xref: /netbsd-src/sys/dev/ic/hme.c (revision 404fbe5fb94ca1e054339640cabb2801ce52dd30)
1 /*	$NetBSD: hme.c,v 1.68 2008/12/16 22:35:31 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * HME Ethernet module driver.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.68 2008/12/16 22:35:31 christos Exp $");
38 
39 /* #define HMEDEBUG */
40 
41 #include "opt_inet.h"
42 #include "bpfilter.h"
43 #include "rnd.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/kernel.h>
48 #include <sys/mbuf.h>
49 #include <sys/syslog.h>
50 #include <sys/socket.h>
51 #include <sys/device.h>
52 #include <sys/malloc.h>
53 #include <sys/ioctl.h>
54 #include <sys/errno.h>
55 #if NRND > 0
56 #include <sys/rnd.h>
57 #endif
58 
59 #include <net/if.h>
60 #include <net/if_dl.h>
61 #include <net/if_ether.h>
62 #include <net/if_media.h>
63 
64 #ifdef INET
65 #include <netinet/in.h>
66 #include <netinet/if_inarp.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/in_var.h>
69 #include <netinet/ip.h>
70 #include <netinet/tcp.h>
71 #include <netinet/udp.h>
72 #endif
73 
74 
75 #if NBPFILTER > 0
76 #include <net/bpf.h>
77 #include <net/bpfdesc.h>
78 #endif
79 
80 #include <dev/mii/mii.h>
81 #include <dev/mii/miivar.h>
82 
83 #include <sys/bus.h>
84 
85 #include <dev/ic/hmereg.h>
86 #include <dev/ic/hmevar.h>
87 
88 void		hme_start(struct ifnet *);
89 void		hme_stop(struct hme_softc *,bool);
90 int		hme_ioctl(struct ifnet *, u_long, void *);
91 void		hme_tick(void *);
92 void		hme_watchdog(struct ifnet *);
93 void		hme_shutdown(void *);
94 int		hme_init(struct hme_softc *);
95 void		hme_meminit(struct hme_softc *);
96 void		hme_mifinit(struct hme_softc *);
97 void		hme_reset(struct hme_softc *);
98 void		hme_setladrf(struct hme_softc *);
99 
100 /* MII methods & callbacks */
101 static int	hme_mii_readreg(struct device *, int, int);
102 static void	hme_mii_writereg(struct device *, int, int, int);
103 static void	hme_mii_statchg(struct device *);
104 
105 int		hme_mediachange(struct ifnet *);
106 
107 struct mbuf	*hme_get(struct hme_softc *, int, uint32_t);
108 int		hme_put(struct hme_softc *, int, struct mbuf *);
109 void		hme_read(struct hme_softc *, int, uint32_t);
110 int		hme_eint(struct hme_softc *, u_int);
111 int		hme_rint(struct hme_softc *);
112 int		hme_tint(struct hme_softc *);
113 
114 static int	ether_cmp(u_char *, u_char *);
115 
116 /* Default buffer copy routines */
117 void	hme_copytobuf_contig(struct hme_softc *, void *, int, int);
118 void	hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
119 void	hme_zerobuf_contig(struct hme_softc *, int, int);
120 
121 
122 void
123 hme_config(sc)
124 	struct hme_softc *sc;
125 {
126 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
127 	struct mii_data *mii = &sc->sc_mii;
128 	struct mii_softc *child;
129 	bus_dma_tag_t dmatag = sc->sc_dmatag;
130 	bus_dma_segment_t seg;
131 	bus_size_t size;
132 	int rseg, error;
133 
134 	/*
135 	 * HME common initialization.
136 	 *
137 	 * hme_softc fields that must be initialized by the front-end:
138 	 *
139 	 * the bus tag:
140 	 *	sc_bustag
141 	 *
142 	 * the DMA bus tag:
143 	 *	sc_dmatag
144 	 *
145 	 * the bus handles:
146 	 *	sc_seb		(Shared Ethernet Block registers)
147 	 *	sc_erx		(Receiver Unit registers)
148 	 *	sc_etx		(Transmitter Unit registers)
149 	 *	sc_mac		(MAC registers)
150 	 *	sc_mif		(Management Interface registers)
151 	 *
152 	 * the maximum bus burst size:
153 	 *	sc_burst
154 	 *
155 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
156 	 *	rb_membase, rb_dmabase)
157 	 *
158 	 * the local Ethernet address:
159 	 *	sc_enaddr
160 	 *
161 	 */
162 
163 	/* Make sure the chip is stopped. */
164 	hme_stop(sc, true);
165 
166 
167 	/*
168 	 * Allocate descriptors and buffers
169 	 * XXX - do all this differently.. and more configurably,
170 	 * eg. use things as `dma_load_mbuf()' on transmit,
171 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
172 	 *     all the time) on the receiver side.
173 	 *
174 	 * Note: receive buffers must be 64-byte aligned.
175 	 * Also, apparently, the buffers must extend to a DMA burst
176 	 * boundary beyond the maximum packet size.
177 	 */
178 #define _HME_NDESC	128
179 #define _HME_BUFSZ	1600
180 
181 	/* Note: the # of descriptors must be a multiple of 16 */
182 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
183 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
184 
185 	/*
186 	 * Allocate DMA capable memory
187 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
188 	 * take this into account when calculating the size. Note that
189 	 * the maximum number of descriptors (256) occupies 2048 bytes,
190 	 * so we allocate that much regardless of _HME_NDESC.
191 	 */
192 	size =	2048 +					/* TX descriptors */
193 		2048 +					/* RX descriptors */
194 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
195 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* RX buffers */
196 
197 	/* Allocate DMA buffer */
198 	if ((error = bus_dmamem_alloc(dmatag, size,
199 				      2048, 0,
200 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
201 		aprint_error_dev(&sc->sc_dev, "DMA buffer alloc error %d\n",
202 			error);
203 		return;
204 	}
205 
206 	/* Map DMA memory in CPU addressable space */
207 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
208 				    &sc->sc_rb.rb_membase,
209 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
210 		aprint_error_dev(&sc->sc_dev, "DMA buffer map error %d\n",
211 			error);
212 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
213 		bus_dmamem_free(dmatag, &seg, rseg);
214 		return;
215 	}
216 
217 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
218 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
219 		aprint_error_dev(&sc->sc_dev, "DMA map create error %d\n",
220 			error);
221 		return;
222 	}
223 
224 	/* Load the buffer */
225 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
226 	    sc->sc_rb.rb_membase, size, NULL,
227 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
228 		aprint_error_dev(&sc->sc_dev, "DMA buffer map load error %d\n",
229 			error);
230 		bus_dmamem_free(dmatag, &seg, rseg);
231 		return;
232 	}
233 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
234 
235 	printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
236 	    ether_sprintf(sc->sc_enaddr));
237 
238 	/* Initialize ifnet structure. */
239 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
240 	ifp->if_softc = sc;
241 	ifp->if_start = hme_start;
242 	ifp->if_ioctl = hme_ioctl;
243 	ifp->if_watchdog = hme_watchdog;
244 	ifp->if_flags =
245 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
246 	sc->sc_if_flags = ifp->if_flags;
247 	ifp->if_capabilities |=
248 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
249 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
250 	IFQ_SET_READY(&ifp->if_snd);
251 
252 	/* Initialize ifmedia structures and MII info */
253 	mii->mii_ifp = ifp;
254 	mii->mii_readreg = hme_mii_readreg;
255 	mii->mii_writereg = hme_mii_writereg;
256 	mii->mii_statchg = hme_mii_statchg;
257 
258 	sc->sc_ethercom.ec_mii = mii;
259 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
260 
261 	hme_mifinit(sc);
262 
263 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
264 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
265 
266 	child = LIST_FIRST(&mii->mii_phys);
267 	if (child == NULL) {
268 		/* No PHY attached */
269 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
270 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
271 	} else {
272 		/*
273 		 * Walk along the list of attached MII devices and
274 		 * establish an `MII instance' to `phy number'
275 		 * mapping. We'll use this mapping in media change
276 		 * requests to determine which phy to use to program
277 		 * the MIF configuration register.
278 		 */
279 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
280 			/*
281 			 * Note: we support just two PHYs: the built-in
282 			 * internal device and an external on the MII
283 			 * connector.
284 			 */
285 			if (child->mii_phy > 1 || child->mii_inst > 1) {
286 				aprint_error_dev(&sc->sc_dev, "cannot accommodate MII device %s"
287 				       " at phy %d, instance %d\n",
288 				       device_xname(child->mii_dev),
289 				       child->mii_phy, child->mii_inst);
290 				continue;
291 			}
292 
293 			sc->sc_phys[child->mii_inst] = child->mii_phy;
294 		}
295 
296 		/*
297 		 * XXX - we can really do the following ONLY if the
298 		 * phy indeed has the auto negotiation capability!!
299 		 */
300 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
301 	}
302 
303 	/* claim 802.1q capability */
304 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
305 
306 	/* Attach the interface. */
307 	if_attach(ifp);
308 	ether_ifattach(ifp, sc->sc_enaddr);
309 
310 	sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
311 	if (sc->sc_sh == NULL)
312 		panic("hme_config: can't establish shutdownhook");
313 
314 #if NRND > 0
315 	rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
316 			  RND_TYPE_NET, 0);
317 #endif
318 
319 	callout_init(&sc->sc_tick_ch, 0);
320 }
321 
322 void
323 hme_tick(arg)
324 	void *arg;
325 {
326 	struct hme_softc *sc = arg;
327 	int s;
328 
329 	s = splnet();
330 	mii_tick(&sc->sc_mii);
331 	splx(s);
332 
333 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
334 }
335 
336 void
337 hme_reset(sc)
338 	struct hme_softc *sc;
339 {
340 	int s;
341 
342 	s = splnet();
343 	(void)hme_init(sc);
344 	splx(s);
345 }
346 
347 void
348 hme_stop(struct hme_softc *sc, bool chip_only)
349 {
350 	bus_space_tag_t t = sc->sc_bustag;
351 	bus_space_handle_t seb = sc->sc_seb;
352 	int n;
353 
354 	if (!chip_only) {
355 		callout_stop(&sc->sc_tick_ch);
356 		mii_down(&sc->sc_mii);
357 	}
358 
359 	/* Mask all interrupts */
360 	bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
361 
362 	/* Reset transmitter and receiver */
363 	bus_space_write_4(t, seb, HME_SEBI_RESET,
364 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
365 
366 	for (n = 0; n < 20; n++) {
367 		u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
368 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
369 			return;
370 		DELAY(20);
371 	}
372 
373 	printf("%s: hme_stop: reset failed\n", device_xname(&sc->sc_dev));
374 }
375 
376 void
377 hme_meminit(sc)
378 	struct hme_softc *sc;
379 {
380 	bus_addr_t txbufdma, rxbufdma;
381 	bus_addr_t dma;
382 	char *p;
383 	unsigned int ntbuf, nrbuf, i;
384 	struct hme_ring *hr = &sc->sc_rb;
385 
386 	p = hr->rb_membase;
387 	dma = hr->rb_dmabase;
388 
389 	ntbuf = hr->rb_ntbuf;
390 	nrbuf = hr->rb_nrbuf;
391 
392 	/*
393 	 * Allocate transmit descriptors
394 	 */
395 	hr->rb_txd = p;
396 	hr->rb_txddma = dma;
397 	p += ntbuf * HME_XD_SIZE;
398 	dma += ntbuf * HME_XD_SIZE;
399 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
400 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
401 	p = (void *)roundup((u_long)p, 2048);
402 
403 	/*
404 	 * Allocate receive descriptors
405 	 */
406 	hr->rb_rxd = p;
407 	hr->rb_rxddma = dma;
408 	p += nrbuf * HME_XD_SIZE;
409 	dma += nrbuf * HME_XD_SIZE;
410 	/* Again move forward to the next 2048 byte boundary.*/
411 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
412 	p = (void *)roundup((u_long)p, 2048);
413 
414 
415 	/*
416 	 * Allocate transmit buffers
417 	 */
418 	hr->rb_txbuf = p;
419 	txbufdma = dma;
420 	p += ntbuf * _HME_BUFSZ;
421 	dma += ntbuf * _HME_BUFSZ;
422 
423 	/*
424 	 * Allocate receive buffers
425 	 */
426 	hr->rb_rxbuf = p;
427 	rxbufdma = dma;
428 	p += nrbuf * _HME_BUFSZ;
429 	dma += nrbuf * _HME_BUFSZ;
430 
431 	/*
432 	 * Initialize transmit buffer descriptors
433 	 */
434 	for (i = 0; i < ntbuf; i++) {
435 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
436 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
437 	}
438 
439 	/*
440 	 * Initialize receive buffer descriptors
441 	 */
442 	for (i = 0; i < nrbuf; i++) {
443 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
444 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
445 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
446 	}
447 
448 	hr->rb_tdhead = hr->rb_tdtail = 0;
449 	hr->rb_td_nbusy = 0;
450 	hr->rb_rdtail = 0;
451 }
452 
453 /*
454  * Initialization of interface; set up initialization block
455  * and transmit/receive descriptor rings.
456  */
457 int
458 hme_init(sc)
459 	struct hme_softc *sc;
460 {
461 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
462 	bus_space_tag_t t = sc->sc_bustag;
463 	bus_space_handle_t seb = sc->sc_seb;
464 	bus_space_handle_t etx = sc->sc_etx;
465 	bus_space_handle_t erx = sc->sc_erx;
466 	bus_space_handle_t mac = sc->sc_mac;
467 	u_int8_t *ea;
468 	u_int32_t v;
469 	int rc;
470 
471 	/*
472 	 * Initialization sequence. The numbered steps below correspond
473 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
474 	 * Channel Engine manual (part of the PCIO manual).
475 	 * See also the STP2002-STQ document from Sun Microsystems.
476 	 */
477 
478 	/* step 1 & 2. Reset the Ethernet Channel */
479 	hme_stop(sc, false);
480 
481 	/* Re-initialize the MIF */
482 	hme_mifinit(sc);
483 
484 	/* Call MI reset function if any */
485 	if (sc->sc_hwreset)
486 		(*sc->sc_hwreset)(sc);
487 
488 #if 0
489 	/* Mask all MIF interrupts, just in case */
490 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
491 #endif
492 
493 	/* step 3. Setup data structures in host memory */
494 	hme_meminit(sc);
495 
496 	/* step 4. TX MAC registers & counters */
497 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
498 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
499 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
500 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
501 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
502 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
503 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
504 	sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
505 
506 	/* Load station MAC address */
507 	ea = sc->sc_enaddr;
508 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
509 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
510 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
511 
512 	/*
513 	 * Init seed for backoff
514 	 * (source suggested by manual: low 10 bits of MAC address)
515 	 */
516 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
517 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
518 
519 
520 	/* Note: Accepting power-on default for other MAC registers here.. */
521 
522 
523 	/* step 5. RX MAC registers & counters */
524 	hme_setladrf(sc);
525 
526 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
527 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
528 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
529 
530 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
531 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
532 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
533 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
534 
535 	/* step 8. Global Configuration & Interrupt Mask */
536 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
537 			~(
538 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
539 			  HME_SEB_STAT_HOSTTOTX |
540 			  HME_SEB_STAT_RXTOHOST |
541 			  HME_SEB_STAT_TXALL |
542 			  HME_SEB_STAT_TXPERR |
543 			  HME_SEB_STAT_RCNTEXP |
544 			  /*HME_SEB_STAT_MIFIRQ |*/
545 			  HME_SEB_STAT_ALL_ERRORS ));
546 
547 	switch (sc->sc_burst) {
548 	default:
549 		v = 0;
550 		break;
551 	case 16:
552 		v = HME_SEB_CFG_BURST16;
553 		break;
554 	case 32:
555 		v = HME_SEB_CFG_BURST32;
556 		break;
557 	case 64:
558 		v = HME_SEB_CFG_BURST64;
559 		break;
560 	}
561 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
562 
563 	/* step 9. ETX Configuration: use mostly default values */
564 
565 	/* Enable DMA */
566 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
567 	v |= HME_ETX_CFG_DMAENABLE;
568 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
569 
570 	/* Transmit Descriptor ring size: in increments of 16 */
571 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
572 
573 
574 	/* step 10. ERX Configuration */
575 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
576 
577 	/* Encode Receive Descriptor ring size: four possible values */
578 	switch (_HME_NDESC /*XXX*/) {
579 	case 32:
580 		v |= HME_ERX_CFG_RINGSIZE32;
581 		break;
582 	case 64:
583 		v |= HME_ERX_CFG_RINGSIZE64;
584 		break;
585 	case 128:
586 		v |= HME_ERX_CFG_RINGSIZE128;
587 		break;
588 	case 256:
589 		v |= HME_ERX_CFG_RINGSIZE256;
590 		break;
591 	default:
592 		printf("hme: invalid Receive Descriptor ring size\n");
593 		break;
594 	}
595 
596 	/* Enable DMA */
597 	v |= HME_ERX_CFG_DMAENABLE;
598 
599 	/* set h/w rx checksum start offset (# of half-words) */
600 #ifdef INET
601 	v |= (((ETHER_HDR_LEN + sizeof(struct ip) +
602 		((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
603 		ETHER_VLAN_ENCAP_LEN : 0)) / 2) << HME_ERX_CFG_CSUMSHIFT) &
604 		HME_ERX_CFG_CSUMSTART;
605 #endif
606 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
607 
608 	/* step 11. XIF Configuration */
609 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
610 	v |= HME_MAC_XIF_OE;
611 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
612 
613 	/* step 12. RX_MAC Configuration Register */
614 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
615 	v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
616 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
617 
618 	/* step 13. TX_MAC Configuration Register */
619 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
620 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
621 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
622 
623 	/* step 14. Issue Transmit Pending command */
624 
625 	/* Call MI initialization function if any */
626 	if (sc->sc_hwinit)
627 		(*sc->sc_hwinit)(sc);
628 
629 	/* Set the current media. */
630 	if ((rc = hme_mediachange(ifp)) != 0)
631 		return rc;
632 
633 	/* Start the one second timer. */
634 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
635 
636 	ifp->if_flags |= IFF_RUNNING;
637 	ifp->if_flags &= ~IFF_OACTIVE;
638 	sc->sc_if_flags = ifp->if_flags;
639 	ifp->if_timer = 0;
640 	hme_start(ifp);
641 	return 0;
642 }
643 
644 /*
645  * Compare two Ether/802 addresses for equality, inlined and unrolled for
646  * speed.
647  */
648 static inline int
649 ether_cmp(a, b)
650 	u_char *a, *b;
651 {
652 
653 	if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
654 	    a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
655 		return (0);
656 	return (1);
657 }
658 
659 
660 /*
661  * Routine to copy from mbuf chain to transmit buffer in
662  * network buffer memory.
663  * Returns the amount of data copied.
664  */
665 int
666 hme_put(sc, ri, m)
667 	struct hme_softc *sc;
668 	int ri;			/* Ring index */
669 	struct mbuf *m;
670 {
671 	struct mbuf *n;
672 	int len, tlen = 0;
673 	char *bp;
674 
675 	bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
676 	for (; m; m = n) {
677 		len = m->m_len;
678 		if (len == 0) {
679 			MFREE(m, n);
680 			continue;
681 		}
682 		memcpy(bp, mtod(m, void *), len);
683 		bp += len;
684 		tlen += len;
685 		MFREE(m, n);
686 	}
687 	return (tlen);
688 }
689 
690 /*
691  * Pull data off an interface.
692  * Len is length of data, with local net header stripped.
693  * We copy the data into mbufs.  When full cluster sized units are present
694  * we copy into clusters.
695  */
696 struct mbuf *
697 hme_get(sc, ri, flags)
698 	struct hme_softc *sc;
699 	int ri;
700 	u_int32_t flags;
701 {
702 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
703 	struct mbuf *m, *m0, *newm;
704 	char *bp;
705 	int len, totlen;
706 
707 	totlen = HME_XD_DECODE_RSIZE(flags);
708 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
709 	if (m0 == 0)
710 		return (0);
711 	m0->m_pkthdr.rcvif = ifp;
712 	m0->m_pkthdr.len = totlen;
713 	len = MHLEN;
714 	m = m0;
715 
716 	bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
717 
718 	while (totlen > 0) {
719 		if (totlen >= MINCLSIZE) {
720 			MCLGET(m, M_DONTWAIT);
721 			if ((m->m_flags & M_EXT) == 0)
722 				goto bad;
723 			len = MCLBYTES;
724 		}
725 
726 		if (m == m0) {
727 			char *newdata = (char *)
728 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
729 			    sizeof(struct ether_header);
730 			len -= newdata - m->m_data;
731 			m->m_data = newdata;
732 		}
733 
734 		m->m_len = len = min(totlen, len);
735 		memcpy(mtod(m, void *), bp, len);
736 		bp += len;
737 
738 		totlen -= len;
739 		if (totlen > 0) {
740 			MGET(newm, M_DONTWAIT, MT_DATA);
741 			if (newm == 0)
742 				goto bad;
743 			len = MLEN;
744 			m = m->m_next = newm;
745 		}
746 	}
747 
748 #ifdef INET
749 	/* hardware checksum */
750 	if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
751 		struct ether_header *eh;
752 		struct ip *ip;
753 		struct udphdr *uh;
754 		uint16_t *opts;
755 		int32_t hlen, pktlen;
756 		uint32_t temp;
757 
758 		if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
759 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN -
760 				ETHER_VLAN_ENCAP_LEN;
761 			eh = (struct ether_header *) mtod(m0, void *) +
762 				ETHER_VLAN_ENCAP_LEN;
763 		} else {
764 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
765 			eh = mtod(m0, struct ether_header *);
766 		}
767 		if (ntohs(eh->ether_type) != ETHERTYPE_IP)
768 			goto swcsum;
769 		ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
770 
771 		/* IPv4 only */
772 		if (ip->ip_v != IPVERSION)
773 			goto swcsum;
774 
775 		hlen = ip->ip_hl << 2;
776 		if (hlen < sizeof(struct ip))
777 			goto swcsum;
778 
779 		/*
780 		 * bail if too short, has random trailing garbage, truncated,
781 		 * fragment, or has ethernet pad.
782 		 */
783 		if ((ntohs(ip->ip_len) < hlen) || (ntohs(ip->ip_len) != pktlen)
784 		    || (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
785 			goto swcsum;
786 
787 		switch (ip->ip_p) {
788 		case IPPROTO_TCP:
789 			if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
790 				goto swcsum;
791 			if (pktlen < (hlen + sizeof(struct tcphdr)))
792 				goto swcsum;
793 			m0->m_pkthdr.csum_flags = M_CSUM_TCPv4;
794 			break;
795 		case IPPROTO_UDP:
796 			if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
797 				goto swcsum;
798 			if (pktlen < (hlen + sizeof(struct udphdr)))
799 				goto swcsum;
800 			uh = (struct udphdr *)((char *)ip + hlen);
801 			/* no checksum */
802 			if (uh->uh_sum == 0)
803 				goto swcsum;
804 			m0->m_pkthdr.csum_flags = M_CSUM_UDPv4;
805 			break;
806 		default:
807 			goto swcsum;
808 		}
809 
810 		/* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
811 		m0->m_pkthdr.csum_data = (~flags) & HME_XD_RXCKSUM;
812 
813 		/* if the pkt had ip options, we have to deduct them */
814 		if (hlen > sizeof(struct ip)) {
815 			uint32_t optsum;
816 
817 			optsum = 0;
818 			temp = hlen - sizeof(struct ip);
819 			opts = (uint16_t *)((char *)ip + sizeof(struct ip));
820 
821 			while (temp > 1) {
822 				optsum += ntohs(*opts++);
823 				temp -= 2;
824 			}
825 			while (optsum >> 16)
826 				optsum = (optsum >> 16) + (optsum & 0xffff);
827 
828 			/* Deduct the ip opts sum from the hwsum (rfc 1624). */
829 			m0->m_pkthdr.csum_data = ~((~m0->m_pkthdr.csum_data) -
830 						   ~optsum);
831 
832 			while (m0->m_pkthdr.csum_data >> 16)
833 				m0->m_pkthdr.csum_data =
834 					(m0->m_pkthdr.csum_data >> 16) +
835 					(m0->m_pkthdr.csum_data & 0xffff);
836 		}
837 
838 		m0->m_pkthdr.csum_flags |= M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
839 	}
840 swcsum:
841 		m0->m_pkthdr.csum_flags = 0;
842 #endif
843 
844 	return (m0);
845 
846 bad:
847 	m_freem(m0);
848 	return (0);
849 }
850 
851 /*
852  * Pass a packet to the higher levels.
853  */
854 void
855 hme_read(sc, ix, flags)
856 	struct hme_softc *sc;
857 	int ix;
858 	u_int32_t flags;
859 {
860 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
861 	struct mbuf *m;
862 	int len;
863 
864 	len = HME_XD_DECODE_RSIZE(flags);
865 	if (len <= sizeof(struct ether_header) ||
866 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
867 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
868 	    ETHERMTU + sizeof(struct ether_header))) {
869 #ifdef HMEDEBUG
870 		printf("%s: invalid packet size %d; dropping\n",
871 		    device_xname(&sc->sc_dev), len);
872 #endif
873 		ifp->if_ierrors++;
874 		return;
875 	}
876 
877 	/* Pull packet off interface. */
878 	m = hme_get(sc, ix, flags);
879 	if (m == 0) {
880 		ifp->if_ierrors++;
881 		return;
882 	}
883 
884 	ifp->if_ipackets++;
885 
886 #if NBPFILTER > 0
887 	/*
888 	 * Check if there's a BPF listener on this interface.
889 	 * If so, hand off the raw packet to BPF.
890 	 */
891 	if (ifp->if_bpf)
892 		bpf_mtap(ifp->if_bpf, m);
893 #endif
894 
895 	/* Pass the packet up. */
896 	(*ifp->if_input)(ifp, m);
897 }
898 
899 void
900 hme_start(ifp)
901 	struct ifnet *ifp;
902 {
903 	struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
904 	void *txd = sc->sc_rb.rb_txd;
905 	struct mbuf *m;
906 	unsigned int txflags;
907 	unsigned int ri, len;
908 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
909 
910 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
911 		return;
912 
913 	ri = sc->sc_rb.rb_tdhead;
914 
915 	for (;;) {
916 		IFQ_DEQUEUE(&ifp->if_snd, m);
917 		if (m == 0)
918 			break;
919 
920 #if NBPFILTER > 0
921 		/*
922 		 * If BPF is listening on this interface, let it see the
923 		 * packet before we commit it to the wire.
924 		 */
925 		if (ifp->if_bpf)
926 			bpf_mtap(ifp->if_bpf, m);
927 #endif
928 
929 #ifdef INET
930 		/* collect bits for h/w csum, before hme_put frees the mbuf */
931 		if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
932 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
933 			struct ether_header *eh;
934 			uint16_t offset, start;
935 
936 			eh = mtod(m, struct ether_header *);
937 			switch (ntohs(eh->ether_type)) {
938 			case ETHERTYPE_IP:
939 				start = ETHER_HDR_LEN;
940 				break;
941 			case ETHERTYPE_VLAN:
942 				start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
943 				break;
944 			default:
945 				/* unsupported, drop it */
946 				m_free(m);
947 				continue;
948 			}
949 			start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
950 			offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
951 			    + start;
952 			txflags = HME_XD_TXCKSUM |
953 				  (offset << HME_XD_TXCSSTUFFSHIFT) |
954 		  		  (start << HME_XD_TXCSSTARTSHIFT);
955 		} else
956 #endif
957 			txflags = 0;
958 
959 		/*
960 		 * Copy the mbuf chain into the transmit buffer.
961 		 */
962 		len = hme_put(sc, ri, m);
963 
964 		/*
965 		 * Initialize transmit registers and start transmission
966 		 */
967 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
968 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
969 			HME_XD_ENCODE_TSIZE(len) | txflags);
970 
971 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
972 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
973 				  HME_ETX_TP_DMAWAKEUP);
974 
975 		if (++ri == ntbuf)
976 			ri = 0;
977 
978 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
979 			ifp->if_flags |= IFF_OACTIVE;
980 			break;
981 		}
982 	}
983 
984 	sc->sc_rb.rb_tdhead = ri;
985 }
986 
987 /*
988  * Transmit interrupt.
989  */
990 int
991 hme_tint(sc)
992 	struct hme_softc *sc;
993 {
994 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
995 	bus_space_tag_t t = sc->sc_bustag;
996 	bus_space_handle_t mac = sc->sc_mac;
997 	unsigned int ri, txflags;
998 
999 	/*
1000 	 * Unload collision counters
1001 	 */
1002 	ifp->if_collisions +=
1003 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
1004 		bus_space_read_4(t, mac, HME_MACI_FCCNT) +
1005 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
1006 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
1007 
1008 	/*
1009 	 * then clear the hardware counters.
1010 	 */
1011 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
1012 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
1013 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
1014 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
1015 
1016 	/* Fetch current position in the transmit ring */
1017 	ri = sc->sc_rb.rb_tdtail;
1018 
1019 	for (;;) {
1020 		if (sc->sc_rb.rb_td_nbusy <= 0)
1021 			break;
1022 
1023 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
1024 
1025 		if (txflags & HME_XD_OWN)
1026 			break;
1027 
1028 		ifp->if_flags &= ~IFF_OACTIVE;
1029 		ifp->if_opackets++;
1030 
1031 		if (++ri == sc->sc_rb.rb_ntbuf)
1032 			ri = 0;
1033 
1034 		--sc->sc_rb.rb_td_nbusy;
1035 	}
1036 
1037 	/* Update ring */
1038 	sc->sc_rb.rb_tdtail = ri;
1039 
1040 	hme_start(ifp);
1041 
1042 	if (sc->sc_rb.rb_td_nbusy == 0)
1043 		ifp->if_timer = 0;
1044 
1045 	return (1);
1046 }
1047 
1048 /*
1049  * Receive interrupt.
1050  */
1051 int
1052 hme_rint(sc)
1053 	struct hme_softc *sc;
1054 {
1055 	void *xdr = sc->sc_rb.rb_rxd;
1056 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
1057 	unsigned int ri;
1058 	u_int32_t flags;
1059 
1060 	ri = sc->sc_rb.rb_rdtail;
1061 
1062 	/*
1063 	 * Process all buffers with valid data.
1064 	 */
1065 	for (;;) {
1066 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
1067 		if (flags & HME_XD_OWN)
1068 			break;
1069 
1070 		if (flags & HME_XD_OFL) {
1071 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
1072 					device_xname(&sc->sc_dev), ri, flags);
1073 		} else
1074 			hme_read(sc, ri, flags);
1075 
1076 		/* This buffer can be used by the hardware again */
1077 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
1078 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
1079 
1080 		if (++ri == nrbuf)
1081 			ri = 0;
1082 	}
1083 
1084 	sc->sc_rb.rb_rdtail = ri;
1085 
1086 	return (1);
1087 }
1088 
1089 int
1090 hme_eint(sc, status)
1091 	struct hme_softc *sc;
1092 	u_int status;
1093 {
1094 	char bits[128];
1095 
1096 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
1097 		bus_space_tag_t t = sc->sc_bustag;
1098 		bus_space_handle_t mif = sc->sc_mif;
1099 		u_int32_t cf, st, sm;
1100 		cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
1101 		st = bus_space_read_4(t, mif, HME_MIFI_STAT);
1102 		sm = bus_space_read_4(t, mif, HME_MIFI_SM);
1103 		printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
1104 			device_xname(&sc->sc_dev), cf, st, sm);
1105 		return (1);
1106 	}
1107 	snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
1108 	printf("%s: status=%s\n", device_xname(&sc->sc_dev), bits);
1109 
1110 	return (1);
1111 }
1112 
1113 int
1114 hme_intr(v)
1115 	void *v;
1116 {
1117 	struct hme_softc *sc = (struct hme_softc *)v;
1118 	bus_space_tag_t t = sc->sc_bustag;
1119 	bus_space_handle_t seb = sc->sc_seb;
1120 	u_int32_t status;
1121 	int r = 0;
1122 
1123 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
1124 
1125 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
1126 		r |= hme_eint(sc, status);
1127 
1128 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
1129 		r |= hme_tint(sc);
1130 
1131 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
1132 		r |= hme_rint(sc);
1133 
1134 #if NRND > 0
1135 	rnd_add_uint32(&sc->rnd_source, status);
1136 #endif
1137 
1138 	return (r);
1139 }
1140 
1141 
1142 void
1143 hme_watchdog(ifp)
1144 	struct ifnet *ifp;
1145 {
1146 	struct hme_softc *sc = ifp->if_softc;
1147 
1148 	log(LOG_ERR, "%s: device timeout\n", device_xname(&sc->sc_dev));
1149 	++ifp->if_oerrors;
1150 
1151 	hme_reset(sc);
1152 }
1153 
1154 /*
1155  * Initialize the MII Management Interface
1156  */
1157 void
1158 hme_mifinit(sc)
1159 	struct hme_softc *sc;
1160 {
1161 	bus_space_tag_t t = sc->sc_bustag;
1162 	bus_space_handle_t mif = sc->sc_mif;
1163 	bus_space_handle_t mac = sc->sc_mac;
1164 	int instance, phy;
1165 	u_int32_t v;
1166 
1167 	if (sc->sc_mii.mii_media.ifm_cur != NULL) {
1168 		instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1169 		phy = sc->sc_phys[instance];
1170 	} else
1171 		/* No media set yet, pick phy arbitrarily.. */
1172 		phy = HME_PHYAD_EXTERNAL;
1173 
1174 	/* Configure the MIF in frame mode, no poll, current phy select */
1175 	v = 0;
1176 	if (phy == HME_PHYAD_EXTERNAL)
1177 		v |= HME_MIF_CFG_PHY;
1178 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1179 
1180 	/* If an external transceiver is selected, enable its MII drivers */
1181 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
1182 	v &= ~HME_MAC_XIF_MIIENABLE;
1183 	if (phy == HME_PHYAD_EXTERNAL)
1184 		v |= HME_MAC_XIF_MIIENABLE;
1185 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1186 }
1187 
1188 /*
1189  * MII interface
1190  */
1191 static int
1192 hme_mii_readreg(self, phy, reg)
1193 	struct device *self;
1194 	int phy, reg;
1195 {
1196 	struct hme_softc *sc = (void *)self;
1197 	bus_space_tag_t t = sc->sc_bustag;
1198 	bus_space_handle_t mif = sc->sc_mif;
1199 	bus_space_handle_t mac = sc->sc_mac;
1200 	u_int32_t v, xif_cfg, mifi_cfg;
1201 	int n;
1202 
1203 	/* We can at most have two PHYs */
1204 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1205 		return (0);
1206 
1207 	/* Select the desired PHY in the MIF configuration register */
1208 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1209 	v &= ~HME_MIF_CFG_PHY;
1210 	if (phy == HME_PHYAD_EXTERNAL)
1211 		v |= HME_MIF_CFG_PHY;
1212 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1213 
1214 	/* Enable MII drivers on external transceiver */
1215 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1216 	if (phy == HME_PHYAD_EXTERNAL)
1217 		v |= HME_MAC_XIF_MIIENABLE;
1218 	else
1219 		v &= ~HME_MAC_XIF_MIIENABLE;
1220 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1221 
1222 #if 0
1223 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1224 	/*
1225 	 * Check whether a transceiver is connected by testing
1226 	 * the MIF configuration register's MDI_X bits. Note that
1227 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1228 	 */
1229 	mif_mdi_bit = 1 << (8 + (1 - phy));
1230 	delay(100);
1231 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1232 	if ((v & mif_mdi_bit) == 0)
1233 		return (0);
1234 #endif
1235 
1236 	/* Construct the frame command */
1237 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1238 	    HME_MIF_FO_TAMSB |
1239 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1240 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
1241 	    (reg << HME_MIF_FO_REGAD_SHIFT);
1242 
1243 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
1244 	for (n = 0; n < 100; n++) {
1245 		DELAY(1);
1246 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
1247 		if (v & HME_MIF_FO_TALSB) {
1248 			v &= HME_MIF_FO_DATA;
1249 			goto out;
1250 		}
1251 	}
1252 
1253 	v = 0;
1254 	printf("%s: mii_read timeout\n", device_xname(&sc->sc_dev));
1255 
1256 out:
1257 	/* Restore MIFI_CFG register */
1258 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1259 	/* Restore XIF register */
1260 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1261 	return (v);
1262 }
1263 
1264 static void
1265 hme_mii_writereg(self, phy, reg, val)
1266 	struct device *self;
1267 	int phy, reg, val;
1268 {
1269 	struct hme_softc *sc = (void *)self;
1270 	bus_space_tag_t t = sc->sc_bustag;
1271 	bus_space_handle_t mif = sc->sc_mif;
1272 	bus_space_handle_t mac = sc->sc_mac;
1273 	u_int32_t v, xif_cfg, mifi_cfg;
1274 	int n;
1275 
1276 	/* We can at most have two PHYs */
1277 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1278 		return;
1279 
1280 	/* Select the desired PHY in the MIF configuration register */
1281 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1282 	v &= ~HME_MIF_CFG_PHY;
1283 	if (phy == HME_PHYAD_EXTERNAL)
1284 		v |= HME_MIF_CFG_PHY;
1285 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1286 
1287 	/* Enable MII drivers on external transceiver */
1288 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1289 	if (phy == HME_PHYAD_EXTERNAL)
1290 		v |= HME_MAC_XIF_MIIENABLE;
1291 	else
1292 		v &= ~HME_MAC_XIF_MIIENABLE;
1293 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1294 
1295 #if 0
1296 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1297 	/*
1298 	 * Check whether a transceiver is connected by testing
1299 	 * the MIF configuration register's MDI_X bits. Note that
1300 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1301 	 */
1302 	mif_mdi_bit = 1 << (8 + (1 - phy));
1303 	delay(100);
1304 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1305 	if ((v & mif_mdi_bit) == 0)
1306 		return;
1307 #endif
1308 
1309 	/* Construct the frame command */
1310 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
1311 	    HME_MIF_FO_TAMSB				|
1312 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
1313 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
1314 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
1315 	    (val & HME_MIF_FO_DATA);
1316 
1317 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
1318 	for (n = 0; n < 100; n++) {
1319 		DELAY(1);
1320 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
1321 		if (v & HME_MIF_FO_TALSB)
1322 			goto out;
1323 	}
1324 
1325 	printf("%s: mii_write timeout\n", device_xname(&sc->sc_dev));
1326 out:
1327 	/* Restore MIFI_CFG register */
1328 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1329 	/* Restore XIF register */
1330 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1331 }
1332 
1333 static void
1334 hme_mii_statchg(dev)
1335 	struct device *dev;
1336 {
1337 	struct hme_softc *sc = (void *)dev;
1338 	bus_space_tag_t t = sc->sc_bustag;
1339 	bus_space_handle_t mac = sc->sc_mac;
1340 	u_int32_t v;
1341 
1342 #ifdef HMEDEBUG
1343 	if (sc->sc_debug)
1344 		printf("hme_mii_statchg: status change\n");
1345 #endif
1346 
1347 	/* Set the MAC Full Duplex bit appropriately */
1348 	/* Apparently the hme chip is SIMPLEX if working in full duplex mode,
1349 	   but not otherwise. */
1350 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1351 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1352 		v |= HME_MAC_TXCFG_FULLDPLX;
1353 		sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
1354 	} else {
1355 		v &= ~HME_MAC_TXCFG_FULLDPLX;
1356 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
1357 	}
1358 	sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
1359 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1360 }
1361 
1362 int
1363 hme_mediachange(ifp)
1364 	struct ifnet *ifp;
1365 {
1366 	struct hme_softc *sc = ifp->if_softc;
1367 	bus_space_tag_t t = sc->sc_bustag;
1368 	bus_space_handle_t mif = sc->sc_mif;
1369 	bus_space_handle_t mac = sc->sc_mac;
1370 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1371 	int phy = sc->sc_phys[instance];
1372 	int rc;
1373 	u_int32_t v;
1374 
1375 #ifdef HMEDEBUG
1376 	if (sc->sc_debug)
1377 		printf("hme_mediachange: phy = %d\n", phy);
1378 #endif
1379 
1380 	/* Select the current PHY in the MIF configuration register */
1381 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1382 	v &= ~HME_MIF_CFG_PHY;
1383 	if (phy == HME_PHYAD_EXTERNAL)
1384 		v |= HME_MIF_CFG_PHY;
1385 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1386 
1387 	/* If an external transceiver is selected, enable its MII drivers */
1388 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
1389 	v &= ~HME_MAC_XIF_MIIENABLE;
1390 	if (phy == HME_PHYAD_EXTERNAL)
1391 		v |= HME_MAC_XIF_MIIENABLE;
1392 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1393 
1394 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
1395 		return 0;
1396 	return rc;
1397 }
1398 
1399 /*
1400  * Process an ioctl request.
1401  */
1402 int
1403 hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
1404 {
1405 	struct hme_softc *sc = ifp->if_softc;
1406 	struct ifaddr *ifa = (struct ifaddr *)data;
1407 	int s, error = 0;
1408 
1409 	s = splnet();
1410 
1411 	switch (cmd) {
1412 
1413 	case SIOCINITIFADDR:
1414 		switch (ifa->ifa_addr->sa_family) {
1415 #ifdef INET
1416 		case AF_INET:
1417 			if (ifp->if_flags & IFF_UP)
1418 				hme_setladrf(sc);
1419 			else {
1420 				ifp->if_flags |= IFF_UP;
1421 				error = hme_init(sc);
1422 			}
1423 			arp_ifinit(ifp, ifa);
1424 			break;
1425 #endif
1426 		default:
1427 			ifp->if_flags |= IFF_UP;
1428 			error = hme_init(sc);
1429 			break;
1430 		}
1431 		break;
1432 
1433 	case SIOCSIFFLAGS:
1434 #ifdef HMEDEBUG
1435 		{
1436 			struct ifreq *ifr = data;
1437 			sc->sc_debug =
1438 			    (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
1439 		}
1440 #endif
1441 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1442 			break;
1443 
1444 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1445 		case IFF_RUNNING:
1446 			/*
1447 			 * If interface is marked down and it is running, then
1448 			 * stop it.
1449 			 */
1450 			hme_stop(sc, false);
1451 			ifp->if_flags &= ~IFF_RUNNING;
1452 			break;
1453 		case IFF_UP:
1454 			/*
1455 			 * If interface is marked up and it is stopped, then
1456 			 * start it.
1457 			 */
1458 			error = hme_init(sc);
1459 			break;
1460 		case IFF_UP|IFF_RUNNING:
1461 			/*
1462 			 * If setting debug or promiscuous mode, do not reset
1463 			 * the chip; for everything else, call hme_init()
1464 			 * which will trigger a reset.
1465 			 */
1466 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
1467 			if (ifp->if_flags != sc->sc_if_flags) {
1468 				if ((ifp->if_flags & (~RESETIGN))
1469 				    == (sc->sc_if_flags & (~RESETIGN)))
1470 					hme_setladrf(sc);
1471 				else
1472 					error = hme_init(sc);
1473 			}
1474 #undef RESETIGN
1475 			break;
1476 		case 0:
1477 			break;
1478 		}
1479 
1480 		if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
1481 			error = hme_init(sc);
1482 
1483 		break;
1484 
1485 	default:
1486 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1487 			break;
1488 
1489 		error = 0;
1490 
1491 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1492 			;
1493 		else if (ifp->if_flags & IFF_RUNNING) {
1494 			/*
1495 			 * Multicast list has changed; set the hardware filter
1496 			 * accordingly.
1497 			 */
1498 			hme_setladrf(sc);
1499 		}
1500 		break;
1501 	}
1502 
1503 	sc->sc_if_flags = ifp->if_flags;
1504 	splx(s);
1505 	return (error);
1506 }
1507 
1508 void
1509 hme_shutdown(arg)
1510 	void *arg;
1511 {
1512 
1513 	hme_stop((struct hme_softc *)arg, false);
1514 }
1515 
1516 /*
1517  * Set up the logical address filter.
1518  */
1519 void
1520 hme_setladrf(sc)
1521 	struct hme_softc *sc;
1522 {
1523 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1524 	struct ether_multi *enm;
1525 	struct ether_multistep step;
1526 	struct ethercom *ec = &sc->sc_ethercom;
1527 	bus_space_tag_t t = sc->sc_bustag;
1528 	bus_space_handle_t mac = sc->sc_mac;
1529 	u_char *cp;
1530 	u_int32_t crc;
1531 	u_int32_t hash[4];
1532 	u_int32_t v;
1533 	int len;
1534 
1535 	/* Clear hash table */
1536 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
1537 
1538 	/* Get current RX configuration */
1539 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1540 
1541 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
1542 		/* Turn on promiscuous mode; turn off the hash filter */
1543 		v |= HME_MAC_RXCFG_PMISC;
1544 		v &= ~HME_MAC_RXCFG_HENABLE;
1545 		ifp->if_flags |= IFF_ALLMULTI;
1546 		goto chipit;
1547 	}
1548 
1549 	/* Turn off promiscuous mode; turn on the hash filter */
1550 	v &= ~HME_MAC_RXCFG_PMISC;
1551 	v |= HME_MAC_RXCFG_HENABLE;
1552 
1553 	/*
1554 	 * Set up multicast address filter by passing all multicast addresses
1555 	 * through a crc generator, and then using the high order 6 bits as an
1556 	 * index into the 64 bit logical address filter.  The high order bit
1557 	 * selects the word, while the rest of the bits select the bit within
1558 	 * the word.
1559 	 */
1560 
1561 	ETHER_FIRST_MULTI(step, ec, enm);
1562 	while (enm != NULL) {
1563 		if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
1564 			/*
1565 			 * We must listen to a range of multicast addresses.
1566 			 * For now, just accept all multicasts, rather than
1567 			 * trying to set only those filter bits needed to match
1568 			 * the range.  (At this time, the only use of address
1569 			 * ranges is for IP multicast routing, for which the
1570 			 * range is big enough to require all bits set.)
1571 			 */
1572 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1573 			ifp->if_flags |= IFF_ALLMULTI;
1574 			goto chipit;
1575 		}
1576 
1577 		cp = enm->enm_addrlo;
1578 		crc = 0xffffffff;
1579 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1580 			int octet = *cp++;
1581 			int i;
1582 
1583 #define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
1584 			for (i = 0; i < 8; i++) {
1585 				if ((crc & 1) ^ (octet & 1)) {
1586 					crc >>= 1;
1587 					crc ^= MC_POLY_LE;
1588 				} else {
1589 					crc >>= 1;
1590 				}
1591 				octet >>= 1;
1592 			}
1593 		}
1594 		/* Just want the 6 most significant bits. */
1595 		crc >>= 26;
1596 
1597 		/* Set the corresponding bit in the filter. */
1598 		hash[crc >> 4] |= 1 << (crc & 0xf);
1599 
1600 		ETHER_NEXT_MULTI(step, enm);
1601 	}
1602 
1603 	ifp->if_flags &= ~IFF_ALLMULTI;
1604 
1605 chipit:
1606 	/* Now load the hash table into the chip */
1607 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1608 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1609 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1610 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1611 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1612 }
1613 
1614 /*
1615  * Routines for accessing the transmit and receive buffers.
1616  * The various CPU and adapter configurations supported by this
1617  * driver require three different access methods for buffers
1618  * and descriptors:
1619  *	(1) contig (contiguous data; no padding),
1620  *	(2) gap2 (two bytes of data followed by two bytes of padding),
1621  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
1622  */
1623 
1624 #if 0
1625 /*
1626  * contig: contiguous data with no padding.
1627  *
1628  * Buffers may have any alignment.
1629  */
1630 
1631 void
1632 hme_copytobuf_contig(sc, from, ri, len)
1633 	struct hme_softc *sc;
1634 	void *from;
1635 	int ri, len;
1636 {
1637 	volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1638 
1639 	/*
1640 	 * Just call memcpy() to do the work.
1641 	 */
1642 	memcpy(buf, from, len);
1643 }
1644 
1645 void
1646 hme_copyfrombuf_contig(sc, to, boff, len)
1647 	struct hme_softc *sc;
1648 	void *to;
1649 	int boff, len;
1650 {
1651 	volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1652 
1653 	/*
1654 	 * Just call memcpy() to do the work.
1655 	 */
1656 	memcpy(to, buf, len);
1657 }
1658 #endif
1659