xref: /netbsd-src/sys/dev/ic/hme.c (revision 481fca6e59249d8ffcf24fef7cfbe7b131bfb080)
1 /*	$NetBSD: hme.c,v 1.15 2000/06/25 01:05:16 eeh Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * HME Ethernet module driver.
41  */
42 
43 #define HMEDEBUG
44 
45 #include "opt_inet.h"
46 #include "opt_ns.h"
47 #include "bpfilter.h"
48 #include "rnd.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/kernel.h>
53 #include <sys/mbuf.h>
54 #include <sys/syslog.h>
55 #include <sys/socket.h>
56 #include <sys/device.h>
57 #include <sys/malloc.h>
58 #include <sys/ioctl.h>
59 #include <sys/errno.h>
60 #if NRND > 0
61 #include <sys/rnd.h>
62 #endif
63 
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_ether.h>
67 #include <net/if_media.h>
68 
69 #ifdef INET
70 #include <netinet/in.h>
71 #include <netinet/if_inarp.h>
72 #include <netinet/in_systm.h>
73 #include <netinet/in_var.h>
74 #include <netinet/ip.h>
75 #endif
76 
77 #ifdef NS
78 #include <netns/ns.h>
79 #include <netns/ns_if.h>
80 #endif
81 
82 #if NBPFILTER > 0
83 #include <net/bpf.h>
84 #include <net/bpfdesc.h>
85 #endif
86 
87 #include <dev/mii/mii.h>
88 #include <dev/mii/miivar.h>
89 
90 #include <machine/bus.h>
91 
92 #include <dev/ic/hmereg.h>
93 #include <dev/ic/hmevar.h>
94 
95 void		hme_start __P((struct ifnet *));
96 void		hme_stop __P((struct hme_softc *));
97 int		hme_ioctl __P((struct ifnet *, u_long, caddr_t));
98 void		hme_tick __P((void *));
99 void		hme_watchdog __P((struct ifnet *));
100 void		hme_shutdown __P((void *));
101 void		hme_init __P((struct hme_softc *));
102 void		hme_meminit __P((struct hme_softc *));
103 void		hme_mifinit __P((struct hme_softc *));
104 void		hme_reset __P((struct hme_softc *));
105 void		hme_setladrf __P((struct hme_softc *));
106 
107 /* MII methods & callbacks */
108 static int	hme_mii_readreg __P((struct device *, int, int));
109 static void	hme_mii_writereg __P((struct device *, int, int, int));
110 static void	hme_mii_statchg __P((struct device *));
111 
112 int		hme_mediachange __P((struct ifnet *));
113 void		hme_mediastatus __P((struct ifnet *, struct ifmediareq *));
114 
115 struct mbuf	*hme_get __P((struct hme_softc *, int, int));
116 int		hme_put __P((struct hme_softc *, int, struct mbuf *));
117 void		hme_read __P((struct hme_softc *, int, int));
118 int		hme_eint __P((struct hme_softc *, u_int));
119 int		hme_rint __P((struct hme_softc *));
120 int		hme_tint __P((struct hme_softc *));
121 
122 static int	ether_cmp __P((u_char *, u_char *));
123 
124 /* Default buffer copy routines */
125 void	hme_copytobuf_contig __P((struct hme_softc *, void *, int, int));
126 void	hme_copyfrombuf_contig __P((struct hme_softc *, void *, int, int));
127 void	hme_zerobuf_contig __P((struct hme_softc *, int, int));
128 
129 
130 void
131 hme_config(sc)
132 	struct hme_softc *sc;
133 {
134 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
135 	struct mii_data *mii = &sc->sc_mii;
136 	struct mii_softc *child;
137 	bus_dma_tag_t dmatag = sc->sc_dmatag;
138 	bus_dma_segment_t seg;
139 	bus_size_t size;
140 	int rseg, error;
141 
142 	/*
143 	 * HME common initialization.
144 	 *
145 	 * hme_softc fields that must be initialized by the front-end:
146 	 *
147 	 * the bus tag:
148 	 *	sc_bustag
149 	 *
150 	 * the dma bus tag:
151 	 *	sc_dmatag
152 	 *
153 	 * the bus handles:
154 	 *	sc_seb		(Shared Ethernet Block registers)
155 	 *	sc_erx		(Receiver Unit registers)
156 	 *	sc_etx		(Transmitter Unit registers)
157 	 *	sc_mac		(MAC registers)
158 	 *	sc_mif		(Managment Interface registers)
159 	 *
160 	 * the maximum bus burst size:
161 	 *	sc_burst
162 	 *
163 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
164 	 *	rb_membase, rb_dmabase)
165 	 *
166 	 * the local Ethernet address:
167 	 *	sc_enaddr
168 	 *
169 	 */
170 
171 	/* Make sure the chip is stopped. */
172 	hme_stop(sc);
173 
174 
175 	/*
176 	 * Allocate descriptors and buffers
177 	 * XXX - do all this differently.. and more configurably,
178 	 * eg. use things as `dma_load_mbuf()' on transmit,
179 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
180 	 *     all the time) on the reveiver side.
181 	 *
182 	 * Note: receive buffers must be 64-byte aligned.
183 	 * Also, apparently, the buffers must extend to a DMA burst
184 	 * boundary beyond the maximum packet size.
185 	 */
186 #define _HME_NDESC	32
187 #define _HME_BUFSZ	1600
188 
189 	/* Note: the # of descriptors must be a multiple of 16 */
190 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
191 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
192 
193 	/*
194 	 * Allocate DMA capable memory
195 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
196 	 * take this into account when calculating the size. Note that
197 	 * the maximum number of descriptors (256) occupies 2048 bytes,
198 	 * so we allocate that much regardless of _HME_NDESC.
199 	 */
200 	size =	2048 +					/* TX descriptors */
201 		2048 +					/* RX descriptors */
202 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
203 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* TX buffers */
204 
205 	/* Allocate DMA buffer */
206 	if ((error = bus_dmamem_alloc(dmatag, size,
207 				      2048, 0,
208 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
209 		printf("%s: DMA buffer alloc error %d\n",
210 			sc->sc_dev.dv_xname, error);
211 		return;
212 	}
213 
214 	/* Map DMA memory in CPU addressable space */
215 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
216 				    &sc->sc_rb.rb_membase,
217 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
218 		printf("%s: DMA buffer map error %d\n",
219 			sc->sc_dev.dv_xname, error);
220 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
221 		bus_dmamem_free(dmatag, &seg, rseg);
222 		return;
223 	}
224 
225 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
226 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
227 		printf("%s: DMA map create error %d\n",
228 			sc->sc_dev.dv_xname, error);
229 		return;
230 	}
231 
232 	/* Load the buffer */
233 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
234 	    sc->sc_rb.rb_membase, size, NULL, BUS_DMA_NOWAIT)) != 0) {
235 		printf("%s: DMA buffer map load error %d\n",
236 			sc->sc_dev.dv_xname, error);
237 		bus_dmamem_free(dmatag, &seg, rseg);
238 		return;
239 	}
240 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
241 
242 	printf(": address %s\n", ether_sprintf(sc->sc_enaddr));
243 
244 	/* Initialize ifnet structure. */
245 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
246 	ifp->if_softc = sc;
247 	ifp->if_start = hme_start;
248 	ifp->if_ioctl = hme_ioctl;
249 	ifp->if_watchdog = hme_watchdog;
250 	ifp->if_flags =
251 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
252 
253 	/* Initialize ifmedia structures and MII info */
254 	mii->mii_ifp = ifp;
255 	mii->mii_readreg = hme_mii_readreg;
256 	mii->mii_writereg = hme_mii_writereg;
257 	mii->mii_statchg = hme_mii_statchg;
258 
259 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, hme_mediastatus);
260 
261 	hme_mifinit(sc);
262 
263 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
264 			MII_PHY_ANY, MII_OFFSET_ANY, 0);
265 
266 	child = LIST_FIRST(&mii->mii_phys);
267 	if (child == NULL) {
268 		/* No PHY attached */
269 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
270 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
271 	} else {
272 		/*
273 		 * Walk along the list of attached MII devices and
274 		 * establish an `MII instance' to `phy number'
275 		 * mapping. We'll use this mapping in media change
276 		 * requests to determine which phy to use to program
277 		 * the MIF configuration register.
278 		 */
279 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
280 			/*
281 			 * Note: we support just two PHYs: the built-in
282 			 * internal device and an external on the MII
283 			 * connector.
284 			 */
285 			if (child->mii_phy > 1 || child->mii_inst > 1) {
286 				printf("%s: cannot accomodate MII device %s"
287 				       " at phy %d, instance %d\n",
288 				       sc->sc_dev.dv_xname,
289 				       child->mii_dev.dv_xname,
290 				       child->mii_phy, child->mii_inst);
291 				continue;
292 			}
293 
294 			sc->sc_phys[child->mii_inst] = child->mii_phy;
295 		}
296 
297 		/*
298 		 * XXX - we can really do the following ONLY if the
299 		 * phy indeed has the auto negotiation capability!!
300 		 */
301 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
302 	}
303 
304 	/* Attach the interface. */
305 	if_attach(ifp);
306 	ether_ifattach(ifp, sc->sc_enaddr);
307 
308 #if NBPFILTER > 0
309 	bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
310 #endif
311 
312 	sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
313 	if (sc->sc_sh == NULL)
314 		panic("hme_config: can't establish shutdownhook");
315 
316 #if 0
317 	printf("%s: %d receive buffers, %d transmit buffers\n",
318 	    sc->sc_dev.dv_xname, sc->sc_nrbuf, sc->sc_ntbuf);
319 	sc->sc_rbufaddr = malloc(sc->sc_nrbuf * sizeof(int), M_DEVBUF,
320 					M_WAITOK);
321 	sc->sc_tbufaddr = malloc(sc->sc_ntbuf * sizeof(int), M_DEVBUF,
322 					M_WAITOK);
323 #endif
324 
325 #if NRND > 0
326 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
327 			  RND_TYPE_NET, 0);
328 #endif
329 
330 	callout_init(&sc->sc_tick_ch);
331 }
332 
333 void
334 hme_tick(arg)
335 	void *arg;
336 {
337 	struct hme_softc *sc = arg;
338 	int s;
339 
340 	s = splnet();
341 	mii_tick(&sc->sc_mii);
342 	splx(s);
343 
344 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
345 }
346 
347 void
348 hme_reset(sc)
349 	struct hme_softc *sc;
350 {
351 	int s;
352 
353 	s = splnet();
354 	hme_init(sc);
355 	splx(s);
356 }
357 
358 void
359 hme_stop(sc)
360 	struct hme_softc *sc;
361 {
362 	bus_space_tag_t t = sc->sc_bustag;
363 	bus_space_handle_t seb = sc->sc_seb;
364 	int n;
365 
366 	callout_stop(&sc->sc_tick_ch);
367 	mii_down(&sc->sc_mii);
368 
369 	/* Reset transmitter and receiver */
370 	bus_space_write_4(t, seb, HME_SEBI_RESET,
371 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
372 
373 	for (n = 0; n < 20; n++) {
374 		u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
375 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
376 			return;
377 		DELAY(20);
378 	}
379 
380 	printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname);
381 }
382 
383 void
384 hme_meminit(sc)
385 	struct hme_softc *sc;
386 {
387 	bus_addr_t txbufdma, rxbufdma;
388 	bus_addr_t dma;
389 	caddr_t p;
390 	unsigned int ntbuf, nrbuf, i;
391 	struct hme_ring *hr = &sc->sc_rb;
392 
393 	p = hr->rb_membase;
394 	dma = hr->rb_dmabase;
395 
396 	ntbuf = hr->rb_ntbuf;
397 	nrbuf = hr->rb_nrbuf;
398 
399 	/*
400 	 * Allocate transmit descriptors
401 	 */
402 	hr->rb_txd = p;
403 	hr->rb_txddma = dma;
404 	p += ntbuf * HME_XD_SIZE;
405 	dma += ntbuf * HME_XD_SIZE;
406 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
407 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
408 	p = (caddr_t)roundup((u_long)p, 2048);
409 
410 	/*
411 	 * Allocate receive descriptors
412 	 */
413 	hr->rb_rxd = p;
414 	hr->rb_rxddma = dma;
415 	p += nrbuf * HME_XD_SIZE;
416 	dma += nrbuf * HME_XD_SIZE;
417 	/* Again move forward to the next 2048 byte boundary.*/
418 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
419 	p = (caddr_t)roundup((u_long)p, 2048);
420 
421 
422 	/*
423 	 * Allocate transmit buffers
424 	 */
425 	hr->rb_txbuf = p;
426 	txbufdma = dma;
427 	p += ntbuf * _HME_BUFSZ;
428 	dma += ntbuf * _HME_BUFSZ;
429 
430 	/*
431 	 * Allocate receive buffers
432 	 */
433 	hr->rb_rxbuf = p;
434 	rxbufdma = dma;
435 	p += nrbuf * _HME_BUFSZ;
436 	dma += nrbuf * _HME_BUFSZ;
437 
438 	/*
439 	 * Initialize transmit buffer descriptors
440 	 */
441 	for (i = 0; i < ntbuf; i++) {
442 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
443 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
444 	}
445 
446 	/*
447 	 * Initialize receive buffer descriptors
448 	 */
449 	for (i = 0; i < nrbuf; i++) {
450 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
451 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
452 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
453 	}
454 
455 	hr->rb_tdhead = hr->rb_tdtail = 0;
456 	hr->rb_td_nbusy = 0;
457 	hr->rb_rdtail = 0;
458 }
459 
460 /*
461  * Initialization of interface; set up initialization block
462  * and transmit/receive descriptor rings.
463  */
464 void
465 hme_init(sc)
466 	struct hme_softc *sc;
467 {
468 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
469 	bus_space_tag_t t = sc->sc_bustag;
470 	bus_space_handle_t seb = sc->sc_seb;
471 	bus_space_handle_t etx = sc->sc_etx;
472 	bus_space_handle_t erx = sc->sc_erx;
473 	bus_space_handle_t mac = sc->sc_mac;
474 	bus_space_handle_t mif = sc->sc_mif;
475 	u_int8_t *ea;
476 	u_int32_t v;
477 
478 	/*
479 	 * Initialization sequence. The numbered steps below correspond
480 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
481 	 * Channel Engine manual (part of the PCIO manual).
482 	 * See also the STP2002-STQ document from Sun Microsystems.
483 	 */
484 
485 	/* step 1 & 2. Reset the Ethernet Channel */
486 	hme_stop(sc);
487 
488 	/* Re-initialize the MIF */
489 	hme_mifinit(sc);
490 
491 	/* Call MI reset function if any */
492 	if (sc->sc_hwreset)
493 		(*sc->sc_hwreset)(sc);
494 
495 #if 0
496 	/* Mask all MIF interrupts, just in case */
497 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
498 #endif
499 
500 	/* step 3. Setup data structures in host memory */
501 	hme_meminit(sc);
502 
503 	/* step 4. TX MAC registers & counters */
504 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
505 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
506 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
507 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
508 
509 	/* Load station MAC address */
510 	ea = sc->sc_enaddr;
511 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
512 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
513 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
514 
515 	/*
516 	 * Init seed for backoff
517 	 * (source suggested by manual: low 10 bits of MAC address)
518 	 */
519 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
520 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
521 
522 
523 	/* Note: Accepting power-on default for other MAC registers here.. */
524 
525 
526 	/* step 5. RX MAC registers & counters */
527 	hme_setladrf(sc);
528 
529 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
530 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
531 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
532 
533 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
534 
535 
536 	/* step 8. Global Configuration & Interrupt Mask */
537 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
538 			~(
539 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
540 			  HME_SEB_STAT_HOSTTOTX |
541 			  HME_SEB_STAT_RXTOHOST |
542 			  HME_SEB_STAT_TXALL |
543 			  HME_SEB_STAT_TXPERR |
544 			  HME_SEB_STAT_RCNTEXP |
545 			  HME_SEB_STAT_ALL_ERRORS ));
546 
547 	switch (sc->sc_burst) {
548 	default:
549 		v = 0;
550 		break;
551 	case 16:
552 		v = HME_SEB_CFG_BURST16;
553 		break;
554 	case 32:
555 		v = HME_SEB_CFG_BURST32;
556 		break;
557 	case 64:
558 		v = HME_SEB_CFG_BURST64;
559 		break;
560 	}
561 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
562 
563 	/* step 9. ETX Configuration: use mostly default values */
564 
565 	/* Enable DMA */
566 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
567 	v |= HME_ETX_CFG_DMAENABLE;
568 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
569 
570 	/* Transmit Descriptor ring size: in increments of 16 */
571 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
572 
573 
574 	/* step 10. ERX Configuration */
575 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
576 
577 	/* Encode Receive Descriptor ring size: four possible values */
578 	switch (_HME_NDESC /*XXX*/) {
579 	case 32:
580 		v |= HME_ERX_CFG_RINGSIZE32;
581 		break;
582 	case 64:
583 		v |= HME_ERX_CFG_RINGSIZE64;
584 		break;
585 	case 128:
586 		v |= HME_ERX_CFG_RINGSIZE128;
587 		break;
588 	case 256:
589 		v |= HME_ERX_CFG_RINGSIZE256;
590 		break;
591 	default:
592 		printf("hme: invalid Receive Descriptor ring size\n");
593 		break;
594 	}
595 
596 	/* Enable DMA */
597 	v |= HME_ERX_CFG_DMAENABLE;
598 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
599 
600 	/* step 11. XIF Configuration */
601 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
602 	v |= HME_MAC_XIF_OE;
603 	/* If an external transceiver is connected, enable its MII drivers */
604 	if ((bus_space_read_4(t, mif, HME_MIFI_CFG) & HME_MIF_CFG_MDI1) != 0)
605 		v |= HME_MAC_XIF_MIIENABLE;
606 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
607 
608 
609 	/* step 12. RX_MAC Configuration Register */
610 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
611 	v |= HME_MAC_RXCFG_ENABLE;
612 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
613 
614 	/* step 13. TX_MAC Configuration Register */
615 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
616 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
617 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
618 
619 	/* step 14. Issue Transmit Pending command */
620 
621 	/* Call MI initialization function if any */
622 	if (sc->sc_hwinit)
623 		(*sc->sc_hwinit)(sc);
624 
625 	/* Start the one second timer. */
626 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
627 
628 	ifp->if_flags |= IFF_RUNNING;
629 	ifp->if_flags &= ~IFF_OACTIVE;
630 	ifp->if_timer = 0;
631 	hme_start(ifp);
632 }
633 
634 /*
635  * Compare two Ether/802 addresses for equality, inlined and unrolled for
636  * speed.
637  */
638 static __inline__ int
639 ether_cmp(a, b)
640 	u_char *a, *b;
641 {
642 
643 	if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
644 	    a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
645 		return (0);
646 	return (1);
647 }
648 
649 
650 /*
651  * Routine to copy from mbuf chain to transmit buffer in
652  * network buffer memory.
653  * Returns the amount of data copied.
654  */
655 int
656 hme_put(sc, ri, m)
657 	struct hme_softc *sc;
658 	int ri;			/* Ring index */
659 	struct mbuf *m;
660 {
661 	struct mbuf *n;
662 	int len, tlen = 0;
663 	caddr_t bp;
664 
665 	bp = sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
666 	for (; m; m = n) {
667 		len = m->m_len;
668 		if (len == 0) {
669 			MFREE(m, n);
670 			continue;
671 		}
672 		bcopy(mtod(m, caddr_t), bp, len);
673 		bp += len;
674 		tlen += len;
675 		MFREE(m, n);
676 	}
677 	return (tlen);
678 }
679 
680 /*
681  * Pull data off an interface.
682  * Len is length of data, with local net header stripped.
683  * We copy the data into mbufs.  When full cluster sized units are present
684  * we copy into clusters.
685  */
686 struct mbuf *
687 hme_get(sc, ri, totlen)
688 	struct hme_softc *sc;
689 	int ri, totlen;
690 {
691 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
692 	struct mbuf *m, *m0, *newm;
693 	caddr_t bp;
694 	int len;
695 
696 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
697 	if (m0 == 0)
698 		return (0);
699 	m0->m_pkthdr.rcvif = ifp;
700 	m0->m_pkthdr.len = totlen;
701 	len = MHLEN;
702 	m = m0;
703 
704 	bp = sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
705 
706 	while (totlen > 0) {
707 		if (totlen >= MINCLSIZE) {
708 			MCLGET(m, M_DONTWAIT);
709 			if ((m->m_flags & M_EXT) == 0)
710 				goto bad;
711 			len = MCLBYTES;
712 		}
713 
714 		if (m == m0) {
715 			caddr_t newdata = (caddr_t)
716 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
717 			    sizeof(struct ether_header);
718 			len -= newdata - m->m_data;
719 			m->m_data = newdata;
720 		}
721 
722 		m->m_len = len = min(totlen, len);
723 		bcopy(bp, mtod(m, caddr_t), len);
724 		bp += len;
725 
726 		totlen -= len;
727 		if (totlen > 0) {
728 			MGET(newm, M_DONTWAIT, MT_DATA);
729 			if (newm == 0)
730 				goto bad;
731 			len = MLEN;
732 			m = m->m_next = newm;
733 		}
734 	}
735 
736 	return (m0);
737 
738 bad:
739 	m_freem(m0);
740 	return (0);
741 }
742 
743 /*
744  * Pass a packet to the higher levels.
745  */
746 void
747 hme_read(sc, ix, len)
748 	struct hme_softc *sc;
749 	int ix, len;
750 {
751 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
752 	struct mbuf *m;
753 
754 	if (len <= sizeof(struct ether_header) ||
755 	    len > ETHERMTU + sizeof(struct ether_header)) {
756 #ifdef HMEDEBUG
757 		printf("%s: invalid packet size %d; dropping\n",
758 		    sc->sc_dev.dv_xname, len);
759 #endif
760 		ifp->if_ierrors++;
761 		return;
762 	}
763 
764 	/* Pull packet off interface. */
765 	m = hme_get(sc, ix, len);
766 	if (m == 0) {
767 		ifp->if_ierrors++;
768 		return;
769 	}
770 
771 	ifp->if_ipackets++;
772 
773 #if NBPFILTER > 0
774 	/*
775 	 * Check if there's a BPF listener on this interface.
776 	 * If so, hand off the raw packet to BPF.
777 	 */
778 	if (ifp->if_bpf) {
779 		struct ether_header *eh;
780 
781 		bpf_mtap(ifp->if_bpf, m);
782 
783 		/*
784 		 * Note that the interface cannot be in promiscuous mode if
785 		 * there are no BPF listeners.  And if we are in promiscuous
786 		 * mode, we have to check if this packet is really ours.
787 		 */
788 
789 		/* We assume that the header fit entirely in one mbuf. */
790 		eh = mtod(m, struct ether_header *);
791 
792 		if ((ifp->if_flags & IFF_PROMISC) != 0 &&
793 		    (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
794 		    ether_cmp(eh->ether_dhost, sc->sc_enaddr) == 0) {
795 			m_freem(m);
796 			return;
797 		}
798 	}
799 #endif
800 
801 	/* Pass the packet up. */
802 	(*ifp->if_input)(ifp, m);
803 }
804 
805 void
806 hme_start(ifp)
807 	struct ifnet *ifp;
808 {
809 	struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
810 	caddr_t txd = sc->sc_rb.rb_txd;
811 	struct mbuf *m;
812 	unsigned int ri, len;
813 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
814 
815 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
816 		return;
817 
818 	ri = sc->sc_rb.rb_tdhead;
819 
820 	for (;;) {
821 		IF_DEQUEUE(&ifp->if_snd, m);
822 		if (m == 0)
823 			break;
824 
825 #if NBPFILTER > 0
826 		/*
827 		 * If BPF is listening on this interface, let it see the
828 		 * packet before we commit it to the wire.
829 		 */
830 		if (ifp->if_bpf)
831 			bpf_mtap(ifp->if_bpf, m);
832 #endif
833 
834 		/*
835 		 * Copy the mbuf chain into the transmit buffer.
836 		 */
837 		len = hme_put(sc, ri, m);
838 
839 		/*
840 		 * Initialize transmit registers and start transmission
841 		 */
842 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
843 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
844 			HME_XD_ENCODE_TSIZE(len));
845 
846 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
847 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
848 				  HME_ETX_TP_DMAWAKEUP);
849 
850 		if (++ri == ntbuf)
851 			ri = 0;
852 
853 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
854 			ifp->if_flags |= IFF_OACTIVE;
855 			break;
856 		}
857 	}
858 
859 	sc->sc_rb.rb_tdhead = ri;
860 }
861 
862 /*
863  * Transmit interrupt.
864  */
865 int
866 hme_tint(sc)
867 	struct hme_softc *sc;
868 {
869 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
870 	bus_space_tag_t t = sc->sc_bustag;
871 	bus_space_handle_t mac = sc->sc_mac;
872 	unsigned int ri, txflags;
873 
874 	/*
875 	 * Unload collision counters
876 	 */
877 	ifp->if_collisions +=
878 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
879 		bus_space_read_4(t, mac, HME_MACI_FCCNT) +
880 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
881 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
882 
883 	/*
884 	 * then clear the hardware counters.
885 	 */
886 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
887 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
888 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
889 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
890 
891 	/* Fetch current position in the transmit ring */
892 	ri = sc->sc_rb.rb_tdtail;
893 
894 	for (;;) {
895 		if (sc->sc_rb.rb_td_nbusy <= 0)
896 			break;
897 
898 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
899 
900 		if (txflags & HME_XD_OWN)
901 			break;
902 
903 		ifp->if_flags &= ~IFF_OACTIVE;
904 		ifp->if_opackets++;
905 
906 		if (++ri == sc->sc_rb.rb_ntbuf)
907 			ri = 0;
908 
909 		--sc->sc_rb.rb_td_nbusy;
910 	}
911 
912 	/* Update ring */
913 	sc->sc_rb.rb_tdtail = ri;
914 
915 	hme_start(ifp);
916 
917 	if (sc->sc_rb.rb_td_nbusy == 0)
918 		ifp->if_timer = 0;
919 
920 	return (1);
921 }
922 
923 /*
924  * Receive interrupt.
925  */
926 int
927 hme_rint(sc)
928 	struct hme_softc *sc;
929 {
930 	caddr_t xdr = sc->sc_rb.rb_rxd;
931 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
932 	unsigned int ri, len;
933 	u_int32_t flags;
934 
935 	ri = sc->sc_rb.rb_rdtail;
936 
937 	/*
938 	 * Process all buffers with valid data.
939 	 */
940 	for (;;) {
941 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
942 		if (flags & HME_XD_OWN)
943 			break;
944 
945 		if (flags & HME_XD_OFL) {
946 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
947 					sc->sc_dev.dv_xname, ri, flags);
948 		} else {
949 			len = HME_XD_DECODE_RSIZE(flags);
950 			hme_read(sc, ri, len);
951 		}
952 
953 		/* This buffer can be used by the hardware again */
954 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
955 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
956 
957 		if (++ri == nrbuf)
958 			ri = 0;
959 	}
960 
961 	sc->sc_rb.rb_rdtail = ri;
962 
963 	return (1);
964 }
965 
966 int
967 hme_eint(sc, status)
968 	struct hme_softc *sc;
969 	u_int status;
970 {
971 	char bits[128];
972 
973 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
974 		printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
975 		return (1);
976 	}
977 
978 	printf("%s: status=%s\n", sc->sc_dev.dv_xname,
979 		bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
980 	return (1);
981 }
982 
983 int
984 hme_intr(v)
985 	void *v;
986 {
987 	struct hme_softc *sc = (struct hme_softc *)v;
988 	bus_space_tag_t t = sc->sc_bustag;
989 	bus_space_handle_t seb = sc->sc_seb;
990 	u_int32_t status;
991 	int r = 0;
992 
993 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
994 
995 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
996 		r |= hme_eint(sc, status);
997 
998 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
999 		r |= hme_tint(sc);
1000 
1001 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
1002 		r |= hme_rint(sc);
1003 
1004 	return (r);
1005 }
1006 
1007 
1008 void
1009 hme_watchdog(ifp)
1010 	struct ifnet *ifp;
1011 {
1012 	struct hme_softc *sc = ifp->if_softc;
1013 
1014 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1015 	++ifp->if_oerrors;
1016 
1017 	hme_reset(sc);
1018 }
1019 
1020 /*
1021  * Initialize the MII Management Interface
1022  */
1023 void
1024 hme_mifinit(sc)
1025 	struct hme_softc *sc;
1026 {
1027 	bus_space_tag_t t = sc->sc_bustag;
1028 	bus_space_handle_t mif = sc->sc_mif;
1029 	u_int32_t v;
1030 
1031 	/* Configure the MIF in frame mode */
1032 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1033 	v &= ~HME_MIF_CFG_BBMODE;
1034 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1035 }
1036 
1037 /*
1038  * MII interface
1039  */
1040 static int
1041 hme_mii_readreg(self, phy, reg)
1042 	struct device *self;
1043 	int phy, reg;
1044 {
1045 	struct hme_softc *sc = (void *)self;
1046 	bus_space_tag_t t = sc->sc_bustag;
1047 	bus_space_handle_t mif = sc->sc_mif;
1048 	int n;
1049 	u_int32_t v;
1050 
1051 	/* Select the desired PHY in the MIF configuration register */
1052 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1053 	/* Clear PHY select bit */
1054 	v &= ~HME_MIF_CFG_PHY;
1055 	if (phy == HME_PHYAD_EXTERNAL)
1056 		/* Set PHY select bit to get at external device */
1057 		v |= HME_MIF_CFG_PHY;
1058 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1059 
1060 	/* Construct the frame command */
1061 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1062 	    HME_MIF_FO_TAMSB |
1063 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1064 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
1065 	    (reg << HME_MIF_FO_REGAD_SHIFT);
1066 
1067 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
1068 	for (n = 0; n < 100; n++) {
1069 		DELAY(1);
1070 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
1071 		if (v & HME_MIF_FO_TALSB)
1072 			return (v & HME_MIF_FO_DATA);
1073 	}
1074 
1075 	printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1076 	return (0);
1077 }
1078 
1079 static void
1080 hme_mii_writereg(self, phy, reg, val)
1081 	struct device *self;
1082 	int phy, reg, val;
1083 {
1084 	struct hme_softc *sc = (void *)self;
1085 	bus_space_tag_t t = sc->sc_bustag;
1086 	bus_space_handle_t mif = sc->sc_mif;
1087 	int n;
1088 	u_int32_t v;
1089 
1090 	/* Select the desired PHY in the MIF configuration register */
1091 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1092 	/* Clear PHY select bit */
1093 	v &= ~HME_MIF_CFG_PHY;
1094 	if (phy == HME_PHYAD_EXTERNAL)
1095 		/* Set PHY select bit to get at external device */
1096 		v |= HME_MIF_CFG_PHY;
1097 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1098 
1099 	/* Construct the frame command */
1100 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
1101 	    HME_MIF_FO_TAMSB				|
1102 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
1103 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
1104 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
1105 	    (val & HME_MIF_FO_DATA);
1106 
1107 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
1108 	for (n = 0; n < 100; n++) {
1109 		DELAY(1);
1110 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
1111 		if (v & HME_MIF_FO_TALSB)
1112 			return;
1113 	}
1114 
1115 	printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1116 }
1117 
1118 static void
1119 hme_mii_statchg(dev)
1120 	struct device *dev;
1121 {
1122 	struct hme_softc *sc = (void *)dev;
1123 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1124 	int phy = sc->sc_phys[instance];
1125 	bus_space_tag_t t = sc->sc_bustag;
1126 	bus_space_handle_t mif = sc->sc_mif;
1127 	bus_space_handle_t mac = sc->sc_mac;
1128 	u_int32_t v;
1129 
1130 #ifdef HMEDEBUG
1131 	if (sc->sc_debug)
1132 		printf("hme_mii_statchg: status change: phy = %d\n", phy);
1133 #endif
1134 
1135 	/* Select the current PHY in the MIF configuration register */
1136 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1137 	v &= ~HME_MIF_CFG_PHY;
1138 	if (phy == HME_PHYAD_EXTERNAL)
1139 		v |= HME_MIF_CFG_PHY;
1140 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1141 
1142 	/* Set the MAC Full Duplex bit appropriately */
1143 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1144 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1145 		v |= HME_MAC_TXCFG_FULLDPLX;
1146 	else
1147 		v &= ~HME_MAC_TXCFG_FULLDPLX;
1148 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1149 
1150 	/* If an external transceiver is selected, enable its MII drivers */
1151 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
1152 	v &= ~HME_MAC_XIF_MIIENABLE;
1153 	if (phy == HME_PHYAD_EXTERNAL)
1154 		v |= HME_MAC_XIF_MIIENABLE;
1155 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1156 }
1157 
1158 int
1159 hme_mediachange(ifp)
1160 	struct ifnet *ifp;
1161 {
1162 	struct hme_softc *sc = ifp->if_softc;
1163 
1164 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1165 		return (EINVAL);
1166 
1167 	return (mii_mediachg(&sc->sc_mii));
1168 }
1169 
1170 void
1171 hme_mediastatus(ifp, ifmr)
1172 	struct ifnet *ifp;
1173 	struct ifmediareq *ifmr;
1174 {
1175 	struct hme_softc *sc = ifp->if_softc;
1176 
1177 	if ((ifp->if_flags & IFF_UP) == 0)
1178 		return;
1179 
1180 	mii_pollstat(&sc->sc_mii);
1181 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1182 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1183 }
1184 
1185 /*
1186  * Process an ioctl request.
1187  */
1188 int
1189 hme_ioctl(ifp, cmd, data)
1190 	struct ifnet *ifp;
1191 	u_long cmd;
1192 	caddr_t data;
1193 {
1194 	struct hme_softc *sc = ifp->if_softc;
1195 	struct ifaddr *ifa = (struct ifaddr *)data;
1196 	struct ifreq *ifr = (struct ifreq *)data;
1197 	int s, error = 0;
1198 
1199 	s = splnet();
1200 
1201 	switch (cmd) {
1202 
1203 	case SIOCSIFADDR:
1204 		ifp->if_flags |= IFF_UP;
1205 
1206 		switch (ifa->ifa_addr->sa_family) {
1207 #ifdef INET
1208 		case AF_INET:
1209 			hme_init(sc);
1210 			arp_ifinit(ifp, ifa);
1211 			break;
1212 #endif
1213 #ifdef NS
1214 		case AF_NS:
1215 		    {
1216 			struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1217 
1218 			if (ns_nullhost(*ina))
1219 				ina->x_host =
1220 				    *(union ns_host *)LLADDR(ifp->if_sadl);
1221 			else {
1222 				bcopy(ina->x_host.c_host,
1223 				    LLADDR(ifp->if_sadl),
1224 				    sizeof(sc->sc_enaddr));
1225 			}
1226 			/* Set new address. */
1227 			hme_init(sc);
1228 			break;
1229 		    }
1230 #endif
1231 		default:
1232 			hme_init(sc);
1233 			break;
1234 		}
1235 		break;
1236 
1237 	case SIOCSIFFLAGS:
1238 		if ((ifp->if_flags & IFF_UP) == 0 &&
1239 		    (ifp->if_flags & IFF_RUNNING) != 0) {
1240 			/*
1241 			 * If interface is marked down and it is running, then
1242 			 * stop it.
1243 			 */
1244 			hme_stop(sc);
1245 			ifp->if_flags &= ~IFF_RUNNING;
1246 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
1247 		    	   (ifp->if_flags & IFF_RUNNING) == 0) {
1248 			/*
1249 			 * If interface is marked up and it is stopped, then
1250 			 * start it.
1251 			 */
1252 			hme_init(sc);
1253 		} else if ((ifp->if_flags & IFF_UP) != 0) {
1254 			/*
1255 			 * Reset the interface to pick up changes in any other
1256 			 * flags that affect hardware registers.
1257 			 */
1258 			/*hme_stop(sc);*/
1259 			hme_init(sc);
1260 		}
1261 #ifdef HMEDEBUG
1262 		sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
1263 #endif
1264 		break;
1265 
1266 	case SIOCADDMULTI:
1267 	case SIOCDELMULTI:
1268 		error = (cmd == SIOCADDMULTI) ?
1269 		    ether_addmulti(ifr, &sc->sc_ethercom) :
1270 		    ether_delmulti(ifr, &sc->sc_ethercom);
1271 
1272 		if (error == ENETRESET) {
1273 			/*
1274 			 * Multicast list has changed; set the hardware filter
1275 			 * accordingly.
1276 			 */
1277 			hme_setladrf(sc);
1278 			error = 0;
1279 		}
1280 		break;
1281 
1282 	case SIOCGIFMEDIA:
1283 	case SIOCSIFMEDIA:
1284 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1285 		break;
1286 
1287 	default:
1288 		error = EINVAL;
1289 		break;
1290 	}
1291 
1292 	splx(s);
1293 	return (error);
1294 }
1295 
1296 void
1297 hme_shutdown(arg)
1298 	void *arg;
1299 {
1300 
1301 	hme_stop((struct hme_softc *)arg);
1302 }
1303 
1304 /*
1305  * Set up the logical address filter.
1306  */
1307 void
1308 hme_setladrf(sc)
1309 	struct hme_softc *sc;
1310 {
1311 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1312 	struct ether_multi *enm;
1313 	struct ether_multistep step;
1314 	struct ethercom *ec = &sc->sc_ethercom;
1315 	bus_space_tag_t t = sc->sc_bustag;
1316 	bus_space_handle_t mac = sc->sc_mac;
1317 	u_char *cp;
1318 	u_int32_t crc;
1319 	u_int32_t hash[4];
1320 	u_int32_t v;
1321 	int len;
1322 
1323 	/* Clear hash table */
1324 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
1325 
1326 	/* Get current RX configuration */
1327 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1328 
1329 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
1330 		/* Turn on promiscuous mode; turn off the hash filter */
1331 		v |= HME_MAC_RXCFG_PMISC;
1332 		v &= ~HME_MAC_RXCFG_HENABLE;
1333 		ifp->if_flags |= IFF_ALLMULTI;
1334 		goto chipit;
1335 	}
1336 
1337 	/* Turn off promiscuous mode; turn on the hash filter */
1338 	v &= ~HME_MAC_RXCFG_PMISC;
1339 	v |= HME_MAC_RXCFG_HENABLE;
1340 
1341 	/*
1342 	 * Set up multicast address filter by passing all multicast addresses
1343 	 * through a crc generator, and then using the high order 6 bits as an
1344 	 * index into the 64 bit logical address filter.  The high order bit
1345 	 * selects the word, while the rest of the bits select the bit within
1346 	 * the word.
1347 	 */
1348 
1349 	ETHER_FIRST_MULTI(step, ec, enm);
1350 	while (enm != NULL) {
1351 		if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
1352 			/*
1353 			 * We must listen to a range of multicast addresses.
1354 			 * For now, just accept all multicasts, rather than
1355 			 * trying to set only those filter bits needed to match
1356 			 * the range.  (At this time, the only use of address
1357 			 * ranges is for IP multicast routing, for which the
1358 			 * range is big enough to require all bits set.)
1359 			 */
1360 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1361 			ifp->if_flags |= IFF_ALLMULTI;
1362 			goto chipit;
1363 		}
1364 
1365 		cp = enm->enm_addrlo;
1366 		crc = 0xffffffff;
1367 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1368 			int octet = *cp++;
1369 			int i;
1370 
1371 #define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
1372 			for (i = 0; i < 8; i++) {
1373 				if ((crc & 1) ^ (octet & 1)) {
1374 					crc >>= 1;
1375 					crc ^= MC_POLY_LE;
1376 				} else {
1377 					crc >>= 1;
1378 				}
1379 				octet >>= 1;
1380 			}
1381 		}
1382 		/* Just want the 6 most significant bits. */
1383 		crc >>= 26;
1384 
1385 		/* Set the corresponding bit in the filter. */
1386 		hash[crc >> 4] |= 1 << (crc & 0xf);
1387 
1388 		ETHER_NEXT_MULTI(step, enm);
1389 	}
1390 
1391 	ifp->if_flags &= ~IFF_ALLMULTI;
1392 
1393 chipit:
1394 	/* Now load the hash table into the chip */
1395 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1396 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1397 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1398 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1399 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1400 }
1401 
1402 /*
1403  * Routines for accessing the transmit and receive buffers.
1404  * The various CPU and adapter configurations supported by this
1405  * driver require three different access methods for buffers
1406  * and descriptors:
1407  *	(1) contig (contiguous data; no padding),
1408  *	(2) gap2 (two bytes of data followed by two bytes of padding),
1409  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
1410  */
1411 
1412 #if 0
1413 /*
1414  * contig: contiguous data with no padding.
1415  *
1416  * Buffers may have any alignment.
1417  */
1418 
1419 void
1420 hme_copytobuf_contig(sc, from, ri, len)
1421 	struct hme_softc *sc;
1422 	void *from;
1423 	int ri, len;
1424 {
1425 	volatile caddr_t buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1426 
1427 	/*
1428 	 * Just call bcopy() to do the work.
1429 	 */
1430 	bcopy(from, buf, len);
1431 }
1432 
1433 void
1434 hme_copyfrombuf_contig(sc, to, boff, len)
1435 	struct hme_softc *sc;
1436 	void *to;
1437 	int boff, len;
1438 {
1439 	volatile caddr_t buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1440 
1441 	/*
1442 	 * Just call bcopy() to do the work.
1443 	 */
1444 	bcopy(buf, to, len);
1445 }
1446 #endif
1447