1 /* $NetBSD: hme.c,v 1.15 2000/06/25 01:05:16 eeh Exp $ */ 2 3 /*- 4 * Copyright (c) 1999 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Paul Kranenburg. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /* 40 * HME Ethernet module driver. 41 */ 42 43 #define HMEDEBUG 44 45 #include "opt_inet.h" 46 #include "opt_ns.h" 47 #include "bpfilter.h" 48 #include "rnd.h" 49 50 #include <sys/param.h> 51 #include <sys/systm.h> 52 #include <sys/kernel.h> 53 #include <sys/mbuf.h> 54 #include <sys/syslog.h> 55 #include <sys/socket.h> 56 #include <sys/device.h> 57 #include <sys/malloc.h> 58 #include <sys/ioctl.h> 59 #include <sys/errno.h> 60 #if NRND > 0 61 #include <sys/rnd.h> 62 #endif 63 64 #include <net/if.h> 65 #include <net/if_dl.h> 66 #include <net/if_ether.h> 67 #include <net/if_media.h> 68 69 #ifdef INET 70 #include <netinet/in.h> 71 #include <netinet/if_inarp.h> 72 #include <netinet/in_systm.h> 73 #include <netinet/in_var.h> 74 #include <netinet/ip.h> 75 #endif 76 77 #ifdef NS 78 #include <netns/ns.h> 79 #include <netns/ns_if.h> 80 #endif 81 82 #if NBPFILTER > 0 83 #include <net/bpf.h> 84 #include <net/bpfdesc.h> 85 #endif 86 87 #include <dev/mii/mii.h> 88 #include <dev/mii/miivar.h> 89 90 #include <machine/bus.h> 91 92 #include <dev/ic/hmereg.h> 93 #include <dev/ic/hmevar.h> 94 95 void hme_start __P((struct ifnet *)); 96 void hme_stop __P((struct hme_softc *)); 97 int hme_ioctl __P((struct ifnet *, u_long, caddr_t)); 98 void hme_tick __P((void *)); 99 void hme_watchdog __P((struct ifnet *)); 100 void hme_shutdown __P((void *)); 101 void hme_init __P((struct hme_softc *)); 102 void hme_meminit __P((struct hme_softc *)); 103 void hme_mifinit __P((struct hme_softc *)); 104 void hme_reset __P((struct hme_softc *)); 105 void hme_setladrf __P((struct hme_softc *)); 106 107 /* MII methods & callbacks */ 108 static int hme_mii_readreg __P((struct device *, int, int)); 109 static void hme_mii_writereg __P((struct device *, int, int, int)); 110 static void hme_mii_statchg __P((struct device *)); 111 112 int hme_mediachange __P((struct ifnet *)); 113 void hme_mediastatus __P((struct ifnet *, struct ifmediareq *)); 114 115 struct mbuf *hme_get __P((struct hme_softc *, int, int)); 116 int hme_put __P((struct hme_softc *, int, struct mbuf *)); 117 void hme_read __P((struct hme_softc *, int, int)); 118 int hme_eint __P((struct hme_softc *, u_int)); 119 int hme_rint __P((struct hme_softc *)); 120 int hme_tint __P((struct hme_softc *)); 121 122 static int ether_cmp __P((u_char *, u_char *)); 123 124 /* Default buffer copy routines */ 125 void hme_copytobuf_contig __P((struct hme_softc *, void *, int, int)); 126 void hme_copyfrombuf_contig __P((struct hme_softc *, void *, int, int)); 127 void hme_zerobuf_contig __P((struct hme_softc *, int, int)); 128 129 130 void 131 hme_config(sc) 132 struct hme_softc *sc; 133 { 134 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 135 struct mii_data *mii = &sc->sc_mii; 136 struct mii_softc *child; 137 bus_dma_tag_t dmatag = sc->sc_dmatag; 138 bus_dma_segment_t seg; 139 bus_size_t size; 140 int rseg, error; 141 142 /* 143 * HME common initialization. 144 * 145 * hme_softc fields that must be initialized by the front-end: 146 * 147 * the bus tag: 148 * sc_bustag 149 * 150 * the dma bus tag: 151 * sc_dmatag 152 * 153 * the bus handles: 154 * sc_seb (Shared Ethernet Block registers) 155 * sc_erx (Receiver Unit registers) 156 * sc_etx (Transmitter Unit registers) 157 * sc_mac (MAC registers) 158 * sc_mif (Managment Interface registers) 159 * 160 * the maximum bus burst size: 161 * sc_burst 162 * 163 * (notyet:DMA capable memory for the ring descriptors & packet buffers: 164 * rb_membase, rb_dmabase) 165 * 166 * the local Ethernet address: 167 * sc_enaddr 168 * 169 */ 170 171 /* Make sure the chip is stopped. */ 172 hme_stop(sc); 173 174 175 /* 176 * Allocate descriptors and buffers 177 * XXX - do all this differently.. and more configurably, 178 * eg. use things as `dma_load_mbuf()' on transmit, 179 * and a pool of `EXTMEM' mbufs (with buffers DMA-mapped 180 * all the time) on the reveiver side. 181 * 182 * Note: receive buffers must be 64-byte aligned. 183 * Also, apparently, the buffers must extend to a DMA burst 184 * boundary beyond the maximum packet size. 185 */ 186 #define _HME_NDESC 32 187 #define _HME_BUFSZ 1600 188 189 /* Note: the # of descriptors must be a multiple of 16 */ 190 sc->sc_rb.rb_ntbuf = _HME_NDESC; 191 sc->sc_rb.rb_nrbuf = _HME_NDESC; 192 193 /* 194 * Allocate DMA capable memory 195 * Buffer descriptors must be aligned on a 2048 byte boundary; 196 * take this into account when calculating the size. Note that 197 * the maximum number of descriptors (256) occupies 2048 bytes, 198 * so we allocate that much regardless of _HME_NDESC. 199 */ 200 size = 2048 + /* TX descriptors */ 201 2048 + /* RX descriptors */ 202 sc->sc_rb.rb_ntbuf * _HME_BUFSZ + /* TX buffers */ 203 sc->sc_rb.rb_nrbuf * _HME_BUFSZ; /* TX buffers */ 204 205 /* Allocate DMA buffer */ 206 if ((error = bus_dmamem_alloc(dmatag, size, 207 2048, 0, 208 &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) { 209 printf("%s: DMA buffer alloc error %d\n", 210 sc->sc_dev.dv_xname, error); 211 return; 212 } 213 214 /* Map DMA memory in CPU addressable space */ 215 if ((error = bus_dmamem_map(dmatag, &seg, rseg, size, 216 &sc->sc_rb.rb_membase, 217 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) { 218 printf("%s: DMA buffer map error %d\n", 219 sc->sc_dev.dv_xname, error); 220 bus_dmamap_unload(dmatag, sc->sc_dmamap); 221 bus_dmamem_free(dmatag, &seg, rseg); 222 return; 223 } 224 225 if ((error = bus_dmamap_create(dmatag, size, 1, size, 0, 226 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) { 227 printf("%s: DMA map create error %d\n", 228 sc->sc_dev.dv_xname, error); 229 return; 230 } 231 232 /* Load the buffer */ 233 if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap, 234 sc->sc_rb.rb_membase, size, NULL, BUS_DMA_NOWAIT)) != 0) { 235 printf("%s: DMA buffer map load error %d\n", 236 sc->sc_dev.dv_xname, error); 237 bus_dmamem_free(dmatag, &seg, rseg); 238 return; 239 } 240 sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr; 241 242 printf(": address %s\n", ether_sprintf(sc->sc_enaddr)); 243 244 /* Initialize ifnet structure. */ 245 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); 246 ifp->if_softc = sc; 247 ifp->if_start = hme_start; 248 ifp->if_ioctl = hme_ioctl; 249 ifp->if_watchdog = hme_watchdog; 250 ifp->if_flags = 251 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST; 252 253 /* Initialize ifmedia structures and MII info */ 254 mii->mii_ifp = ifp; 255 mii->mii_readreg = hme_mii_readreg; 256 mii->mii_writereg = hme_mii_writereg; 257 mii->mii_statchg = hme_mii_statchg; 258 259 ifmedia_init(&mii->mii_media, 0, hme_mediachange, hme_mediastatus); 260 261 hme_mifinit(sc); 262 263 mii_attach(&sc->sc_dev, mii, 0xffffffff, 264 MII_PHY_ANY, MII_OFFSET_ANY, 0); 265 266 child = LIST_FIRST(&mii->mii_phys); 267 if (child == NULL) { 268 /* No PHY attached */ 269 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); 270 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL); 271 } else { 272 /* 273 * Walk along the list of attached MII devices and 274 * establish an `MII instance' to `phy number' 275 * mapping. We'll use this mapping in media change 276 * requests to determine which phy to use to program 277 * the MIF configuration register. 278 */ 279 for (; child != NULL; child = LIST_NEXT(child, mii_list)) { 280 /* 281 * Note: we support just two PHYs: the built-in 282 * internal device and an external on the MII 283 * connector. 284 */ 285 if (child->mii_phy > 1 || child->mii_inst > 1) { 286 printf("%s: cannot accomodate MII device %s" 287 " at phy %d, instance %d\n", 288 sc->sc_dev.dv_xname, 289 child->mii_dev.dv_xname, 290 child->mii_phy, child->mii_inst); 291 continue; 292 } 293 294 sc->sc_phys[child->mii_inst] = child->mii_phy; 295 } 296 297 /* 298 * XXX - we can really do the following ONLY if the 299 * phy indeed has the auto negotiation capability!! 300 */ 301 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO); 302 } 303 304 /* Attach the interface. */ 305 if_attach(ifp); 306 ether_ifattach(ifp, sc->sc_enaddr); 307 308 #if NBPFILTER > 0 309 bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header)); 310 #endif 311 312 sc->sc_sh = shutdownhook_establish(hme_shutdown, sc); 313 if (sc->sc_sh == NULL) 314 panic("hme_config: can't establish shutdownhook"); 315 316 #if 0 317 printf("%s: %d receive buffers, %d transmit buffers\n", 318 sc->sc_dev.dv_xname, sc->sc_nrbuf, sc->sc_ntbuf); 319 sc->sc_rbufaddr = malloc(sc->sc_nrbuf * sizeof(int), M_DEVBUF, 320 M_WAITOK); 321 sc->sc_tbufaddr = malloc(sc->sc_ntbuf * sizeof(int), M_DEVBUF, 322 M_WAITOK); 323 #endif 324 325 #if NRND > 0 326 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname, 327 RND_TYPE_NET, 0); 328 #endif 329 330 callout_init(&sc->sc_tick_ch); 331 } 332 333 void 334 hme_tick(arg) 335 void *arg; 336 { 337 struct hme_softc *sc = arg; 338 int s; 339 340 s = splnet(); 341 mii_tick(&sc->sc_mii); 342 splx(s); 343 344 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc); 345 } 346 347 void 348 hme_reset(sc) 349 struct hme_softc *sc; 350 { 351 int s; 352 353 s = splnet(); 354 hme_init(sc); 355 splx(s); 356 } 357 358 void 359 hme_stop(sc) 360 struct hme_softc *sc; 361 { 362 bus_space_tag_t t = sc->sc_bustag; 363 bus_space_handle_t seb = sc->sc_seb; 364 int n; 365 366 callout_stop(&sc->sc_tick_ch); 367 mii_down(&sc->sc_mii); 368 369 /* Reset transmitter and receiver */ 370 bus_space_write_4(t, seb, HME_SEBI_RESET, 371 (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)); 372 373 for (n = 0; n < 20; n++) { 374 u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET); 375 if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0) 376 return; 377 DELAY(20); 378 } 379 380 printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname); 381 } 382 383 void 384 hme_meminit(sc) 385 struct hme_softc *sc; 386 { 387 bus_addr_t txbufdma, rxbufdma; 388 bus_addr_t dma; 389 caddr_t p; 390 unsigned int ntbuf, nrbuf, i; 391 struct hme_ring *hr = &sc->sc_rb; 392 393 p = hr->rb_membase; 394 dma = hr->rb_dmabase; 395 396 ntbuf = hr->rb_ntbuf; 397 nrbuf = hr->rb_nrbuf; 398 399 /* 400 * Allocate transmit descriptors 401 */ 402 hr->rb_txd = p; 403 hr->rb_txddma = dma; 404 p += ntbuf * HME_XD_SIZE; 405 dma += ntbuf * HME_XD_SIZE; 406 /* We have reserved descriptor space until the next 2048 byte boundary.*/ 407 dma = (bus_addr_t)roundup((u_long)dma, 2048); 408 p = (caddr_t)roundup((u_long)p, 2048); 409 410 /* 411 * Allocate receive descriptors 412 */ 413 hr->rb_rxd = p; 414 hr->rb_rxddma = dma; 415 p += nrbuf * HME_XD_SIZE; 416 dma += nrbuf * HME_XD_SIZE; 417 /* Again move forward to the next 2048 byte boundary.*/ 418 dma = (bus_addr_t)roundup((u_long)dma, 2048); 419 p = (caddr_t)roundup((u_long)p, 2048); 420 421 422 /* 423 * Allocate transmit buffers 424 */ 425 hr->rb_txbuf = p; 426 txbufdma = dma; 427 p += ntbuf * _HME_BUFSZ; 428 dma += ntbuf * _HME_BUFSZ; 429 430 /* 431 * Allocate receive buffers 432 */ 433 hr->rb_rxbuf = p; 434 rxbufdma = dma; 435 p += nrbuf * _HME_BUFSZ; 436 dma += nrbuf * _HME_BUFSZ; 437 438 /* 439 * Initialize transmit buffer descriptors 440 */ 441 for (i = 0; i < ntbuf; i++) { 442 HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ); 443 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0); 444 } 445 446 /* 447 * Initialize receive buffer descriptors 448 */ 449 for (i = 0; i < nrbuf; i++) { 450 HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ); 451 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i, 452 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ)); 453 } 454 455 hr->rb_tdhead = hr->rb_tdtail = 0; 456 hr->rb_td_nbusy = 0; 457 hr->rb_rdtail = 0; 458 } 459 460 /* 461 * Initialization of interface; set up initialization block 462 * and transmit/receive descriptor rings. 463 */ 464 void 465 hme_init(sc) 466 struct hme_softc *sc; 467 { 468 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 469 bus_space_tag_t t = sc->sc_bustag; 470 bus_space_handle_t seb = sc->sc_seb; 471 bus_space_handle_t etx = sc->sc_etx; 472 bus_space_handle_t erx = sc->sc_erx; 473 bus_space_handle_t mac = sc->sc_mac; 474 bus_space_handle_t mif = sc->sc_mif; 475 u_int8_t *ea; 476 u_int32_t v; 477 478 /* 479 * Initialization sequence. The numbered steps below correspond 480 * to the sequence outlined in section 6.3.5.1 in the Ethernet 481 * Channel Engine manual (part of the PCIO manual). 482 * See also the STP2002-STQ document from Sun Microsystems. 483 */ 484 485 /* step 1 & 2. Reset the Ethernet Channel */ 486 hme_stop(sc); 487 488 /* Re-initialize the MIF */ 489 hme_mifinit(sc); 490 491 /* Call MI reset function if any */ 492 if (sc->sc_hwreset) 493 (*sc->sc_hwreset)(sc); 494 495 #if 0 496 /* Mask all MIF interrupts, just in case */ 497 bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff); 498 #endif 499 500 /* step 3. Setup data structures in host memory */ 501 hme_meminit(sc); 502 503 /* step 4. TX MAC registers & counters */ 504 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0); 505 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0); 506 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0); 507 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0); 508 509 /* Load station MAC address */ 510 ea = sc->sc_enaddr; 511 bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]); 512 bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]); 513 bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]); 514 515 /* 516 * Init seed for backoff 517 * (source suggested by manual: low 10 bits of MAC address) 518 */ 519 v = ((ea[4] << 8) | ea[5]) & 0x3fff; 520 bus_space_write_4(t, mac, HME_MACI_RANDSEED, v); 521 522 523 /* Note: Accepting power-on default for other MAC registers here.. */ 524 525 526 /* step 5. RX MAC registers & counters */ 527 hme_setladrf(sc); 528 529 /* step 6 & 7. Program Descriptor Ring Base Addresses */ 530 bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma); 531 bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf); 532 533 bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma); 534 535 536 /* step 8. Global Configuration & Interrupt Mask */ 537 bus_space_write_4(t, seb, HME_SEBI_IMASK, 538 ~( 539 /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/ 540 HME_SEB_STAT_HOSTTOTX | 541 HME_SEB_STAT_RXTOHOST | 542 HME_SEB_STAT_TXALL | 543 HME_SEB_STAT_TXPERR | 544 HME_SEB_STAT_RCNTEXP | 545 HME_SEB_STAT_ALL_ERRORS )); 546 547 switch (sc->sc_burst) { 548 default: 549 v = 0; 550 break; 551 case 16: 552 v = HME_SEB_CFG_BURST16; 553 break; 554 case 32: 555 v = HME_SEB_CFG_BURST32; 556 break; 557 case 64: 558 v = HME_SEB_CFG_BURST64; 559 break; 560 } 561 bus_space_write_4(t, seb, HME_SEBI_CFG, v); 562 563 /* step 9. ETX Configuration: use mostly default values */ 564 565 /* Enable DMA */ 566 v = bus_space_read_4(t, etx, HME_ETXI_CFG); 567 v |= HME_ETX_CFG_DMAENABLE; 568 bus_space_write_4(t, etx, HME_ETXI_CFG, v); 569 570 /* Transmit Descriptor ring size: in increments of 16 */ 571 bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1); 572 573 574 /* step 10. ERX Configuration */ 575 v = bus_space_read_4(t, erx, HME_ERXI_CFG); 576 577 /* Encode Receive Descriptor ring size: four possible values */ 578 switch (_HME_NDESC /*XXX*/) { 579 case 32: 580 v |= HME_ERX_CFG_RINGSIZE32; 581 break; 582 case 64: 583 v |= HME_ERX_CFG_RINGSIZE64; 584 break; 585 case 128: 586 v |= HME_ERX_CFG_RINGSIZE128; 587 break; 588 case 256: 589 v |= HME_ERX_CFG_RINGSIZE256; 590 break; 591 default: 592 printf("hme: invalid Receive Descriptor ring size\n"); 593 break; 594 } 595 596 /* Enable DMA */ 597 v |= HME_ERX_CFG_DMAENABLE; 598 bus_space_write_4(t, erx, HME_ERXI_CFG, v); 599 600 /* step 11. XIF Configuration */ 601 v = bus_space_read_4(t, mac, HME_MACI_XIF); 602 v |= HME_MAC_XIF_OE; 603 /* If an external transceiver is connected, enable its MII drivers */ 604 if ((bus_space_read_4(t, mif, HME_MIFI_CFG) & HME_MIF_CFG_MDI1) != 0) 605 v |= HME_MAC_XIF_MIIENABLE; 606 bus_space_write_4(t, mac, HME_MACI_XIF, v); 607 608 609 /* step 12. RX_MAC Configuration Register */ 610 v = bus_space_read_4(t, mac, HME_MACI_RXCFG); 611 v |= HME_MAC_RXCFG_ENABLE; 612 bus_space_write_4(t, mac, HME_MACI_RXCFG, v); 613 614 /* step 13. TX_MAC Configuration Register */ 615 v = bus_space_read_4(t, mac, HME_MACI_TXCFG); 616 v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP); 617 bus_space_write_4(t, mac, HME_MACI_TXCFG, v); 618 619 /* step 14. Issue Transmit Pending command */ 620 621 /* Call MI initialization function if any */ 622 if (sc->sc_hwinit) 623 (*sc->sc_hwinit)(sc); 624 625 /* Start the one second timer. */ 626 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc); 627 628 ifp->if_flags |= IFF_RUNNING; 629 ifp->if_flags &= ~IFF_OACTIVE; 630 ifp->if_timer = 0; 631 hme_start(ifp); 632 } 633 634 /* 635 * Compare two Ether/802 addresses for equality, inlined and unrolled for 636 * speed. 637 */ 638 static __inline__ int 639 ether_cmp(a, b) 640 u_char *a, *b; 641 { 642 643 if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] || 644 a[2] != b[2] || a[1] != b[1] || a[0] != b[0]) 645 return (0); 646 return (1); 647 } 648 649 650 /* 651 * Routine to copy from mbuf chain to transmit buffer in 652 * network buffer memory. 653 * Returns the amount of data copied. 654 */ 655 int 656 hme_put(sc, ri, m) 657 struct hme_softc *sc; 658 int ri; /* Ring index */ 659 struct mbuf *m; 660 { 661 struct mbuf *n; 662 int len, tlen = 0; 663 caddr_t bp; 664 665 bp = sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ; 666 for (; m; m = n) { 667 len = m->m_len; 668 if (len == 0) { 669 MFREE(m, n); 670 continue; 671 } 672 bcopy(mtod(m, caddr_t), bp, len); 673 bp += len; 674 tlen += len; 675 MFREE(m, n); 676 } 677 return (tlen); 678 } 679 680 /* 681 * Pull data off an interface. 682 * Len is length of data, with local net header stripped. 683 * We copy the data into mbufs. When full cluster sized units are present 684 * we copy into clusters. 685 */ 686 struct mbuf * 687 hme_get(sc, ri, totlen) 688 struct hme_softc *sc; 689 int ri, totlen; 690 { 691 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 692 struct mbuf *m, *m0, *newm; 693 caddr_t bp; 694 int len; 695 696 MGETHDR(m0, M_DONTWAIT, MT_DATA); 697 if (m0 == 0) 698 return (0); 699 m0->m_pkthdr.rcvif = ifp; 700 m0->m_pkthdr.len = totlen; 701 len = MHLEN; 702 m = m0; 703 704 bp = sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ; 705 706 while (totlen > 0) { 707 if (totlen >= MINCLSIZE) { 708 MCLGET(m, M_DONTWAIT); 709 if ((m->m_flags & M_EXT) == 0) 710 goto bad; 711 len = MCLBYTES; 712 } 713 714 if (m == m0) { 715 caddr_t newdata = (caddr_t) 716 ALIGN(m->m_data + sizeof(struct ether_header)) - 717 sizeof(struct ether_header); 718 len -= newdata - m->m_data; 719 m->m_data = newdata; 720 } 721 722 m->m_len = len = min(totlen, len); 723 bcopy(bp, mtod(m, caddr_t), len); 724 bp += len; 725 726 totlen -= len; 727 if (totlen > 0) { 728 MGET(newm, M_DONTWAIT, MT_DATA); 729 if (newm == 0) 730 goto bad; 731 len = MLEN; 732 m = m->m_next = newm; 733 } 734 } 735 736 return (m0); 737 738 bad: 739 m_freem(m0); 740 return (0); 741 } 742 743 /* 744 * Pass a packet to the higher levels. 745 */ 746 void 747 hme_read(sc, ix, len) 748 struct hme_softc *sc; 749 int ix, len; 750 { 751 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 752 struct mbuf *m; 753 754 if (len <= sizeof(struct ether_header) || 755 len > ETHERMTU + sizeof(struct ether_header)) { 756 #ifdef HMEDEBUG 757 printf("%s: invalid packet size %d; dropping\n", 758 sc->sc_dev.dv_xname, len); 759 #endif 760 ifp->if_ierrors++; 761 return; 762 } 763 764 /* Pull packet off interface. */ 765 m = hme_get(sc, ix, len); 766 if (m == 0) { 767 ifp->if_ierrors++; 768 return; 769 } 770 771 ifp->if_ipackets++; 772 773 #if NBPFILTER > 0 774 /* 775 * Check if there's a BPF listener on this interface. 776 * If so, hand off the raw packet to BPF. 777 */ 778 if (ifp->if_bpf) { 779 struct ether_header *eh; 780 781 bpf_mtap(ifp->if_bpf, m); 782 783 /* 784 * Note that the interface cannot be in promiscuous mode if 785 * there are no BPF listeners. And if we are in promiscuous 786 * mode, we have to check if this packet is really ours. 787 */ 788 789 /* We assume that the header fit entirely in one mbuf. */ 790 eh = mtod(m, struct ether_header *); 791 792 if ((ifp->if_flags & IFF_PROMISC) != 0 && 793 (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */ 794 ether_cmp(eh->ether_dhost, sc->sc_enaddr) == 0) { 795 m_freem(m); 796 return; 797 } 798 } 799 #endif 800 801 /* Pass the packet up. */ 802 (*ifp->if_input)(ifp, m); 803 } 804 805 void 806 hme_start(ifp) 807 struct ifnet *ifp; 808 { 809 struct hme_softc *sc = (struct hme_softc *)ifp->if_softc; 810 caddr_t txd = sc->sc_rb.rb_txd; 811 struct mbuf *m; 812 unsigned int ri, len; 813 unsigned int ntbuf = sc->sc_rb.rb_ntbuf; 814 815 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 816 return; 817 818 ri = sc->sc_rb.rb_tdhead; 819 820 for (;;) { 821 IF_DEQUEUE(&ifp->if_snd, m); 822 if (m == 0) 823 break; 824 825 #if NBPFILTER > 0 826 /* 827 * If BPF is listening on this interface, let it see the 828 * packet before we commit it to the wire. 829 */ 830 if (ifp->if_bpf) 831 bpf_mtap(ifp->if_bpf, m); 832 #endif 833 834 /* 835 * Copy the mbuf chain into the transmit buffer. 836 */ 837 len = hme_put(sc, ri, m); 838 839 /* 840 * Initialize transmit registers and start transmission 841 */ 842 HME_XD_SETFLAGS(sc->sc_pci, txd, ri, 843 HME_XD_OWN | HME_XD_SOP | HME_XD_EOP | 844 HME_XD_ENCODE_TSIZE(len)); 845 846 /*if (sc->sc_rb.rb_td_nbusy <= 0)*/ 847 bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING, 848 HME_ETX_TP_DMAWAKEUP); 849 850 if (++ri == ntbuf) 851 ri = 0; 852 853 if (++sc->sc_rb.rb_td_nbusy == ntbuf) { 854 ifp->if_flags |= IFF_OACTIVE; 855 break; 856 } 857 } 858 859 sc->sc_rb.rb_tdhead = ri; 860 } 861 862 /* 863 * Transmit interrupt. 864 */ 865 int 866 hme_tint(sc) 867 struct hme_softc *sc; 868 { 869 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 870 bus_space_tag_t t = sc->sc_bustag; 871 bus_space_handle_t mac = sc->sc_mac; 872 unsigned int ri, txflags; 873 874 /* 875 * Unload collision counters 876 */ 877 ifp->if_collisions += 878 bus_space_read_4(t, mac, HME_MACI_NCCNT) + 879 bus_space_read_4(t, mac, HME_MACI_FCCNT) + 880 bus_space_read_4(t, mac, HME_MACI_EXCNT) + 881 bus_space_read_4(t, mac, HME_MACI_LTCNT); 882 883 /* 884 * then clear the hardware counters. 885 */ 886 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0); 887 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0); 888 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0); 889 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0); 890 891 /* Fetch current position in the transmit ring */ 892 ri = sc->sc_rb.rb_tdtail; 893 894 for (;;) { 895 if (sc->sc_rb.rb_td_nbusy <= 0) 896 break; 897 898 txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri); 899 900 if (txflags & HME_XD_OWN) 901 break; 902 903 ifp->if_flags &= ~IFF_OACTIVE; 904 ifp->if_opackets++; 905 906 if (++ri == sc->sc_rb.rb_ntbuf) 907 ri = 0; 908 909 --sc->sc_rb.rb_td_nbusy; 910 } 911 912 /* Update ring */ 913 sc->sc_rb.rb_tdtail = ri; 914 915 hme_start(ifp); 916 917 if (sc->sc_rb.rb_td_nbusy == 0) 918 ifp->if_timer = 0; 919 920 return (1); 921 } 922 923 /* 924 * Receive interrupt. 925 */ 926 int 927 hme_rint(sc) 928 struct hme_softc *sc; 929 { 930 caddr_t xdr = sc->sc_rb.rb_rxd; 931 unsigned int nrbuf = sc->sc_rb.rb_nrbuf; 932 unsigned int ri, len; 933 u_int32_t flags; 934 935 ri = sc->sc_rb.rb_rdtail; 936 937 /* 938 * Process all buffers with valid data. 939 */ 940 for (;;) { 941 flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri); 942 if (flags & HME_XD_OWN) 943 break; 944 945 if (flags & HME_XD_OFL) { 946 printf("%s: buffer overflow, ri=%d; flags=0x%x\n", 947 sc->sc_dev.dv_xname, ri, flags); 948 } else { 949 len = HME_XD_DECODE_RSIZE(flags); 950 hme_read(sc, ri, len); 951 } 952 953 /* This buffer can be used by the hardware again */ 954 HME_XD_SETFLAGS(sc->sc_pci, xdr, ri, 955 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ)); 956 957 if (++ri == nrbuf) 958 ri = 0; 959 } 960 961 sc->sc_rb.rb_rdtail = ri; 962 963 return (1); 964 } 965 966 int 967 hme_eint(sc, status) 968 struct hme_softc *sc; 969 u_int status; 970 { 971 char bits[128]; 972 973 if ((status & HME_SEB_STAT_MIFIRQ) != 0) { 974 printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname); 975 return (1); 976 } 977 978 printf("%s: status=%s\n", sc->sc_dev.dv_xname, 979 bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits))); 980 return (1); 981 } 982 983 int 984 hme_intr(v) 985 void *v; 986 { 987 struct hme_softc *sc = (struct hme_softc *)v; 988 bus_space_tag_t t = sc->sc_bustag; 989 bus_space_handle_t seb = sc->sc_seb; 990 u_int32_t status; 991 int r = 0; 992 993 status = bus_space_read_4(t, seb, HME_SEBI_STAT); 994 995 if ((status & HME_SEB_STAT_ALL_ERRORS) != 0) 996 r |= hme_eint(sc, status); 997 998 if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0) 999 r |= hme_tint(sc); 1000 1001 if ((status & HME_SEB_STAT_RXTOHOST) != 0) 1002 r |= hme_rint(sc); 1003 1004 return (r); 1005 } 1006 1007 1008 void 1009 hme_watchdog(ifp) 1010 struct ifnet *ifp; 1011 { 1012 struct hme_softc *sc = ifp->if_softc; 1013 1014 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname); 1015 ++ifp->if_oerrors; 1016 1017 hme_reset(sc); 1018 } 1019 1020 /* 1021 * Initialize the MII Management Interface 1022 */ 1023 void 1024 hme_mifinit(sc) 1025 struct hme_softc *sc; 1026 { 1027 bus_space_tag_t t = sc->sc_bustag; 1028 bus_space_handle_t mif = sc->sc_mif; 1029 u_int32_t v; 1030 1031 /* Configure the MIF in frame mode */ 1032 v = bus_space_read_4(t, mif, HME_MIFI_CFG); 1033 v &= ~HME_MIF_CFG_BBMODE; 1034 bus_space_write_4(t, mif, HME_MIFI_CFG, v); 1035 } 1036 1037 /* 1038 * MII interface 1039 */ 1040 static int 1041 hme_mii_readreg(self, phy, reg) 1042 struct device *self; 1043 int phy, reg; 1044 { 1045 struct hme_softc *sc = (void *)self; 1046 bus_space_tag_t t = sc->sc_bustag; 1047 bus_space_handle_t mif = sc->sc_mif; 1048 int n; 1049 u_int32_t v; 1050 1051 /* Select the desired PHY in the MIF configuration register */ 1052 v = bus_space_read_4(t, mif, HME_MIFI_CFG); 1053 /* Clear PHY select bit */ 1054 v &= ~HME_MIF_CFG_PHY; 1055 if (phy == HME_PHYAD_EXTERNAL) 1056 /* Set PHY select bit to get at external device */ 1057 v |= HME_MIF_CFG_PHY; 1058 bus_space_write_4(t, mif, HME_MIFI_CFG, v); 1059 1060 /* Construct the frame command */ 1061 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) | 1062 HME_MIF_FO_TAMSB | 1063 (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) | 1064 (phy << HME_MIF_FO_PHYAD_SHIFT) | 1065 (reg << HME_MIF_FO_REGAD_SHIFT); 1066 1067 bus_space_write_4(t, mif, HME_MIFI_FO, v); 1068 for (n = 0; n < 100; n++) { 1069 DELAY(1); 1070 v = bus_space_read_4(t, mif, HME_MIFI_FO); 1071 if (v & HME_MIF_FO_TALSB) 1072 return (v & HME_MIF_FO_DATA); 1073 } 1074 1075 printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname); 1076 return (0); 1077 } 1078 1079 static void 1080 hme_mii_writereg(self, phy, reg, val) 1081 struct device *self; 1082 int phy, reg, val; 1083 { 1084 struct hme_softc *sc = (void *)self; 1085 bus_space_tag_t t = sc->sc_bustag; 1086 bus_space_handle_t mif = sc->sc_mif; 1087 int n; 1088 u_int32_t v; 1089 1090 /* Select the desired PHY in the MIF configuration register */ 1091 v = bus_space_read_4(t, mif, HME_MIFI_CFG); 1092 /* Clear PHY select bit */ 1093 v &= ~HME_MIF_CFG_PHY; 1094 if (phy == HME_PHYAD_EXTERNAL) 1095 /* Set PHY select bit to get at external device */ 1096 v |= HME_MIF_CFG_PHY; 1097 bus_space_write_4(t, mif, HME_MIFI_CFG, v); 1098 1099 /* Construct the frame command */ 1100 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) | 1101 HME_MIF_FO_TAMSB | 1102 (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) | 1103 (phy << HME_MIF_FO_PHYAD_SHIFT) | 1104 (reg << HME_MIF_FO_REGAD_SHIFT) | 1105 (val & HME_MIF_FO_DATA); 1106 1107 bus_space_write_4(t, mif, HME_MIFI_FO, v); 1108 for (n = 0; n < 100; n++) { 1109 DELAY(1); 1110 v = bus_space_read_4(t, mif, HME_MIFI_FO); 1111 if (v & HME_MIF_FO_TALSB) 1112 return; 1113 } 1114 1115 printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname); 1116 } 1117 1118 static void 1119 hme_mii_statchg(dev) 1120 struct device *dev; 1121 { 1122 struct hme_softc *sc = (void *)dev; 1123 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media); 1124 int phy = sc->sc_phys[instance]; 1125 bus_space_tag_t t = sc->sc_bustag; 1126 bus_space_handle_t mif = sc->sc_mif; 1127 bus_space_handle_t mac = sc->sc_mac; 1128 u_int32_t v; 1129 1130 #ifdef HMEDEBUG 1131 if (sc->sc_debug) 1132 printf("hme_mii_statchg: status change: phy = %d\n", phy); 1133 #endif 1134 1135 /* Select the current PHY in the MIF configuration register */ 1136 v = bus_space_read_4(t, mif, HME_MIFI_CFG); 1137 v &= ~HME_MIF_CFG_PHY; 1138 if (phy == HME_PHYAD_EXTERNAL) 1139 v |= HME_MIF_CFG_PHY; 1140 bus_space_write_4(t, mif, HME_MIFI_CFG, v); 1141 1142 /* Set the MAC Full Duplex bit appropriately */ 1143 v = bus_space_read_4(t, mac, HME_MACI_TXCFG); 1144 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) 1145 v |= HME_MAC_TXCFG_FULLDPLX; 1146 else 1147 v &= ~HME_MAC_TXCFG_FULLDPLX; 1148 bus_space_write_4(t, mac, HME_MACI_TXCFG, v); 1149 1150 /* If an external transceiver is selected, enable its MII drivers */ 1151 v = bus_space_read_4(t, mac, HME_MACI_XIF); 1152 v &= ~HME_MAC_XIF_MIIENABLE; 1153 if (phy == HME_PHYAD_EXTERNAL) 1154 v |= HME_MAC_XIF_MIIENABLE; 1155 bus_space_write_4(t, mac, HME_MACI_XIF, v); 1156 } 1157 1158 int 1159 hme_mediachange(ifp) 1160 struct ifnet *ifp; 1161 { 1162 struct hme_softc *sc = ifp->if_softc; 1163 1164 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER) 1165 return (EINVAL); 1166 1167 return (mii_mediachg(&sc->sc_mii)); 1168 } 1169 1170 void 1171 hme_mediastatus(ifp, ifmr) 1172 struct ifnet *ifp; 1173 struct ifmediareq *ifmr; 1174 { 1175 struct hme_softc *sc = ifp->if_softc; 1176 1177 if ((ifp->if_flags & IFF_UP) == 0) 1178 return; 1179 1180 mii_pollstat(&sc->sc_mii); 1181 ifmr->ifm_active = sc->sc_mii.mii_media_active; 1182 ifmr->ifm_status = sc->sc_mii.mii_media_status; 1183 } 1184 1185 /* 1186 * Process an ioctl request. 1187 */ 1188 int 1189 hme_ioctl(ifp, cmd, data) 1190 struct ifnet *ifp; 1191 u_long cmd; 1192 caddr_t data; 1193 { 1194 struct hme_softc *sc = ifp->if_softc; 1195 struct ifaddr *ifa = (struct ifaddr *)data; 1196 struct ifreq *ifr = (struct ifreq *)data; 1197 int s, error = 0; 1198 1199 s = splnet(); 1200 1201 switch (cmd) { 1202 1203 case SIOCSIFADDR: 1204 ifp->if_flags |= IFF_UP; 1205 1206 switch (ifa->ifa_addr->sa_family) { 1207 #ifdef INET 1208 case AF_INET: 1209 hme_init(sc); 1210 arp_ifinit(ifp, ifa); 1211 break; 1212 #endif 1213 #ifdef NS 1214 case AF_NS: 1215 { 1216 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr; 1217 1218 if (ns_nullhost(*ina)) 1219 ina->x_host = 1220 *(union ns_host *)LLADDR(ifp->if_sadl); 1221 else { 1222 bcopy(ina->x_host.c_host, 1223 LLADDR(ifp->if_sadl), 1224 sizeof(sc->sc_enaddr)); 1225 } 1226 /* Set new address. */ 1227 hme_init(sc); 1228 break; 1229 } 1230 #endif 1231 default: 1232 hme_init(sc); 1233 break; 1234 } 1235 break; 1236 1237 case SIOCSIFFLAGS: 1238 if ((ifp->if_flags & IFF_UP) == 0 && 1239 (ifp->if_flags & IFF_RUNNING) != 0) { 1240 /* 1241 * If interface is marked down and it is running, then 1242 * stop it. 1243 */ 1244 hme_stop(sc); 1245 ifp->if_flags &= ~IFF_RUNNING; 1246 } else if ((ifp->if_flags & IFF_UP) != 0 && 1247 (ifp->if_flags & IFF_RUNNING) == 0) { 1248 /* 1249 * If interface is marked up and it is stopped, then 1250 * start it. 1251 */ 1252 hme_init(sc); 1253 } else if ((ifp->if_flags & IFF_UP) != 0) { 1254 /* 1255 * Reset the interface to pick up changes in any other 1256 * flags that affect hardware registers. 1257 */ 1258 /*hme_stop(sc);*/ 1259 hme_init(sc); 1260 } 1261 #ifdef HMEDEBUG 1262 sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0; 1263 #endif 1264 break; 1265 1266 case SIOCADDMULTI: 1267 case SIOCDELMULTI: 1268 error = (cmd == SIOCADDMULTI) ? 1269 ether_addmulti(ifr, &sc->sc_ethercom) : 1270 ether_delmulti(ifr, &sc->sc_ethercom); 1271 1272 if (error == ENETRESET) { 1273 /* 1274 * Multicast list has changed; set the hardware filter 1275 * accordingly. 1276 */ 1277 hme_setladrf(sc); 1278 error = 0; 1279 } 1280 break; 1281 1282 case SIOCGIFMEDIA: 1283 case SIOCSIFMEDIA: 1284 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd); 1285 break; 1286 1287 default: 1288 error = EINVAL; 1289 break; 1290 } 1291 1292 splx(s); 1293 return (error); 1294 } 1295 1296 void 1297 hme_shutdown(arg) 1298 void *arg; 1299 { 1300 1301 hme_stop((struct hme_softc *)arg); 1302 } 1303 1304 /* 1305 * Set up the logical address filter. 1306 */ 1307 void 1308 hme_setladrf(sc) 1309 struct hme_softc *sc; 1310 { 1311 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1312 struct ether_multi *enm; 1313 struct ether_multistep step; 1314 struct ethercom *ec = &sc->sc_ethercom; 1315 bus_space_tag_t t = sc->sc_bustag; 1316 bus_space_handle_t mac = sc->sc_mac; 1317 u_char *cp; 1318 u_int32_t crc; 1319 u_int32_t hash[4]; 1320 u_int32_t v; 1321 int len; 1322 1323 /* Clear hash table */ 1324 hash[3] = hash[2] = hash[1] = hash[0] = 0; 1325 1326 /* Get current RX configuration */ 1327 v = bus_space_read_4(t, mac, HME_MACI_RXCFG); 1328 1329 if ((ifp->if_flags & IFF_PROMISC) != 0) { 1330 /* Turn on promiscuous mode; turn off the hash filter */ 1331 v |= HME_MAC_RXCFG_PMISC; 1332 v &= ~HME_MAC_RXCFG_HENABLE; 1333 ifp->if_flags |= IFF_ALLMULTI; 1334 goto chipit; 1335 } 1336 1337 /* Turn off promiscuous mode; turn on the hash filter */ 1338 v &= ~HME_MAC_RXCFG_PMISC; 1339 v |= HME_MAC_RXCFG_HENABLE; 1340 1341 /* 1342 * Set up multicast address filter by passing all multicast addresses 1343 * through a crc generator, and then using the high order 6 bits as an 1344 * index into the 64 bit logical address filter. The high order bit 1345 * selects the word, while the rest of the bits select the bit within 1346 * the word. 1347 */ 1348 1349 ETHER_FIRST_MULTI(step, ec, enm); 1350 while (enm != NULL) { 1351 if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) { 1352 /* 1353 * We must listen to a range of multicast addresses. 1354 * For now, just accept all multicasts, rather than 1355 * trying to set only those filter bits needed to match 1356 * the range. (At this time, the only use of address 1357 * ranges is for IP multicast routing, for which the 1358 * range is big enough to require all bits set.) 1359 */ 1360 hash[3] = hash[2] = hash[1] = hash[0] = 0xffff; 1361 ifp->if_flags |= IFF_ALLMULTI; 1362 goto chipit; 1363 } 1364 1365 cp = enm->enm_addrlo; 1366 crc = 0xffffffff; 1367 for (len = sizeof(enm->enm_addrlo); --len >= 0;) { 1368 int octet = *cp++; 1369 int i; 1370 1371 #define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */ 1372 for (i = 0; i < 8; i++) { 1373 if ((crc & 1) ^ (octet & 1)) { 1374 crc >>= 1; 1375 crc ^= MC_POLY_LE; 1376 } else { 1377 crc >>= 1; 1378 } 1379 octet >>= 1; 1380 } 1381 } 1382 /* Just want the 6 most significant bits. */ 1383 crc >>= 26; 1384 1385 /* Set the corresponding bit in the filter. */ 1386 hash[crc >> 4] |= 1 << (crc & 0xf); 1387 1388 ETHER_NEXT_MULTI(step, enm); 1389 } 1390 1391 ifp->if_flags &= ~IFF_ALLMULTI; 1392 1393 chipit: 1394 /* Now load the hash table into the chip */ 1395 bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]); 1396 bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]); 1397 bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]); 1398 bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]); 1399 bus_space_write_4(t, mac, HME_MACI_RXCFG, v); 1400 } 1401 1402 /* 1403 * Routines for accessing the transmit and receive buffers. 1404 * The various CPU and adapter configurations supported by this 1405 * driver require three different access methods for buffers 1406 * and descriptors: 1407 * (1) contig (contiguous data; no padding), 1408 * (2) gap2 (two bytes of data followed by two bytes of padding), 1409 * (3) gap16 (16 bytes of data followed by 16 bytes of padding). 1410 */ 1411 1412 #if 0 1413 /* 1414 * contig: contiguous data with no padding. 1415 * 1416 * Buffers may have any alignment. 1417 */ 1418 1419 void 1420 hme_copytobuf_contig(sc, from, ri, len) 1421 struct hme_softc *sc; 1422 void *from; 1423 int ri, len; 1424 { 1425 volatile caddr_t buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ); 1426 1427 /* 1428 * Just call bcopy() to do the work. 1429 */ 1430 bcopy(from, buf, len); 1431 } 1432 1433 void 1434 hme_copyfrombuf_contig(sc, to, boff, len) 1435 struct hme_softc *sc; 1436 void *to; 1437 int boff, len; 1438 { 1439 volatile caddr_t buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ); 1440 1441 /* 1442 * Just call bcopy() to do the work. 1443 */ 1444 bcopy(buf, to, len); 1445 } 1446 #endif 1447