xref: /netbsd-src/sys/dev/ic/hme.c (revision 274254cdae52594c1aa480a736aef78313d15c9c)
1 /*	$NetBSD: hme.c,v 1.74 2009/03/29 07:33:52 tsutsui Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * HME Ethernet module driver.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.74 2009/03/29 07:33:52 tsutsui Exp $");
38 
39 /* #define HMEDEBUG */
40 
41 #include "opt_inet.h"
42 #include "bpfilter.h"
43 #include "rnd.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/kernel.h>
48 #include <sys/mbuf.h>
49 #include <sys/syslog.h>
50 #include <sys/socket.h>
51 #include <sys/device.h>
52 #include <sys/malloc.h>
53 #include <sys/ioctl.h>
54 #include <sys/errno.h>
55 #if NRND > 0
56 #include <sys/rnd.h>
57 #endif
58 
59 #include <net/if.h>
60 #include <net/if_dl.h>
61 #include <net/if_ether.h>
62 #include <net/if_media.h>
63 
64 #ifdef INET
65 #include <net/if_vlanvar.h>
66 #include <netinet/in.h>
67 #include <netinet/if_inarp.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/in_var.h>
70 #include <netinet/ip.h>
71 #include <netinet/tcp.h>
72 #include <netinet/udp.h>
73 #endif
74 
75 
76 #if NBPFILTER > 0
77 #include <net/bpf.h>
78 #include <net/bpfdesc.h>
79 #endif
80 
81 #include <dev/mii/mii.h>
82 #include <dev/mii/miivar.h>
83 
84 #include <sys/bus.h>
85 
86 #include <dev/ic/hmereg.h>
87 #include <dev/ic/hmevar.h>
88 
89 void		hme_start(struct ifnet *);
90 void		hme_stop(struct hme_softc *,bool);
91 int		hme_ioctl(struct ifnet *, u_long, void *);
92 void		hme_tick(void *);
93 void		hme_watchdog(struct ifnet *);
94 void		hme_shutdown(void *);
95 int		hme_init(struct hme_softc *);
96 void		hme_meminit(struct hme_softc *);
97 void		hme_mifinit(struct hme_softc *);
98 void		hme_reset(struct hme_softc *);
99 void		hme_setladrf(struct hme_softc *);
100 
101 /* MII methods & callbacks */
102 static int	hme_mii_readreg(struct device *, int, int);
103 static void	hme_mii_writereg(struct device *, int, int, int);
104 static void	hme_mii_statchg(struct device *);
105 
106 int		hme_mediachange(struct ifnet *);
107 
108 struct mbuf	*hme_get(struct hme_softc *, int, uint32_t);
109 int		hme_put(struct hme_softc *, int, struct mbuf *);
110 void		hme_read(struct hme_softc *, int, uint32_t);
111 int		hme_eint(struct hme_softc *, u_int);
112 int		hme_rint(struct hme_softc *);
113 int		hme_tint(struct hme_softc *);
114 
115 /* Default buffer copy routines */
116 void	hme_copytobuf_contig(struct hme_softc *, void *, int, int);
117 void	hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
118 void	hme_zerobuf_contig(struct hme_softc *, int, int);
119 
120 
121 void
122 hme_config(struct hme_softc *sc)
123 {
124 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
125 	struct mii_data *mii = &sc->sc_mii;
126 	struct mii_softc *child;
127 	bus_dma_tag_t dmatag = sc->sc_dmatag;
128 	bus_dma_segment_t seg;
129 	bus_size_t size;
130 	int rseg, error;
131 
132 	/*
133 	 * HME common initialization.
134 	 *
135 	 * hme_softc fields that must be initialized by the front-end:
136 	 *
137 	 * the bus tag:
138 	 *	sc_bustag
139 	 *
140 	 * the DMA bus tag:
141 	 *	sc_dmatag
142 	 *
143 	 * the bus handles:
144 	 *	sc_seb		(Shared Ethernet Block registers)
145 	 *	sc_erx		(Receiver Unit registers)
146 	 *	sc_etx		(Transmitter Unit registers)
147 	 *	sc_mac		(MAC registers)
148 	 *	sc_mif		(Management Interface registers)
149 	 *
150 	 * the maximum bus burst size:
151 	 *	sc_burst
152 	 *
153 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
154 	 *	rb_membase, rb_dmabase)
155 	 *
156 	 * the local Ethernet address:
157 	 *	sc_enaddr
158 	 *
159 	 */
160 
161 	/* Make sure the chip is stopped. */
162 	hme_stop(sc, true);
163 
164 
165 	/*
166 	 * Allocate descriptors and buffers
167 	 * XXX - do all this differently.. and more configurably,
168 	 * eg. use things as `dma_load_mbuf()' on transmit,
169 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
170 	 *     all the time) on the receiver side.
171 	 *
172 	 * Note: receive buffers must be 64-byte aligned.
173 	 * Also, apparently, the buffers must extend to a DMA burst
174 	 * boundary beyond the maximum packet size.
175 	 */
176 #define _HME_NDESC	128
177 #define _HME_BUFSZ	1600
178 
179 	/* Note: the # of descriptors must be a multiple of 16 */
180 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
181 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
182 
183 	/*
184 	 * Allocate DMA capable memory
185 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
186 	 * take this into account when calculating the size. Note that
187 	 * the maximum number of descriptors (256) occupies 2048 bytes,
188 	 * so we allocate that much regardless of _HME_NDESC.
189 	 */
190 	size =	2048 +					/* TX descriptors */
191 		2048 +					/* RX descriptors */
192 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
193 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* RX buffers */
194 
195 	/* Allocate DMA buffer */
196 	if ((error = bus_dmamem_alloc(dmatag, size,
197 				      2048, 0,
198 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
199 		aprint_error_dev(&sc->sc_dev, "DMA buffer alloc error %d\n",
200 			error);
201 		return;
202 	}
203 
204 	/* Map DMA memory in CPU addressable space */
205 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
206 				    &sc->sc_rb.rb_membase,
207 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
208 		aprint_error_dev(&sc->sc_dev, "DMA buffer map error %d\n",
209 			error);
210 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
211 		bus_dmamem_free(dmatag, &seg, rseg);
212 		return;
213 	}
214 
215 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
216 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
217 		aprint_error_dev(&sc->sc_dev, "DMA map create error %d\n",
218 			error);
219 		return;
220 	}
221 
222 	/* Load the buffer */
223 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
224 	    sc->sc_rb.rb_membase, size, NULL,
225 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
226 		aprint_error_dev(&sc->sc_dev, "DMA buffer map load error %d\n",
227 			error);
228 		bus_dmamem_free(dmatag, &seg, rseg);
229 		return;
230 	}
231 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
232 
233 	printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
234 	    ether_sprintf(sc->sc_enaddr));
235 
236 	/* Initialize ifnet structure. */
237 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
238 	ifp->if_softc = sc;
239 	ifp->if_start = hme_start;
240 	ifp->if_ioctl = hme_ioctl;
241 	ifp->if_watchdog = hme_watchdog;
242 	ifp->if_flags =
243 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
244 	sc->sc_if_flags = ifp->if_flags;
245 	ifp->if_capabilities |=
246 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
247 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
248 	IFQ_SET_READY(&ifp->if_snd);
249 
250 	/* Initialize ifmedia structures and MII info */
251 	mii->mii_ifp = ifp;
252 	mii->mii_readreg = hme_mii_readreg;
253 	mii->mii_writereg = hme_mii_writereg;
254 	mii->mii_statchg = hme_mii_statchg;
255 
256 	sc->sc_ethercom.ec_mii = mii;
257 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
258 
259 	hme_mifinit(sc);
260 
261 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
262 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
263 
264 	child = LIST_FIRST(&mii->mii_phys);
265 	if (child == NULL) {
266 		/* No PHY attached */
267 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
268 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
269 	} else {
270 		/*
271 		 * Walk along the list of attached MII devices and
272 		 * establish an `MII instance' to `phy number'
273 		 * mapping. We'll use this mapping in media change
274 		 * requests to determine which phy to use to program
275 		 * the MIF configuration register.
276 		 */
277 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
278 			/*
279 			 * Note: we support just two PHYs: the built-in
280 			 * internal device and an external on the MII
281 			 * connector.
282 			 */
283 			if (child->mii_phy > 1 || child->mii_inst > 1) {
284 				aprint_error_dev(&sc->sc_dev, "cannot accommodate MII device %s"
285 				       " at phy %d, instance %d\n",
286 				       device_xname(child->mii_dev),
287 				       child->mii_phy, child->mii_inst);
288 				continue;
289 			}
290 
291 			sc->sc_phys[child->mii_inst] = child->mii_phy;
292 		}
293 
294 		/*
295 		 * XXX - we can really do the following ONLY if the
296 		 * phy indeed has the auto negotiation capability!!
297 		 */
298 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
299 	}
300 
301 	/* claim 802.1q capability */
302 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
303 
304 	/* Attach the interface. */
305 	if_attach(ifp);
306 	ether_ifattach(ifp, sc->sc_enaddr);
307 
308 	sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
309 	if (sc->sc_sh == NULL)
310 		panic("hme_config: can't establish shutdownhook");
311 
312 #if NRND > 0
313 	rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
314 			  RND_TYPE_NET, 0);
315 #endif
316 
317 	callout_init(&sc->sc_tick_ch, 0);
318 }
319 
320 void
321 hme_tick(void *arg)
322 {
323 	struct hme_softc *sc = arg;
324 	int s;
325 
326 	s = splnet();
327 	mii_tick(&sc->sc_mii);
328 	splx(s);
329 
330 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
331 }
332 
333 void
334 hme_reset(struct hme_softc *sc)
335 {
336 	int s;
337 
338 	s = splnet();
339 	(void)hme_init(sc);
340 	splx(s);
341 }
342 
343 void
344 hme_stop(struct hme_softc *sc, bool chip_only)
345 {
346 	bus_space_tag_t t = sc->sc_bustag;
347 	bus_space_handle_t seb = sc->sc_seb;
348 	int n;
349 
350 	if (!chip_only) {
351 		callout_stop(&sc->sc_tick_ch);
352 		mii_down(&sc->sc_mii);
353 	}
354 
355 	/* Mask all interrupts */
356 	bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
357 
358 	/* Reset transmitter and receiver */
359 	bus_space_write_4(t, seb, HME_SEBI_RESET,
360 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
361 
362 	for (n = 0; n < 20; n++) {
363 		u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
364 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
365 			return;
366 		DELAY(20);
367 	}
368 
369 	printf("%s: hme_stop: reset failed\n", device_xname(&sc->sc_dev));
370 }
371 
372 void
373 hme_meminit(struct hme_softc *sc)
374 {
375 	bus_addr_t txbufdma, rxbufdma;
376 	bus_addr_t dma;
377 	char *p;
378 	unsigned int ntbuf, nrbuf, i;
379 	struct hme_ring *hr = &sc->sc_rb;
380 
381 	p = hr->rb_membase;
382 	dma = hr->rb_dmabase;
383 
384 	ntbuf = hr->rb_ntbuf;
385 	nrbuf = hr->rb_nrbuf;
386 
387 	/*
388 	 * Allocate transmit descriptors
389 	 */
390 	hr->rb_txd = p;
391 	hr->rb_txddma = dma;
392 	p += ntbuf * HME_XD_SIZE;
393 	dma += ntbuf * HME_XD_SIZE;
394 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
395 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
396 	p = (void *)roundup((u_long)p, 2048);
397 
398 	/*
399 	 * Allocate receive descriptors
400 	 */
401 	hr->rb_rxd = p;
402 	hr->rb_rxddma = dma;
403 	p += nrbuf * HME_XD_SIZE;
404 	dma += nrbuf * HME_XD_SIZE;
405 	/* Again move forward to the next 2048 byte boundary.*/
406 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
407 	p = (void *)roundup((u_long)p, 2048);
408 
409 
410 	/*
411 	 * Allocate transmit buffers
412 	 */
413 	hr->rb_txbuf = p;
414 	txbufdma = dma;
415 	p += ntbuf * _HME_BUFSZ;
416 	dma += ntbuf * _HME_BUFSZ;
417 
418 	/*
419 	 * Allocate receive buffers
420 	 */
421 	hr->rb_rxbuf = p;
422 	rxbufdma = dma;
423 	p += nrbuf * _HME_BUFSZ;
424 	dma += nrbuf * _HME_BUFSZ;
425 
426 	/*
427 	 * Initialize transmit buffer descriptors
428 	 */
429 	for (i = 0; i < ntbuf; i++) {
430 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
431 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
432 	}
433 
434 	/*
435 	 * Initialize receive buffer descriptors
436 	 */
437 	for (i = 0; i < nrbuf; i++) {
438 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
439 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
440 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
441 	}
442 
443 	hr->rb_tdhead = hr->rb_tdtail = 0;
444 	hr->rb_td_nbusy = 0;
445 	hr->rb_rdtail = 0;
446 }
447 
448 /*
449  * Initialization of interface; set up initialization block
450  * and transmit/receive descriptor rings.
451  */
452 int
453 hme_init(struct hme_softc *sc)
454 {
455 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
456 	bus_space_tag_t t = sc->sc_bustag;
457 	bus_space_handle_t seb = sc->sc_seb;
458 	bus_space_handle_t etx = sc->sc_etx;
459 	bus_space_handle_t erx = sc->sc_erx;
460 	bus_space_handle_t mac = sc->sc_mac;
461 	u_int8_t *ea;
462 	u_int32_t v;
463 	int rc;
464 
465 	/*
466 	 * Initialization sequence. The numbered steps below correspond
467 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
468 	 * Channel Engine manual (part of the PCIO manual).
469 	 * See also the STP2002-STQ document from Sun Microsystems.
470 	 */
471 
472 	/* step 1 & 2. Reset the Ethernet Channel */
473 	hme_stop(sc, false);
474 
475 	/* Re-initialize the MIF */
476 	hme_mifinit(sc);
477 
478 	/* Call MI reset function if any */
479 	if (sc->sc_hwreset)
480 		(*sc->sc_hwreset)(sc);
481 
482 #if 0
483 	/* Mask all MIF interrupts, just in case */
484 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
485 #endif
486 
487 	/* step 3. Setup data structures in host memory */
488 	hme_meminit(sc);
489 
490 	/* step 4. TX MAC registers & counters */
491 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
492 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
493 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
494 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
495 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
496 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
497 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
498 	sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
499 
500 	/* Load station MAC address */
501 	ea = sc->sc_enaddr;
502 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
503 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
504 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
505 
506 	/*
507 	 * Init seed for backoff
508 	 * (source suggested by manual: low 10 bits of MAC address)
509 	 */
510 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
511 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
512 
513 
514 	/* Note: Accepting power-on default for other MAC registers here.. */
515 
516 
517 	/* step 5. RX MAC registers & counters */
518 	hme_setladrf(sc);
519 
520 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
521 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
522 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
523 
524 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
525 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
526 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
527 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
528 
529 	/* step 8. Global Configuration & Interrupt Mask */
530 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
531 			~(
532 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
533 			  HME_SEB_STAT_HOSTTOTX |
534 			  HME_SEB_STAT_RXTOHOST |
535 			  HME_SEB_STAT_TXALL |
536 			  HME_SEB_STAT_TXPERR |
537 			  HME_SEB_STAT_RCNTEXP |
538 			  /*HME_SEB_STAT_MIFIRQ |*/
539 			  HME_SEB_STAT_ALL_ERRORS ));
540 
541 	switch (sc->sc_burst) {
542 	default:
543 		v = 0;
544 		break;
545 	case 16:
546 		v = HME_SEB_CFG_BURST16;
547 		break;
548 	case 32:
549 		v = HME_SEB_CFG_BURST32;
550 		break;
551 	case 64:
552 		v = HME_SEB_CFG_BURST64;
553 		break;
554 	}
555 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
556 
557 	/* step 9. ETX Configuration: use mostly default values */
558 
559 	/* Enable DMA */
560 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
561 	v |= HME_ETX_CFG_DMAENABLE;
562 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
563 
564 	/* Transmit Descriptor ring size: in increments of 16 */
565 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
566 
567 
568 	/* step 10. ERX Configuration */
569 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
570 
571 	/* Encode Receive Descriptor ring size: four possible values */
572 	switch (_HME_NDESC /*XXX*/) {
573 	case 32:
574 		v |= HME_ERX_CFG_RINGSIZE32;
575 		break;
576 	case 64:
577 		v |= HME_ERX_CFG_RINGSIZE64;
578 		break;
579 	case 128:
580 		v |= HME_ERX_CFG_RINGSIZE128;
581 		break;
582 	case 256:
583 		v |= HME_ERX_CFG_RINGSIZE256;
584 		break;
585 	default:
586 		printf("hme: invalid Receive Descriptor ring size\n");
587 		break;
588 	}
589 
590 	/* Enable DMA */
591 	v |= HME_ERX_CFG_DMAENABLE;
592 
593 	/* set h/w rx checksum start offset (# of half-words) */
594 #ifdef INET
595 	v |= (((ETHER_HDR_LEN + sizeof(struct ip)) / sizeof(uint16_t))
596 		<< HME_ERX_CFG_CSUMSHIFT) &
597 		HME_ERX_CFG_CSUMSTART;
598 #endif
599 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
600 
601 	/* step 11. XIF Configuration */
602 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
603 	v |= HME_MAC_XIF_OE;
604 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
605 
606 	/* step 12. RX_MAC Configuration Register */
607 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
608 	v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
609 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
610 
611 	/* step 13. TX_MAC Configuration Register */
612 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
613 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
614 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
615 
616 	/* step 14. Issue Transmit Pending command */
617 
618 	/* Call MI initialization function if any */
619 	if (sc->sc_hwinit)
620 		(*sc->sc_hwinit)(sc);
621 
622 	/* Set the current media. */
623 	if ((rc = hme_mediachange(ifp)) != 0)
624 		return rc;
625 
626 	/* Start the one second timer. */
627 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
628 
629 	ifp->if_flags |= IFF_RUNNING;
630 	ifp->if_flags &= ~IFF_OACTIVE;
631 	sc->sc_if_flags = ifp->if_flags;
632 	ifp->if_timer = 0;
633 	hme_start(ifp);
634 	return 0;
635 }
636 
637 /*
638  * Routine to copy from mbuf chain to transmit buffer in
639  * network buffer memory.
640  * Returns the amount of data copied.
641  */
642 int
643 hme_put(struct hme_softc *sc, int ri, struct mbuf *m)
644 	/* ri:			 Ring index */
645 {
646 	struct mbuf *n;
647 	int len, tlen = 0;
648 	char *bp;
649 
650 	bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
651 	for (; m; m = n) {
652 		len = m->m_len;
653 		if (len == 0) {
654 			MFREE(m, n);
655 			continue;
656 		}
657 		memcpy(bp, mtod(m, void *), len);
658 		bp += len;
659 		tlen += len;
660 		MFREE(m, n);
661 	}
662 	return (tlen);
663 }
664 
665 /*
666  * Pull data off an interface.
667  * Len is length of data, with local net header stripped.
668  * We copy the data into mbufs.  When full cluster sized units are present
669  * we copy into clusters.
670  */
671 struct mbuf *
672 hme_get(struct hme_softc *sc, int ri, u_int32_t flags)
673 {
674 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
675 	struct mbuf *m, *m0, *newm;
676 	char *bp;
677 	int len, totlen;
678 
679 	totlen = HME_XD_DECODE_RSIZE(flags);
680 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
681 	if (m0 == 0)
682 		return (0);
683 	m0->m_pkthdr.rcvif = ifp;
684 	m0->m_pkthdr.len = totlen;
685 	len = MHLEN;
686 	m = m0;
687 
688 	bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
689 
690 	while (totlen > 0) {
691 		if (totlen >= MINCLSIZE) {
692 			MCLGET(m, M_DONTWAIT);
693 			if ((m->m_flags & M_EXT) == 0)
694 				goto bad;
695 			len = MCLBYTES;
696 		}
697 
698 		if (m == m0) {
699 			char *newdata = (char *)
700 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
701 			    sizeof(struct ether_header);
702 			len -= newdata - m->m_data;
703 			m->m_data = newdata;
704 		}
705 
706 		m->m_len = len = min(totlen, len);
707 		memcpy(mtod(m, void *), bp, len);
708 		bp += len;
709 
710 		totlen -= len;
711 		if (totlen > 0) {
712 			MGET(newm, M_DONTWAIT, MT_DATA);
713 			if (newm == 0)
714 				goto bad;
715 			len = MLEN;
716 			m = m->m_next = newm;
717 		}
718 	}
719 
720 #ifdef INET
721 	/* hardware checksum */
722 	if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
723 		struct ether_header *eh;
724 		struct ether_vlan_header *evh;
725 		struct ip *ip;
726 		struct udphdr *uh;
727 		uint16_t *opts;
728 		int32_t hlen, pktlen;
729 		uint32_t temp;
730 
731 		eh = mtod(m0, struct ether_header *);
732 		if (ntohs(eh->ether_type) == ETHERTYPE_IP) {
733 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN);
734 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
735 		} else if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
736 			evh = (struct ether_vlan_header *)eh;
737 			if (ntohs(evh->evl_proto != ETHERTYPE_IP))
738 				goto swcsum;
739 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN +
740 			    ETHER_VLAN_ENCAP_LEN);
741 			pktlen = m0->m_pkthdr.len -
742 			    ETHER_HDR_LEN - ETHER_VLAN_ENCAP_LEN;
743 		} else
744 			goto swcsum;
745 
746 		/* IPv4 only */
747 		if (ip->ip_v != IPVERSION)
748 			goto swcsum;
749 
750 		hlen = ip->ip_hl << 2;
751 		if (hlen < sizeof(struct ip))
752 			goto swcsum;
753 
754 		/*
755 		 * bail if too short, has random trailing garbage, truncated,
756 		 * fragment, or has ethernet pad.
757 		 */
758 		if ((ntohs(ip->ip_len) < hlen) || (ntohs(ip->ip_len) != pktlen)
759 		    || (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
760 			goto swcsum;
761 
762 		switch (ip->ip_p) {
763 		case IPPROTO_TCP:
764 			if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
765 				goto swcsum;
766 			if (pktlen < (hlen + sizeof(struct tcphdr)))
767 				goto swcsum;
768 			m0->m_pkthdr.csum_flags = M_CSUM_TCPv4;
769 			break;
770 		case IPPROTO_UDP:
771 			if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
772 				goto swcsum;
773 			if (pktlen < (hlen + sizeof(struct udphdr)))
774 				goto swcsum;
775 			uh = (struct udphdr *)((char *)ip + hlen);
776 			/* no checksum */
777 			if (uh->uh_sum == 0)
778 				goto swcsum;
779 			m0->m_pkthdr.csum_flags = M_CSUM_UDPv4;
780 			break;
781 		default:
782 			goto swcsum;
783 		}
784 
785 		/* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
786 		m0->m_pkthdr.csum_data = (~flags) & HME_XD_RXCKSUM;
787 
788 		/*
789 		 * If data offset is different from RX cksum start offset,
790 		 * we have to deduct them.
791 		 */
792 		temp = ((char *)ip + hlen) -
793 		    ((char *)eh + ETHER_HDR_LEN + sizeof(struct ip));
794 		if (temp > 1) {
795 			uint32_t optsum;
796 
797 			optsum = 0;
798 			opts = (uint16_t *)((char *)eh +
799 			    ETHER_HDR_LEN + sizeof(struct ip));
800 
801 			while (temp > 1) {
802 				optsum += ntohs(*opts++);
803 				temp -= 2;
804 			}
805 			while (optsum >> 16)
806 				optsum = (optsum >> 16) + (optsum & 0xffff);
807 
808 			/* Deduct the ip opts sum from the hwsum. */
809 			m0->m_pkthdr.csum_data += (uint16_t)~optsum;
810 
811 			while (m0->m_pkthdr.csum_data >> 16)
812 				m0->m_pkthdr.csum_data =
813 					(m0->m_pkthdr.csum_data >> 16) +
814 					(m0->m_pkthdr.csum_data & 0xffff);
815 		}
816 
817 		m0->m_pkthdr.csum_flags |= M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
818 	} else
819 swcsum:
820 		m0->m_pkthdr.csum_flags = 0;
821 #endif
822 
823 	return (m0);
824 
825 bad:
826 	m_freem(m0);
827 	return (0);
828 }
829 
830 /*
831  * Pass a packet to the higher levels.
832  */
833 void
834 hme_read(struct hme_softc *sc, int ix, u_int32_t flags)
835 {
836 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
837 	struct mbuf *m;
838 	int len;
839 
840 	len = HME_XD_DECODE_RSIZE(flags);
841 	if (len <= sizeof(struct ether_header) ||
842 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
843 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
844 	    ETHERMTU + sizeof(struct ether_header))) {
845 #ifdef HMEDEBUG
846 		printf("%s: invalid packet size %d; dropping\n",
847 		    device_xname(&sc->sc_dev), len);
848 #endif
849 		ifp->if_ierrors++;
850 		return;
851 	}
852 
853 	/* Pull packet off interface. */
854 	m = hme_get(sc, ix, flags);
855 	if (m == 0) {
856 		ifp->if_ierrors++;
857 		return;
858 	}
859 
860 	ifp->if_ipackets++;
861 
862 #if NBPFILTER > 0
863 	/*
864 	 * Check if there's a BPF listener on this interface.
865 	 * If so, hand off the raw packet to BPF.
866 	 */
867 	if (ifp->if_bpf)
868 		bpf_mtap(ifp->if_bpf, m);
869 #endif
870 
871 	/* Pass the packet up. */
872 	(*ifp->if_input)(ifp, m);
873 }
874 
875 void
876 hme_start(struct ifnet *ifp)
877 {
878 	struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
879 	void *txd = sc->sc_rb.rb_txd;
880 	struct mbuf *m;
881 	unsigned int txflags;
882 	unsigned int ri, len;
883 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
884 
885 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
886 		return;
887 
888 	ri = sc->sc_rb.rb_tdhead;
889 
890 	for (;;) {
891 		IFQ_DEQUEUE(&ifp->if_snd, m);
892 		if (m == 0)
893 			break;
894 
895 #if NBPFILTER > 0
896 		/*
897 		 * If BPF is listening on this interface, let it see the
898 		 * packet before we commit it to the wire.
899 		 */
900 		if (ifp->if_bpf)
901 			bpf_mtap(ifp->if_bpf, m);
902 #endif
903 
904 #ifdef INET
905 		/* collect bits for h/w csum, before hme_put frees the mbuf */
906 		if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
907 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
908 			struct ether_header *eh;
909 			uint16_t offset, start;
910 
911 			eh = mtod(m, struct ether_header *);
912 			switch (ntohs(eh->ether_type)) {
913 			case ETHERTYPE_IP:
914 				start = ETHER_HDR_LEN;
915 				break;
916 			case ETHERTYPE_VLAN:
917 				start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
918 				break;
919 			default:
920 				/* unsupported, drop it */
921 				m_free(m);
922 				continue;
923 			}
924 			start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
925 			offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
926 			    + start;
927 			txflags = HME_XD_TXCKSUM |
928 				  (offset << HME_XD_TXCSSTUFFSHIFT) |
929 		  		  (start << HME_XD_TXCSSTARTSHIFT);
930 		} else
931 #endif
932 			txflags = 0;
933 
934 		/*
935 		 * Copy the mbuf chain into the transmit buffer.
936 		 */
937 		len = hme_put(sc, ri, m);
938 
939 		/*
940 		 * Initialize transmit registers and start transmission
941 		 */
942 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
943 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
944 			HME_XD_ENCODE_TSIZE(len) | txflags);
945 
946 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
947 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
948 				  HME_ETX_TP_DMAWAKEUP);
949 
950 		if (++ri == ntbuf)
951 			ri = 0;
952 
953 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
954 			ifp->if_flags |= IFF_OACTIVE;
955 			break;
956 		}
957 	}
958 
959 	sc->sc_rb.rb_tdhead = ri;
960 }
961 
962 /*
963  * Transmit interrupt.
964  */
965 int
966 hme_tint(struct hme_softc *sc)
967 {
968 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
969 	bus_space_tag_t t = sc->sc_bustag;
970 	bus_space_handle_t mac = sc->sc_mac;
971 	unsigned int ri, txflags;
972 
973 	/*
974 	 * Unload collision counters
975 	 */
976 	ifp->if_collisions +=
977 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
978 		bus_space_read_4(t, mac, HME_MACI_FCCNT) +
979 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
980 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
981 
982 	/*
983 	 * then clear the hardware counters.
984 	 */
985 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
986 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
987 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
988 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
989 
990 	/* Fetch current position in the transmit ring */
991 	ri = sc->sc_rb.rb_tdtail;
992 
993 	for (;;) {
994 		if (sc->sc_rb.rb_td_nbusy <= 0)
995 			break;
996 
997 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
998 
999 		if (txflags & HME_XD_OWN)
1000 			break;
1001 
1002 		ifp->if_flags &= ~IFF_OACTIVE;
1003 		ifp->if_opackets++;
1004 
1005 		if (++ri == sc->sc_rb.rb_ntbuf)
1006 			ri = 0;
1007 
1008 		--sc->sc_rb.rb_td_nbusy;
1009 	}
1010 
1011 	/* Update ring */
1012 	sc->sc_rb.rb_tdtail = ri;
1013 
1014 	hme_start(ifp);
1015 
1016 	if (sc->sc_rb.rb_td_nbusy == 0)
1017 		ifp->if_timer = 0;
1018 
1019 	return (1);
1020 }
1021 
1022 /*
1023  * Receive interrupt.
1024  */
1025 int
1026 hme_rint(struct hme_softc *sc)
1027 {
1028 	void *xdr = sc->sc_rb.rb_rxd;
1029 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
1030 	unsigned int ri;
1031 	u_int32_t flags;
1032 
1033 	ri = sc->sc_rb.rb_rdtail;
1034 
1035 	/*
1036 	 * Process all buffers with valid data.
1037 	 */
1038 	for (;;) {
1039 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
1040 		if (flags & HME_XD_OWN)
1041 			break;
1042 
1043 		if (flags & HME_XD_OFL) {
1044 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
1045 					device_xname(&sc->sc_dev), ri, flags);
1046 		} else
1047 			hme_read(sc, ri, flags);
1048 
1049 		/* This buffer can be used by the hardware again */
1050 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
1051 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
1052 
1053 		if (++ri == nrbuf)
1054 			ri = 0;
1055 	}
1056 
1057 	sc->sc_rb.rb_rdtail = ri;
1058 
1059 	return (1);
1060 }
1061 
1062 int
1063 hme_eint(struct hme_softc *sc, u_int status)
1064 {
1065 	char bits[128];
1066 
1067 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
1068 		bus_space_tag_t t = sc->sc_bustag;
1069 		bus_space_handle_t mif = sc->sc_mif;
1070 		u_int32_t cf, st, sm;
1071 		cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
1072 		st = bus_space_read_4(t, mif, HME_MIFI_STAT);
1073 		sm = bus_space_read_4(t, mif, HME_MIFI_SM);
1074 		printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
1075 			device_xname(&sc->sc_dev), cf, st, sm);
1076 		return (1);
1077 	}
1078 	snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
1079 	printf("%s: status=%s\n", device_xname(&sc->sc_dev), bits);
1080 
1081 	return (1);
1082 }
1083 
1084 int
1085 hme_intr(void *v)
1086 {
1087 	struct hme_softc *sc = (struct hme_softc *)v;
1088 	bus_space_tag_t t = sc->sc_bustag;
1089 	bus_space_handle_t seb = sc->sc_seb;
1090 	u_int32_t status;
1091 	int r = 0;
1092 
1093 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
1094 
1095 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
1096 		r |= hme_eint(sc, status);
1097 
1098 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
1099 		r |= hme_tint(sc);
1100 
1101 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
1102 		r |= hme_rint(sc);
1103 
1104 #if NRND > 0
1105 	rnd_add_uint32(&sc->rnd_source, status);
1106 #endif
1107 
1108 	return (r);
1109 }
1110 
1111 
1112 void
1113 hme_watchdog(struct ifnet *ifp)
1114 {
1115 	struct hme_softc *sc = ifp->if_softc;
1116 
1117 	log(LOG_ERR, "%s: device timeout\n", device_xname(&sc->sc_dev));
1118 	++ifp->if_oerrors;
1119 
1120 	hme_reset(sc);
1121 }
1122 
1123 /*
1124  * Initialize the MII Management Interface
1125  */
1126 void
1127 hme_mifinit(struct hme_softc *sc)
1128 {
1129 	bus_space_tag_t t = sc->sc_bustag;
1130 	bus_space_handle_t mif = sc->sc_mif;
1131 	bus_space_handle_t mac = sc->sc_mac;
1132 	int instance, phy;
1133 	u_int32_t v;
1134 
1135 	if (sc->sc_mii.mii_media.ifm_cur != NULL) {
1136 		instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1137 		phy = sc->sc_phys[instance];
1138 	} else
1139 		/* No media set yet, pick phy arbitrarily.. */
1140 		phy = HME_PHYAD_EXTERNAL;
1141 
1142 	/* Configure the MIF in frame mode, no poll, current phy select */
1143 	v = 0;
1144 	if (phy == HME_PHYAD_EXTERNAL)
1145 		v |= HME_MIF_CFG_PHY;
1146 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1147 
1148 	/* If an external transceiver is selected, enable its MII drivers */
1149 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
1150 	v &= ~HME_MAC_XIF_MIIENABLE;
1151 	if (phy == HME_PHYAD_EXTERNAL)
1152 		v |= HME_MAC_XIF_MIIENABLE;
1153 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1154 }
1155 
1156 /*
1157  * MII interface
1158  */
1159 static int
1160 hme_mii_readreg(struct device *self, int phy, int reg)
1161 {
1162 	struct hme_softc *sc = (void *)self;
1163 	bus_space_tag_t t = sc->sc_bustag;
1164 	bus_space_handle_t mif = sc->sc_mif;
1165 	bus_space_handle_t mac = sc->sc_mac;
1166 	u_int32_t v, xif_cfg, mifi_cfg;
1167 	int n;
1168 
1169 	/* We can at most have two PHYs */
1170 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1171 		return (0);
1172 
1173 	/* Select the desired PHY in the MIF configuration register */
1174 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1175 	v &= ~HME_MIF_CFG_PHY;
1176 	if (phy == HME_PHYAD_EXTERNAL)
1177 		v |= HME_MIF_CFG_PHY;
1178 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1179 
1180 	/* Enable MII drivers on external transceiver */
1181 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1182 	if (phy == HME_PHYAD_EXTERNAL)
1183 		v |= HME_MAC_XIF_MIIENABLE;
1184 	else
1185 		v &= ~HME_MAC_XIF_MIIENABLE;
1186 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1187 
1188 #if 0
1189 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1190 	/*
1191 	 * Check whether a transceiver is connected by testing
1192 	 * the MIF configuration register's MDI_X bits. Note that
1193 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1194 	 */
1195 	mif_mdi_bit = 1 << (8 + (1 - phy));
1196 	delay(100);
1197 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1198 	if ((v & mif_mdi_bit) == 0)
1199 		return (0);
1200 #endif
1201 
1202 	/* Construct the frame command */
1203 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1204 	    HME_MIF_FO_TAMSB |
1205 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1206 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
1207 	    (reg << HME_MIF_FO_REGAD_SHIFT);
1208 
1209 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
1210 	for (n = 0; n < 100; n++) {
1211 		DELAY(1);
1212 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
1213 		if (v & HME_MIF_FO_TALSB) {
1214 			v &= HME_MIF_FO_DATA;
1215 			goto out;
1216 		}
1217 	}
1218 
1219 	v = 0;
1220 	printf("%s: mii_read timeout\n", device_xname(&sc->sc_dev));
1221 
1222 out:
1223 	/* Restore MIFI_CFG register */
1224 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1225 	/* Restore XIF register */
1226 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1227 	return (v);
1228 }
1229 
1230 static void
1231 hme_mii_writereg(struct device *self, int phy, int reg, int val)
1232 {
1233 	struct hme_softc *sc = (void *)self;
1234 	bus_space_tag_t t = sc->sc_bustag;
1235 	bus_space_handle_t mif = sc->sc_mif;
1236 	bus_space_handle_t mac = sc->sc_mac;
1237 	u_int32_t v, xif_cfg, mifi_cfg;
1238 	int n;
1239 
1240 	/* We can at most have two PHYs */
1241 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1242 		return;
1243 
1244 	/* Select the desired PHY in the MIF configuration register */
1245 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1246 	v &= ~HME_MIF_CFG_PHY;
1247 	if (phy == HME_PHYAD_EXTERNAL)
1248 		v |= HME_MIF_CFG_PHY;
1249 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1250 
1251 	/* Enable MII drivers on external transceiver */
1252 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1253 	if (phy == HME_PHYAD_EXTERNAL)
1254 		v |= HME_MAC_XIF_MIIENABLE;
1255 	else
1256 		v &= ~HME_MAC_XIF_MIIENABLE;
1257 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1258 
1259 #if 0
1260 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1261 	/*
1262 	 * Check whether a transceiver is connected by testing
1263 	 * the MIF configuration register's MDI_X bits. Note that
1264 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1265 	 */
1266 	mif_mdi_bit = 1 << (8 + (1 - phy));
1267 	delay(100);
1268 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1269 	if ((v & mif_mdi_bit) == 0)
1270 		return;
1271 #endif
1272 
1273 	/* Construct the frame command */
1274 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
1275 	    HME_MIF_FO_TAMSB				|
1276 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
1277 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
1278 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
1279 	    (val & HME_MIF_FO_DATA);
1280 
1281 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
1282 	for (n = 0; n < 100; n++) {
1283 		DELAY(1);
1284 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
1285 		if (v & HME_MIF_FO_TALSB)
1286 			goto out;
1287 	}
1288 
1289 	printf("%s: mii_write timeout\n", device_xname(&sc->sc_dev));
1290 out:
1291 	/* Restore MIFI_CFG register */
1292 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1293 	/* Restore XIF register */
1294 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1295 }
1296 
1297 static void
1298 hme_mii_statchg(struct device *dev)
1299 {
1300 	struct hme_softc *sc = (void *)dev;
1301 	bus_space_tag_t t = sc->sc_bustag;
1302 	bus_space_handle_t mac = sc->sc_mac;
1303 	u_int32_t v;
1304 
1305 #ifdef HMEDEBUG
1306 	if (sc->sc_debug)
1307 		printf("hme_mii_statchg: status change\n");
1308 #endif
1309 
1310 	/* Set the MAC Full Duplex bit appropriately */
1311 	/* Apparently the hme chip is SIMPLEX if working in full duplex mode,
1312 	   but not otherwise. */
1313 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1314 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1315 		v |= HME_MAC_TXCFG_FULLDPLX;
1316 		sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
1317 	} else {
1318 		v &= ~HME_MAC_TXCFG_FULLDPLX;
1319 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
1320 	}
1321 	sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
1322 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1323 }
1324 
1325 int
1326 hme_mediachange(struct ifnet *ifp)
1327 {
1328 	struct hme_softc *sc = ifp->if_softc;
1329 	bus_space_tag_t t = sc->sc_bustag;
1330 	bus_space_handle_t mif = sc->sc_mif;
1331 	bus_space_handle_t mac = sc->sc_mac;
1332 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1333 	int phy = sc->sc_phys[instance];
1334 	int rc;
1335 	u_int32_t v;
1336 
1337 #ifdef HMEDEBUG
1338 	if (sc->sc_debug)
1339 		printf("hme_mediachange: phy = %d\n", phy);
1340 #endif
1341 
1342 	/* Select the current PHY in the MIF configuration register */
1343 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1344 	v &= ~HME_MIF_CFG_PHY;
1345 	if (phy == HME_PHYAD_EXTERNAL)
1346 		v |= HME_MIF_CFG_PHY;
1347 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1348 
1349 	/* If an external transceiver is selected, enable its MII drivers */
1350 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
1351 	v &= ~HME_MAC_XIF_MIIENABLE;
1352 	if (phy == HME_PHYAD_EXTERNAL)
1353 		v |= HME_MAC_XIF_MIIENABLE;
1354 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1355 
1356 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
1357 		return 0;
1358 	return rc;
1359 }
1360 
1361 /*
1362  * Process an ioctl request.
1363  */
1364 int
1365 hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
1366 {
1367 	struct hme_softc *sc = ifp->if_softc;
1368 	struct ifaddr *ifa = (struct ifaddr *)data;
1369 	int s, error = 0;
1370 
1371 	s = splnet();
1372 
1373 	switch (cmd) {
1374 
1375 	case SIOCINITIFADDR:
1376 		switch (ifa->ifa_addr->sa_family) {
1377 #ifdef INET
1378 		case AF_INET:
1379 			if (ifp->if_flags & IFF_UP)
1380 				hme_setladrf(sc);
1381 			else {
1382 				ifp->if_flags |= IFF_UP;
1383 				error = hme_init(sc);
1384 			}
1385 			arp_ifinit(ifp, ifa);
1386 			break;
1387 #endif
1388 		default:
1389 			ifp->if_flags |= IFF_UP;
1390 			error = hme_init(sc);
1391 			break;
1392 		}
1393 		break;
1394 
1395 	case SIOCSIFFLAGS:
1396 #ifdef HMEDEBUG
1397 		{
1398 			struct ifreq *ifr = data;
1399 			sc->sc_debug =
1400 			    (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
1401 		}
1402 #endif
1403 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1404 			break;
1405 
1406 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1407 		case IFF_RUNNING:
1408 			/*
1409 			 * If interface is marked down and it is running, then
1410 			 * stop it.
1411 			 */
1412 			hme_stop(sc, false);
1413 			ifp->if_flags &= ~IFF_RUNNING;
1414 			break;
1415 		case IFF_UP:
1416 			/*
1417 			 * If interface is marked up and it is stopped, then
1418 			 * start it.
1419 			 */
1420 			error = hme_init(sc);
1421 			break;
1422 		case IFF_UP|IFF_RUNNING:
1423 			/*
1424 			 * If setting debug or promiscuous mode, do not reset
1425 			 * the chip; for everything else, call hme_init()
1426 			 * which will trigger a reset.
1427 			 */
1428 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
1429 			if (ifp->if_flags != sc->sc_if_flags) {
1430 				if ((ifp->if_flags & (~RESETIGN))
1431 				    == (sc->sc_if_flags & (~RESETIGN)))
1432 					hme_setladrf(sc);
1433 				else
1434 					error = hme_init(sc);
1435 			}
1436 #undef RESETIGN
1437 			break;
1438 		case 0:
1439 			break;
1440 		}
1441 
1442 		if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
1443 			error = hme_init(sc);
1444 
1445 		break;
1446 
1447 	default:
1448 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1449 			break;
1450 
1451 		error = 0;
1452 
1453 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1454 			;
1455 		else if (ifp->if_flags & IFF_RUNNING) {
1456 			/*
1457 			 * Multicast list has changed; set the hardware filter
1458 			 * accordingly.
1459 			 */
1460 			hme_setladrf(sc);
1461 		}
1462 		break;
1463 	}
1464 
1465 	sc->sc_if_flags = ifp->if_flags;
1466 	splx(s);
1467 	return (error);
1468 }
1469 
1470 void
1471 hme_shutdown(void *arg)
1472 {
1473 
1474 	hme_stop((struct hme_softc *)arg, false);
1475 }
1476 
1477 /*
1478  * Set up the logical address filter.
1479  */
1480 void
1481 hme_setladrf(struct hme_softc *sc)
1482 {
1483 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1484 	struct ether_multi *enm;
1485 	struct ether_multistep step;
1486 	struct ethercom *ec = &sc->sc_ethercom;
1487 	bus_space_tag_t t = sc->sc_bustag;
1488 	bus_space_handle_t mac = sc->sc_mac;
1489 	u_char *cp;
1490 	u_int32_t crc;
1491 	u_int32_t hash[4];
1492 	u_int32_t v;
1493 	int len;
1494 
1495 	/* Clear hash table */
1496 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
1497 
1498 	/* Get current RX configuration */
1499 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1500 
1501 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
1502 		/* Turn on promiscuous mode; turn off the hash filter */
1503 		v |= HME_MAC_RXCFG_PMISC;
1504 		v &= ~HME_MAC_RXCFG_HENABLE;
1505 		ifp->if_flags |= IFF_ALLMULTI;
1506 		goto chipit;
1507 	}
1508 
1509 	/* Turn off promiscuous mode; turn on the hash filter */
1510 	v &= ~HME_MAC_RXCFG_PMISC;
1511 	v |= HME_MAC_RXCFG_HENABLE;
1512 
1513 	/*
1514 	 * Set up multicast address filter by passing all multicast addresses
1515 	 * through a crc generator, and then using the high order 6 bits as an
1516 	 * index into the 64 bit logical address filter.  The high order bit
1517 	 * selects the word, while the rest of the bits select the bit within
1518 	 * the word.
1519 	 */
1520 
1521 	ETHER_FIRST_MULTI(step, ec, enm);
1522 	while (enm != NULL) {
1523 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1524 			/*
1525 			 * We must listen to a range of multicast addresses.
1526 			 * For now, just accept all multicasts, rather than
1527 			 * trying to set only those filter bits needed to match
1528 			 * the range.  (At this time, the only use of address
1529 			 * ranges is for IP multicast routing, for which the
1530 			 * range is big enough to require all bits set.)
1531 			 */
1532 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1533 			ifp->if_flags |= IFF_ALLMULTI;
1534 			goto chipit;
1535 		}
1536 
1537 		cp = enm->enm_addrlo;
1538 		crc = 0xffffffff;
1539 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1540 			int octet = *cp++;
1541 			int i;
1542 
1543 #define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
1544 			for (i = 0; i < 8; i++) {
1545 				if ((crc & 1) ^ (octet & 1)) {
1546 					crc >>= 1;
1547 					crc ^= MC_POLY_LE;
1548 				} else {
1549 					crc >>= 1;
1550 				}
1551 				octet >>= 1;
1552 			}
1553 		}
1554 		/* Just want the 6 most significant bits. */
1555 		crc >>= 26;
1556 
1557 		/* Set the corresponding bit in the filter. */
1558 		hash[crc >> 4] |= 1 << (crc & 0xf);
1559 
1560 		ETHER_NEXT_MULTI(step, enm);
1561 	}
1562 
1563 	ifp->if_flags &= ~IFF_ALLMULTI;
1564 
1565 chipit:
1566 	/* Now load the hash table into the chip */
1567 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1568 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1569 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1570 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1571 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1572 }
1573 
1574 /*
1575  * Routines for accessing the transmit and receive buffers.
1576  * The various CPU and adapter configurations supported by this
1577  * driver require three different access methods for buffers
1578  * and descriptors:
1579  *	(1) contig (contiguous data; no padding),
1580  *	(2) gap2 (two bytes of data followed by two bytes of padding),
1581  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
1582  */
1583 
1584 #if 0
1585 /*
1586  * contig: contiguous data with no padding.
1587  *
1588  * Buffers may have any alignment.
1589  */
1590 
1591 void
1592 hme_copytobuf_contig(struct hme_softc *sc, void *from, int ri, int len)
1593 {
1594 	volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1595 
1596 	/*
1597 	 * Just call memcpy() to do the work.
1598 	 */
1599 	memcpy(buf, from, len);
1600 }
1601 
1602 void
1603 hme_copyfrombuf_contig(struct hme_softc *sc, void *to, int boff, int len)
1604 {
1605 	volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1606 
1607 	/*
1608 	 * Just call memcpy() to do the work.
1609 	 */
1610 	memcpy(to, buf, len);
1611 }
1612 #endif
1613