xref: /netbsd-src/sys/dev/ic/hme.c (revision 220b5c059a84c51ea44107ea8951a57ffaecdc8c)
1 /*	$NetBSD: hme.c,v 1.28 2001/11/26 10:39:29 tron Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * HME Ethernet module driver.
41  */
42 
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.28 2001/11/26 10:39:29 tron Exp $");
45 
46 #define HMEDEBUG
47 
48 #include "opt_inet.h"
49 #include "opt_ns.h"
50 #include "bpfilter.h"
51 #include "rnd.h"
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/mbuf.h>
57 #include <sys/syslog.h>
58 #include <sys/socket.h>
59 #include <sys/device.h>
60 #include <sys/malloc.h>
61 #include <sys/ioctl.h>
62 #include <sys/errno.h>
63 #if NRND > 0
64 #include <sys/rnd.h>
65 #endif
66 
67 #include <net/if.h>
68 #include <net/if_dl.h>
69 #include <net/if_ether.h>
70 #include <net/if_media.h>
71 
72 #ifdef INET
73 #include <netinet/in.h>
74 #include <netinet/if_inarp.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/in_var.h>
77 #include <netinet/ip.h>
78 #endif
79 
80 #ifdef NS
81 #include <netns/ns.h>
82 #include <netns/ns_if.h>
83 #endif
84 
85 #if NBPFILTER > 0
86 #include <net/bpf.h>
87 #include <net/bpfdesc.h>
88 #endif
89 
90 #include <dev/mii/mii.h>
91 #include <dev/mii/miivar.h>
92 
93 #include <machine/bus.h>
94 
95 #include <dev/ic/hmereg.h>
96 #include <dev/ic/hmevar.h>
97 
98 void		hme_start __P((struct ifnet *));
99 void		hme_stop __P((struct hme_softc *));
100 int		hme_ioctl __P((struct ifnet *, u_long, caddr_t));
101 void		hme_tick __P((void *));
102 void		hme_watchdog __P((struct ifnet *));
103 void		hme_shutdown __P((void *));
104 void		hme_init __P((struct hme_softc *));
105 void		hme_meminit __P((struct hme_softc *));
106 void		hme_mifinit __P((struct hme_softc *));
107 void		hme_reset __P((struct hme_softc *));
108 void		hme_setladrf __P((struct hme_softc *));
109 
110 /* MII methods & callbacks */
111 static int	hme_mii_readreg __P((struct device *, int, int));
112 static void	hme_mii_writereg __P((struct device *, int, int, int));
113 static void	hme_mii_statchg __P((struct device *));
114 
115 int		hme_mediachange __P((struct ifnet *));
116 void		hme_mediastatus __P((struct ifnet *, struct ifmediareq *));
117 
118 struct mbuf	*hme_get __P((struct hme_softc *, int, int));
119 int		hme_put __P((struct hme_softc *, int, struct mbuf *));
120 void		hme_read __P((struct hme_softc *, int, int));
121 int		hme_eint __P((struct hme_softc *, u_int));
122 int		hme_rint __P((struct hme_softc *));
123 int		hme_tint __P((struct hme_softc *));
124 
125 static int	ether_cmp __P((u_char *, u_char *));
126 
127 /* Default buffer copy routines */
128 void	hme_copytobuf_contig __P((struct hme_softc *, void *, int, int));
129 void	hme_copyfrombuf_contig __P((struct hme_softc *, void *, int, int));
130 void	hme_zerobuf_contig __P((struct hme_softc *, int, int));
131 
132 
133 void
134 hme_config(sc)
135 	struct hme_softc *sc;
136 {
137 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
138 	struct mii_data *mii = &sc->sc_mii;
139 	struct mii_softc *child;
140 	bus_dma_tag_t dmatag = sc->sc_dmatag;
141 	bus_dma_segment_t seg;
142 	bus_size_t size;
143 	int rseg, error;
144 
145 	/*
146 	 * HME common initialization.
147 	 *
148 	 * hme_softc fields that must be initialized by the front-end:
149 	 *
150 	 * the bus tag:
151 	 *	sc_bustag
152 	 *
153 	 * the dma bus tag:
154 	 *	sc_dmatag
155 	 *
156 	 * the bus handles:
157 	 *	sc_seb		(Shared Ethernet Block registers)
158 	 *	sc_erx		(Receiver Unit registers)
159 	 *	sc_etx		(Transmitter Unit registers)
160 	 *	sc_mac		(MAC registers)
161 	 *	sc_mif		(Managment Interface registers)
162 	 *
163 	 * the maximum bus burst size:
164 	 *	sc_burst
165 	 *
166 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
167 	 *	rb_membase, rb_dmabase)
168 	 *
169 	 * the local Ethernet address:
170 	 *	sc_enaddr
171 	 *
172 	 */
173 
174 	/* Make sure the chip is stopped. */
175 	hme_stop(sc);
176 
177 
178 	/*
179 	 * Allocate descriptors and buffers
180 	 * XXX - do all this differently.. and more configurably,
181 	 * eg. use things as `dma_load_mbuf()' on transmit,
182 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
183 	 *     all the time) on the reveiver side.
184 	 *
185 	 * Note: receive buffers must be 64-byte aligned.
186 	 * Also, apparently, the buffers must extend to a DMA burst
187 	 * boundary beyond the maximum packet size.
188 	 */
189 #define _HME_NDESC	128
190 #define _HME_BUFSZ	1600
191 
192 	/* Note: the # of descriptors must be a multiple of 16 */
193 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
194 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
195 
196 	/*
197 	 * Allocate DMA capable memory
198 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
199 	 * take this into account when calculating the size. Note that
200 	 * the maximum number of descriptors (256) occupies 2048 bytes,
201 	 * so we allocate that much regardless of _HME_NDESC.
202 	 */
203 	size =	2048 +					/* TX descriptors */
204 		2048 +					/* RX descriptors */
205 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
206 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* TX buffers */
207 
208 	/* Allocate DMA buffer */
209 	if ((error = bus_dmamem_alloc(dmatag, size,
210 				      2048, 0,
211 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
212 		printf("%s: DMA buffer alloc error %d\n",
213 			sc->sc_dev.dv_xname, error);
214 		return;
215 	}
216 
217 	/* Map DMA memory in CPU addressable space */
218 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
219 				    &sc->sc_rb.rb_membase,
220 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
221 		printf("%s: DMA buffer map error %d\n",
222 			sc->sc_dev.dv_xname, error);
223 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
224 		bus_dmamem_free(dmatag, &seg, rseg);
225 		return;
226 	}
227 
228 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
229 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
230 		printf("%s: DMA map create error %d\n",
231 			sc->sc_dev.dv_xname, error);
232 		return;
233 	}
234 
235 	/* Load the buffer */
236 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
237 	    sc->sc_rb.rb_membase, size, NULL,
238 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
239 		printf("%s: DMA buffer map load error %d\n",
240 			sc->sc_dev.dv_xname, error);
241 		bus_dmamem_free(dmatag, &seg, rseg);
242 		return;
243 	}
244 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
245 
246 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
247 	    ether_sprintf(sc->sc_enaddr));
248 
249 	/* Initialize ifnet structure. */
250 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
251 	ifp->if_softc = sc;
252 	ifp->if_start = hme_start;
253 	ifp->if_ioctl = hme_ioctl;
254 	ifp->if_watchdog = hme_watchdog;
255 	ifp->if_flags =
256 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
257 	IFQ_SET_READY(&ifp->if_snd);
258 
259 	/* Initialize ifmedia structures and MII info */
260 	mii->mii_ifp = ifp;
261 	mii->mii_readreg = hme_mii_readreg;
262 	mii->mii_writereg = hme_mii_writereg;
263 	mii->mii_statchg = hme_mii_statchg;
264 
265 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, hme_mediastatus);
266 
267 	hme_mifinit(sc);
268 
269 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
270 			MII_PHY_ANY, MII_OFFSET_ANY, 0);
271 
272 	child = LIST_FIRST(&mii->mii_phys);
273 	if (child == NULL) {
274 		/* No PHY attached */
275 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
276 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
277 	} else {
278 		/*
279 		 * Walk along the list of attached MII devices and
280 		 * establish an `MII instance' to `phy number'
281 		 * mapping. We'll use this mapping in media change
282 		 * requests to determine which phy to use to program
283 		 * the MIF configuration register.
284 		 */
285 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
286 			/*
287 			 * Note: we support just two PHYs: the built-in
288 			 * internal device and an external on the MII
289 			 * connector.
290 			 */
291 			if (child->mii_phy > 1 || child->mii_inst > 1) {
292 				printf("%s: cannot accomodate MII device %s"
293 				       " at phy %d, instance %d\n",
294 				       sc->sc_dev.dv_xname,
295 				       child->mii_dev.dv_xname,
296 				       child->mii_phy, child->mii_inst);
297 				continue;
298 			}
299 
300 			sc->sc_phys[child->mii_inst] = child->mii_phy;
301 		}
302 
303 		/*
304 		 * XXX - we can really do the following ONLY if the
305 		 * phy indeed has the auto negotiation capability!!
306 		 */
307 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
308 	}
309 
310 	/* claim 802.1q capability */
311 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
312 
313 	/* Attach the interface. */
314 	if_attach(ifp);
315 	ether_ifattach(ifp, sc->sc_enaddr);
316 
317 	sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
318 	if (sc->sc_sh == NULL)
319 		panic("hme_config: can't establish shutdownhook");
320 
321 #if 0
322 	printf("%s: %d receive buffers, %d transmit buffers\n",
323 	    sc->sc_dev.dv_xname, sc->sc_nrbuf, sc->sc_ntbuf);
324 	sc->sc_rbufaddr = malloc(sc->sc_nrbuf * sizeof(int), M_DEVBUF,
325 					M_WAITOK);
326 	sc->sc_tbufaddr = malloc(sc->sc_ntbuf * sizeof(int), M_DEVBUF,
327 					M_WAITOK);
328 #endif
329 
330 #if NRND > 0
331 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
332 			  RND_TYPE_NET, 0);
333 #endif
334 
335 	callout_init(&sc->sc_tick_ch);
336 }
337 
338 void
339 hme_tick(arg)
340 	void *arg;
341 {
342 	struct hme_softc *sc = arg;
343 	int s;
344 
345 	s = splnet();
346 	mii_tick(&sc->sc_mii);
347 	splx(s);
348 
349 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
350 }
351 
352 void
353 hme_reset(sc)
354 	struct hme_softc *sc;
355 {
356 	int s;
357 
358 	s = splnet();
359 	hme_init(sc);
360 	splx(s);
361 }
362 
363 void
364 hme_stop(sc)
365 	struct hme_softc *sc;
366 {
367 	bus_space_tag_t t = sc->sc_bustag;
368 	bus_space_handle_t seb = sc->sc_seb;
369 	int n;
370 
371 	callout_stop(&sc->sc_tick_ch);
372 	mii_down(&sc->sc_mii);
373 
374 	/* Reset transmitter and receiver */
375 	bus_space_write_4(t, seb, HME_SEBI_RESET,
376 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
377 
378 	for (n = 0; n < 20; n++) {
379 		u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
380 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
381 			return;
382 		DELAY(20);
383 	}
384 
385 	printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname);
386 }
387 
388 void
389 hme_meminit(sc)
390 	struct hme_softc *sc;
391 {
392 	bus_addr_t txbufdma, rxbufdma;
393 	bus_addr_t dma;
394 	caddr_t p;
395 	unsigned int ntbuf, nrbuf, i;
396 	struct hme_ring *hr = &sc->sc_rb;
397 
398 	p = hr->rb_membase;
399 	dma = hr->rb_dmabase;
400 
401 	ntbuf = hr->rb_ntbuf;
402 	nrbuf = hr->rb_nrbuf;
403 
404 	/*
405 	 * Allocate transmit descriptors
406 	 */
407 	hr->rb_txd = p;
408 	hr->rb_txddma = dma;
409 	p += ntbuf * HME_XD_SIZE;
410 	dma += ntbuf * HME_XD_SIZE;
411 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
412 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
413 	p = (caddr_t)roundup((u_long)p, 2048);
414 
415 	/*
416 	 * Allocate receive descriptors
417 	 */
418 	hr->rb_rxd = p;
419 	hr->rb_rxddma = dma;
420 	p += nrbuf * HME_XD_SIZE;
421 	dma += nrbuf * HME_XD_SIZE;
422 	/* Again move forward to the next 2048 byte boundary.*/
423 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
424 	p = (caddr_t)roundup((u_long)p, 2048);
425 
426 
427 	/*
428 	 * Allocate transmit buffers
429 	 */
430 	hr->rb_txbuf = p;
431 	txbufdma = dma;
432 	p += ntbuf * _HME_BUFSZ;
433 	dma += ntbuf * _HME_BUFSZ;
434 
435 	/*
436 	 * Allocate receive buffers
437 	 */
438 	hr->rb_rxbuf = p;
439 	rxbufdma = dma;
440 	p += nrbuf * _HME_BUFSZ;
441 	dma += nrbuf * _HME_BUFSZ;
442 
443 	/*
444 	 * Initialize transmit buffer descriptors
445 	 */
446 	for (i = 0; i < ntbuf; i++) {
447 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
448 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
449 	}
450 
451 	/*
452 	 * Initialize receive buffer descriptors
453 	 */
454 	for (i = 0; i < nrbuf; i++) {
455 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
456 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
457 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
458 	}
459 
460 	hr->rb_tdhead = hr->rb_tdtail = 0;
461 	hr->rb_td_nbusy = 0;
462 	hr->rb_rdtail = 0;
463 }
464 
465 /*
466  * Initialization of interface; set up initialization block
467  * and transmit/receive descriptor rings.
468  */
469 void
470 hme_init(sc)
471 	struct hme_softc *sc;
472 {
473 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
474 	bus_space_tag_t t = sc->sc_bustag;
475 	bus_space_handle_t seb = sc->sc_seb;
476 	bus_space_handle_t etx = sc->sc_etx;
477 	bus_space_handle_t erx = sc->sc_erx;
478 	bus_space_handle_t mac = sc->sc_mac;
479 	bus_space_handle_t mif = sc->sc_mif;
480 	u_int8_t *ea;
481 	u_int32_t v;
482 
483 	/*
484 	 * Initialization sequence. The numbered steps below correspond
485 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
486 	 * Channel Engine manual (part of the PCIO manual).
487 	 * See also the STP2002-STQ document from Sun Microsystems.
488 	 */
489 
490 	/* step 1 & 2. Reset the Ethernet Channel */
491 	hme_stop(sc);
492 
493 	/* Re-initialize the MIF */
494 	hme_mifinit(sc);
495 
496 	/* Call MI reset function if any */
497 	if (sc->sc_hwreset)
498 		(*sc->sc_hwreset)(sc);
499 
500 #if 0
501 	/* Mask all MIF interrupts, just in case */
502 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
503 #endif
504 
505 	/* step 3. Setup data structures in host memory */
506 	hme_meminit(sc);
507 
508 	/* step 4. TX MAC registers & counters */
509 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
510 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
511 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
512 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
513 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
514 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
515 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN :
516             ETHER_MAX_LEN);
517 
518 	/* Load station MAC address */
519 	ea = sc->sc_enaddr;
520 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
521 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
522 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
523 
524 	/*
525 	 * Init seed for backoff
526 	 * (source suggested by manual: low 10 bits of MAC address)
527 	 */
528 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
529 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
530 
531 
532 	/* Note: Accepting power-on default for other MAC registers here.. */
533 
534 
535 	/* step 5. RX MAC registers & counters */
536 	hme_setladrf(sc);
537 
538 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
539 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
540 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
541 
542 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
543 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
544 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
545 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN :
546             ETHER_MAX_LEN);
547 
548 
549 	/* step 8. Global Configuration & Interrupt Mask */
550 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
551 			~(
552 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
553 			  HME_SEB_STAT_HOSTTOTX |
554 			  HME_SEB_STAT_RXTOHOST |
555 			  HME_SEB_STAT_TXALL |
556 			  HME_SEB_STAT_TXPERR |
557 			  HME_SEB_STAT_RCNTEXP |
558 			  HME_SEB_STAT_ALL_ERRORS ));
559 
560 	switch (sc->sc_burst) {
561 	default:
562 		v = 0;
563 		break;
564 	case 16:
565 		v = HME_SEB_CFG_BURST16;
566 		break;
567 	case 32:
568 		v = HME_SEB_CFG_BURST32;
569 		break;
570 	case 64:
571 		v = HME_SEB_CFG_BURST64;
572 		break;
573 	}
574 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
575 
576 	/* step 9. ETX Configuration: use mostly default values */
577 
578 	/* Enable DMA */
579 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
580 	v |= HME_ETX_CFG_DMAENABLE;
581 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
582 
583 	/* Transmit Descriptor ring size: in increments of 16 */
584 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
585 
586 
587 	/* step 10. ERX Configuration */
588 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
589 
590 	/* Encode Receive Descriptor ring size: four possible values */
591 	switch (_HME_NDESC /*XXX*/) {
592 	case 32:
593 		v |= HME_ERX_CFG_RINGSIZE32;
594 		break;
595 	case 64:
596 		v |= HME_ERX_CFG_RINGSIZE64;
597 		break;
598 	case 128:
599 		v |= HME_ERX_CFG_RINGSIZE128;
600 		break;
601 	case 256:
602 		v |= HME_ERX_CFG_RINGSIZE256;
603 		break;
604 	default:
605 		printf("hme: invalid Receive Descriptor ring size\n");
606 		break;
607 	}
608 
609 	/* Enable DMA */
610 	v |= HME_ERX_CFG_DMAENABLE;
611 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
612 
613 	/* step 11. XIF Configuration */
614 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
615 	v |= HME_MAC_XIF_OE;
616 	/* If an external transceiver is connected, enable its MII drivers */
617 	if ((bus_space_read_4(t, mif, HME_MIFI_CFG) & HME_MIF_CFG_MDI1) != 0)
618 		v |= HME_MAC_XIF_MIIENABLE;
619 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
620 
621 
622 	/* step 12. RX_MAC Configuration Register */
623 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
624 	v |= HME_MAC_RXCFG_ENABLE;
625 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
626 
627 	/* step 13. TX_MAC Configuration Register */
628 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
629 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
630 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
631 
632 	/* step 14. Issue Transmit Pending command */
633 
634 	/* Call MI initialization function if any */
635 	if (sc->sc_hwinit)
636 		(*sc->sc_hwinit)(sc);
637 
638 	/* Start the one second timer. */
639 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
640 
641 	ifp->if_flags |= IFF_RUNNING;
642 	ifp->if_flags &= ~IFF_OACTIVE;
643 	ifp->if_timer = 0;
644 	hme_start(ifp);
645 }
646 
647 /*
648  * Compare two Ether/802 addresses for equality, inlined and unrolled for
649  * speed.
650  */
651 static __inline__ int
652 ether_cmp(a, b)
653 	u_char *a, *b;
654 {
655 
656 	if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
657 	    a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
658 		return (0);
659 	return (1);
660 }
661 
662 
663 /*
664  * Routine to copy from mbuf chain to transmit buffer in
665  * network buffer memory.
666  * Returns the amount of data copied.
667  */
668 int
669 hme_put(sc, ri, m)
670 	struct hme_softc *sc;
671 	int ri;			/* Ring index */
672 	struct mbuf *m;
673 {
674 	struct mbuf *n;
675 	int len, tlen = 0;
676 	caddr_t bp;
677 
678 	bp = sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
679 	for (; m; m = n) {
680 		len = m->m_len;
681 		if (len == 0) {
682 			MFREE(m, n);
683 			continue;
684 		}
685 		memcpy(bp, mtod(m, caddr_t), len);
686 		bp += len;
687 		tlen += len;
688 		MFREE(m, n);
689 	}
690 	return (tlen);
691 }
692 
693 /*
694  * Pull data off an interface.
695  * Len is length of data, with local net header stripped.
696  * We copy the data into mbufs.  When full cluster sized units are present
697  * we copy into clusters.
698  */
699 struct mbuf *
700 hme_get(sc, ri, totlen)
701 	struct hme_softc *sc;
702 	int ri, totlen;
703 {
704 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
705 	struct mbuf *m, *m0, *newm;
706 	caddr_t bp;
707 	int len;
708 
709 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
710 	if (m0 == 0)
711 		return (0);
712 	m0->m_pkthdr.rcvif = ifp;
713 	m0->m_pkthdr.len = totlen;
714 	len = MHLEN;
715 	m = m0;
716 
717 	bp = sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
718 
719 	while (totlen > 0) {
720 		if (totlen >= MINCLSIZE) {
721 			MCLGET(m, M_DONTWAIT);
722 			if ((m->m_flags & M_EXT) == 0)
723 				goto bad;
724 			len = MCLBYTES;
725 		}
726 
727 		if (m == m0) {
728 			caddr_t newdata = (caddr_t)
729 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
730 			    sizeof(struct ether_header);
731 			len -= newdata - m->m_data;
732 			m->m_data = newdata;
733 		}
734 
735 		m->m_len = len = min(totlen, len);
736 		memcpy(mtod(m, caddr_t), bp, len);
737 		bp += len;
738 
739 		totlen -= len;
740 		if (totlen > 0) {
741 			MGET(newm, M_DONTWAIT, MT_DATA);
742 			if (newm == 0)
743 				goto bad;
744 			len = MLEN;
745 			m = m->m_next = newm;
746 		}
747 	}
748 
749 	return (m0);
750 
751 bad:
752 	m_freem(m0);
753 	return (0);
754 }
755 
756 /*
757  * Pass a packet to the higher levels.
758  */
759 void
760 hme_read(sc, ix, len)
761 	struct hme_softc *sc;
762 	int ix, len;
763 {
764 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
765 	struct mbuf *m;
766 
767 	if (len <= sizeof(struct ether_header) ||
768 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
769 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
770 	    ETHERMTU + sizeof(struct ether_header))) {
771 #ifdef HMEDEBUG
772 		printf("%s: invalid packet size %d; dropping\n",
773 		    sc->sc_dev.dv_xname, len);
774 #endif
775 		ifp->if_ierrors++;
776 		return;
777 	}
778 
779 	/* Pull packet off interface. */
780 	m = hme_get(sc, ix, len);
781 	if (m == 0) {
782 		ifp->if_ierrors++;
783 		return;
784 	}
785 
786 	ifp->if_ipackets++;
787 
788 #if NBPFILTER > 0
789 	/*
790 	 * Check if there's a BPF listener on this interface.
791 	 * If so, hand off the raw packet to BPF.
792 	 */
793 	if (ifp->if_bpf)
794 		bpf_mtap(ifp->if_bpf, m);
795 #endif
796 
797 	/* Pass the packet up. */
798 	(*ifp->if_input)(ifp, m);
799 }
800 
801 void
802 hme_start(ifp)
803 	struct ifnet *ifp;
804 {
805 	struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
806 	caddr_t txd = sc->sc_rb.rb_txd;
807 	struct mbuf *m;
808 	unsigned int ri, len;
809 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
810 
811 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
812 		return;
813 
814 	ri = sc->sc_rb.rb_tdhead;
815 
816 	for (;;) {
817 		IFQ_DEQUEUE(&ifp->if_snd, m);
818 		if (m == 0)
819 			break;
820 
821 #if NBPFILTER > 0
822 		/*
823 		 * If BPF is listening on this interface, let it see the
824 		 * packet before we commit it to the wire.
825 		 */
826 		if (ifp->if_bpf)
827 			bpf_mtap(ifp->if_bpf, m);
828 #endif
829 
830 		/*
831 		 * Copy the mbuf chain into the transmit buffer.
832 		 */
833 		len = hme_put(sc, ri, m);
834 
835 		/*
836 		 * Initialize transmit registers and start transmission
837 		 */
838 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
839 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
840 			HME_XD_ENCODE_TSIZE(len));
841 
842 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
843 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
844 				  HME_ETX_TP_DMAWAKEUP);
845 
846 		if (++ri == ntbuf)
847 			ri = 0;
848 
849 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
850 			ifp->if_flags |= IFF_OACTIVE;
851 			break;
852 		}
853 	}
854 
855 	sc->sc_rb.rb_tdhead = ri;
856 }
857 
858 /*
859  * Transmit interrupt.
860  */
861 int
862 hme_tint(sc)
863 	struct hme_softc *sc;
864 {
865 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
866 	bus_space_tag_t t = sc->sc_bustag;
867 	bus_space_handle_t mac = sc->sc_mac;
868 	unsigned int ri, txflags;
869 
870 	/*
871 	 * Unload collision counters
872 	 */
873 	ifp->if_collisions +=
874 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
875 		bus_space_read_4(t, mac, HME_MACI_FCCNT) +
876 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
877 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
878 
879 	/*
880 	 * then clear the hardware counters.
881 	 */
882 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
883 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
884 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
885 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
886 
887 	/* Fetch current position in the transmit ring */
888 	ri = sc->sc_rb.rb_tdtail;
889 
890 	for (;;) {
891 		if (sc->sc_rb.rb_td_nbusy <= 0)
892 			break;
893 
894 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
895 
896 		if (txflags & HME_XD_OWN)
897 			break;
898 
899 		ifp->if_flags &= ~IFF_OACTIVE;
900 		ifp->if_opackets++;
901 
902 		if (++ri == sc->sc_rb.rb_ntbuf)
903 			ri = 0;
904 
905 		--sc->sc_rb.rb_td_nbusy;
906 	}
907 
908 	/* Update ring */
909 	sc->sc_rb.rb_tdtail = ri;
910 
911 	hme_start(ifp);
912 
913 	if (sc->sc_rb.rb_td_nbusy == 0)
914 		ifp->if_timer = 0;
915 
916 	return (1);
917 }
918 
919 /*
920  * Receive interrupt.
921  */
922 int
923 hme_rint(sc)
924 	struct hme_softc *sc;
925 {
926 	caddr_t xdr = sc->sc_rb.rb_rxd;
927 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
928 	unsigned int ri, len;
929 	u_int32_t flags;
930 
931 	ri = sc->sc_rb.rb_rdtail;
932 
933 	/*
934 	 * Process all buffers with valid data.
935 	 */
936 	for (;;) {
937 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
938 		if (flags & HME_XD_OWN)
939 			break;
940 
941 		if (flags & HME_XD_OFL) {
942 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
943 					sc->sc_dev.dv_xname, ri, flags);
944 		} else {
945 			len = HME_XD_DECODE_RSIZE(flags);
946 			hme_read(sc, ri, len);
947 		}
948 
949 		/* This buffer can be used by the hardware again */
950 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
951 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
952 
953 		if (++ri == nrbuf)
954 			ri = 0;
955 	}
956 
957 	sc->sc_rb.rb_rdtail = ri;
958 
959 	return (1);
960 }
961 
962 int
963 hme_eint(sc, status)
964 	struct hme_softc *sc;
965 	u_int status;
966 {
967 	char bits[128];
968 
969 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
970 		printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
971 		return (1);
972 	}
973 
974 	printf("%s: status=%s\n", sc->sc_dev.dv_xname,
975 		bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
976 	return (1);
977 }
978 
979 int
980 hme_intr(v)
981 	void *v;
982 {
983 	struct hme_softc *sc = (struct hme_softc *)v;
984 	bus_space_tag_t t = sc->sc_bustag;
985 	bus_space_handle_t seb = sc->sc_seb;
986 	u_int32_t status;
987 	int r = 0;
988 
989 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
990 
991 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
992 		r |= hme_eint(sc, status);
993 
994 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
995 		r |= hme_tint(sc);
996 
997 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
998 		r |= hme_rint(sc);
999 
1000 	return (r);
1001 }
1002 
1003 
1004 void
1005 hme_watchdog(ifp)
1006 	struct ifnet *ifp;
1007 {
1008 	struct hme_softc *sc = ifp->if_softc;
1009 
1010 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1011 	++ifp->if_oerrors;
1012 
1013 	hme_reset(sc);
1014 }
1015 
1016 /*
1017  * Initialize the MII Management Interface
1018  */
1019 void
1020 hme_mifinit(sc)
1021 	struct hme_softc *sc;
1022 {
1023 	bus_space_tag_t t = sc->sc_bustag;
1024 	bus_space_handle_t mif = sc->sc_mif;
1025 	u_int32_t v;
1026 
1027 	/* Configure the MIF in frame mode */
1028 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1029 	v &= ~HME_MIF_CFG_BBMODE;
1030 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1031 }
1032 
1033 /*
1034  * MII interface
1035  */
1036 static int
1037 hme_mii_readreg(self, phy, reg)
1038 	struct device *self;
1039 	int phy, reg;
1040 {
1041 	struct hme_softc *sc = (void *)self;
1042 	bus_space_tag_t t = sc->sc_bustag;
1043 	bus_space_handle_t mif = sc->sc_mif;
1044 	int n;
1045 	u_int32_t v;
1046 
1047 	/* Select the desired PHY in the MIF configuration register */
1048 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1049 	/* Clear PHY select bit */
1050 	v &= ~HME_MIF_CFG_PHY;
1051 	if (phy == HME_PHYAD_EXTERNAL)
1052 		/* Set PHY select bit to get at external device */
1053 		v |= HME_MIF_CFG_PHY;
1054 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1055 
1056 	/* Construct the frame command */
1057 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1058 	    HME_MIF_FO_TAMSB |
1059 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1060 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
1061 	    (reg << HME_MIF_FO_REGAD_SHIFT);
1062 
1063 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
1064 	for (n = 0; n < 100; n++) {
1065 		DELAY(1);
1066 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
1067 		if (v & HME_MIF_FO_TALSB)
1068 			return (v & HME_MIF_FO_DATA);
1069 	}
1070 
1071 	printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1072 	return (0);
1073 }
1074 
1075 static void
1076 hme_mii_writereg(self, phy, reg, val)
1077 	struct device *self;
1078 	int phy, reg, val;
1079 {
1080 	struct hme_softc *sc = (void *)self;
1081 	bus_space_tag_t t = sc->sc_bustag;
1082 	bus_space_handle_t mif = sc->sc_mif;
1083 	int n;
1084 	u_int32_t v;
1085 
1086 	/* Select the desired PHY in the MIF configuration register */
1087 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1088 	/* Clear PHY select bit */
1089 	v &= ~HME_MIF_CFG_PHY;
1090 	if (phy == HME_PHYAD_EXTERNAL)
1091 		/* Set PHY select bit to get at external device */
1092 		v |= HME_MIF_CFG_PHY;
1093 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1094 
1095 	/* Construct the frame command */
1096 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
1097 	    HME_MIF_FO_TAMSB				|
1098 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
1099 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
1100 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
1101 	    (val & HME_MIF_FO_DATA);
1102 
1103 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
1104 	for (n = 0; n < 100; n++) {
1105 		DELAY(1);
1106 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
1107 		if (v & HME_MIF_FO_TALSB)
1108 			return;
1109 	}
1110 
1111 	printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1112 }
1113 
1114 static void
1115 hme_mii_statchg(dev)
1116 	struct device *dev;
1117 {
1118 	struct hme_softc *sc = (void *)dev;
1119 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1120 	int phy = sc->sc_phys[instance];
1121 	bus_space_tag_t t = sc->sc_bustag;
1122 	bus_space_handle_t mif = sc->sc_mif;
1123 	bus_space_handle_t mac = sc->sc_mac;
1124 	u_int32_t v;
1125 
1126 #ifdef HMEDEBUG
1127 	if (sc->sc_debug)
1128 		printf("hme_mii_statchg: status change: phy = %d\n", phy);
1129 #endif
1130 
1131 	/* Select the current PHY in the MIF configuration register */
1132 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1133 	v &= ~HME_MIF_CFG_PHY;
1134 	if (phy == HME_PHYAD_EXTERNAL)
1135 		v |= HME_MIF_CFG_PHY;
1136 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1137 
1138 	/* Set the MAC Full Duplex bit appropriately */
1139 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1140 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1141 		v |= HME_MAC_TXCFG_FULLDPLX;
1142 	else
1143 		v &= ~HME_MAC_TXCFG_FULLDPLX;
1144 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1145 
1146 	/* If an external transceiver is selected, enable its MII drivers */
1147 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
1148 	v &= ~HME_MAC_XIF_MIIENABLE;
1149 	if (phy == HME_PHYAD_EXTERNAL)
1150 		v |= HME_MAC_XIF_MIIENABLE;
1151 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1152 }
1153 
1154 int
1155 hme_mediachange(ifp)
1156 	struct ifnet *ifp;
1157 {
1158 	struct hme_softc *sc = ifp->if_softc;
1159 
1160 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1161 		return (EINVAL);
1162 
1163 	return (mii_mediachg(&sc->sc_mii));
1164 }
1165 
1166 void
1167 hme_mediastatus(ifp, ifmr)
1168 	struct ifnet *ifp;
1169 	struct ifmediareq *ifmr;
1170 {
1171 	struct hme_softc *sc = ifp->if_softc;
1172 
1173 	if ((ifp->if_flags & IFF_UP) == 0)
1174 		return;
1175 
1176 	mii_pollstat(&sc->sc_mii);
1177 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1178 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1179 }
1180 
1181 /*
1182  * Process an ioctl request.
1183  */
1184 int
1185 hme_ioctl(ifp, cmd, data)
1186 	struct ifnet *ifp;
1187 	u_long cmd;
1188 	caddr_t data;
1189 {
1190 	struct hme_softc *sc = ifp->if_softc;
1191 	struct ifaddr *ifa = (struct ifaddr *)data;
1192 	struct ifreq *ifr = (struct ifreq *)data;
1193 	int s, error = 0;
1194 
1195 	s = splnet();
1196 
1197 	switch (cmd) {
1198 
1199 	case SIOCSIFADDR:
1200 		ifp->if_flags |= IFF_UP;
1201 
1202 		switch (ifa->ifa_addr->sa_family) {
1203 #ifdef INET
1204 		case AF_INET:
1205 			hme_init(sc);
1206 			arp_ifinit(ifp, ifa);
1207 			break;
1208 #endif
1209 #ifdef NS
1210 		case AF_NS:
1211 		    {
1212 			struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1213 
1214 			if (ns_nullhost(*ina))
1215 				ina->x_host =
1216 				    *(union ns_host *)LLADDR(ifp->if_sadl);
1217 			else {
1218 				memcpy(LLADDR(ifp->if_sadl),
1219 				    ina->x_host.c_host, sizeof(sc->sc_enaddr));
1220 			}
1221 			/* Set new address. */
1222 			hme_init(sc);
1223 			break;
1224 		    }
1225 #endif
1226 		default:
1227 			hme_init(sc);
1228 			break;
1229 		}
1230 		break;
1231 
1232 	case SIOCSIFFLAGS:
1233 		if ((ifp->if_flags & IFF_UP) == 0 &&
1234 		    (ifp->if_flags & IFF_RUNNING) != 0) {
1235 			/*
1236 			 * If interface is marked down and it is running, then
1237 			 * stop it.
1238 			 */
1239 			hme_stop(sc);
1240 			ifp->if_flags &= ~IFF_RUNNING;
1241 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
1242 		    	   (ifp->if_flags & IFF_RUNNING) == 0) {
1243 			/*
1244 			 * If interface is marked up and it is stopped, then
1245 			 * start it.
1246 			 */
1247 			hme_init(sc);
1248 		} else if ((ifp->if_flags & IFF_UP) != 0) {
1249 			/*
1250 			 * Reset the interface to pick up changes in any other
1251 			 * flags that affect hardware registers.
1252 			 */
1253 			/*hme_stop(sc);*/
1254 			hme_init(sc);
1255 		}
1256 #ifdef HMEDEBUG
1257 		sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
1258 #endif
1259 		break;
1260 
1261 	case SIOCADDMULTI:
1262 	case SIOCDELMULTI:
1263 		error = (cmd == SIOCADDMULTI) ?
1264 		    ether_addmulti(ifr, &sc->sc_ethercom) :
1265 		    ether_delmulti(ifr, &sc->sc_ethercom);
1266 
1267 		if (error == ENETRESET) {
1268 			/*
1269 			 * Multicast list has changed; set the hardware filter
1270 			 * accordingly.
1271 			 */
1272 			hme_setladrf(sc);
1273 			error = 0;
1274 		}
1275 		break;
1276 
1277 	case SIOCGIFMEDIA:
1278 	case SIOCSIFMEDIA:
1279 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1280 		break;
1281 
1282 	default:
1283 		error = EINVAL;
1284 		break;
1285 	}
1286 
1287 	splx(s);
1288 	return (error);
1289 }
1290 
1291 void
1292 hme_shutdown(arg)
1293 	void *arg;
1294 {
1295 
1296 	hme_stop((struct hme_softc *)arg);
1297 }
1298 
1299 /*
1300  * Set up the logical address filter.
1301  */
1302 void
1303 hme_setladrf(sc)
1304 	struct hme_softc *sc;
1305 {
1306 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1307 	struct ether_multi *enm;
1308 	struct ether_multistep step;
1309 	struct ethercom *ec = &sc->sc_ethercom;
1310 	bus_space_tag_t t = sc->sc_bustag;
1311 	bus_space_handle_t mac = sc->sc_mac;
1312 	u_char *cp;
1313 	u_int32_t crc;
1314 	u_int32_t hash[4];
1315 	u_int32_t v;
1316 	int len;
1317 
1318 	/* Clear hash table */
1319 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
1320 
1321 	/* Get current RX configuration */
1322 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1323 
1324 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
1325 		/* Turn on promiscuous mode; turn off the hash filter */
1326 		v |= HME_MAC_RXCFG_PMISC;
1327 		v &= ~HME_MAC_RXCFG_HENABLE;
1328 		ifp->if_flags |= IFF_ALLMULTI;
1329 		goto chipit;
1330 	}
1331 
1332 	/* Turn off promiscuous mode; turn on the hash filter */
1333 	v &= ~HME_MAC_RXCFG_PMISC;
1334 	v |= HME_MAC_RXCFG_HENABLE;
1335 
1336 	/*
1337 	 * Set up multicast address filter by passing all multicast addresses
1338 	 * through a crc generator, and then using the high order 6 bits as an
1339 	 * index into the 64 bit logical address filter.  The high order bit
1340 	 * selects the word, while the rest of the bits select the bit within
1341 	 * the word.
1342 	 */
1343 
1344 	ETHER_FIRST_MULTI(step, ec, enm);
1345 	while (enm != NULL) {
1346 		if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
1347 			/*
1348 			 * We must listen to a range of multicast addresses.
1349 			 * For now, just accept all multicasts, rather than
1350 			 * trying to set only those filter bits needed to match
1351 			 * the range.  (At this time, the only use of address
1352 			 * ranges is for IP multicast routing, for which the
1353 			 * range is big enough to require all bits set.)
1354 			 */
1355 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1356 			ifp->if_flags |= IFF_ALLMULTI;
1357 			goto chipit;
1358 		}
1359 
1360 		cp = enm->enm_addrlo;
1361 		crc = 0xffffffff;
1362 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1363 			int octet = *cp++;
1364 			int i;
1365 
1366 #define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
1367 			for (i = 0; i < 8; i++) {
1368 				if ((crc & 1) ^ (octet & 1)) {
1369 					crc >>= 1;
1370 					crc ^= MC_POLY_LE;
1371 				} else {
1372 					crc >>= 1;
1373 				}
1374 				octet >>= 1;
1375 			}
1376 		}
1377 		/* Just want the 6 most significant bits. */
1378 		crc >>= 26;
1379 
1380 		/* Set the corresponding bit in the filter. */
1381 		hash[crc >> 4] |= 1 << (crc & 0xf);
1382 
1383 		ETHER_NEXT_MULTI(step, enm);
1384 	}
1385 
1386 	ifp->if_flags &= ~IFF_ALLMULTI;
1387 
1388 chipit:
1389 	/* Now load the hash table into the chip */
1390 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1391 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1392 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1393 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1394 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1395 }
1396 
1397 /*
1398  * Routines for accessing the transmit and receive buffers.
1399  * The various CPU and adapter configurations supported by this
1400  * driver require three different access methods for buffers
1401  * and descriptors:
1402  *	(1) contig (contiguous data; no padding),
1403  *	(2) gap2 (two bytes of data followed by two bytes of padding),
1404  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
1405  */
1406 
1407 #if 0
1408 /*
1409  * contig: contiguous data with no padding.
1410  *
1411  * Buffers may have any alignment.
1412  */
1413 
1414 void
1415 hme_copytobuf_contig(sc, from, ri, len)
1416 	struct hme_softc *sc;
1417 	void *from;
1418 	int ri, len;
1419 {
1420 	volatile caddr_t buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1421 
1422 	/*
1423 	 * Just call memcpy() to do the work.
1424 	 */
1425 	memcpy(buf, from, len);
1426 }
1427 
1428 void
1429 hme_copyfrombuf_contig(sc, to, boff, len)
1430 	struct hme_softc *sc;
1431 	void *to;
1432 	int boff, len;
1433 {
1434 	volatile caddr_t buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1435 
1436 	/*
1437 	 * Just call memcpy() to do the work.
1438 	 */
1439 	memcpy(to, buf, len);
1440 }
1441 #endif
1442