1 /* $NetBSD: hme.c,v 1.110 2024/06/29 12:11:11 riastradh Exp $ */ 2 3 /*- 4 * Copyright (c) 1999 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Paul Kranenburg. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * HME Ethernet module driver. 34 */ 35 36 #include <sys/cdefs.h> 37 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.110 2024/06/29 12:11:11 riastradh Exp $"); 38 39 /* #define HMEDEBUG */ 40 41 #include "opt_inet.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/kernel.h> 46 #include <sys/mbuf.h> 47 #include <sys/syslog.h> 48 #include <sys/socket.h> 49 #include <sys/device.h> 50 #include <sys/malloc.h> 51 #include <sys/ioctl.h> 52 #include <sys/errno.h> 53 #include <sys/rndsource.h> 54 55 #include <net/if.h> 56 #include <net/if_dl.h> 57 #include <net/if_ether.h> 58 #include <net/if_media.h> 59 #include <net/bpf.h> 60 61 #ifdef INET 62 #include <net/if_vlanvar.h> 63 #include <netinet/in.h> 64 #include <netinet/if_inarp.h> 65 #include <netinet/in_systm.h> 66 #include <netinet/in_var.h> 67 #include <netinet/ip.h> 68 #include <netinet/tcp.h> 69 #include <netinet/udp.h> 70 #endif 71 72 #include <dev/mii/mii.h> 73 #include <dev/mii/miivar.h> 74 75 #include <sys/bus.h> 76 77 #include <dev/ic/hmereg.h> 78 #include <dev/ic/hmevar.h> 79 80 static void hme_start(struct ifnet *); 81 static void hme_stop(struct ifnet *, int); 82 static int hme_ioctl(struct ifnet *, u_long, void *); 83 static void hme_tick(void *); 84 static void hme_watchdog(struct ifnet *); 85 static bool hme_shutdown(device_t, int); 86 static int hme_init(struct ifnet *); 87 static void hme_meminit(struct hme_softc *); 88 static void hme_mifinit(struct hme_softc *); 89 static void hme_reset(struct hme_softc *); 90 static void hme_chipreset(struct hme_softc *); 91 static void hme_setladrf(struct hme_softc *); 92 93 /* MII methods & callbacks */ 94 static int hme_mii_readreg(device_t, int, int, uint16_t *); 95 static int hme_mii_writereg(device_t, int, int, uint16_t); 96 static void hme_mii_statchg(struct ifnet *); 97 98 static int hme_mediachange(struct ifnet *); 99 100 static struct mbuf *hme_get(struct hme_softc *, int, uint32_t); 101 static int hme_put(struct hme_softc *, int, struct mbuf *); 102 static void hme_read(struct hme_softc *, int, uint32_t); 103 static int hme_eint(struct hme_softc *, u_int); 104 static int hme_rint(struct hme_softc *); 105 static int hme_tint(struct hme_softc *); 106 107 #if 0 108 /* Default buffer copy routines */ 109 static void hme_copytobuf_contig(struct hme_softc *, void *, int, int); 110 static void hme_copyfrombuf_contig(struct hme_softc *, void *, int, int); 111 #endif 112 113 void 114 hme_config(struct hme_softc *sc) 115 { 116 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 117 struct mii_data *mii = &sc->sc_mii; 118 struct mii_softc *child; 119 bus_dma_tag_t dmatag = sc->sc_dmatag; 120 bus_dma_segment_t seg; 121 bus_size_t size; 122 int rseg, error; 123 124 /* 125 * HME common initialization. 126 * 127 * hme_softc fields that must be initialized by the front-end: 128 * 129 * the bus tag: 130 * sc_bustag 131 * 132 * the DMA bus tag: 133 * sc_dmatag 134 * 135 * the bus handles: 136 * sc_seb (Shared Ethernet Block registers) 137 * sc_erx (Receiver Unit registers) 138 * sc_etx (Transmitter Unit registers) 139 * sc_mac (MAC registers) 140 * sc_mif (Management Interface registers) 141 * 142 * the maximum bus burst size: 143 * sc_burst 144 * 145 * (notyet:DMA capable memory for the ring descriptors & packet buffers: 146 * rb_membase, rb_dmabase) 147 * 148 * the local Ethernet address: 149 * sc_enaddr 150 * 151 */ 152 153 /* Make sure the chip is stopped. */ 154 hme_chipreset(sc); 155 156 /* 157 * Allocate descriptors and buffers 158 * XXX - do all this differently.. and more configurably, 159 * eg. use things as `dma_load_mbuf()' on transmit, 160 * and a pool of `EXTMEM' mbufs (with buffers DMA-mapped 161 * all the time) on the receiver side. 162 * 163 * Note: receive buffers must be 64-byte aligned. 164 * Also, apparently, the buffers must extend to a DMA burst 165 * boundary beyond the maximum packet size. 166 */ 167 #define _HME_NDESC 128 168 #define _HME_BUFSZ 1600 169 170 /* Note: the # of descriptors must be a multiple of 16 */ 171 sc->sc_rb.rb_ntbuf = _HME_NDESC; 172 sc->sc_rb.rb_nrbuf = _HME_NDESC; 173 174 /* 175 * Allocate DMA capable memory 176 * Buffer descriptors must be aligned on a 2048 byte boundary; 177 * take this into account when calculating the size. Note that 178 * the maximum number of descriptors (256) occupies 2048 bytes, 179 * so we allocate that much regardless of _HME_NDESC. 180 */ 181 size = 2048 + /* TX descriptors */ 182 2048 + /* RX descriptors */ 183 sc->sc_rb.rb_ntbuf * _HME_BUFSZ + /* TX buffers */ 184 sc->sc_rb.rb_nrbuf * _HME_BUFSZ; /* RX buffers */ 185 186 /* Allocate DMA buffer */ 187 if ((error = bus_dmamem_alloc(dmatag, size, 188 2048, 0, 189 &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) { 190 aprint_error_dev(sc->sc_dev, "DMA buffer alloc error %d\n", 191 error); 192 return; 193 } 194 195 /* Map DMA memory in CPU addressable space */ 196 if ((error = bus_dmamem_map(dmatag, &seg, rseg, size, 197 &sc->sc_rb.rb_membase, 198 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) { 199 aprint_error_dev(sc->sc_dev, "DMA buffer map error %d\n", 200 error); 201 goto bad_free; 202 } 203 204 if ((error = bus_dmamap_create(dmatag, size, 1, size, 0, 205 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) { 206 aprint_error_dev(sc->sc_dev, "DMA map create error %d\n", 207 error); 208 goto bad_unmap; 209 } 210 211 /* Load the buffer */ 212 if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap, 213 sc->sc_rb.rb_membase, size, NULL, 214 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) { 215 aprint_error_dev(sc->sc_dev, "DMA buffer map load error %d\n", 216 error); 217 goto bad_destroy; 218 } 219 sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr; 220 221 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n", 222 ether_sprintf(sc->sc_enaddr)); 223 224 /* Initialize ifnet structure. */ 225 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 226 ifp->if_softc = sc; 227 ifp->if_start = hme_start; 228 ifp->if_stop = hme_stop; 229 ifp->if_ioctl = hme_ioctl; 230 ifp->if_init = hme_init; 231 ifp->if_watchdog = hme_watchdog; 232 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 233 sc->sc_if_flags = ifp->if_flags; 234 ifp->if_capabilities |= 235 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | 236 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx; 237 IFQ_SET_READY(&ifp->if_snd); 238 239 /* Initialize ifmedia structures and MII info */ 240 mii->mii_ifp = ifp; 241 mii->mii_readreg = hme_mii_readreg; 242 mii->mii_writereg = hme_mii_writereg; 243 mii->mii_statchg = hme_mii_statchg; 244 245 sc->sc_ethercom.ec_mii = mii; 246 ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus); 247 248 hme_mifinit(sc); 249 250 mii_attach(sc->sc_dev, mii, 0xffffffff, 251 MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG); 252 253 child = LIST_FIRST(&mii->mii_phys); 254 if (child == NULL) { 255 /* No PHY attached */ 256 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL); 257 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL); 258 } else { 259 /* 260 * Walk along the list of attached MII devices and 261 * establish an `MII instance' to `phy number' 262 * mapping. We'll use this mapping in media change 263 * requests to determine which phy to use to program 264 * the MIF configuration register. 265 */ 266 for (; child != NULL; child = LIST_NEXT(child, mii_list)) { 267 /* 268 * Note: we support just two PHYs: the built-in 269 * internal device and an external on the MII 270 * connector. 271 */ 272 if (child->mii_phy > 1 || child->mii_inst > 1) { 273 aprint_error_dev(sc->sc_dev, 274 "cannot accommodate MII device %s" 275 " at phy %d, instance %d\n", 276 device_xname(child->mii_dev), 277 child->mii_phy, child->mii_inst); 278 continue; 279 } 280 281 sc->sc_phys[child->mii_inst] = child->mii_phy; 282 } 283 284 /* 285 * Set the default media to auto negotiation if the phy has 286 * the auto negotiation capability. 287 * XXX; What to do otherwise? 288 */ 289 if (ifmedia_match(&mii->mii_media, IFM_ETHER | IFM_AUTO, 0)) 290 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 291 /* 292 else 293 ifmedia_set(&sc->sc_mii.mii_media, sc->sc_defaultmedia); 294 */ 295 } 296 297 /* claim 802.1q capability */ 298 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; 299 300 /* Attach the interface. */ 301 if_attach(ifp); 302 if_deferred_start_init(ifp, NULL); 303 ether_ifattach(ifp, sc->sc_enaddr); 304 305 if (pmf_device_register1(sc->sc_dev, NULL, NULL, hme_shutdown)) 306 pmf_class_network_register(sc->sc_dev, ifp); 307 else 308 aprint_error_dev(sc->sc_dev, 309 "couldn't establish power handler\n"); 310 311 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev), 312 RND_TYPE_NET, RND_FLAG_DEFAULT); 313 314 callout_init(&sc->sc_tick_ch, 0); 315 callout_setfunc(&sc->sc_tick_ch, hme_tick, sc); 316 317 return; 318 319 bad_destroy: 320 bus_dmamap_destroy(dmatag, sc->sc_dmamap); 321 bad_unmap: 322 bus_dmamem_unmap(dmatag, sc->sc_rb.rb_membase, size); 323 bad_free: 324 bus_dmamem_free(dmatag, &seg, rseg); 325 } 326 327 void 328 hme_tick(void *arg) 329 { 330 struct hme_softc *sc = arg; 331 int s; 332 333 s = splnet(); 334 mii_tick(&sc->sc_mii); 335 splx(s); 336 337 callout_schedule(&sc->sc_tick_ch, hz); 338 } 339 340 void 341 hme_reset(struct hme_softc *sc) 342 { 343 int s; 344 345 s = splnet(); 346 (void)hme_init(&sc->sc_ethercom.ec_if); 347 splx(s); 348 } 349 350 void 351 hme_chipreset(struct hme_softc *sc) 352 { 353 bus_space_tag_t t = sc->sc_bustag; 354 bus_space_handle_t seb = sc->sc_seb; 355 int n; 356 357 /* Mask all interrupts */ 358 bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff); 359 360 /* Reset transmitter and receiver */ 361 bus_space_write_4(t, seb, HME_SEBI_RESET, 362 (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)); 363 364 for (n = 0; n < 20; n++) { 365 uint32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET); 366 if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0) 367 return; 368 DELAY(20); 369 } 370 371 printf("%s: %s: reset failed\n", device_xname(sc->sc_dev), __func__); 372 } 373 374 void 375 hme_stop(struct ifnet *ifp, int disable) 376 { 377 struct hme_softc *sc; 378 379 sc = ifp->if_softc; 380 381 ifp->if_timer = 0; 382 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 383 384 callout_stop(&sc->sc_tick_ch); 385 mii_down(&sc->sc_mii); 386 387 hme_chipreset(sc); 388 } 389 390 void 391 hme_meminit(struct hme_softc *sc) 392 { 393 bus_addr_t txbufdma, rxbufdma; 394 bus_addr_t dma; 395 char *p; 396 unsigned int ntbuf, nrbuf, i; 397 struct hme_ring *hr = &sc->sc_rb; 398 399 p = hr->rb_membase; 400 dma = hr->rb_dmabase; 401 402 ntbuf = hr->rb_ntbuf; 403 nrbuf = hr->rb_nrbuf; 404 405 /* 406 * Allocate transmit descriptors 407 */ 408 hr->rb_txd = p; 409 hr->rb_txddma = dma; 410 p += ntbuf * HME_XD_SIZE; 411 dma += ntbuf * HME_XD_SIZE; 412 /* We have reserved descriptor space until the next 2048 byte boundary.*/ 413 dma = (bus_addr_t)roundup((u_long)dma, 2048); 414 p = (void *)roundup((u_long)p, 2048); 415 416 /* 417 * Allocate receive descriptors 418 */ 419 hr->rb_rxd = p; 420 hr->rb_rxddma = dma; 421 p += nrbuf * HME_XD_SIZE; 422 dma += nrbuf * HME_XD_SIZE; 423 /* Again move forward to the next 2048 byte boundary.*/ 424 dma = (bus_addr_t)roundup((u_long)dma, 2048); 425 p = (void *)roundup((u_long)p, 2048); 426 427 428 /* 429 * Allocate transmit buffers 430 */ 431 hr->rb_txbuf = p; 432 txbufdma = dma; 433 p += ntbuf * _HME_BUFSZ; 434 dma += ntbuf * _HME_BUFSZ; 435 436 /* 437 * Allocate receive buffers 438 */ 439 hr->rb_rxbuf = p; 440 rxbufdma = dma; 441 p += nrbuf * _HME_BUFSZ; 442 dma += nrbuf * _HME_BUFSZ; 443 444 /* 445 * Initialize transmit buffer descriptors 446 */ 447 for (i = 0; i < ntbuf; i++) { 448 HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ); 449 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0); 450 } 451 452 /* 453 * Initialize receive buffer descriptors 454 */ 455 for (i = 0; i < nrbuf; i++) { 456 HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ); 457 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i, 458 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ)); 459 } 460 461 hr->rb_tdhead = hr->rb_tdtail = 0; 462 hr->rb_td_nbusy = 0; 463 hr->rb_rdtail = 0; 464 } 465 466 /* 467 * Initialization of interface; set up initialization block 468 * and transmit/receive descriptor rings. 469 */ 470 int 471 hme_init(struct ifnet *ifp) 472 { 473 struct hme_softc *sc = ifp->if_softc; 474 bus_space_tag_t t = sc->sc_bustag; 475 bus_space_handle_t seb = sc->sc_seb; 476 bus_space_handle_t etx = sc->sc_etx; 477 bus_space_handle_t erx = sc->sc_erx; 478 bus_space_handle_t mac = sc->sc_mac; 479 uint8_t *ea; 480 uint32_t v; 481 int rc; 482 483 /* 484 * Initialization sequence. The numbered steps below correspond 485 * to the sequence outlined in section 6.3.5.1 in the Ethernet 486 * Channel Engine manual (part of the PCIO manual). 487 * See also the STP2002-STQ document from Sun Microsystems. 488 */ 489 490 /* step 1 & 2. Reset the Ethernet Channel */ 491 hme_stop(ifp, 0); 492 493 /* Re-initialize the MIF */ 494 hme_mifinit(sc); 495 496 /* Call MI reset function if any */ 497 if (sc->sc_hwreset) 498 (*sc->sc_hwreset)(sc); 499 500 #if 0 501 /* Mask all MIF interrupts, just in case */ 502 bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff); 503 #endif 504 505 /* step 3. Setup data structures in host memory */ 506 hme_meminit(sc); 507 508 /* step 4. TX MAC registers & counters */ 509 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0); 510 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0); 511 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0); 512 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0); 513 bus_space_write_4(t, mac, HME_MACI_TXSIZE, 514 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ? 515 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN); 516 sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable; 517 518 /* Load station MAC address */ 519 ea = sc->sc_enaddr; 520 bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]); 521 bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]); 522 bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]); 523 524 /* 525 * Init seed for backoff 526 * (source suggested by manual: low 10 bits of MAC address) 527 */ 528 v = ((ea[4] << 8) | ea[5]) & 0x3fff; 529 bus_space_write_4(t, mac, HME_MACI_RANDSEED, v); 530 531 532 /* Note: Accepting power-on default for other MAC registers here.. */ 533 534 535 /* step 5. RX MAC registers & counters */ 536 hme_setladrf(sc); 537 538 /* step 6 & 7. Program Descriptor Ring Base Addresses */ 539 bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma); 540 bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf); 541 542 bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma); 543 bus_space_write_4(t, mac, HME_MACI_RXSIZE, 544 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ? 545 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN); 546 547 /* step 8. Global Configuration & Interrupt Mask */ 548 bus_space_write_4(t, seb, HME_SEBI_IMASK, 549 ~( 550 /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/ 551 HME_SEB_STAT_HOSTTOTX | 552 HME_SEB_STAT_RXTOHOST | 553 HME_SEB_STAT_TXALL | 554 HME_SEB_STAT_TXPERR | 555 HME_SEB_STAT_RCNTEXP | 556 HME_SEB_STAT_MIFIRQ | 557 HME_SEB_STAT_ALL_ERRORS )); 558 559 switch (sc->sc_burst) { 560 default: 561 v = 0; 562 break; 563 case 16: 564 v = HME_SEB_CFG_BURST16; 565 break; 566 case 32: 567 v = HME_SEB_CFG_BURST32; 568 break; 569 case 64: 570 v = HME_SEB_CFG_BURST64; 571 break; 572 } 573 bus_space_write_4(t, seb, HME_SEBI_CFG, v); 574 575 /* step 9. ETX Configuration: use mostly default values */ 576 577 /* Enable DMA */ 578 v = bus_space_read_4(t, etx, HME_ETXI_CFG); 579 v |= HME_ETX_CFG_DMAENABLE; 580 bus_space_write_4(t, etx, HME_ETXI_CFG, v); 581 582 /* Transmit Descriptor ring size: in increments of 16 */ 583 bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1); 584 585 586 /* step 10. ERX Configuration */ 587 v = bus_space_read_4(t, erx, HME_ERXI_CFG); 588 589 /* Encode Receive Descriptor ring size: four possible values */ 590 switch (_HME_NDESC /*XXX*/) { 591 case 32: 592 v |= HME_ERX_CFG_RINGSIZE32; 593 break; 594 case 64: 595 v |= HME_ERX_CFG_RINGSIZE64; 596 break; 597 case 128: 598 v |= HME_ERX_CFG_RINGSIZE128; 599 break; 600 case 256: 601 v |= HME_ERX_CFG_RINGSIZE256; 602 break; 603 default: 604 printf("hme: invalid Receive Descriptor ring size\n"); 605 break; 606 } 607 608 /* Enable DMA */ 609 v |= HME_ERX_CFG_DMAENABLE; 610 611 /* set h/w rx checksum start offset (# of half-words) */ 612 #ifdef INET 613 v |= (((ETHER_HDR_LEN + sizeof(struct ip)) / sizeof(uint16_t)) 614 << HME_ERX_CFG_CSUMSHIFT) & 615 HME_ERX_CFG_CSUMSTART; 616 #endif 617 bus_space_write_4(t, erx, HME_ERXI_CFG, v); 618 619 /* step 11. XIF Configuration */ 620 v = bus_space_read_4(t, mac, HME_MACI_XIF); 621 v |= HME_MAC_XIF_OE; 622 bus_space_write_4(t, mac, HME_MACI_XIF, v); 623 624 /* step 12. RX_MAC Configuration Register */ 625 v = bus_space_read_4(t, mac, HME_MACI_RXCFG); 626 v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP; 627 bus_space_write_4(t, mac, HME_MACI_RXCFG, v); 628 629 /* step 13. TX_MAC Configuration Register */ 630 v = bus_space_read_4(t, mac, HME_MACI_TXCFG); 631 v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP); 632 bus_space_write_4(t, mac, HME_MACI_TXCFG, v); 633 634 /* step 14. Issue Transmit Pending command */ 635 636 /* Call MI initialization function if any */ 637 if (sc->sc_hwinit) 638 (*sc->sc_hwinit)(sc); 639 640 /* Set the current media. */ 641 if ((rc = hme_mediachange(ifp)) != 0) 642 return rc; 643 644 /* Start the one second timer. */ 645 callout_schedule(&sc->sc_tick_ch, hz); 646 647 ifp->if_flags |= IFF_RUNNING; 648 ifp->if_flags &= ~IFF_OACTIVE; 649 sc->sc_if_flags = ifp->if_flags; 650 ifp->if_timer = 0; 651 hme_start(ifp); 652 return 0; 653 } 654 655 /* 656 * Routine to copy from mbuf chain to transmit buffer in 657 * network buffer memory. 658 * Returns the amount of data copied. 659 */ 660 int 661 hme_put(struct hme_softc *sc, int ri, struct mbuf *m) 662 /* ri: Ring index */ 663 { 664 struct mbuf *n; 665 int len, tlen = 0; 666 char *bp; 667 668 bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ; 669 for (; m; m = n) { 670 len = m->m_len; 671 if (len == 0) { 672 n = m_free(m); 673 continue; 674 } 675 memcpy(bp, mtod(m, void *), len); 676 bp += len; 677 tlen += len; 678 n = m_free(m); 679 } 680 return (tlen); 681 } 682 683 /* 684 * Pull data off an interface. 685 * Len is length of data, with local net header stripped. 686 * We copy the data into mbufs. When full cluster sized units are present 687 * we copy into clusters. 688 */ 689 struct mbuf * 690 hme_get(struct hme_softc *sc, int ri, uint32_t flags) 691 { 692 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 693 struct mbuf *m, *m0, *newm; 694 char *bp; 695 int len, totlen; 696 #ifdef INET 697 int csum_flags; 698 #endif 699 700 totlen = HME_XD_DECODE_RSIZE(flags); 701 MGETHDR(m0, M_DONTWAIT, MT_DATA); 702 if (m0 == 0) 703 return (0); 704 MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner); 705 m_set_rcvif(m0, ifp); 706 m0->m_pkthdr.len = totlen; 707 len = MHLEN; 708 m = m0; 709 710 bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ; 711 712 while (totlen > 0) { 713 if (totlen >= MINCLSIZE) { 714 MCLGET(m, M_DONTWAIT); 715 if ((m->m_flags & M_EXT) == 0) 716 goto bad; 717 len = MCLBYTES; 718 } 719 720 if (m == m0) { 721 char *newdata = (char *) 722 ALIGN(m->m_data + sizeof(struct ether_header)) - 723 sizeof(struct ether_header); 724 len -= newdata - m->m_data; 725 m->m_data = newdata; 726 } 727 728 m->m_len = len = uimin(totlen, len); 729 memcpy(mtod(m, void *), bp, len); 730 bp += len; 731 732 totlen -= len; 733 if (totlen > 0) { 734 MGET(newm, M_DONTWAIT, MT_DATA); 735 if (newm == 0) 736 goto bad; 737 len = MLEN; 738 m = m->m_next = newm; 739 } 740 } 741 742 #ifdef INET 743 /* hardware checksum */ 744 csum_flags = 0; 745 if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) { 746 struct ether_header *eh; 747 struct ether_vlan_header *evh; 748 struct ip *ip; 749 struct udphdr *uh; 750 uint16_t *opts; 751 int32_t hlen, pktlen; 752 uint32_t csum_data; 753 754 eh = mtod(m0, struct ether_header *); 755 if (ntohs(eh->ether_type) == ETHERTYPE_IP) { 756 ip = (struct ip *)((char *)eh + ETHER_HDR_LEN); 757 pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN; 758 } else if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) { 759 evh = (struct ether_vlan_header *)eh; 760 if (ntohs(evh->evl_proto) != ETHERTYPE_IP) 761 goto swcsum; 762 ip = (struct ip *)((char *)eh + ETHER_HDR_LEN + 763 ETHER_VLAN_ENCAP_LEN); 764 pktlen = m0->m_pkthdr.len - 765 ETHER_HDR_LEN - ETHER_VLAN_ENCAP_LEN; 766 } else 767 goto swcsum; 768 769 /* IPv4 only */ 770 if (ip->ip_v != IPVERSION) 771 goto swcsum; 772 773 hlen = ip->ip_hl << 2; 774 if (hlen < sizeof(struct ip)) 775 goto swcsum; 776 777 /* 778 * bail if too short, has random trailing garbage, truncated, 779 * fragment, or has ethernet pad. 780 */ 781 if (ntohs(ip->ip_len) < hlen || 782 ntohs(ip->ip_len) != pktlen || 783 (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0) 784 goto swcsum; 785 786 switch (ip->ip_p) { 787 case IPPROTO_TCP: 788 if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0) 789 goto swcsum; 790 if (pktlen < (hlen + sizeof(struct tcphdr))) 791 goto swcsum; 792 csum_flags = 793 M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR; 794 break; 795 case IPPROTO_UDP: 796 if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0) 797 goto swcsum; 798 if (pktlen < (hlen + sizeof(struct udphdr))) 799 goto swcsum; 800 uh = (struct udphdr *)((char *)ip + hlen); 801 /* no checksum */ 802 if (uh->uh_sum == 0) 803 goto swcsum; 804 csum_flags = 805 M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR; 806 break; 807 default: 808 goto swcsum; 809 } 810 811 /* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */ 812 csum_data = ~flags & HME_XD_RXCKSUM; 813 814 /* 815 * If data offset is different from RX cksum start offset, 816 * we have to deduct them. 817 */ 818 hlen = ((char *)ip + hlen) - 819 ((char *)eh + ETHER_HDR_LEN + sizeof(struct ip)); 820 if (hlen > 1) { 821 uint32_t optsum; 822 823 optsum = 0; 824 opts = (uint16_t *)((char *)eh + 825 ETHER_HDR_LEN + sizeof(struct ip)); 826 827 while (hlen > 1) { 828 optsum += ntohs(*opts++); 829 hlen -= 2; 830 } 831 while (optsum >> 16) 832 optsum = (optsum >> 16) + (optsum & 0xffff); 833 834 /* Deduct the ip opts sum from the hwsum. */ 835 csum_data += (uint16_t)~optsum; 836 837 while (csum_data >> 16) 838 csum_data = 839 (csum_data >> 16) + (csum_data & 0xffff); 840 } 841 m0->m_pkthdr.csum_data = csum_data; 842 } 843 swcsum: 844 m0->m_pkthdr.csum_flags = csum_flags; 845 #endif 846 847 return (m0); 848 849 bad: 850 m_freem(m0); 851 return (0); 852 } 853 854 /* 855 * Pass a packet to the higher levels. 856 */ 857 void 858 hme_read(struct hme_softc *sc, int ix, uint32_t flags) 859 { 860 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 861 struct mbuf *m; 862 int len; 863 864 len = HME_XD_DECODE_RSIZE(flags); 865 if (len <= sizeof(struct ether_header) || 866 len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ? 867 ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) : 868 ETHERMTU + sizeof(struct ether_header))) { 869 #ifdef HMEDEBUG 870 printf("%s: invalid packet size %d; dropping\n", 871 device_xname(sc->sc_dev), len); 872 #endif 873 if_statinc(ifp, if_ierrors); 874 return; 875 } 876 877 /* Pull packet off interface. */ 878 m = hme_get(sc, ix, flags); 879 if (m == 0) { 880 if_statinc(ifp, if_ierrors); 881 return; 882 } 883 884 /* Pass the packet up. */ 885 if_percpuq_enqueue(ifp->if_percpuq, m); 886 } 887 888 void 889 hme_start(struct ifnet *ifp) 890 { 891 struct hme_softc *sc = ifp->if_softc; 892 void *txd = sc->sc_rb.rb_txd; 893 struct mbuf *m; 894 unsigned int txflags; 895 unsigned int ri, len, obusy; 896 unsigned int ntbuf = sc->sc_rb.rb_ntbuf; 897 898 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 899 return; 900 901 ri = sc->sc_rb.rb_tdhead; 902 obusy = sc->sc_rb.rb_td_nbusy; 903 904 for (;;) { 905 IFQ_DEQUEUE(&ifp->if_snd, m); 906 if (m == 0) 907 break; 908 909 /* 910 * If BPF is listening on this interface, let it see the 911 * packet before we commit it to the wire. 912 */ 913 bpf_mtap(ifp, m, BPF_D_OUT); 914 915 #ifdef INET 916 /* collect bits for h/w csum, before hme_put frees the mbuf */ 917 if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) && 918 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) { 919 struct ether_header *eh; 920 uint16_t offset, start; 921 922 eh = mtod(m, struct ether_header *); 923 switch (ntohs(eh->ether_type)) { 924 case ETHERTYPE_IP: 925 start = ETHER_HDR_LEN; 926 break; 927 case ETHERTYPE_VLAN: 928 start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 929 break; 930 default: 931 /* unsupported, drop it */ 932 m_free(m); 933 continue; 934 } 935 start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data); 936 offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data) 937 + start; 938 txflags = HME_XD_TXCKSUM | 939 (offset << HME_XD_TXCSSTUFFSHIFT) | 940 (start << HME_XD_TXCSSTARTSHIFT); 941 } else 942 #endif 943 txflags = 0; 944 945 /* 946 * Copy the mbuf chain into the transmit buffer. 947 */ 948 len = hme_put(sc, ri, m); 949 950 /* 951 * Initialize transmit registers and start transmission 952 */ 953 HME_XD_SETFLAGS(sc->sc_pci, txd, ri, 954 HME_XD_OWN | HME_XD_SOP | HME_XD_EOP | 955 HME_XD_ENCODE_TSIZE(len) | txflags); 956 957 /*if (sc->sc_rb.rb_td_nbusy <= 0)*/ 958 bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING, 959 HME_ETX_TP_DMAWAKEUP); 960 961 if (++ri == ntbuf) 962 ri = 0; 963 964 if (++sc->sc_rb.rb_td_nbusy == ntbuf) { 965 ifp->if_flags |= IFF_OACTIVE; 966 break; 967 } 968 } 969 970 if (obusy != sc->sc_rb.rb_td_nbusy) { 971 sc->sc_rb.rb_tdhead = ri; 972 ifp->if_timer = 5; 973 } 974 } 975 976 /* 977 * Transmit interrupt. 978 */ 979 int 980 hme_tint(struct hme_softc *sc) 981 { 982 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 983 bus_space_tag_t t = sc->sc_bustag; 984 bus_space_handle_t mac = sc->sc_mac; 985 unsigned int ri, txflags; 986 987 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 988 989 /* 990 * Unload collision counters 991 */ 992 if_statadd_ref(ifp, nsr, if_collisions, 993 bus_space_read_4(t, mac, HME_MACI_NCCNT) + 994 bus_space_read_4(t, mac, HME_MACI_FCCNT)); 995 if_statadd_ref(ifp, nsr, if_oerrors, 996 bus_space_read_4(t, mac, HME_MACI_EXCNT) + 997 bus_space_read_4(t, mac, HME_MACI_LTCNT)); 998 999 /* 1000 * then clear the hardware counters. 1001 */ 1002 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0); 1003 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0); 1004 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0); 1005 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0); 1006 1007 /* Fetch current position in the transmit ring */ 1008 ri = sc->sc_rb.rb_tdtail; 1009 1010 for (;;) { 1011 if (sc->sc_rb.rb_td_nbusy <= 0) 1012 break; 1013 1014 txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri); 1015 1016 if (txflags & HME_XD_OWN) 1017 break; 1018 1019 ifp->if_flags &= ~IFF_OACTIVE; 1020 if_statinc_ref(ifp, nsr, if_opackets); 1021 1022 if (++ri == sc->sc_rb.rb_ntbuf) 1023 ri = 0; 1024 1025 --sc->sc_rb.rb_td_nbusy; 1026 } 1027 1028 IF_STAT_PUTREF(ifp); 1029 1030 /* Update ring */ 1031 sc->sc_rb.rb_tdtail = ri; 1032 1033 if_schedule_deferred_start(ifp); 1034 1035 if (sc->sc_rb.rb_td_nbusy == 0) 1036 ifp->if_timer = 0; 1037 1038 return (1); 1039 } 1040 1041 /* 1042 * Receive interrupt. 1043 */ 1044 int 1045 hme_rint(struct hme_softc *sc) 1046 { 1047 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1048 bus_space_tag_t t = sc->sc_bustag; 1049 bus_space_handle_t mac = sc->sc_mac; 1050 void *xdr = sc->sc_rb.rb_rxd; 1051 unsigned int nrbuf = sc->sc_rb.rb_nrbuf; 1052 unsigned int ri; 1053 uint32_t flags; 1054 1055 ri = sc->sc_rb.rb_rdtail; 1056 1057 /* 1058 * Process all buffers with valid data. 1059 */ 1060 for (;;) { 1061 flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri); 1062 if (flags & HME_XD_OWN) 1063 break; 1064 1065 if (flags & HME_XD_OFL) { 1066 printf("%s: buffer overflow, ri=%d; flags=0x%x\n", 1067 device_xname(sc->sc_dev), ri, flags); 1068 } else 1069 hme_read(sc, ri, flags); 1070 1071 /* This buffer can be used by the hardware again */ 1072 HME_XD_SETFLAGS(sc->sc_pci, xdr, ri, 1073 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ)); 1074 1075 if (++ri == nrbuf) 1076 ri = 0; 1077 } 1078 1079 sc->sc_rb.rb_rdtail = ri; 1080 1081 /* Read error counters ... */ 1082 if_statadd(ifp, if_ierrors, 1083 bus_space_read_4(t, mac, HME_MACI_STAT_LCNT) + 1084 bus_space_read_4(t, mac, HME_MACI_STAT_ACNT) + 1085 bus_space_read_4(t, mac, HME_MACI_STAT_CCNT) + 1086 bus_space_read_4(t, mac, HME_MACI_STAT_CVCNT)); 1087 1088 /* ... then clear the hardware counters. */ 1089 bus_space_write_4(t, mac, HME_MACI_STAT_LCNT, 0); 1090 bus_space_write_4(t, mac, HME_MACI_STAT_ACNT, 0); 1091 bus_space_write_4(t, mac, HME_MACI_STAT_CCNT, 0); 1092 bus_space_write_4(t, mac, HME_MACI_STAT_CVCNT, 0); 1093 return (1); 1094 } 1095 1096 int 1097 hme_eint(struct hme_softc *sc, u_int status) 1098 { 1099 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1100 char bits[128]; 1101 1102 if ((status & HME_SEB_STAT_MIFIRQ) != 0) { 1103 bus_space_tag_t t = sc->sc_bustag; 1104 bus_space_handle_t mif = sc->sc_mif; 1105 uint32_t cf, st, sm; 1106 cf = bus_space_read_4(t, mif, HME_MIFI_CFG); 1107 st = bus_space_read_4(t, mif, HME_MIFI_STAT); 1108 sm = bus_space_read_4(t, mif, HME_MIFI_SM); 1109 printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n", 1110 device_xname(sc->sc_dev), cf, st, sm); 1111 return (1); 1112 } 1113 1114 /* Receive error counters rolled over */ 1115 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 1116 if (status & HME_SEB_STAT_ACNTEXP) 1117 if_statadd_ref(ifp, nsr, if_ierrors, 0xff); 1118 if (status & HME_SEB_STAT_CCNTEXP) 1119 if_statadd_ref(ifp, nsr, if_ierrors, 0xff); 1120 if (status & HME_SEB_STAT_LCNTEXP) 1121 if_statadd_ref(ifp, nsr, if_ierrors, 0xff); 1122 if (status & HME_SEB_STAT_CVCNTEXP) 1123 if_statadd_ref(ifp, nsr, if_ierrors, 0xff); 1124 IF_STAT_PUTREF(ifp); 1125 1126 /* RXTERR locks up the interface, so do a reset */ 1127 if (status & HME_SEB_STAT_RXTERR) 1128 hme_reset(sc); 1129 1130 snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status); 1131 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits); 1132 1133 return (1); 1134 } 1135 1136 int 1137 hme_intr(void *v) 1138 { 1139 struct hme_softc *sc = v; 1140 bus_space_tag_t t = sc->sc_bustag; 1141 bus_space_handle_t seb = sc->sc_seb; 1142 uint32_t status; 1143 int r = 0; 1144 1145 status = bus_space_read_4(t, seb, HME_SEBI_STAT); 1146 1147 if ((status & HME_SEB_STAT_ALL_ERRORS) != 0) 1148 r |= hme_eint(sc, status); 1149 1150 if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0) 1151 r |= hme_tint(sc); 1152 1153 if ((status & HME_SEB_STAT_RXTOHOST) != 0) 1154 r |= hme_rint(sc); 1155 1156 rnd_add_uint32(&sc->rnd_source, status); 1157 1158 return (r); 1159 } 1160 1161 1162 void 1163 hme_watchdog(struct ifnet *ifp) 1164 { 1165 struct hme_softc *sc = ifp->if_softc; 1166 1167 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev)); 1168 if_statinc(ifp, if_oerrors); 1169 1170 hme_reset(sc); 1171 } 1172 1173 /* 1174 * Initialize the MII Management Interface 1175 */ 1176 void 1177 hme_mifinit(struct hme_softc *sc) 1178 { 1179 bus_space_tag_t t = sc->sc_bustag; 1180 bus_space_handle_t mif = sc->sc_mif; 1181 bus_space_handle_t mac = sc->sc_mac; 1182 int instance, phy; 1183 uint32_t v; 1184 1185 if (sc->sc_mii.mii_media.ifm_cur != NULL) { 1186 instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media); 1187 phy = sc->sc_phys[instance]; 1188 } else 1189 /* No media set yet, pick phy arbitrarily.. */ 1190 phy = HME_PHYAD_EXTERNAL; 1191 1192 /* Configure the MIF in frame mode, no poll, current phy select */ 1193 v = 0; 1194 if (phy == HME_PHYAD_EXTERNAL) 1195 v |= HME_MIF_CFG_PHY; 1196 bus_space_write_4(t, mif, HME_MIFI_CFG, v); 1197 1198 /* If an external transceiver is selected, enable its MII drivers */ 1199 v = bus_space_read_4(t, mac, HME_MACI_XIF); 1200 v &= ~HME_MAC_XIF_MIIENABLE; 1201 if (phy == HME_PHYAD_EXTERNAL) 1202 v |= HME_MAC_XIF_MIIENABLE; 1203 bus_space_write_4(t, mac, HME_MACI_XIF, v); 1204 } 1205 1206 /* 1207 * MII interface 1208 */ 1209 static int 1210 hme_mii_readreg(device_t self, int phy, int reg, uint16_t *val) 1211 { 1212 struct hme_softc *sc = device_private(self); 1213 bus_space_tag_t t = sc->sc_bustag; 1214 bus_space_handle_t mif = sc->sc_mif; 1215 bus_space_handle_t mac = sc->sc_mac; 1216 uint32_t v, xif_cfg, mifi_cfg; 1217 int n, rv; 1218 1219 /* We can at most have two PHYs */ 1220 if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL) 1221 return -1; 1222 1223 /* Select the desired PHY in the MIF configuration register */ 1224 v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG); 1225 v &= ~HME_MIF_CFG_PHY; 1226 if (phy == HME_PHYAD_EXTERNAL) 1227 v |= HME_MIF_CFG_PHY; 1228 bus_space_write_4(t, mif, HME_MIFI_CFG, v); 1229 1230 /* Enable MII drivers on external transceiver */ 1231 v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF); 1232 if (phy == HME_PHYAD_EXTERNAL) 1233 v |= HME_MAC_XIF_MIIENABLE; 1234 else 1235 v &= ~HME_MAC_XIF_MIIENABLE; 1236 bus_space_write_4(t, mac, HME_MACI_XIF, v); 1237 1238 #if 0 1239 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */ 1240 /* 1241 * Check whether a transceiver is connected by testing 1242 * the MIF configuration register's MDI_X bits. Note that 1243 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h 1244 */ 1245 mif_mdi_bit = 1 << (8 + (1 - phy)); 1246 delay(100); 1247 v = bus_space_read_4(t, mif, HME_MIFI_CFG); 1248 if ((v & mif_mdi_bit) == 0) { 1249 rv = -1; 1250 goto out; 1251 } 1252 #endif 1253 1254 /* Construct the frame command */ 1255 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) | 1256 HME_MIF_FO_TAMSB | 1257 (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) | 1258 (phy << HME_MIF_FO_PHYAD_SHIFT) | 1259 (reg << HME_MIF_FO_REGAD_SHIFT); 1260 1261 bus_space_write_4(t, mif, HME_MIFI_FO, v); 1262 for (n = 0; n < 100; n++) { 1263 DELAY(1); 1264 v = bus_space_read_4(t, mif, HME_MIFI_FO); 1265 if (v & HME_MIF_FO_TALSB) { 1266 *val = v & HME_MIF_FO_DATA; 1267 rv = 0; 1268 goto out; 1269 } 1270 } 1271 1272 rv = ETIMEDOUT; 1273 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev)); 1274 1275 out: 1276 /* Restore MIFI_CFG register */ 1277 bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg); 1278 /* Restore XIF register */ 1279 bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg); 1280 return rv; 1281 } 1282 1283 static int 1284 hme_mii_writereg(device_t self, int phy, int reg, uint16_t val) 1285 { 1286 struct hme_softc *sc = device_private(self); 1287 bus_space_tag_t t = sc->sc_bustag; 1288 bus_space_handle_t mif = sc->sc_mif; 1289 bus_space_handle_t mac = sc->sc_mac; 1290 uint32_t v, xif_cfg, mifi_cfg; 1291 int n, rv; 1292 1293 /* We can at most have two PHYs */ 1294 if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL) 1295 return -1; 1296 1297 /* Select the desired PHY in the MIF configuration register */ 1298 v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG); 1299 v &= ~HME_MIF_CFG_PHY; 1300 if (phy == HME_PHYAD_EXTERNAL) 1301 v |= HME_MIF_CFG_PHY; 1302 bus_space_write_4(t, mif, HME_MIFI_CFG, v); 1303 1304 /* Enable MII drivers on external transceiver */ 1305 v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF); 1306 if (phy == HME_PHYAD_EXTERNAL) 1307 v |= HME_MAC_XIF_MIIENABLE; 1308 else 1309 v &= ~HME_MAC_XIF_MIIENABLE; 1310 bus_space_write_4(t, mac, HME_MACI_XIF, v); 1311 1312 #if 0 1313 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */ 1314 /* 1315 * Check whether a transceiver is connected by testing 1316 * the MIF configuration register's MDI_X bits. Note that 1317 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h 1318 */ 1319 mif_mdi_bit = 1 << (8 + (1 - phy)); 1320 delay(100); 1321 v = bus_space_read_4(t, mif, HME_MIFI_CFG); 1322 if ((v & mif_mdi_bit) == 0) { 1323 rv = -1; 1324 goto out; 1325 } 1326 #endif 1327 1328 /* Construct the frame command */ 1329 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) | 1330 HME_MIF_FO_TAMSB | 1331 (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) | 1332 (phy << HME_MIF_FO_PHYAD_SHIFT) | 1333 (reg << HME_MIF_FO_REGAD_SHIFT) | 1334 (val & HME_MIF_FO_DATA); 1335 1336 bus_space_write_4(t, mif, HME_MIFI_FO, v); 1337 for (n = 0; n < 100; n++) { 1338 DELAY(1); 1339 v = bus_space_read_4(t, mif, HME_MIFI_FO); 1340 if (v & HME_MIF_FO_TALSB) { 1341 rv = 0; 1342 goto out; 1343 } 1344 } 1345 1346 rv = ETIMEDOUT; 1347 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev)); 1348 out: 1349 /* Restore MIFI_CFG register */ 1350 bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg); 1351 /* Restore XIF register */ 1352 bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg); 1353 1354 return rv; 1355 } 1356 1357 static void 1358 hme_mii_statchg(struct ifnet *ifp) 1359 { 1360 struct hme_softc *sc = ifp->if_softc; 1361 bus_space_tag_t t = sc->sc_bustag; 1362 bus_space_handle_t mac = sc->sc_mac; 1363 uint32_t v; 1364 1365 #ifdef HMEDEBUG 1366 if (sc->sc_debug) 1367 printf("hme_mii_statchg: status change\n"); 1368 #endif 1369 1370 /* Set the MAC Full Duplex bit appropriately */ 1371 /* Apparently the hme chip is SIMPLEX if working in full duplex mode, 1372 but not otherwise. */ 1373 v = bus_space_read_4(t, mac, HME_MACI_TXCFG); 1374 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) { 1375 v |= HME_MAC_TXCFG_FULLDPLX; 1376 sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX; 1377 } else { 1378 v &= ~HME_MAC_TXCFG_FULLDPLX; 1379 sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX; 1380 } 1381 sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags; 1382 bus_space_write_4(t, mac, HME_MACI_TXCFG, v); 1383 } 1384 1385 int 1386 hme_mediachange(struct ifnet *ifp) 1387 { 1388 struct hme_softc *sc = ifp->if_softc; 1389 bus_space_tag_t t = sc->sc_bustag; 1390 bus_space_handle_t mif = sc->sc_mif; 1391 bus_space_handle_t mac = sc->sc_mac; 1392 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media); 1393 int phy = sc->sc_phys[instance]; 1394 int rc; 1395 uint32_t v; 1396 1397 #ifdef HMEDEBUG 1398 if (sc->sc_debug) 1399 printf("hme_mediachange: phy = %d\n", phy); 1400 #endif 1401 1402 /* Select the current PHY in the MIF configuration register */ 1403 v = bus_space_read_4(t, mif, HME_MIFI_CFG); 1404 v &= ~HME_MIF_CFG_PHY; 1405 if (phy == HME_PHYAD_EXTERNAL) 1406 v |= HME_MIF_CFG_PHY; 1407 bus_space_write_4(t, mif, HME_MIFI_CFG, v); 1408 1409 /* If an external transceiver is selected, enable its MII drivers */ 1410 v = bus_space_read_4(t, mac, HME_MACI_XIF); 1411 v &= ~HME_MAC_XIF_MIIENABLE; 1412 if (phy == HME_PHYAD_EXTERNAL) 1413 v |= HME_MAC_XIF_MIIENABLE; 1414 bus_space_write_4(t, mac, HME_MACI_XIF, v); 1415 1416 if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO) 1417 return 0; 1418 return rc; 1419 } 1420 1421 /* 1422 * Process an ioctl request. 1423 */ 1424 int 1425 hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data) 1426 { 1427 struct hme_softc *sc = ifp->if_softc; 1428 struct ifaddr *ifa = (struct ifaddr *)data; 1429 int s, error = 0; 1430 1431 s = splnet(); 1432 1433 switch (cmd) { 1434 1435 case SIOCINITIFADDR: 1436 switch (ifa->ifa_addr->sa_family) { 1437 #ifdef INET 1438 case AF_INET: 1439 if (ifp->if_flags & IFF_UP) 1440 hme_setladrf(sc); 1441 else { 1442 ifp->if_flags |= IFF_UP; 1443 error = hme_init(ifp); 1444 } 1445 arp_ifinit(ifp, ifa); 1446 break; 1447 #endif 1448 default: 1449 ifp->if_flags |= IFF_UP; 1450 error = hme_init(ifp); 1451 break; 1452 } 1453 break; 1454 1455 case SIOCSIFFLAGS: 1456 #ifdef HMEDEBUG 1457 { 1458 struct ifreq *ifr = data; 1459 sc->sc_debug = 1460 (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0; 1461 } 1462 #endif 1463 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1464 break; 1465 1466 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) { 1467 case IFF_RUNNING: 1468 /* 1469 * If interface is marked down and it is running, then 1470 * stop it. 1471 */ 1472 hme_stop(ifp, 0); 1473 ifp->if_flags &= ~IFF_RUNNING; 1474 break; 1475 case IFF_UP: 1476 /* 1477 * If interface is marked up and it is stopped, then 1478 * start it. 1479 */ 1480 error = hme_init(ifp); 1481 break; 1482 case IFF_UP | IFF_RUNNING: 1483 /* 1484 * If setting debug or promiscuous mode, do not reset 1485 * the chip; for everything else, call hme_init() 1486 * which will trigger a reset. 1487 */ 1488 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG) 1489 if (ifp->if_flags != sc->sc_if_flags) { 1490 if ((ifp->if_flags & (~RESETIGN)) 1491 == (sc->sc_if_flags & (~RESETIGN))) 1492 hme_setladrf(sc); 1493 else 1494 error = hme_init(ifp); 1495 } 1496 #undef RESETIGN 1497 break; 1498 case 0: 1499 break; 1500 } 1501 1502 if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable) 1503 error = hme_init(ifp); 1504 1505 break; 1506 1507 default: 1508 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET) 1509 break; 1510 1511 error = 0; 1512 1513 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI) 1514 ; 1515 else if (ifp->if_flags & IFF_RUNNING) { 1516 /* 1517 * Multicast list has changed; set the hardware filter 1518 * accordingly. 1519 */ 1520 hme_setladrf(sc); 1521 } 1522 break; 1523 } 1524 1525 sc->sc_if_flags = ifp->if_flags; 1526 splx(s); 1527 return (error); 1528 } 1529 1530 bool 1531 hme_shutdown(device_t self, int howto) 1532 { 1533 struct hme_softc *sc; 1534 struct ifnet *ifp; 1535 1536 sc = device_private(self); 1537 ifp = &sc->sc_ethercom.ec_if; 1538 hme_stop(ifp, 1); 1539 1540 return true; 1541 } 1542 1543 /* 1544 * Set up the logical address filter. 1545 */ 1546 void 1547 hme_setladrf(struct hme_softc *sc) 1548 { 1549 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1550 struct ether_multi *enm; 1551 struct ether_multistep step; 1552 struct ethercom *ec = &sc->sc_ethercom; 1553 bus_space_tag_t t = sc->sc_bustag; 1554 bus_space_handle_t mac = sc->sc_mac; 1555 uint32_t v; 1556 uint32_t crc; 1557 uint32_t hash[4]; 1558 1559 /* Clear hash table */ 1560 hash[3] = hash[2] = hash[1] = hash[0] = 0; 1561 1562 /* Get current RX configuration */ 1563 v = bus_space_read_4(t, mac, HME_MACI_RXCFG); 1564 1565 if ((ifp->if_flags & IFF_PROMISC) != 0) { 1566 /* Turn on promiscuous mode; turn off the hash filter */ 1567 v |= HME_MAC_RXCFG_PMISC; 1568 v &= ~HME_MAC_RXCFG_HENABLE; 1569 ifp->if_flags |= IFF_ALLMULTI; 1570 goto chipit; 1571 } 1572 1573 /* Turn off promiscuous mode; turn on the hash filter */ 1574 v &= ~HME_MAC_RXCFG_PMISC; 1575 v |= HME_MAC_RXCFG_HENABLE; 1576 1577 /* 1578 * Set up multicast address filter by passing all multicast addresses 1579 * through a crc generator, and then using the high order 6 bits as an 1580 * index into the 64 bit logical address filter. The high order bit 1581 * selects the word, while the rest of the bits select the bit within 1582 * the word. 1583 */ 1584 1585 ETHER_LOCK(ec); 1586 ETHER_FIRST_MULTI(step, ec, enm); 1587 while (enm != NULL) { 1588 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 1589 /* 1590 * We must listen to a range of multicast addresses. 1591 * For now, just accept all multicasts, rather than 1592 * trying to set only those filter bits needed to match 1593 * the range. (At this time, the only use of address 1594 * ranges is for IP multicast routing, for which the 1595 * range is big enough to require all bits set.) 1596 */ 1597 hash[3] = hash[2] = hash[1] = hash[0] = 0xffff; 1598 ifp->if_flags |= IFF_ALLMULTI; 1599 ETHER_UNLOCK(ec); 1600 goto chipit; 1601 } 1602 1603 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN); 1604 1605 /* Just want the 6 most significant bits. */ 1606 crc >>= 26; 1607 1608 /* Set the corresponding bit in the filter. */ 1609 hash[crc >> 4] |= 1 << (crc & 0xf); 1610 1611 ETHER_NEXT_MULTI(step, enm); 1612 } 1613 ETHER_UNLOCK(ec); 1614 1615 ifp->if_flags &= ~IFF_ALLMULTI; 1616 1617 chipit: 1618 /* Now load the hash table into the chip */ 1619 bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]); 1620 bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]); 1621 bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]); 1622 bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]); 1623 bus_space_write_4(t, mac, HME_MACI_RXCFG, v); 1624 } 1625 1626 /* 1627 * Routines for accessing the transmit and receive buffers. 1628 * The various CPU and adapter configurations supported by this 1629 * driver require three different access methods for buffers 1630 * and descriptors: 1631 * (1) contig (contiguous data; no padding), 1632 * (2) gap2 (two bytes of data followed by two bytes of padding), 1633 * (3) gap16 (16 bytes of data followed by 16 bytes of padding). 1634 */ 1635 1636 #if 0 1637 /* 1638 * contig: contiguous data with no padding. 1639 * 1640 * Buffers may have any alignment. 1641 */ 1642 1643 void 1644 hme_copytobuf_contig(struct hme_softc *sc, void *from, int ri, int len) 1645 { 1646 volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ); 1647 1648 /* 1649 * Just call memcpy() to do the work. 1650 */ 1651 memcpy(buf, from, len); 1652 } 1653 1654 void 1655 hme_copyfrombuf_contig(struct hme_softc *sc, void *to, int boff, int len) 1656 { 1657 volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ); 1658 1659 /* 1660 * Just call memcpy() to do the work. 1661 */ 1662 memcpy(to, buf, len); 1663 } 1664 #endif 1665