the word, while the rest of the bits select the bit within
1523 	 * the word.
1524 	 */
1525 
1526 	ETHER_FIRST_MULTI(step, ec, enm);
1527 	while (enm != NULL) {
1528 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1529 			/*
1530 			 * We must listen to a range of multicast addresses.
1531 			 * For now, just accept all multicasts, rather than
1532 			 * trying to set only those filter bits needed to match
1533 			 * the range.  (At this time, the only use of address
1534 			 * ranges is for IP multicast routing, for which the
1535 			 * range is big enough to require all bits set.)
1536 			 */
1537 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1538 			ifp->if_flags |= IFF_ALLMULTI;
1539 			goto chipit;
1540 		}
1541 
1542 		cp = enm->enm_addrlo;
1543 		crc = 0xffffffff;
1544 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1545 			int octet = *cp++;
1546 			int i;
1547 
1548 #define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
1549 			for (i = 0; i < 8; i++) {
1550 				if ((crc & 1) ^ (octet & 1)) {
1551 					crc >>= 1;
1552 					crc ^= MC_POLY_LE;
1553 				} else {
1554 					crc >>= 1;
1555 				}
1556 				octet >>= 1;
1557 			}
1558 		}
1559 		/* Just want the 6 most significant bits. */
1560 		crc >>= 26;
1561 
1562 		/* Set the corresponding bit in the filter. */
1563 		hash[crc >> 4] |= 1 << (crc & 0xf);
1564 
1565 		ETHER_NEXT_MULTI(step, enm);
1566 	}
1567 
1568 	ifp->if_flags &= ~IFF_ALLMULTI;
1569 
1570 chipit:
1571 	/* Now load the hash table into the chip */
1572 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1573 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1574 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1575 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1576 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1577 }
1578 
1579 /*
1580  * Routines for accessing the transmit and receive buffers.
1581  * The various CPU and adapter configurations supported by this
1582  * driver require three different access methods for buffers
1583  * and descriptors:
1584  *	(1) contig (contiguous data; no padding),
1585  *	(2) gap2 (two bytes of data followed by two bytes of padding),
1586  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
1587  */
1588 
1589 #if 0
1590 /*
1591  * contig: contiguous data with no padding.
1592  *
1593  * Buffers may have any alignment.
1594  */
1595 
1596 void
1597 hme_copytobuf_contig(struct hme_softc *sc, void *from, int ri, int len)
1598 {
1599 	volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1600 
1601 	/*
1602 	 * Just call memcpy() to do the work.
1603 	 */
1604 	memcpy(buf, from, len);
1605 }
1606 
1607 void
1608 hme_copyfrombuf_contig(struct hme_softc *sc, void *to, int boff, int len)
1609 {
1610 	volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1611 
1612 	/*
1613 	 * Just call memcpy() to do the work.
1614 	 */
1615 	memcpy(to, buf, len);
1616 }
1617 #endif
1618