1 /* $NetBSD: hme.c,v 1.63 2008/02/07 01:21:53 dyoung Exp $ */ 2 3 /*- 4 * Copyright (c) 1999 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Paul Kranenburg. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /* 40 * HME Ethernet module driver. 41 */ 42 43 #include <sys/cdefs.h> 44 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.63 2008/02/07 01:21:53 dyoung Exp $"); 45 46 /* #define HMEDEBUG */ 47 48 #include "opt_inet.h" 49 #include "bpfilter.h" 50 #include "rnd.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/kernel.h> 55 #include <sys/mbuf.h> 56 #include <sys/syslog.h> 57 #include <sys/socket.h> 58 #include <sys/device.h> 59 #include <sys/malloc.h> 60 #include <sys/ioctl.h> 61 #include <sys/errno.h> 62 #if NRND > 0 63 #include <sys/rnd.h> 64 #endif 65 66 #include <net/if.h> 67 #include <net/if_dl.h> 68 #include <net/if_ether.h> 69 #include <net/if_media.h> 70 71 #ifdef INET 72 #include <netinet/in.h> 73 #include <netinet/if_inarp.h> 74 #include <netinet/in_systm.h> 75 #include <netinet/in_var.h> 76 #include <netinet/ip.h> 77 #include <netinet/tcp.h> 78 #include <netinet/udp.h> 79 #endif 80 81 82 #if NBPFILTER > 0 83 #include <net/bpf.h> 84 #include <net/bpfdesc.h> 85 #endif 86 87 #include <dev/mii/mii.h> 88 #include <dev/mii/miivar.h> 89 90 #include <sys/bus.h> 91 92 #include <dev/ic/hmereg.h> 93 #include <dev/ic/hmevar.h> 94 95 void hme_start(struct ifnet *); 96 void hme_stop(struct hme_softc *,bool); 97 int hme_ioctl(struct ifnet *, u_long, void *); 98 void hme_tick(void *); 99 void hme_watchdog(struct ifnet *); 100 void hme_shutdown(void *); 101 int hme_init(struct hme_softc *); 102 void hme_meminit(struct hme_softc *); 103 void hme_mifinit(struct hme_softc *); 104 void hme_reset(struct hme_softc *); 105 void hme_setladrf(struct hme_softc *); 106 107 /* MII methods & callbacks */ 108 static int hme_mii_readreg(struct device *, int, int); 109 static void hme_mii_writereg(struct device *, int, int, int); 110 static void hme_mii_statchg(struct device *); 111 112 int hme_mediachange(struct ifnet *); 113 114 struct mbuf *hme_get(struct hme_softc *, int, uint32_t); 115 int hme_put(struct hme_softc *, int, struct mbuf *); 116 void hme_read(struct hme_softc *, int, uint32_t); 117 int hme_eint(struct hme_softc *, u_int); 118 int hme_rint(struct hme_softc *); 119 int hme_tint(struct hme_softc *); 120 121 static int ether_cmp(u_char *, u_char *); 122 123 /* Default buffer copy routines */ 124 void hme_copytobuf_contig(struct hme_softc *, void *, int, int); 125 void hme_copyfrombuf_contig(struct hme_softc *, void *, int, int); 126 void hme_zerobuf_contig(struct hme_softc *, int, int); 127 128 129 void 130 hme_config(sc) 131 struct hme_softc *sc; 132 { 133 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 134 struct mii_data *mii = &sc->sc_mii; 135 struct mii_softc *child; 136 bus_dma_tag_t dmatag = sc->sc_dmatag; 137 bus_dma_segment_t seg; 138 bus_size_t size; 139 int rseg, error; 140 141 /* 142 * HME common initialization. 143 * 144 * hme_softc fields that must be initialized by the front-end: 145 * 146 * the bus tag: 147 * sc_bustag 148 * 149 * the DMA bus tag: 150 * sc_dmatag 151 * 152 * the bus handles: 153 * sc_seb (Shared Ethernet Block registers) 154 * sc_erx (Receiver Unit registers) 155 * sc_etx (Transmitter Unit registers) 156 * sc_mac (MAC registers) 157 * sc_mif (Management Interface registers) 158 * 159 * the maximum bus burst size: 160 * sc_burst 161 * 162 * (notyet:DMA capable memory for the ring descriptors & packet buffers: 163 * rb_membase, rb_dmabase) 164 * 165 * the local Ethernet address: 166 * sc_enaddr 167 * 168 */ 169 170 /* Make sure the chip is stopped. */ 171 hme_stop(sc, true); 172 173 174 /* 175 * Allocate descriptors and buffers 176 * XXX - do all this differently.. and more configurably, 177 * eg. use things as `dma_load_mbuf()' on transmit, 178 * and a pool of `EXTMEM' mbufs (with buffers DMA-mapped 179 * all the time) on the receiver side. 180 * 181 * Note: receive buffers must be 64-byte aligned. 182 * Also, apparently, the buffers must extend to a DMA burst 183 * boundary beyond the maximum packet size. 184 */ 185 #define _HME_NDESC 128 186 #define _HME_BUFSZ 1600 187 188 /* Note: the # of descriptors must be a multiple of 16 */ 189 sc->sc_rb.rb_ntbuf = _HME_NDESC; 190 sc->sc_rb.rb_nrbuf = _HME_NDESC; 191 192 /* 193 * Allocate DMA capable memory 194 * Buffer descriptors must be aligned on a 2048 byte boundary; 195 * take this into account when calculating the size. Note that 196 * the maximum number of descriptors (256) occupies 2048 bytes, 197 * so we allocate that much regardless of _HME_NDESC. 198 */ 199 size = 2048 + /* TX descriptors */ 200 2048 + /* RX descriptors */ 201 sc->sc_rb.rb_ntbuf * _HME_BUFSZ + /* TX buffers */ 202 sc->sc_rb.rb_nrbuf * _HME_BUFSZ; /* RX buffers */ 203 204 /* Allocate DMA buffer */ 205 if ((error = bus_dmamem_alloc(dmatag, size, 206 2048, 0, 207 &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) { 208 printf("%s: DMA buffer alloc error %d\n", 209 sc->sc_dev.dv_xname, error); 210 return; 211 } 212 213 /* Map DMA memory in CPU addressable space */ 214 if ((error = bus_dmamem_map(dmatag, &seg, rseg, size, 215 &sc->sc_rb.rb_membase, 216 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) { 217 printf("%s: DMA buffer map error %d\n", 218 sc->sc_dev.dv_xname, error); 219 bus_dmamap_unload(dmatag, sc->sc_dmamap); 220 bus_dmamem_free(dmatag, &seg, rseg); 221 return; 222 } 223 224 if ((error = bus_dmamap_create(dmatag, size, 1, size, 0, 225 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) { 226 printf("%s: DMA map create error %d\n", 227 sc->sc_dev.dv_xname, error); 228 return; 229 } 230 231 /* Load the buffer */ 232 if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap, 233 sc->sc_rb.rb_membase, size, NULL, 234 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) { 235 printf("%s: DMA buffer map load error %d\n", 236 sc->sc_dev.dv_xname, error); 237 bus_dmamem_free(dmatag, &seg, rseg); 238 return; 239 } 240 sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr; 241 242 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname, 243 ether_sprintf(sc->sc_enaddr)); 244 245 /* Initialize ifnet structure. */ 246 strcpy(ifp->if_xname, sc->sc_dev.dv_xname); 247 ifp->if_softc = sc; 248 ifp->if_start = hme_start; 249 ifp->if_ioctl = hme_ioctl; 250 ifp->if_watchdog = hme_watchdog; 251 ifp->if_flags = 252 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST; 253 sc->sc_if_flags = ifp->if_flags; 254 ifp->if_capabilities |= 255 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | 256 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx; 257 IFQ_SET_READY(&ifp->if_snd); 258 259 /* Initialize ifmedia structures and MII info */ 260 mii->mii_ifp = ifp; 261 mii->mii_readreg = hme_mii_readreg; 262 mii->mii_writereg = hme_mii_writereg; 263 mii->mii_statchg = hme_mii_statchg; 264 265 sc->sc_ethercom.ec_mii = mii; 266 ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus); 267 268 hme_mifinit(sc); 269 270 mii_attach(&sc->sc_dev, mii, 0xffffffff, 271 MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG); 272 273 child = LIST_FIRST(&mii->mii_phys); 274 if (child == NULL) { 275 /* No PHY attached */ 276 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL); 277 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL); 278 } else { 279 /* 280 * Walk along the list of attached MII devices and 281 * establish an `MII instance' to `phy number' 282 * mapping. We'll use this mapping in media change 283 * requests to determine which phy to use to program 284 * the MIF configuration register. 285 */ 286 for (; child != NULL; child = LIST_NEXT(child, mii_list)) { 287 /* 288 * Note: we support just two PHYs: the built-in 289 * internal device and an external on the MII 290 * connector. 291 */ 292 if (child->mii_phy > 1 || child->mii_inst > 1) { 293 printf("%s: cannot accommodate MII device %s" 294 " at phy %d, instance %d\n", 295 sc->sc_dev.dv_xname, 296 child->mii_dev.dv_xname, 297 child->mii_phy, child->mii_inst); 298 continue; 299 } 300 301 sc->sc_phys[child->mii_inst] = child->mii_phy; 302 } 303 304 /* 305 * XXX - we can really do the following ONLY if the 306 * phy indeed has the auto negotiation capability!! 307 */ 308 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); 309 } 310 311 /* claim 802.1q capability */ 312 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; 313 314 /* Attach the interface. */ 315 if_attach(ifp); 316 ether_ifattach(ifp, sc->sc_enaddr); 317 318 sc->sc_sh = shutdownhook_establish(hme_shutdown, sc); 319 if (sc->sc_sh == NULL) 320 panic("hme_config: can't establish shutdownhook"); 321 322 #if NRND > 0 323 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname, 324 RND_TYPE_NET, 0); 325 #endif 326 327 callout_init(&sc->sc_tick_ch, 0); 328 } 329 330 void 331 hme_tick(arg) 332 void *arg; 333 { 334 struct hme_softc *sc = arg; 335 int s; 336 337 s = splnet(); 338 mii_tick(&sc->sc_mii); 339 splx(s); 340 341 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc); 342 } 343 344 void 345 hme_reset(sc) 346 struct hme_softc *sc; 347 { 348 int s; 349 350 s = splnet(); 351 (void)hme_init(sc); 352 splx(s); 353 } 354 355 void 356 hme_stop(struct hme_softc *sc, bool chip_only) 357 { 358 bus_space_tag_t t = sc->sc_bustag; 359 bus_space_handle_t seb = sc->sc_seb; 360 int n; 361 362 if (!chip_only) { 363 callout_stop(&sc->sc_tick_ch); 364 mii_down(&sc->sc_mii); 365 } 366 367 /* Mask all interrupts */ 368 bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff); 369 370 /* Reset transmitter and receiver */ 371 bus_space_write_4(t, seb, HME_SEBI_RESET, 372 (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)); 373 374 for (n = 0; n < 20; n++) { 375 u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET); 376 if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0) 377 return; 378 DELAY(20); 379 } 380 381 printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname); 382 } 383 384 void 385 hme_meminit(sc) 386 struct hme_softc *sc; 387 { 388 bus_addr_t txbufdma, rxbufdma; 389 bus_addr_t dma; 390 char *p; 391 unsigned int ntbuf, nrbuf, i; 392 struct hme_ring *hr = &sc->sc_rb; 393 394 p = hr->rb_membase; 395 dma = hr->rb_dmabase; 396 397 ntbuf = hr->rb_ntbuf; 398 nrbuf = hr->rb_nrbuf; 399 400 /* 401 * Allocate transmit descriptors 402 */ 403 hr->rb_txd = p; 404 hr->rb_txddma = dma; 405 p += ntbuf * HME_XD_SIZE; 406 dma += ntbuf * HME_XD_SIZE; 407 /* We have reserved descriptor space until the next 2048 byte boundary.*/ 408 dma = (bus_addr_t)roundup((u_long)dma, 2048); 409 p = (void *)roundup((u_long)p, 2048); 410 411 /* 412 * Allocate receive descriptors 413 */ 414 hr->rb_rxd = p; 415 hr->rb_rxddma = dma; 416 p += nrbuf * HME_XD_SIZE; 417 dma += nrbuf * HME_XD_SIZE; 418 /* Again move forward to the next 2048 byte boundary.*/ 419 dma = (bus_addr_t)roundup((u_long)dma, 2048); 420 p = (void *)roundup((u_long)p, 2048); 421 422 423 /* 424 * Allocate transmit buffers 425 */ 426 hr->rb_txbuf = p; 427 txbufdma = dma; 428 p += ntbuf * _HME_BUFSZ; 429 dma += ntbuf * _HME_BUFSZ; 430 431 /* 432 * Allocate receive buffers 433 */ 434 hr->rb_rxbuf = p; 435 rxbufdma = dma; 436 p += nrbuf * _HME_BUFSZ; 437 dma += nrbuf * _HME_BUFSZ; 438 439 /* 440 * Initialize transmit buffer descriptors 441 */ 442 for (i = 0; i < ntbuf; i++) { 443 HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ); 444 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0); 445 } 446 447 /* 448 * Initialize receive buffer descriptors 449 */ 450 for (i = 0; i < nrbuf; i++) { 451 HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ); 452 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i, 453 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ)); 454 } 455 456 hr->rb_tdhead = hr->rb_tdtail = 0; 457 hr->rb_td_nbusy = 0; 458 hr->rb_rdtail = 0; 459 } 460 461 /* 462 * Initialization of interface; set up initialization block 463 * and transmit/receive descriptor rings. 464 */ 465 int 466 hme_init(sc) 467 struct hme_softc *sc; 468 { 469 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 470 bus_space_tag_t t = sc->sc_bustag; 471 bus_space_handle_t seb = sc->sc_seb; 472 bus_space_handle_t etx = sc->sc_etx; 473 bus_space_handle_t erx = sc->sc_erx; 474 bus_space_handle_t mac = sc->sc_mac; 475 u_int8_t *ea; 476 u_int32_t v; 477 int rc; 478 479 /* 480 * Initialization sequence. The numbered steps below correspond 481 * to the sequence outlined in section 6.3.5.1 in the Ethernet 482 * Channel Engine manual (part of the PCIO manual). 483 * See also the STP2002-STQ document from Sun Microsystems. 484 */ 485 486 /* step 1 & 2. Reset the Ethernet Channel */ 487 hme_stop(sc, false); 488 489 /* Re-initialize the MIF */ 490 hme_mifinit(sc); 491 492 /* Call MI reset function if any */ 493 if (sc->sc_hwreset) 494 (*sc->sc_hwreset)(sc); 495 496 #if 0 497 /* Mask all MIF interrupts, just in case */ 498 bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff); 499 #endif 500 501 /* step 3. Setup data structures in host memory */ 502 hme_meminit(sc); 503 504 /* step 4. TX MAC registers & counters */ 505 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0); 506 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0); 507 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0); 508 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0); 509 bus_space_write_4(t, mac, HME_MACI_TXSIZE, 510 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ? 511 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN); 512 sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable; 513 514 /* Load station MAC address */ 515 ea = sc->sc_enaddr; 516 bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]); 517 bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]); 518 bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]); 519 520 /* 521 * Init seed for backoff 522 * (source suggested by manual: low 10 bits of MAC address) 523 */ 524 v = ((ea[4] << 8) | ea[5]) & 0x3fff; 525 bus_space_write_4(t, mac, HME_MACI_RANDSEED, v); 526 527 528 /* Note: Accepting power-on default for other MAC registers here.. */ 529 530 531 /* step 5. RX MAC registers & counters */ 532 hme_setladrf(sc); 533 534 /* step 6 & 7. Program Descriptor Ring Base Addresses */ 535 bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma); 536 bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf); 537 538 bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma); 539 bus_space_write_4(t, mac, HME_MACI_RXSIZE, 540 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ? 541 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN); 542 543 /* step 8. Global Configuration & Interrupt Mask */ 544 bus_space_write_4(t, seb, HME_SEBI_IMASK, 545 ~( 546 /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/ 547 HME_SEB_STAT_HOSTTOTX | 548 HME_SEB_STAT_RXTOHOST | 549 HME_SEB_STAT_TXALL | 550 HME_SEB_STAT_TXPERR | 551 HME_SEB_STAT_RCNTEXP | 552 /*HME_SEB_STAT_MIFIRQ |*/ 553 HME_SEB_STAT_ALL_ERRORS )); 554 555 switch (sc->sc_burst) { 556 default: 557 v = 0; 558 break; 559 case 16: 560 v = HME_SEB_CFG_BURST16; 561 break; 562 case 32: 563 v = HME_SEB_CFG_BURST32; 564 break; 565 case 64: 566 v = HME_SEB_CFG_BURST64; 567 break; 568 } 569 bus_space_write_4(t, seb, HME_SEBI_CFG, v); 570 571 /* step 9. ETX Configuration: use mostly default values */ 572 573 /* Enable DMA */ 574 v = bus_space_read_4(t, etx, HME_ETXI_CFG); 575 v |= HME_ETX_CFG_DMAENABLE; 576 bus_space_write_4(t, etx, HME_ETXI_CFG, v); 577 578 /* Transmit Descriptor ring size: in increments of 16 */ 579 bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1); 580 581 582 /* step 10. ERX Configuration */ 583 v = bus_space_read_4(t, erx, HME_ERXI_CFG); 584 585 /* Encode Receive Descriptor ring size: four possible values */ 586 switch (_HME_NDESC /*XXX*/) { 587 case 32: 588 v |= HME_ERX_CFG_RINGSIZE32; 589 break; 590 case 64: 591 v |= HME_ERX_CFG_RINGSIZE64; 592 break; 593 case 128: 594 v |= HME_ERX_CFG_RINGSIZE128; 595 break; 596 case 256: 597 v |= HME_ERX_CFG_RINGSIZE256; 598 break; 599 default: 600 printf("hme: invalid Receive Descriptor ring size\n"); 601 break; 602 } 603 604 /* Enable DMA */ 605 v |= HME_ERX_CFG_DMAENABLE; 606 607 /* set h/w rx checksum start offset (# of half-words) */ 608 #ifdef INET 609 v |= (((ETHER_HDR_LEN + sizeof(struct ip) + 610 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ? 611 ETHER_VLAN_ENCAP_LEN : 0)) / 2) << HME_ERX_CFG_CSUMSHIFT) & 612 HME_ERX_CFG_CSUMSTART; 613 #endif 614 bus_space_write_4(t, erx, HME_ERXI_CFG, v); 615 616 /* step 11. XIF Configuration */ 617 v = bus_space_read_4(t, mac, HME_MACI_XIF); 618 v |= HME_MAC_XIF_OE; 619 bus_space_write_4(t, mac, HME_MACI_XIF, v); 620 621 /* step 12. RX_MAC Configuration Register */ 622 v = bus_space_read_4(t, mac, HME_MACI_RXCFG); 623 v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP; 624 bus_space_write_4(t, mac, HME_MACI_RXCFG, v); 625 626 /* step 13. TX_MAC Configuration Register */ 627 v = bus_space_read_4(t, mac, HME_MACI_TXCFG); 628 v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP); 629 bus_space_write_4(t, mac, HME_MACI_TXCFG, v); 630 631 /* step 14. Issue Transmit Pending command */ 632 633 /* Call MI initialization function if any */ 634 if (sc->sc_hwinit) 635 (*sc->sc_hwinit)(sc); 636 637 /* Set the current media. */ 638 if ((rc = hme_mediachange(ifp)) != 0) 639 return rc; 640 641 /* Start the one second timer. */ 642 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc); 643 644 ifp->if_flags |= IFF_RUNNING; 645 ifp->if_flags &= ~IFF_OACTIVE; 646 sc->sc_if_flags = ifp->if_flags; 647 ifp->if_timer = 0; 648 hme_start(ifp); 649 return 0; 650 } 651 652 /* 653 * Compare two Ether/802 addresses for equality, inlined and unrolled for 654 * speed. 655 */ 656 static inline int 657 ether_cmp(a, b) 658 u_char *a, *b; 659 { 660 661 if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] || 662 a[2] != b[2] || a[1] != b[1] || a[0] != b[0]) 663 return (0); 664 return (1); 665 } 666 667 668 /* 669 * Routine to copy from mbuf chain to transmit buffer in 670 * network buffer memory. 671 * Returns the amount of data copied. 672 */ 673 int 674 hme_put(sc, ri, m) 675 struct hme_softc *sc; 676 int ri; /* Ring index */ 677 struct mbuf *m; 678 { 679 struct mbuf *n; 680 int len, tlen = 0; 681 char *bp; 682 683 bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ; 684 for (; m; m = n) { 685 len = m->m_len; 686 if (len == 0) { 687 MFREE(m, n); 688 continue; 689 } 690 memcpy(bp, mtod(m, void *), len); 691 bp += len; 692 tlen += len; 693 MFREE(m, n); 694 } 695 return (tlen); 696 } 697 698 /* 699 * Pull data off an interface. 700 * Len is length of data, with local net header stripped. 701 * We copy the data into mbufs. When full cluster sized units are present 702 * we copy into clusters. 703 */ 704 struct mbuf * 705 hme_get(sc, ri, flags) 706 struct hme_softc *sc; 707 int ri; 708 u_int32_t flags; 709 { 710 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 711 struct mbuf *m, *m0, *newm; 712 char *bp; 713 int len, totlen; 714 715 totlen = HME_XD_DECODE_RSIZE(flags); 716 MGETHDR(m0, M_DONTWAIT, MT_DATA); 717 if (m0 == 0) 718 return (0); 719 m0->m_pkthdr.rcvif = ifp; 720 m0->m_pkthdr.len = totlen; 721 len = MHLEN; 722 m = m0; 723 724 bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ; 725 726 while (totlen > 0) { 727 if (totlen >= MINCLSIZE) { 728 MCLGET(m, M_DONTWAIT); 729 if ((m->m_flags & M_EXT) == 0) 730 goto bad; 731 len = MCLBYTES; 732 } 733 734 if (m == m0) { 735 char *newdata = (char *) 736 ALIGN(m->m_data + sizeof(struct ether_header)) - 737 sizeof(struct ether_header); 738 len -= newdata - m->m_data; 739 m->m_data = newdata; 740 } 741 742 m->m_len = len = min(totlen, len); 743 memcpy(mtod(m, void *), bp, len); 744 bp += len; 745 746 totlen -= len; 747 if (totlen > 0) { 748 MGET(newm, M_DONTWAIT, MT_DATA); 749 if (newm == 0) 750 goto bad; 751 len = MLEN; 752 m = m->m_next = newm; 753 } 754 } 755 756 #ifdef INET 757 /* hardware checksum */ 758 if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) { 759 struct ether_header *eh; 760 struct ip *ip; 761 struct udphdr *uh; 762 uint16_t *opts; 763 int32_t hlen, pktlen; 764 uint32_t temp; 765 766 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) { 767 pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN - 768 ETHER_VLAN_ENCAP_LEN; 769 eh = (struct ether_header *) mtod(m0, void *) + 770 ETHER_VLAN_ENCAP_LEN; 771 } else { 772 pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN; 773 eh = mtod(m0, struct ether_header *); 774 } 775 if (ntohs(eh->ether_type) != ETHERTYPE_IP) 776 goto swcsum; 777 ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN); 778 779 /* IPv4 only */ 780 if (ip->ip_v != IPVERSION) 781 goto swcsum; 782 783 hlen = ip->ip_hl << 2; 784 if (hlen < sizeof(struct ip)) 785 goto swcsum; 786 787 /* 788 * bail if too short, has random trailing garbage, truncated, 789 * fragment, or has ethernet pad. 790 */ 791 if ((ntohs(ip->ip_len) < hlen) || (ntohs(ip->ip_len) != pktlen) 792 || (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK))) 793 goto swcsum; 794 795 switch (ip->ip_p) { 796 case IPPROTO_TCP: 797 if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4)) 798 goto swcsum; 799 if (pktlen < (hlen + sizeof(struct tcphdr))) 800 goto swcsum; 801 m0->m_pkthdr.csum_flags = M_CSUM_TCPv4; 802 break; 803 case IPPROTO_UDP: 804 if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4)) 805 goto swcsum; 806 if (pktlen < (hlen + sizeof(struct udphdr))) 807 goto swcsum; 808 uh = (struct udphdr *)((char *)ip + hlen); 809 /* no checksum */ 810 if (uh->uh_sum == 0) 811 goto swcsum; 812 m0->m_pkthdr.csum_flags = M_CSUM_UDPv4; 813 break; 814 default: 815 goto swcsum; 816 } 817 818 /* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */ 819 m0->m_pkthdr.csum_data = (~flags) & HME_XD_RXCKSUM; 820 821 /* if the pkt had ip options, we have to deduct them */ 822 if (hlen > sizeof(struct ip)) { 823 uint32_t optsum; 824 825 optsum = 0; 826 temp = hlen - sizeof(struct ip); 827 opts = (uint16_t *)((char *)ip + sizeof(struct ip)); 828 829 while (temp > 1) { 830 optsum += ntohs(*opts++); 831 temp -= 2; 832 } 833 while (optsum >> 16) 834 optsum = (optsum >> 16) + (optsum & 0xffff); 835 836 /* Deduct the ip opts sum from the hwsum (rfc 1624). */ 837 m0->m_pkthdr.csum_data = ~((~m0->m_pkthdr.csum_data) - 838 ~optsum); 839 840 while (m0->m_pkthdr.csum_data >> 16) 841 m0->m_pkthdr.csum_data = 842 (m0->m_pkthdr.csum_data >> 16) + 843 (m0->m_pkthdr.csum_data & 0xffff); 844 } 845 846 m0->m_pkthdr.csum_flags |= M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR; 847 } 848 swcsum: 849 m0->m_pkthdr.csum_flags = 0; 850 #endif 851 852 return (m0); 853 854 bad: 855 m_freem(m0); 856 return (0); 857 } 858 859 /* 860 * Pass a packet to the higher levels. 861 */ 862 void 863 hme_read(sc, ix, flags) 864 struct hme_softc *sc; 865 int ix; 866 u_int32_t flags; 867 { 868 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 869 struct mbuf *m; 870 int len; 871 872 len = HME_XD_DECODE_RSIZE(flags); 873 if (len <= sizeof(struct ether_header) || 874 len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ? 875 ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) : 876 ETHERMTU + sizeof(struct ether_header))) { 877 #ifdef HMEDEBUG 878 printf("%s: invalid packet size %d; dropping\n", 879 sc->sc_dev.dv_xname, len); 880 #endif 881 ifp->if_ierrors++; 882 return; 883 } 884 885 /* Pull packet off interface. */ 886 m = hme_get(sc, ix, flags); 887 if (m == 0) { 888 ifp->if_ierrors++; 889 return; 890 } 891 892 ifp->if_ipackets++; 893 894 #if NBPFILTER > 0 895 /* 896 * Check if there's a BPF listener on this interface. 897 * If so, hand off the raw packet to BPF. 898 */ 899 if (ifp->if_bpf) 900 bpf_mtap(ifp->if_bpf, m); 901 #endif 902 903 /* Pass the packet up. */ 904 (*ifp->if_input)(ifp, m); 905 } 906 907 void 908 hme_start(ifp) 909 struct ifnet *ifp; 910 { 911 struct hme_softc *sc = (struct hme_softc *)ifp->if_softc; 912 void *txd = sc->sc_rb.rb_txd; 913 struct mbuf *m; 914 unsigned int txflags; 915 unsigned int ri, len; 916 unsigned int ntbuf = sc->sc_rb.rb_ntbuf; 917 918 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 919 return; 920 921 ri = sc->sc_rb.rb_tdhead; 922 923 for (;;) { 924 IFQ_DEQUEUE(&ifp->if_snd, m); 925 if (m == 0) 926 break; 927 928 #if NBPFILTER > 0 929 /* 930 * If BPF is listening on this interface, let it see the 931 * packet before we commit it to the wire. 932 */ 933 if (ifp->if_bpf) 934 bpf_mtap(ifp->if_bpf, m); 935 #endif 936 937 #ifdef INET 938 /* collect bits for h/w csum, before hme_put frees the mbuf */ 939 if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) && 940 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) { 941 struct ether_header *eh; 942 uint16_t offset, start; 943 944 eh = mtod(m, struct ether_header *); 945 switch (ntohs(eh->ether_type)) { 946 case ETHERTYPE_IP: 947 start = ETHER_HDR_LEN; 948 break; 949 case ETHERTYPE_VLAN: 950 start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 951 break; 952 default: 953 /* unsupported, drop it */ 954 m_free(m); 955 continue; 956 } 957 start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data); 958 offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data) 959 + start; 960 txflags = HME_XD_TXCKSUM | 961 (offset << HME_XD_TXCSSTUFFSHIFT) | 962 (start << HME_XD_TXCSSTARTSHIFT); 963 } else 964 #endif 965 txflags = 0; 966 967 /* 968 * Copy the mbuf chain into the transmit buffer. 969 */ 970 len = hme_put(sc, ri, m); 971 972 /* 973 * Initialize transmit registers and start transmission 974 */ 975 HME_XD_SETFLAGS(sc->sc_pci, txd, ri, 976 HME_XD_OWN | HME_XD_SOP | HME_XD_EOP | 977 HME_XD_ENCODE_TSIZE(len) | txflags); 978 979 /*if (sc->sc_rb.rb_td_nbusy <= 0)*/ 980 bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING, 981 HME_ETX_TP_DMAWAKEUP); 982 983 if (++ri == ntbuf) 984 ri = 0; 985 986 if (++sc->sc_rb.rb_td_nbusy == ntbuf) { 987 ifp->if_flags |= IFF_OACTIVE; 988 break; 989 } 990 } 991 992 sc->sc_rb.rb_tdhead = ri; 993 } 994 995 /* 996 * Transmit interrupt. 997 */ 998 int 999 hme_tint(sc) 1000 struct hme_softc *sc; 1001 { 1002 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1003 bus_space_tag_t t = sc->sc_bustag; 1004 bus_space_handle_t mac = sc->sc_mac; 1005 unsigned int ri, txflags; 1006 1007 /* 1008 * Unload collision counters 1009 */ 1010 ifp->if_collisions += 1011 bus_space_read_4(t, mac, HME_MACI_NCCNT) + 1012 bus_space_read_4(t, mac, HME_MACI_FCCNT) + 1013 bus_space_read_4(t, mac, HME_MACI_EXCNT) + 1014 bus_space_read_4(t, mac, HME_MACI_LTCNT); 1015 1016 /* 1017 * then clear the hardware counters. 1018 */ 1019 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0); 1020 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0); 1021 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0); 1022 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0); 1023 1024 /* Fetch current position in the transmit ring */ 1025 ri = sc->sc_rb.rb_tdtail; 1026 1027 for (;;) { 1028 if (sc->sc_rb.rb_td_nbusy <= 0) 1029 break; 1030 1031 txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri); 1032 1033 if (txflags & HME_XD_OWN) 1034 break; 1035 1036 ifp->if_flags &= ~IFF_OACTIVE; 1037 ifp->if_opackets++; 1038 1039 if (++ri == sc->sc_rb.rb_ntbuf) 1040 ri = 0; 1041 1042 --sc->sc_rb.rb_td_nbusy; 1043 } 1044 1045 /* Update ring */ 1046 sc->sc_rb.rb_tdtail = ri; 1047 1048 hme_start(ifp); 1049 1050 if (sc->sc_rb.rb_td_nbusy == 0) 1051 ifp->if_timer = 0; 1052 1053 return (1); 1054 } 1055 1056 /* 1057 * Receive interrupt. 1058 */ 1059 int 1060 hme_rint(sc) 1061 struct hme_softc *sc; 1062 { 1063 void *xdr = sc->sc_rb.rb_rxd; 1064 unsigned int nrbuf = sc->sc_rb.rb_nrbuf; 1065 unsigned int ri; 1066 u_int32_t flags; 1067 1068 ri = sc->sc_rb.rb_rdtail; 1069 1070 /* 1071 * Process all buffers with valid data. 1072 */ 1073 for (;;) { 1074 flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri); 1075 if (flags & HME_XD_OWN) 1076 break; 1077 1078 if (flags & HME_XD_OFL) { 1079 printf("%s: buffer overflow, ri=%d; flags=0x%x\n", 1080 sc->sc_dev.dv_xname, ri, flags); 1081 } else 1082 hme_read(sc, ri, flags); 1083 1084 /* This buffer can be used by the hardware again */ 1085 HME_XD_SETFLAGS(sc->sc_pci, xdr, ri, 1086 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ)); 1087 1088 if (++ri == nrbuf) 1089 ri = 0; 1090 } 1091 1092 sc->sc_rb.rb_rdtail = ri; 1093 1094 return (1); 1095 } 1096 1097 int 1098 hme_eint(sc, status) 1099 struct hme_softc *sc; 1100 u_int status; 1101 { 1102 char bits[128]; 1103 1104 if ((status & HME_SEB_STAT_MIFIRQ) != 0) { 1105 bus_space_tag_t t = sc->sc_bustag; 1106 bus_space_handle_t mif = sc->sc_mif; 1107 u_int32_t cf, st, sm; 1108 cf = bus_space_read_4(t, mif, HME_MIFI_CFG); 1109 st = bus_space_read_4(t, mif, HME_MIFI_STAT); 1110 sm = bus_space_read_4(t, mif, HME_MIFI_SM); 1111 printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n", 1112 sc->sc_dev.dv_xname, cf, st, sm); 1113 return (1); 1114 } 1115 1116 printf("%s: status=%s\n", sc->sc_dev.dv_xname, 1117 bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits))); 1118 return (1); 1119 } 1120 1121 int 1122 hme_intr(v) 1123 void *v; 1124 { 1125 struct hme_softc *sc = (struct hme_softc *)v; 1126 bus_space_tag_t t = sc->sc_bustag; 1127 bus_space_handle_t seb = sc->sc_seb; 1128 u_int32_t status; 1129 int r = 0; 1130 1131 status = bus_space_read_4(t, seb, HME_SEBI_STAT); 1132 1133 if ((status & HME_SEB_STAT_ALL_ERRORS) != 0) 1134 r |= hme_eint(sc, status); 1135 1136 if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0) 1137 r |= hme_tint(sc); 1138 1139 if ((status & HME_SEB_STAT_RXTOHOST) != 0) 1140 r |= hme_rint(sc); 1141 1142 #if NRND > 0 1143 rnd_add_uint32(&sc->rnd_source, status); 1144 #endif 1145 1146 return (r); 1147 } 1148 1149 1150 void 1151 hme_watchdog(ifp) 1152 struct ifnet *ifp; 1153 { 1154 struct hme_softc *sc = ifp->if_softc; 1155 1156 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname); 1157 ++ifp->if_oerrors; 1158 1159 hme_reset(sc); 1160 } 1161 1162 /* 1163 * Initialize the MII Management Interface 1164 */ 1165 void 1166 hme_mifinit(sc) 1167 struct hme_softc *sc; 1168 { 1169 bus_space_tag_t t = sc->sc_bustag; 1170 bus_space_handle_t mif = sc->sc_mif; 1171 bus_space_handle_t mac = sc->sc_mac; 1172 int instance, phy; 1173 u_int32_t v; 1174 1175 if (sc->sc_mii.mii_media.ifm_cur != NULL) { 1176 instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media); 1177 phy = sc->sc_phys[instance]; 1178 } else 1179 /* No media set yet, pick phy arbitrarily.. */ 1180 phy = HME_PHYAD_EXTERNAL; 1181 1182 /* Configure the MIF in frame mode, no poll, current phy select */ 1183 v = 0; 1184 if (phy == HME_PHYAD_EXTERNAL) 1185 v |= HME_MIF_CFG_PHY; 1186 bus_space_write_4(t, mif, HME_MIFI_CFG, v); 1187 1188 /* If an external transceiver is selected, enable its MII drivers */ 1189 v = bus_space_read_4(t, mac, HME_MACI_XIF); 1190 v &= ~HME_MAC_XIF_MIIENABLE; 1191 if (phy == HME_PHYAD_EXTERNAL) 1192 v |= HME_MAC_XIF_MIIENABLE; 1193 bus_space_write_4(t, mac, HME_MACI_XIF, v); 1194 } 1195 1196 /* 1197 * MII interface 1198 */ 1199 static int 1200 hme_mii_readreg(self, phy, reg) 1201 struct device *self; 1202 int phy, reg; 1203 { 1204 struct hme_softc *sc = (void *)self; 1205 bus_space_tag_t t = sc->sc_bustag; 1206 bus_space_handle_t mif = sc->sc_mif; 1207 bus_space_handle_t mac = sc->sc_mac; 1208 u_int32_t v, xif_cfg, mifi_cfg; 1209 int n; 1210 1211 /* We can at most have two PHYs */ 1212 if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL) 1213 return (0); 1214 1215 /* Select the desired PHY in the MIF configuration register */ 1216 v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG); 1217 v &= ~HME_MIF_CFG_PHY; 1218 if (phy == HME_PHYAD_EXTERNAL) 1219 v |= HME_MIF_CFG_PHY; 1220 bus_space_write_4(t, mif, HME_MIFI_CFG, v); 1221 1222 /* Enable MII drivers on external transceiver */ 1223 v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF); 1224 if (phy == HME_PHYAD_EXTERNAL) 1225 v |= HME_MAC_XIF_MIIENABLE; 1226 else 1227 v &= ~HME_MAC_XIF_MIIENABLE; 1228 bus_space_write_4(t, mac, HME_MACI_XIF, v); 1229 1230 #if 0 1231 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */ 1232 /* 1233 * Check whether a transceiver is connected by testing 1234 * the MIF configuration register's MDI_X bits. Note that 1235 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h 1236 */ 1237 mif_mdi_bit = 1 << (8 + (1 - phy)); 1238 delay(100); 1239 v = bus_space_read_4(t, mif, HME_MIFI_CFG); 1240 if ((v & mif_mdi_bit) == 0) 1241 return (0); 1242 #endif 1243 1244 /* Construct the frame command */ 1245 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) | 1246 HME_MIF_FO_TAMSB | 1247 (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) | 1248 (phy << HME_MIF_FO_PHYAD_SHIFT) | 1249 (reg << HME_MIF_FO_REGAD_SHIFT); 1250 1251 bus_space_write_4(t, mif, HME_MIFI_FO, v); 1252 for (n = 0; n < 100; n++) { 1253 DELAY(1); 1254 v = bus_space_read_4(t, mif, HME_MIFI_FO); 1255 if (v & HME_MIF_FO_TALSB) { 1256 v &= HME_MIF_FO_DATA; 1257 goto out; 1258 } 1259 } 1260 1261 v = 0; 1262 printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname); 1263 1264 out: 1265 /* Restore MIFI_CFG register */ 1266 bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg); 1267 /* Restore XIF register */ 1268 bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg); 1269 return (v); 1270 } 1271 1272 static void 1273 hme_mii_writereg(self, phy, reg, val) 1274 struct device *self; 1275 int phy, reg, val; 1276 { 1277 struct hme_softc *sc = (void *)self; 1278 bus_space_tag_t t = sc->sc_bustag; 1279 bus_space_handle_t mif = sc->sc_mif; 1280 bus_space_handle_t mac = sc->sc_mac; 1281 u_int32_t v, xif_cfg, mifi_cfg; 1282 int n; 1283 1284 /* We can at most have two PHYs */ 1285 if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL) 1286 return; 1287 1288 /* Select the desired PHY in the MIF configuration register */ 1289 v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG); 1290 v &= ~HME_MIF_CFG_PHY; 1291 if (phy == HME_PHYAD_EXTERNAL) 1292 v |= HME_MIF_CFG_PHY; 1293 bus_space_write_4(t, mif, HME_MIFI_CFG, v); 1294 1295 /* Enable MII drivers on external transceiver */ 1296 v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF); 1297 if (phy == HME_PHYAD_EXTERNAL) 1298 v |= HME_MAC_XIF_MIIENABLE; 1299 else 1300 v &= ~HME_MAC_XIF_MIIENABLE; 1301 bus_space_write_4(t, mac, HME_MACI_XIF, v); 1302 1303 #if 0 1304 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */ 1305 /* 1306 * Check whether a transceiver is connected by testing 1307 * the MIF configuration register's MDI_X bits. Note that 1308 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h 1309 */ 1310 mif_mdi_bit = 1 << (8 + (1 - phy)); 1311 delay(100); 1312 v = bus_space_read_4(t, mif, HME_MIFI_CFG); 1313 if ((v & mif_mdi_bit) == 0) 1314 return; 1315 #endif 1316 1317 /* Construct the frame command */ 1318 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) | 1319 HME_MIF_FO_TAMSB | 1320 (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) | 1321 (phy << HME_MIF_FO_PHYAD_SHIFT) | 1322 (reg << HME_MIF_FO_REGAD_SHIFT) | 1323 (val & HME_MIF_FO_DATA); 1324 1325 bus_space_write_4(t, mif, HME_MIFI_FO, v); 1326 for (n = 0; n < 100; n++) { 1327 DELAY(1); 1328 v = bus_space_read_4(t, mif, HME_MIFI_FO); 1329 if (v & HME_MIF_FO_TALSB) 1330 goto out; 1331 } 1332 1333 printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname); 1334 out: 1335 /* Restore MIFI_CFG register */ 1336 bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg); 1337 /* Restore XIF register */ 1338 bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg); 1339 } 1340 1341 static void 1342 hme_mii_statchg(dev) 1343 struct device *dev; 1344 { 1345 struct hme_softc *sc = (void *)dev; 1346 bus_space_tag_t t = sc->sc_bustag; 1347 bus_space_handle_t mac = sc->sc_mac; 1348 u_int32_t v; 1349 1350 #ifdef HMEDEBUG 1351 if (sc->sc_debug) 1352 printf("hme_mii_statchg: status change\n"); 1353 #endif 1354 1355 /* Set the MAC Full Duplex bit appropriately */ 1356 /* Apparently the hme chip is SIMPLEX if working in full duplex mode, 1357 but not otherwise. */ 1358 v = bus_space_read_4(t, mac, HME_MACI_TXCFG); 1359 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) { 1360 v |= HME_MAC_TXCFG_FULLDPLX; 1361 sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX; 1362 } else { 1363 v &= ~HME_MAC_TXCFG_FULLDPLX; 1364 sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX; 1365 } 1366 sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags; 1367 bus_space_write_4(t, mac, HME_MACI_TXCFG, v); 1368 } 1369 1370 int 1371 hme_mediachange(ifp) 1372 struct ifnet *ifp; 1373 { 1374 struct hme_softc *sc = ifp->if_softc; 1375 bus_space_tag_t t = sc->sc_bustag; 1376 bus_space_handle_t mif = sc->sc_mif; 1377 bus_space_handle_t mac = sc->sc_mac; 1378 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media); 1379 int phy = sc->sc_phys[instance]; 1380 int rc; 1381 u_int32_t v; 1382 1383 #ifdef HMEDEBUG 1384 if (sc->sc_debug) 1385 printf("hme_mediachange: phy = %d\n", phy); 1386 #endif 1387 1388 /* Select the current PHY in the MIF configuration register */ 1389 v = bus_space_read_4(t, mif, HME_MIFI_CFG); 1390 v &= ~HME_MIF_CFG_PHY; 1391 if (phy == HME_PHYAD_EXTERNAL) 1392 v |= HME_MIF_CFG_PHY; 1393 bus_space_write_4(t, mif, HME_MIFI_CFG, v); 1394 1395 /* If an external transceiver is selected, enable its MII drivers */ 1396 v = bus_space_read_4(t, mac, HME_MACI_XIF); 1397 v &= ~HME_MAC_XIF_MIIENABLE; 1398 if (phy == HME_PHYAD_EXTERNAL) 1399 v |= HME_MAC_XIF_MIIENABLE; 1400 bus_space_write_4(t, mac, HME_MACI_XIF, v); 1401 1402 if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO) 1403 return 0; 1404 return rc; 1405 } 1406 1407 /* 1408 * Process an ioctl request. 1409 */ 1410 int 1411 hme_ioctl(ifp, cmd, data) 1412 struct ifnet *ifp; 1413 u_long cmd; 1414 void *data; 1415 { 1416 struct hme_softc *sc = ifp->if_softc; 1417 struct ifaddr *ifa = (struct ifaddr *)data; 1418 int s, error = 0; 1419 1420 s = splnet(); 1421 1422 switch (cmd) { 1423 1424 case SIOCSIFADDR: 1425 switch (ifa->ifa_addr->sa_family) { 1426 #ifdef INET 1427 case AF_INET: 1428 if (ifp->if_flags & IFF_UP) 1429 hme_setladrf(sc); 1430 else { 1431 ifp->if_flags |= IFF_UP; 1432 error = hme_init(sc); 1433 } 1434 arp_ifinit(ifp, ifa); 1435 break; 1436 #endif 1437 default: 1438 ifp->if_flags |= IFF_UP; 1439 error = hme_init(sc); 1440 break; 1441 } 1442 break; 1443 1444 case SIOCSIFFLAGS: 1445 #ifdef HMEDEBUG 1446 sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0; 1447 #endif 1448 1449 if ((ifp->if_flags & IFF_UP) == 0 && 1450 (ifp->if_flags & IFF_RUNNING) != 0) { 1451 /* 1452 * If interface is marked down and it is running, then 1453 * stop it. 1454 */ 1455 hme_stop(sc, false); 1456 ifp->if_flags &= ~IFF_RUNNING; 1457 } else if ((ifp->if_flags & IFF_UP) != 0 && 1458 (ifp->if_flags & IFF_RUNNING) == 0) { 1459 /* 1460 * If interface is marked up and it is stopped, then 1461 * start it. 1462 */ 1463 error = hme_init(sc); 1464 } else if ((ifp->if_flags & IFF_UP) != 0) { 1465 /* 1466 * If setting debug or promiscuous mode, do not reset 1467 * the chip; for everything else, call hme_init() 1468 * which will trigger a reset. 1469 */ 1470 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG) 1471 if (ifp->if_flags != sc->sc_if_flags) { 1472 if ((ifp->if_flags & (~RESETIGN)) 1473 == (sc->sc_if_flags & (~RESETIGN))) 1474 hme_setladrf(sc); 1475 else 1476 error = hme_init(sc); 1477 } 1478 #undef RESETIGN 1479 } 1480 1481 if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable) 1482 error = hme_init(sc); 1483 1484 break; 1485 1486 default: 1487 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET) 1488 break; 1489 1490 error = 0; 1491 1492 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI) 1493 ; 1494 else if (ifp->if_flags & IFF_RUNNING) { 1495 /* 1496 * Multicast list has changed; set the hardware filter 1497 * accordingly. 1498 */ 1499 hme_setladrf(sc); 1500 } 1501 break; 1502 } 1503 1504 sc->sc_if_flags = ifp->if_flags; 1505 splx(s); 1506 return (error); 1507 } 1508 1509 void 1510 hme_shutdown(arg) 1511 void *arg; 1512 { 1513 1514 hme_stop((struct hme_softc *)arg, false); 1515 } 1516 1517 /* 1518 * Set up the logical address filter. 1519 */ 1520 void 1521 hme_setladrf(sc) 1522 struct hme_softc *sc; 1523 { 1524 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1525 struct ether_multi *enm; 1526 struct ether_multistep step; 1527 struct ethercom *ec = &sc->sc_ethercom; 1528 bus_space_tag_t t = sc->sc_bustag; 1529 bus_space_handle_t mac = sc->sc_mac; 1530 u_char *cp; 1531 u_int32_t crc; 1532 u_int32_t hash[4]; 1533 u_int32_t v; 1534 int len; 1535 1536 /* Clear hash table */ 1537 hash[3] = hash[2] = hash[1] = hash[0] = 0; 1538 1539 /* Get current RX configuration */ 1540 v = bus_space_read_4(t, mac, HME_MACI_RXCFG); 1541 1542 if ((ifp->if_flags & IFF_PROMISC) != 0) { 1543 /* Turn on promiscuous mode; turn off the hash filter */ 1544 v |= HME_MAC_RXCFG_PMISC; 1545 v &= ~HME_MAC_RXCFG_HENABLE; 1546 ifp->if_flags |= IFF_ALLMULTI; 1547 goto chipit; 1548 } 1549 1550 /* Turn off promiscuous mode; turn on the hash filter */ 1551 v &= ~HME_MAC_RXCFG_PMISC; 1552 v |= HME_MAC_RXCFG_HENABLE; 1553 1554 /* 1555 * Set up multicast address filter by passing all multicast addresses 1556 * through a crc generator, and then using the high order 6 bits as an 1557 * index into the 64 bit logical address filter. The high order bit 1558 * selects the word, while the rest of the bits select the bit within 1559 * the word. 1560 */ 1561 1562 ETHER_FIRST_MULTI(step, ec, enm); 1563 while (enm != NULL) { 1564 if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) { 1565 /* 1566 * We must listen to a range of multicast addresses. 1567 * For now, just accept all multicasts, rather than 1568 * trying to set only those filter bits needed to match 1569 * the range. (At this time, the only use of address 1570 * ranges is for IP multicast routing, for which the 1571 * range is big enough to require all bits set.) 1572 */ 1573 hash[3] = hash[2] = hash[1] = hash[0] = 0xffff; 1574 ifp->if_flags |= IFF_ALLMULTI; 1575 goto chipit; 1576 } 1577 1578 cp = enm->enm_addrlo; 1579 crc = 0xffffffff; 1580 for (len = sizeof(enm->enm_addrlo); --len >= 0;) { 1581 int octet = *cp++; 1582 int i; 1583 1584 #define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */ 1585 for (i = 0; i < 8; i++) { 1586 if ((crc & 1) ^ (octet & 1)) { 1587 crc >>= 1; 1588 crc ^= MC_POLY_LE; 1589 } else { 1590 crc >>= 1; 1591 } 1592 octet >>= 1; 1593 } 1594 } 1595 /* Just want the 6 most significant bits. */ 1596 crc >>= 26; 1597 1598 /* Set the corresponding bit in the filter. */ 1599 hash[crc >> 4] |= 1 << (crc & 0xf); 1600 1601 ETHER_NEXT_MULTI(step, enm); 1602 } 1603 1604 ifp->if_flags &= ~IFF_ALLMULTI; 1605 1606 chipit: 1607 /* Now load the hash table into the chip */ 1608 bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]); 1609 bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]); 1610 bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]); 1611 bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]); 1612 bus_space_write_4(t, mac, HME_MACI_RXCFG, v); 1613 } 1614 1615 /* 1616 * Routines for accessing the transmit and receive buffers. 1617 * The various CPU and adapter configurations supported by this 1618 * driver require three different access methods for buffers 1619 * and descriptors: 1620 * (1) contig (contiguous data; no padding), 1621 * (2) gap2 (two bytes of data followed by two bytes of padding), 1622 * (3) gap16 (16 bytes of data followed by 16 bytes of padding). 1623 */ 1624 1625 #if 0 1626 /* 1627 * contig: contiguous data with no padding. 1628 * 1629 * Buffers may have any alignment. 1630 */ 1631 1632 void 1633 hme_copytobuf_contig(sc, from, ri, len) 1634 struct hme_softc *sc; 1635 void *from; 1636 int ri, len; 1637 { 1638 volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ); 1639 1640 /* 1641 * Just call memcpy() to do the work. 1642 */ 1643 memcpy(buf, from, len); 1644 } 1645 1646 void 1647 hme_copyfrombuf_contig(sc, to, boff, len) 1648 struct hme_softc *sc; 1649 void *to; 1650 int boff, len; 1651 { 1652 volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ); 1653 1654 /* 1655 * Just call memcpy() to do the work. 1656 */ 1657 memcpy(to, buf, len); 1658 } 1659 #endif 1660