xref: /netbsd-src/sys/dev/ic/hme.c (revision 267197ec1eebfcb9810ea27a89625b6ddf68e3e7)
1 /*	$NetBSD: hme.c,v 1.63 2008/02/07 01:21:53 dyoung Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * HME Ethernet module driver.
41  */
42 
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.63 2008/02/07 01:21:53 dyoung Exp $");
45 
46 /* #define HMEDEBUG */
47 
48 #include "opt_inet.h"
49 #include "bpfilter.h"
50 #include "rnd.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/kernel.h>
55 #include <sys/mbuf.h>
56 #include <sys/syslog.h>
57 #include <sys/socket.h>
58 #include <sys/device.h>
59 #include <sys/malloc.h>
60 #include <sys/ioctl.h>
61 #include <sys/errno.h>
62 #if NRND > 0
63 #include <sys/rnd.h>
64 #endif
65 
66 #include <net/if.h>
67 #include <net/if_dl.h>
68 #include <net/if_ether.h>
69 #include <net/if_media.h>
70 
71 #ifdef INET
72 #include <netinet/in.h>
73 #include <netinet/if_inarp.h>
74 #include <netinet/in_systm.h>
75 #include <netinet/in_var.h>
76 #include <netinet/ip.h>
77 #include <netinet/tcp.h>
78 #include <netinet/udp.h>
79 #endif
80 
81 
82 #if NBPFILTER > 0
83 #include <net/bpf.h>
84 #include <net/bpfdesc.h>
85 #endif
86 
87 #include <dev/mii/mii.h>
88 #include <dev/mii/miivar.h>
89 
90 #include <sys/bus.h>
91 
92 #include <dev/ic/hmereg.h>
93 #include <dev/ic/hmevar.h>
94 
95 void		hme_start(struct ifnet *);
96 void		hme_stop(struct hme_softc *,bool);
97 int		hme_ioctl(struct ifnet *, u_long, void *);
98 void		hme_tick(void *);
99 void		hme_watchdog(struct ifnet *);
100 void		hme_shutdown(void *);
101 int		hme_init(struct hme_softc *);
102 void		hme_meminit(struct hme_softc *);
103 void		hme_mifinit(struct hme_softc *);
104 void		hme_reset(struct hme_softc *);
105 void		hme_setladrf(struct hme_softc *);
106 
107 /* MII methods & callbacks */
108 static int	hme_mii_readreg(struct device *, int, int);
109 static void	hme_mii_writereg(struct device *, int, int, int);
110 static void	hme_mii_statchg(struct device *);
111 
112 int		hme_mediachange(struct ifnet *);
113 
114 struct mbuf	*hme_get(struct hme_softc *, int, uint32_t);
115 int		hme_put(struct hme_softc *, int, struct mbuf *);
116 void		hme_read(struct hme_softc *, int, uint32_t);
117 int		hme_eint(struct hme_softc *, u_int);
118 int		hme_rint(struct hme_softc *);
119 int		hme_tint(struct hme_softc *);
120 
121 static int	ether_cmp(u_char *, u_char *);
122 
123 /* Default buffer copy routines */
124 void	hme_copytobuf_contig(struct hme_softc *, void *, int, int);
125 void	hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
126 void	hme_zerobuf_contig(struct hme_softc *, int, int);
127 
128 
129 void
130 hme_config(sc)
131 	struct hme_softc *sc;
132 {
133 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
134 	struct mii_data *mii = &sc->sc_mii;
135 	struct mii_softc *child;
136 	bus_dma_tag_t dmatag = sc->sc_dmatag;
137 	bus_dma_segment_t seg;
138 	bus_size_t size;
139 	int rseg, error;
140 
141 	/*
142 	 * HME common initialization.
143 	 *
144 	 * hme_softc fields that must be initialized by the front-end:
145 	 *
146 	 * the bus tag:
147 	 *	sc_bustag
148 	 *
149 	 * the DMA bus tag:
150 	 *	sc_dmatag
151 	 *
152 	 * the bus handles:
153 	 *	sc_seb		(Shared Ethernet Block registers)
154 	 *	sc_erx		(Receiver Unit registers)
155 	 *	sc_etx		(Transmitter Unit registers)
156 	 *	sc_mac		(MAC registers)
157 	 *	sc_mif		(Management Interface registers)
158 	 *
159 	 * the maximum bus burst size:
160 	 *	sc_burst
161 	 *
162 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
163 	 *	rb_membase, rb_dmabase)
164 	 *
165 	 * the local Ethernet address:
166 	 *	sc_enaddr
167 	 *
168 	 */
169 
170 	/* Make sure the chip is stopped. */
171 	hme_stop(sc, true);
172 
173 
174 	/*
175 	 * Allocate descriptors and buffers
176 	 * XXX - do all this differently.. and more configurably,
177 	 * eg. use things as `dma_load_mbuf()' on transmit,
178 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
179 	 *     all the time) on the receiver side.
180 	 *
181 	 * Note: receive buffers must be 64-byte aligned.
182 	 * Also, apparently, the buffers must extend to a DMA burst
183 	 * boundary beyond the maximum packet size.
184 	 */
185 #define _HME_NDESC	128
186 #define _HME_BUFSZ	1600
187 
188 	/* Note: the # of descriptors must be a multiple of 16 */
189 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
190 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
191 
192 	/*
193 	 * Allocate DMA capable memory
194 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
195 	 * take this into account when calculating the size. Note that
196 	 * the maximum number of descriptors (256) occupies 2048 bytes,
197 	 * so we allocate that much regardless of _HME_NDESC.
198 	 */
199 	size =	2048 +					/* TX descriptors */
200 		2048 +					/* RX descriptors */
201 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
202 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* RX buffers */
203 
204 	/* Allocate DMA buffer */
205 	if ((error = bus_dmamem_alloc(dmatag, size,
206 				      2048, 0,
207 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
208 		printf("%s: DMA buffer alloc error %d\n",
209 			sc->sc_dev.dv_xname, error);
210 		return;
211 	}
212 
213 	/* Map DMA memory in CPU addressable space */
214 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
215 				    &sc->sc_rb.rb_membase,
216 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
217 		printf("%s: DMA buffer map error %d\n",
218 			sc->sc_dev.dv_xname, error);
219 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
220 		bus_dmamem_free(dmatag, &seg, rseg);
221 		return;
222 	}
223 
224 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
225 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
226 		printf("%s: DMA map create error %d\n",
227 			sc->sc_dev.dv_xname, error);
228 		return;
229 	}
230 
231 	/* Load the buffer */
232 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
233 	    sc->sc_rb.rb_membase, size, NULL,
234 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
235 		printf("%s: DMA buffer map load error %d\n",
236 			sc->sc_dev.dv_xname, error);
237 		bus_dmamem_free(dmatag, &seg, rseg);
238 		return;
239 	}
240 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
241 
242 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
243 	    ether_sprintf(sc->sc_enaddr));
244 
245 	/* Initialize ifnet structure. */
246 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
247 	ifp->if_softc = sc;
248 	ifp->if_start = hme_start;
249 	ifp->if_ioctl = hme_ioctl;
250 	ifp->if_watchdog = hme_watchdog;
251 	ifp->if_flags =
252 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
253 	sc->sc_if_flags = ifp->if_flags;
254 	ifp->if_capabilities |=
255 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
256 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
257 	IFQ_SET_READY(&ifp->if_snd);
258 
259 	/* Initialize ifmedia structures and MII info */
260 	mii->mii_ifp = ifp;
261 	mii->mii_readreg = hme_mii_readreg;
262 	mii->mii_writereg = hme_mii_writereg;
263 	mii->mii_statchg = hme_mii_statchg;
264 
265 	sc->sc_ethercom.ec_mii = mii;
266 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
267 
268 	hme_mifinit(sc);
269 
270 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
271 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
272 
273 	child = LIST_FIRST(&mii->mii_phys);
274 	if (child == NULL) {
275 		/* No PHY attached */
276 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
277 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
278 	} else {
279 		/*
280 		 * Walk along the list of attached MII devices and
281 		 * establish an `MII instance' to `phy number'
282 		 * mapping. We'll use this mapping in media change
283 		 * requests to determine which phy to use to program
284 		 * the MIF configuration register.
285 		 */
286 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
287 			/*
288 			 * Note: we support just two PHYs: the built-in
289 			 * internal device and an external on the MII
290 			 * connector.
291 			 */
292 			if (child->mii_phy > 1 || child->mii_inst > 1) {
293 				printf("%s: cannot accommodate MII device %s"
294 				       " at phy %d, instance %d\n",
295 				       sc->sc_dev.dv_xname,
296 				       child->mii_dev.dv_xname,
297 				       child->mii_phy, child->mii_inst);
298 				continue;
299 			}
300 
301 			sc->sc_phys[child->mii_inst] = child->mii_phy;
302 		}
303 
304 		/*
305 		 * XXX - we can really do the following ONLY if the
306 		 * phy indeed has the auto negotiation capability!!
307 		 */
308 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
309 	}
310 
311 	/* claim 802.1q capability */
312 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
313 
314 	/* Attach the interface. */
315 	if_attach(ifp);
316 	ether_ifattach(ifp, sc->sc_enaddr);
317 
318 	sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
319 	if (sc->sc_sh == NULL)
320 		panic("hme_config: can't establish shutdownhook");
321 
322 #if NRND > 0
323 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
324 			  RND_TYPE_NET, 0);
325 #endif
326 
327 	callout_init(&sc->sc_tick_ch, 0);
328 }
329 
330 void
331 hme_tick(arg)
332 	void *arg;
333 {
334 	struct hme_softc *sc = arg;
335 	int s;
336 
337 	s = splnet();
338 	mii_tick(&sc->sc_mii);
339 	splx(s);
340 
341 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
342 }
343 
344 void
345 hme_reset(sc)
346 	struct hme_softc *sc;
347 {
348 	int s;
349 
350 	s = splnet();
351 	(void)hme_init(sc);
352 	splx(s);
353 }
354 
355 void
356 hme_stop(struct hme_softc *sc, bool chip_only)
357 {
358 	bus_space_tag_t t = sc->sc_bustag;
359 	bus_space_handle_t seb = sc->sc_seb;
360 	int n;
361 
362 	if (!chip_only) {
363 		callout_stop(&sc->sc_tick_ch);
364 		mii_down(&sc->sc_mii);
365 	}
366 
367 	/* Mask all interrupts */
368 	bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
369 
370 	/* Reset transmitter and receiver */
371 	bus_space_write_4(t, seb, HME_SEBI_RESET,
372 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
373 
374 	for (n = 0; n < 20; n++) {
375 		u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
376 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
377 			return;
378 		DELAY(20);
379 	}
380 
381 	printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname);
382 }
383 
384 void
385 hme_meminit(sc)
386 	struct hme_softc *sc;
387 {
388 	bus_addr_t txbufdma, rxbufdma;
389 	bus_addr_t dma;
390 	char *p;
391 	unsigned int ntbuf, nrbuf, i;
392 	struct hme_ring *hr = &sc->sc_rb;
393 
394 	p = hr->rb_membase;
395 	dma = hr->rb_dmabase;
396 
397 	ntbuf = hr->rb_ntbuf;
398 	nrbuf = hr->rb_nrbuf;
399 
400 	/*
401 	 * Allocate transmit descriptors
402 	 */
403 	hr->rb_txd = p;
404 	hr->rb_txddma = dma;
405 	p += ntbuf * HME_XD_SIZE;
406 	dma += ntbuf * HME_XD_SIZE;
407 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
408 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
409 	p = (void *)roundup((u_long)p, 2048);
410 
411 	/*
412 	 * Allocate receive descriptors
413 	 */
414 	hr->rb_rxd = p;
415 	hr->rb_rxddma = dma;
416 	p += nrbuf * HME_XD_SIZE;
417 	dma += nrbuf * HME_XD_SIZE;
418 	/* Again move forward to the next 2048 byte boundary.*/
419 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
420 	p = (void *)roundup((u_long)p, 2048);
421 
422 
423 	/*
424 	 * Allocate transmit buffers
425 	 */
426 	hr->rb_txbuf = p;
427 	txbufdma = dma;
428 	p += ntbuf * _HME_BUFSZ;
429 	dma += ntbuf * _HME_BUFSZ;
430 
431 	/*
432 	 * Allocate receive buffers
433 	 */
434 	hr->rb_rxbuf = p;
435 	rxbufdma = dma;
436 	p += nrbuf * _HME_BUFSZ;
437 	dma += nrbuf * _HME_BUFSZ;
438 
439 	/*
440 	 * Initialize transmit buffer descriptors
441 	 */
442 	for (i = 0; i < ntbuf; i++) {
443 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
444 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
445 	}
446 
447 	/*
448 	 * Initialize receive buffer descriptors
449 	 */
450 	for (i = 0; i < nrbuf; i++) {
451 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
452 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
453 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
454 	}
455 
456 	hr->rb_tdhead = hr->rb_tdtail = 0;
457 	hr->rb_td_nbusy = 0;
458 	hr->rb_rdtail = 0;
459 }
460 
461 /*
462  * Initialization of interface; set up initialization block
463  * and transmit/receive descriptor rings.
464  */
465 int
466 hme_init(sc)
467 	struct hme_softc *sc;
468 {
469 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
470 	bus_space_tag_t t = sc->sc_bustag;
471 	bus_space_handle_t seb = sc->sc_seb;
472 	bus_space_handle_t etx = sc->sc_etx;
473 	bus_space_handle_t erx = sc->sc_erx;
474 	bus_space_handle_t mac = sc->sc_mac;
475 	u_int8_t *ea;
476 	u_int32_t v;
477 	int rc;
478 
479 	/*
480 	 * Initialization sequence. The numbered steps below correspond
481 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
482 	 * Channel Engine manual (part of the PCIO manual).
483 	 * See also the STP2002-STQ document from Sun Microsystems.
484 	 */
485 
486 	/* step 1 & 2. Reset the Ethernet Channel */
487 	hme_stop(sc, false);
488 
489 	/* Re-initialize the MIF */
490 	hme_mifinit(sc);
491 
492 	/* Call MI reset function if any */
493 	if (sc->sc_hwreset)
494 		(*sc->sc_hwreset)(sc);
495 
496 #if 0
497 	/* Mask all MIF interrupts, just in case */
498 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
499 #endif
500 
501 	/* step 3. Setup data structures in host memory */
502 	hme_meminit(sc);
503 
504 	/* step 4. TX MAC registers & counters */
505 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
506 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
507 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
508 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
509 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
510 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
511 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
512 	sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
513 
514 	/* Load station MAC address */
515 	ea = sc->sc_enaddr;
516 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
517 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
518 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
519 
520 	/*
521 	 * Init seed for backoff
522 	 * (source suggested by manual: low 10 bits of MAC address)
523 	 */
524 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
525 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
526 
527 
528 	/* Note: Accepting power-on default for other MAC registers here.. */
529 
530 
531 	/* step 5. RX MAC registers & counters */
532 	hme_setladrf(sc);
533 
534 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
535 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
536 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
537 
538 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
539 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
540 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
541 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
542 
543 	/* step 8. Global Configuration & Interrupt Mask */
544 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
545 			~(
546 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
547 			  HME_SEB_STAT_HOSTTOTX |
548 			  HME_SEB_STAT_RXTOHOST |
549 			  HME_SEB_STAT_TXALL |
550 			  HME_SEB_STAT_TXPERR |
551 			  HME_SEB_STAT_RCNTEXP |
552 			  /*HME_SEB_STAT_MIFIRQ |*/
553 			  HME_SEB_STAT_ALL_ERRORS ));
554 
555 	switch (sc->sc_burst) {
556 	default:
557 		v = 0;
558 		break;
559 	case 16:
560 		v = HME_SEB_CFG_BURST16;
561 		break;
562 	case 32:
563 		v = HME_SEB_CFG_BURST32;
564 		break;
565 	case 64:
566 		v = HME_SEB_CFG_BURST64;
567 		break;
568 	}
569 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
570 
571 	/* step 9. ETX Configuration: use mostly default values */
572 
573 	/* Enable DMA */
574 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
575 	v |= HME_ETX_CFG_DMAENABLE;
576 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
577 
578 	/* Transmit Descriptor ring size: in increments of 16 */
579 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
580 
581 
582 	/* step 10. ERX Configuration */
583 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
584 
585 	/* Encode Receive Descriptor ring size: four possible values */
586 	switch (_HME_NDESC /*XXX*/) {
587 	case 32:
588 		v |= HME_ERX_CFG_RINGSIZE32;
589 		break;
590 	case 64:
591 		v |= HME_ERX_CFG_RINGSIZE64;
592 		break;
593 	case 128:
594 		v |= HME_ERX_CFG_RINGSIZE128;
595 		break;
596 	case 256:
597 		v |= HME_ERX_CFG_RINGSIZE256;
598 		break;
599 	default:
600 		printf("hme: invalid Receive Descriptor ring size\n");
601 		break;
602 	}
603 
604 	/* Enable DMA */
605 	v |= HME_ERX_CFG_DMAENABLE;
606 
607 	/* set h/w rx checksum start offset (# of half-words) */
608 #ifdef INET
609 	v |= (((ETHER_HDR_LEN + sizeof(struct ip) +
610 		((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
611 		ETHER_VLAN_ENCAP_LEN : 0)) / 2) << HME_ERX_CFG_CSUMSHIFT) &
612 		HME_ERX_CFG_CSUMSTART;
613 #endif
614 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
615 
616 	/* step 11. XIF Configuration */
617 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
618 	v |= HME_MAC_XIF_OE;
619 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
620 
621 	/* step 12. RX_MAC Configuration Register */
622 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
623 	v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
624 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
625 
626 	/* step 13. TX_MAC Configuration Register */
627 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
628 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
629 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
630 
631 	/* step 14. Issue Transmit Pending command */
632 
633 	/* Call MI initialization function if any */
634 	if (sc->sc_hwinit)
635 		(*sc->sc_hwinit)(sc);
636 
637 	/* Set the current media. */
638 	if ((rc = hme_mediachange(ifp)) != 0)
639 		return rc;
640 
641 	/* Start the one second timer. */
642 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
643 
644 	ifp->if_flags |= IFF_RUNNING;
645 	ifp->if_flags &= ~IFF_OACTIVE;
646 	sc->sc_if_flags = ifp->if_flags;
647 	ifp->if_timer = 0;
648 	hme_start(ifp);
649 	return 0;
650 }
651 
652 /*
653  * Compare two Ether/802 addresses for equality, inlined and unrolled for
654  * speed.
655  */
656 static inline int
657 ether_cmp(a, b)
658 	u_char *a, *b;
659 {
660 
661 	if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
662 	    a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
663 		return (0);
664 	return (1);
665 }
666 
667 
668 /*
669  * Routine to copy from mbuf chain to transmit buffer in
670  * network buffer memory.
671  * Returns the amount of data copied.
672  */
673 int
674 hme_put(sc, ri, m)
675 	struct hme_softc *sc;
676 	int ri;			/* Ring index */
677 	struct mbuf *m;
678 {
679 	struct mbuf *n;
680 	int len, tlen = 0;
681 	char *bp;
682 
683 	bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
684 	for (; m; m = n) {
685 		len = m->m_len;
686 		if (len == 0) {
687 			MFREE(m, n);
688 			continue;
689 		}
690 		memcpy(bp, mtod(m, void *), len);
691 		bp += len;
692 		tlen += len;
693 		MFREE(m, n);
694 	}
695 	return (tlen);
696 }
697 
698 /*
699  * Pull data off an interface.
700  * Len is length of data, with local net header stripped.
701  * We copy the data into mbufs.  When full cluster sized units are present
702  * we copy into clusters.
703  */
704 struct mbuf *
705 hme_get(sc, ri, flags)
706 	struct hme_softc *sc;
707 	int ri;
708 	u_int32_t flags;
709 {
710 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
711 	struct mbuf *m, *m0, *newm;
712 	char *bp;
713 	int len, totlen;
714 
715 	totlen = HME_XD_DECODE_RSIZE(flags);
716 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
717 	if (m0 == 0)
718 		return (0);
719 	m0->m_pkthdr.rcvif = ifp;
720 	m0->m_pkthdr.len = totlen;
721 	len = MHLEN;
722 	m = m0;
723 
724 	bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
725 
726 	while (totlen > 0) {
727 		if (totlen >= MINCLSIZE) {
728 			MCLGET(m, M_DONTWAIT);
729 			if ((m->m_flags & M_EXT) == 0)
730 				goto bad;
731 			len = MCLBYTES;
732 		}
733 
734 		if (m == m0) {
735 			char *newdata = (char *)
736 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
737 			    sizeof(struct ether_header);
738 			len -= newdata - m->m_data;
739 			m->m_data = newdata;
740 		}
741 
742 		m->m_len = len = min(totlen, len);
743 		memcpy(mtod(m, void *), bp, len);
744 		bp += len;
745 
746 		totlen -= len;
747 		if (totlen > 0) {
748 			MGET(newm, M_DONTWAIT, MT_DATA);
749 			if (newm == 0)
750 				goto bad;
751 			len = MLEN;
752 			m = m->m_next = newm;
753 		}
754 	}
755 
756 #ifdef INET
757 	/* hardware checksum */
758 	if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
759 		struct ether_header *eh;
760 		struct ip *ip;
761 		struct udphdr *uh;
762 		uint16_t *opts;
763 		int32_t hlen, pktlen;
764 		uint32_t temp;
765 
766 		if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
767 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN -
768 				ETHER_VLAN_ENCAP_LEN;
769 			eh = (struct ether_header *) mtod(m0, void *) +
770 				ETHER_VLAN_ENCAP_LEN;
771 		} else {
772 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
773 			eh = mtod(m0, struct ether_header *);
774 		}
775 		if (ntohs(eh->ether_type) != ETHERTYPE_IP)
776 			goto swcsum;
777 		ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
778 
779 		/* IPv4 only */
780 		if (ip->ip_v != IPVERSION)
781 			goto swcsum;
782 
783 		hlen = ip->ip_hl << 2;
784 		if (hlen < sizeof(struct ip))
785 			goto swcsum;
786 
787 		/*
788 		 * bail if too short, has random trailing garbage, truncated,
789 		 * fragment, or has ethernet pad.
790 		 */
791 		if ((ntohs(ip->ip_len) < hlen) || (ntohs(ip->ip_len) != pktlen)
792 		    || (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
793 			goto swcsum;
794 
795 		switch (ip->ip_p) {
796 		case IPPROTO_TCP:
797 			if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
798 				goto swcsum;
799 			if (pktlen < (hlen + sizeof(struct tcphdr)))
800 				goto swcsum;
801 			m0->m_pkthdr.csum_flags = M_CSUM_TCPv4;
802 			break;
803 		case IPPROTO_UDP:
804 			if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
805 				goto swcsum;
806 			if (pktlen < (hlen + sizeof(struct udphdr)))
807 				goto swcsum;
808 			uh = (struct udphdr *)((char *)ip + hlen);
809 			/* no checksum */
810 			if (uh->uh_sum == 0)
811 				goto swcsum;
812 			m0->m_pkthdr.csum_flags = M_CSUM_UDPv4;
813 			break;
814 		default:
815 			goto swcsum;
816 		}
817 
818 		/* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
819 		m0->m_pkthdr.csum_data = (~flags) & HME_XD_RXCKSUM;
820 
821 		/* if the pkt had ip options, we have to deduct them */
822 		if (hlen > sizeof(struct ip)) {
823 			uint32_t optsum;
824 
825 			optsum = 0;
826 			temp = hlen - sizeof(struct ip);
827 			opts = (uint16_t *)((char *)ip + sizeof(struct ip));
828 
829 			while (temp > 1) {
830 				optsum += ntohs(*opts++);
831 				temp -= 2;
832 			}
833 			while (optsum >> 16)
834 				optsum = (optsum >> 16) + (optsum & 0xffff);
835 
836 			/* Deduct the ip opts sum from the hwsum (rfc 1624). */
837 			m0->m_pkthdr.csum_data = ~((~m0->m_pkthdr.csum_data) -
838 						   ~optsum);
839 
840 			while (m0->m_pkthdr.csum_data >> 16)
841 				m0->m_pkthdr.csum_data =
842 					(m0->m_pkthdr.csum_data >> 16) +
843 					(m0->m_pkthdr.csum_data & 0xffff);
844 		}
845 
846 		m0->m_pkthdr.csum_flags |= M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
847 	}
848 swcsum:
849 		m0->m_pkthdr.csum_flags = 0;
850 #endif
851 
852 	return (m0);
853 
854 bad:
855 	m_freem(m0);
856 	return (0);
857 }
858 
859 /*
860  * Pass a packet to the higher levels.
861  */
862 void
863 hme_read(sc, ix, flags)
864 	struct hme_softc *sc;
865 	int ix;
866 	u_int32_t flags;
867 {
868 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
869 	struct mbuf *m;
870 	int len;
871 
872 	len = HME_XD_DECODE_RSIZE(flags);
873 	if (len <= sizeof(struct ether_header) ||
874 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
875 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
876 	    ETHERMTU + sizeof(struct ether_header))) {
877 #ifdef HMEDEBUG
878 		printf("%s: invalid packet size %d; dropping\n",
879 		    sc->sc_dev.dv_xname, len);
880 #endif
881 		ifp->if_ierrors++;
882 		return;
883 	}
884 
885 	/* Pull packet off interface. */
886 	m = hme_get(sc, ix, flags);
887 	if (m == 0) {
888 		ifp->if_ierrors++;
889 		return;
890 	}
891 
892 	ifp->if_ipackets++;
893 
894 #if NBPFILTER > 0
895 	/*
896 	 * Check if there's a BPF listener on this interface.
897 	 * If so, hand off the raw packet to BPF.
898 	 */
899 	if (ifp->if_bpf)
900 		bpf_mtap(ifp->if_bpf, m);
901 #endif
902 
903 	/* Pass the packet up. */
904 	(*ifp->if_input)(ifp, m);
905 }
906 
907 void
908 hme_start(ifp)
909 	struct ifnet *ifp;
910 {
911 	struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
912 	void *txd = sc->sc_rb.rb_txd;
913 	struct mbuf *m;
914 	unsigned int txflags;
915 	unsigned int ri, len;
916 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
917 
918 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
919 		return;
920 
921 	ri = sc->sc_rb.rb_tdhead;
922 
923 	for (;;) {
924 		IFQ_DEQUEUE(&ifp->if_snd, m);
925 		if (m == 0)
926 			break;
927 
928 #if NBPFILTER > 0
929 		/*
930 		 * If BPF is listening on this interface, let it see the
931 		 * packet before we commit it to the wire.
932 		 */
933 		if (ifp->if_bpf)
934 			bpf_mtap(ifp->if_bpf, m);
935 #endif
936 
937 #ifdef INET
938 		/* collect bits for h/w csum, before hme_put frees the mbuf */
939 		if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
940 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
941 			struct ether_header *eh;
942 			uint16_t offset, start;
943 
944 			eh = mtod(m, struct ether_header *);
945 			switch (ntohs(eh->ether_type)) {
946 			case ETHERTYPE_IP:
947 				start = ETHER_HDR_LEN;
948 				break;
949 			case ETHERTYPE_VLAN:
950 				start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
951 				break;
952 			default:
953 				/* unsupported, drop it */
954 				m_free(m);
955 				continue;
956 			}
957 			start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
958 			offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
959 			    + start;
960 			txflags = HME_XD_TXCKSUM |
961 				  (offset << HME_XD_TXCSSTUFFSHIFT) |
962 		  		  (start << HME_XD_TXCSSTARTSHIFT);
963 		} else
964 #endif
965 			txflags = 0;
966 
967 		/*
968 		 * Copy the mbuf chain into the transmit buffer.
969 		 */
970 		len = hme_put(sc, ri, m);
971 
972 		/*
973 		 * Initialize transmit registers and start transmission
974 		 */
975 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
976 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
977 			HME_XD_ENCODE_TSIZE(len) | txflags);
978 
979 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
980 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
981 				  HME_ETX_TP_DMAWAKEUP);
982 
983 		if (++ri == ntbuf)
984 			ri = 0;
985 
986 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
987 			ifp->if_flags |= IFF_OACTIVE;
988 			break;
989 		}
990 	}
991 
992 	sc->sc_rb.rb_tdhead = ri;
993 }
994 
995 /*
996  * Transmit interrupt.
997  */
998 int
999 hme_tint(sc)
1000 	struct hme_softc *sc;
1001 {
1002 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1003 	bus_space_tag_t t = sc->sc_bustag;
1004 	bus_space_handle_t mac = sc->sc_mac;
1005 	unsigned int ri, txflags;
1006 
1007 	/*
1008 	 * Unload collision counters
1009 	 */
1010 	ifp->if_collisions +=
1011 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
1012 		bus_space_read_4(t, mac, HME_MACI_FCCNT) +
1013 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
1014 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
1015 
1016 	/*
1017 	 * then clear the hardware counters.
1018 	 */
1019 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
1020 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
1021 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
1022 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
1023 
1024 	/* Fetch current position in the transmit ring */
1025 	ri = sc->sc_rb.rb_tdtail;
1026 
1027 	for (;;) {
1028 		if (sc->sc_rb.rb_td_nbusy <= 0)
1029 			break;
1030 
1031 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
1032 
1033 		if (txflags & HME_XD_OWN)
1034 			break;
1035 
1036 		ifp->if_flags &= ~IFF_OACTIVE;
1037 		ifp->if_opackets++;
1038 
1039 		if (++ri == sc->sc_rb.rb_ntbuf)
1040 			ri = 0;
1041 
1042 		--sc->sc_rb.rb_td_nbusy;
1043 	}
1044 
1045 	/* Update ring */
1046 	sc->sc_rb.rb_tdtail = ri;
1047 
1048 	hme_start(ifp);
1049 
1050 	if (sc->sc_rb.rb_td_nbusy == 0)
1051 		ifp->if_timer = 0;
1052 
1053 	return (1);
1054 }
1055 
1056 /*
1057  * Receive interrupt.
1058  */
1059 int
1060 hme_rint(sc)
1061 	struct hme_softc *sc;
1062 {
1063 	void *xdr = sc->sc_rb.rb_rxd;
1064 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
1065 	unsigned int ri;
1066 	u_int32_t flags;
1067 
1068 	ri = sc->sc_rb.rb_rdtail;
1069 
1070 	/*
1071 	 * Process all buffers with valid data.
1072 	 */
1073 	for (;;) {
1074 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
1075 		if (flags & HME_XD_OWN)
1076 			break;
1077 
1078 		if (flags & HME_XD_OFL) {
1079 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
1080 					sc->sc_dev.dv_xname, ri, flags);
1081 		} else
1082 			hme_read(sc, ri, flags);
1083 
1084 		/* This buffer can be used by the hardware again */
1085 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
1086 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
1087 
1088 		if (++ri == nrbuf)
1089 			ri = 0;
1090 	}
1091 
1092 	sc->sc_rb.rb_rdtail = ri;
1093 
1094 	return (1);
1095 }
1096 
1097 int
1098 hme_eint(sc, status)
1099 	struct hme_softc *sc;
1100 	u_int status;
1101 {
1102 	char bits[128];
1103 
1104 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
1105 		bus_space_tag_t t = sc->sc_bustag;
1106 		bus_space_handle_t mif = sc->sc_mif;
1107 		u_int32_t cf, st, sm;
1108 		cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
1109 		st = bus_space_read_4(t, mif, HME_MIFI_STAT);
1110 		sm = bus_space_read_4(t, mif, HME_MIFI_SM);
1111 		printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
1112 			sc->sc_dev.dv_xname, cf, st, sm);
1113 		return (1);
1114 	}
1115 
1116 	printf("%s: status=%s\n", sc->sc_dev.dv_xname,
1117 		bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
1118 	return (1);
1119 }
1120 
1121 int
1122 hme_intr(v)
1123 	void *v;
1124 {
1125 	struct hme_softc *sc = (struct hme_softc *)v;
1126 	bus_space_tag_t t = sc->sc_bustag;
1127 	bus_space_handle_t seb = sc->sc_seb;
1128 	u_int32_t status;
1129 	int r = 0;
1130 
1131 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
1132 
1133 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
1134 		r |= hme_eint(sc, status);
1135 
1136 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
1137 		r |= hme_tint(sc);
1138 
1139 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
1140 		r |= hme_rint(sc);
1141 
1142 #if NRND > 0
1143 	rnd_add_uint32(&sc->rnd_source, status);
1144 #endif
1145 
1146 	return (r);
1147 }
1148 
1149 
1150 void
1151 hme_watchdog(ifp)
1152 	struct ifnet *ifp;
1153 {
1154 	struct hme_softc *sc = ifp->if_softc;
1155 
1156 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1157 	++ifp->if_oerrors;
1158 
1159 	hme_reset(sc);
1160 }
1161 
1162 /*
1163  * Initialize the MII Management Interface
1164  */
1165 void
1166 hme_mifinit(sc)
1167 	struct hme_softc *sc;
1168 {
1169 	bus_space_tag_t t = sc->sc_bustag;
1170 	bus_space_handle_t mif = sc->sc_mif;
1171 	bus_space_handle_t mac = sc->sc_mac;
1172 	int instance, phy;
1173 	u_int32_t v;
1174 
1175 	if (sc->sc_mii.mii_media.ifm_cur != NULL) {
1176 		instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1177 		phy = sc->sc_phys[instance];
1178 	} else
1179 		/* No media set yet, pick phy arbitrarily.. */
1180 		phy = HME_PHYAD_EXTERNAL;
1181 
1182 	/* Configure the MIF in frame mode, no poll, current phy select */
1183 	v = 0;
1184 	if (phy == HME_PHYAD_EXTERNAL)
1185 		v |= HME_MIF_CFG_PHY;
1186 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1187 
1188 	/* If an external transceiver is selected, enable its MII drivers */
1189 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
1190 	v &= ~HME_MAC_XIF_MIIENABLE;
1191 	if (phy == HME_PHYAD_EXTERNAL)
1192 		v |= HME_MAC_XIF_MIIENABLE;
1193 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1194 }
1195 
1196 /*
1197  * MII interface
1198  */
1199 static int
1200 hme_mii_readreg(self, phy, reg)
1201 	struct device *self;
1202 	int phy, reg;
1203 {
1204 	struct hme_softc *sc = (void *)self;
1205 	bus_space_tag_t t = sc->sc_bustag;
1206 	bus_space_handle_t mif = sc->sc_mif;
1207 	bus_space_handle_t mac = sc->sc_mac;
1208 	u_int32_t v, xif_cfg, mifi_cfg;
1209 	int n;
1210 
1211 	/* We can at most have two PHYs */
1212 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1213 		return (0);
1214 
1215 	/* Select the desired PHY in the MIF configuration register */
1216 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1217 	v &= ~HME_MIF_CFG_PHY;
1218 	if (phy == HME_PHYAD_EXTERNAL)
1219 		v |= HME_MIF_CFG_PHY;
1220 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1221 
1222 	/* Enable MII drivers on external transceiver */
1223 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1224 	if (phy == HME_PHYAD_EXTERNAL)
1225 		v |= HME_MAC_XIF_MIIENABLE;
1226 	else
1227 		v &= ~HME_MAC_XIF_MIIENABLE;
1228 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1229 
1230 #if 0
1231 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1232 	/*
1233 	 * Check whether a transceiver is connected by testing
1234 	 * the MIF configuration register's MDI_X bits. Note that
1235 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1236 	 */
1237 	mif_mdi_bit = 1 << (8 + (1 - phy));
1238 	delay(100);
1239 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1240 	if ((v & mif_mdi_bit) == 0)
1241 		return (0);
1242 #endif
1243 
1244 	/* Construct the frame command */
1245 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1246 	    HME_MIF_FO_TAMSB |
1247 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1248 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
1249 	    (reg << HME_MIF_FO_REGAD_SHIFT);
1250 
1251 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
1252 	for (n = 0; n < 100; n++) {
1253 		DELAY(1);
1254 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
1255 		if (v & HME_MIF_FO_TALSB) {
1256 			v &= HME_MIF_FO_DATA;
1257 			goto out;
1258 		}
1259 	}
1260 
1261 	v = 0;
1262 	printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1263 
1264 out:
1265 	/* Restore MIFI_CFG register */
1266 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1267 	/* Restore XIF register */
1268 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1269 	return (v);
1270 }
1271 
1272 static void
1273 hme_mii_writereg(self, phy, reg, val)
1274 	struct device *self;
1275 	int phy, reg, val;
1276 {
1277 	struct hme_softc *sc = (void *)self;
1278 	bus_space_tag_t t = sc->sc_bustag;
1279 	bus_space_handle_t mif = sc->sc_mif;
1280 	bus_space_handle_t mac = sc->sc_mac;
1281 	u_int32_t v, xif_cfg, mifi_cfg;
1282 	int n;
1283 
1284 	/* We can at most have two PHYs */
1285 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1286 		return;
1287 
1288 	/* Select the desired PHY in the MIF configuration register */
1289 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1290 	v &= ~HME_MIF_CFG_PHY;
1291 	if (phy == HME_PHYAD_EXTERNAL)
1292 		v |= HME_MIF_CFG_PHY;
1293 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1294 
1295 	/* Enable MII drivers on external transceiver */
1296 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1297 	if (phy == HME_PHYAD_EXTERNAL)
1298 		v |= HME_MAC_XIF_MIIENABLE;
1299 	else
1300 		v &= ~HME_MAC_XIF_MIIENABLE;
1301 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1302 
1303 #if 0
1304 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1305 	/*
1306 	 * Check whether a transceiver is connected by testing
1307 	 * the MIF configuration register's MDI_X bits. Note that
1308 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1309 	 */
1310 	mif_mdi_bit = 1 << (8 + (1 - phy));
1311 	delay(100);
1312 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1313 	if ((v & mif_mdi_bit) == 0)
1314 		return;
1315 #endif
1316 
1317 	/* Construct the frame command */
1318 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
1319 	    HME_MIF_FO_TAMSB				|
1320 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
1321 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
1322 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
1323 	    (val & HME_MIF_FO_DATA);
1324 
1325 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
1326 	for (n = 0; n < 100; n++) {
1327 		DELAY(1);
1328 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
1329 		if (v & HME_MIF_FO_TALSB)
1330 			goto out;
1331 	}
1332 
1333 	printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1334 out:
1335 	/* Restore MIFI_CFG register */
1336 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1337 	/* Restore XIF register */
1338 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1339 }
1340 
1341 static void
1342 hme_mii_statchg(dev)
1343 	struct device *dev;
1344 {
1345 	struct hme_softc *sc = (void *)dev;
1346 	bus_space_tag_t t = sc->sc_bustag;
1347 	bus_space_handle_t mac = sc->sc_mac;
1348 	u_int32_t v;
1349 
1350 #ifdef HMEDEBUG
1351 	if (sc->sc_debug)
1352 		printf("hme_mii_statchg: status change\n");
1353 #endif
1354 
1355 	/* Set the MAC Full Duplex bit appropriately */
1356 	/* Apparently the hme chip is SIMPLEX if working in full duplex mode,
1357 	   but not otherwise. */
1358 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1359 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1360 		v |= HME_MAC_TXCFG_FULLDPLX;
1361 		sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
1362 	} else {
1363 		v &= ~HME_MAC_TXCFG_FULLDPLX;
1364 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
1365 	}
1366 	sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
1367 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1368 }
1369 
1370 int
1371 hme_mediachange(ifp)
1372 	struct ifnet *ifp;
1373 {
1374 	struct hme_softc *sc = ifp->if_softc;
1375 	bus_space_tag_t t = sc->sc_bustag;
1376 	bus_space_handle_t mif = sc->sc_mif;
1377 	bus_space_handle_t mac = sc->sc_mac;
1378 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1379 	int phy = sc->sc_phys[instance];
1380 	int rc;
1381 	u_int32_t v;
1382 
1383 #ifdef HMEDEBUG
1384 	if (sc->sc_debug)
1385 		printf("hme_mediachange: phy = %d\n", phy);
1386 #endif
1387 
1388 	/* Select the current PHY in the MIF configuration register */
1389 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1390 	v &= ~HME_MIF_CFG_PHY;
1391 	if (phy == HME_PHYAD_EXTERNAL)
1392 		v |= HME_MIF_CFG_PHY;
1393 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1394 
1395 	/* If an external transceiver is selected, enable its MII drivers */
1396 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
1397 	v &= ~HME_MAC_XIF_MIIENABLE;
1398 	if (phy == HME_PHYAD_EXTERNAL)
1399 		v |= HME_MAC_XIF_MIIENABLE;
1400 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1401 
1402 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
1403 		return 0;
1404 	return rc;
1405 }
1406 
1407 /*
1408  * Process an ioctl request.
1409  */
1410 int
1411 hme_ioctl(ifp, cmd, data)
1412 	struct ifnet *ifp;
1413 	u_long cmd;
1414 	void *data;
1415 {
1416 	struct hme_softc *sc = ifp->if_softc;
1417 	struct ifaddr *ifa = (struct ifaddr *)data;
1418 	int s, error = 0;
1419 
1420 	s = splnet();
1421 
1422 	switch (cmd) {
1423 
1424 	case SIOCSIFADDR:
1425 		switch (ifa->ifa_addr->sa_family) {
1426 #ifdef INET
1427 		case AF_INET:
1428 			if (ifp->if_flags & IFF_UP)
1429 				hme_setladrf(sc);
1430 			else {
1431 				ifp->if_flags |= IFF_UP;
1432 				error = hme_init(sc);
1433 			}
1434 			arp_ifinit(ifp, ifa);
1435 			break;
1436 #endif
1437 		default:
1438 			ifp->if_flags |= IFF_UP;
1439 			error = hme_init(sc);
1440 			break;
1441 		}
1442 		break;
1443 
1444 	case SIOCSIFFLAGS:
1445 #ifdef HMEDEBUG
1446 		sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
1447 #endif
1448 
1449 		if ((ifp->if_flags & IFF_UP) == 0 &&
1450 		    (ifp->if_flags & IFF_RUNNING) != 0) {
1451 			/*
1452 			 * If interface is marked down and it is running, then
1453 			 * stop it.
1454 			 */
1455 			hme_stop(sc, false);
1456 			ifp->if_flags &= ~IFF_RUNNING;
1457 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
1458 		    	   (ifp->if_flags & IFF_RUNNING) == 0) {
1459 			/*
1460 			 * If interface is marked up and it is stopped, then
1461 			 * start it.
1462 			 */
1463 			error = hme_init(sc);
1464 		} else if ((ifp->if_flags & IFF_UP) != 0) {
1465 			/*
1466 			 * If setting debug or promiscuous mode, do not reset
1467 			 * the chip; for everything else, call hme_init()
1468 			 * which will trigger a reset.
1469 			 */
1470 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
1471 			if (ifp->if_flags != sc->sc_if_flags) {
1472 				if ((ifp->if_flags & (~RESETIGN))
1473 				    == (sc->sc_if_flags & (~RESETIGN)))
1474 					hme_setladrf(sc);
1475 				else
1476 					error = hme_init(sc);
1477 			}
1478 #undef RESETIGN
1479 		}
1480 
1481 		if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
1482 			error = hme_init(sc);
1483 
1484 		break;
1485 
1486 	default:
1487 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1488 			break;
1489 
1490 		error = 0;
1491 
1492 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1493 			;
1494 		else if (ifp->if_flags & IFF_RUNNING) {
1495 			/*
1496 			 * Multicast list has changed; set the hardware filter
1497 			 * accordingly.
1498 			 */
1499 			hme_setladrf(sc);
1500 		}
1501 		break;
1502 	}
1503 
1504 	sc->sc_if_flags = ifp->if_flags;
1505 	splx(s);
1506 	return (error);
1507 }
1508 
1509 void
1510 hme_shutdown(arg)
1511 	void *arg;
1512 {
1513 
1514 	hme_stop((struct hme_softc *)arg, false);
1515 }
1516 
1517 /*
1518  * Set up the logical address filter.
1519  */
1520 void
1521 hme_setladrf(sc)
1522 	struct hme_softc *sc;
1523 {
1524 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1525 	struct ether_multi *enm;
1526 	struct ether_multistep step;
1527 	struct ethercom *ec = &sc->sc_ethercom;
1528 	bus_space_tag_t t = sc->sc_bustag;
1529 	bus_space_handle_t mac = sc->sc_mac;
1530 	u_char *cp;
1531 	u_int32_t crc;
1532 	u_int32_t hash[4];
1533 	u_int32_t v;
1534 	int len;
1535 
1536 	/* Clear hash table */
1537 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
1538 
1539 	/* Get current RX configuration */
1540 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1541 
1542 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
1543 		/* Turn on promiscuous mode; turn off the hash filter */
1544 		v |= HME_MAC_RXCFG_PMISC;
1545 		v &= ~HME_MAC_RXCFG_HENABLE;
1546 		ifp->if_flags |= IFF_ALLMULTI;
1547 		goto chipit;
1548 	}
1549 
1550 	/* Turn off promiscuous mode; turn on the hash filter */
1551 	v &= ~HME_MAC_RXCFG_PMISC;
1552 	v |= HME_MAC_RXCFG_HENABLE;
1553 
1554 	/*
1555 	 * Set up multicast address filter by passing all multicast addresses
1556 	 * through a crc generator, and then using the high order 6 bits as an
1557 	 * index into the 64 bit logical address filter.  The high order bit
1558 	 * selects the word, while the rest of the bits select the bit within
1559 	 * the word.
1560 	 */
1561 
1562 	ETHER_FIRST_MULTI(step, ec, enm);
1563 	while (enm != NULL) {
1564 		if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
1565 			/*
1566 			 * We must listen to a range of multicast addresses.
1567 			 * For now, just accept all multicasts, rather than
1568 			 * trying to set only those filter bits needed to match
1569 			 * the range.  (At this time, the only use of address
1570 			 * ranges is for IP multicast routing, for which the
1571 			 * range is big enough to require all bits set.)
1572 			 */
1573 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1574 			ifp->if_flags |= IFF_ALLMULTI;
1575 			goto chipit;
1576 		}
1577 
1578 		cp = enm->enm_addrlo;
1579 		crc = 0xffffffff;
1580 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1581 			int octet = *cp++;
1582 			int i;
1583 
1584 #define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
1585 			for (i = 0; i < 8; i++) {
1586 				if ((crc & 1) ^ (octet & 1)) {
1587 					crc >>= 1;
1588 					crc ^= MC_POLY_LE;
1589 				} else {
1590 					crc >>= 1;
1591 				}
1592 				octet >>= 1;
1593 			}
1594 		}
1595 		/* Just want the 6 most significant bits. */
1596 		crc >>= 26;
1597 
1598 		/* Set the corresponding bit in the filter. */
1599 		hash[crc >> 4] |= 1 << (crc & 0xf);
1600 
1601 		ETHER_NEXT_MULTI(step, enm);
1602 	}
1603 
1604 	ifp->if_flags &= ~IFF_ALLMULTI;
1605 
1606 chipit:
1607 	/* Now load the hash table into the chip */
1608 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1609 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1610 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1611 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1612 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1613 }
1614 
1615 /*
1616  * Routines for accessing the transmit and receive buffers.
1617  * The various CPU and adapter configurations supported by this
1618  * driver require three different access methods for buffers
1619  * and descriptors:
1620  *	(1) contig (contiguous data; no padding),
1621  *	(2) gap2 (two bytes of data followed by two bytes of padding),
1622  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
1623  */
1624 
1625 #if 0
1626 /*
1627  * contig: contiguous data with no padding.
1628  *
1629  * Buffers may have any alignment.
1630  */
1631 
1632 void
1633 hme_copytobuf_contig(sc, from, ri, len)
1634 	struct hme_softc *sc;
1635 	void *from;
1636 	int ri, len;
1637 {
1638 	volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1639 
1640 	/*
1641 	 * Just call memcpy() to do the work.
1642 	 */
1643 	memcpy(buf, from, len);
1644 }
1645 
1646 void
1647 hme_copyfrombuf_contig(sc, to, boff, len)
1648 	struct hme_softc *sc;
1649 	void *to;
1650 	int boff, len;
1651 {
1652 	volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1653 
1654 	/*
1655 	 * Just call memcpy() to do the work.
1656 	 */
1657 	memcpy(to, buf, len);
1658 }
1659 #endif
1660