xref: /netbsd-src/sys/dev/ic/hme.c (revision 1c9b56c830954ccf3b57004ac65562e3d6afacf6)
1 /*	$NetBSD: hme.c,v 1.47 2005/02/21 02:12:48 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * HME Ethernet module driver.
41  */
42 
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.47 2005/02/21 02:12:48 thorpej Exp $");
45 
46 /* #define HMEDEBUG */
47 
48 #include "opt_inet.h"
49 #include "opt_ns.h"
50 #include "bpfilter.h"
51 #include "rnd.h"
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/mbuf.h>
57 #include <sys/syslog.h>
58 #include <sys/socket.h>
59 #include <sys/device.h>
60 #include <sys/malloc.h>
61 #include <sys/ioctl.h>
62 #include <sys/errno.h>
63 #if NRND > 0
64 #include <sys/rnd.h>
65 #endif
66 
67 #include <net/if.h>
68 #include <net/if_dl.h>
69 #include <net/if_ether.h>
70 #include <net/if_media.h>
71 
72 #ifdef INET
73 #include <netinet/in.h>
74 #include <netinet/if_inarp.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/in_var.h>
77 #include <netinet/ip.h>
78 #include <netinet/tcp.h>
79 #include <netinet/udp.h>
80 #endif
81 
82 #ifdef NS
83 #include <netns/ns.h>
84 #include <netns/ns_if.h>
85 #endif
86 
87 #if NBPFILTER > 0
88 #include <net/bpf.h>
89 #include <net/bpfdesc.h>
90 #endif
91 
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94 
95 #include <machine/bus.h>
96 
97 #include <dev/ic/hmereg.h>
98 #include <dev/ic/hmevar.h>
99 
100 void		hme_start(struct ifnet *);
101 void		hme_stop(struct hme_softc *);
102 int		hme_ioctl(struct ifnet *, u_long, caddr_t);
103 void		hme_tick(void *);
104 void		hme_watchdog(struct ifnet *);
105 void		hme_shutdown(void *);
106 void		hme_init(struct hme_softc *);
107 void		hme_meminit(struct hme_softc *);
108 void		hme_mifinit(struct hme_softc *);
109 void		hme_reset(struct hme_softc *);
110 void		hme_setladrf(struct hme_softc *);
111 
112 /* MII methods & callbacks */
113 static int	hme_mii_readreg(struct device *, int, int);
114 static void	hme_mii_writereg(struct device *, int, int, int);
115 static void	hme_mii_statchg(struct device *);
116 
117 int		hme_mediachange(struct ifnet *);
118 void		hme_mediastatus(struct ifnet *, struct ifmediareq *);
119 
120 struct mbuf	*hme_get(struct hme_softc *, int, uint32_t);
121 int		hme_put(struct hme_softc *, int, struct mbuf *);
122 void		hme_read(struct hme_softc *, int, uint32_t);
123 int		hme_eint(struct hme_softc *, u_int);
124 int		hme_rint(struct hme_softc *);
125 int		hme_tint(struct hme_softc *);
126 
127 static int	ether_cmp(u_char *, u_char *);
128 
129 /* Default buffer copy routines */
130 void	hme_copytobuf_contig(struct hme_softc *, void *, int, int);
131 void	hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
132 void	hme_zerobuf_contig(struct hme_softc *, int, int);
133 
134 
135 void
136 hme_config(sc)
137 	struct hme_softc *sc;
138 {
139 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
140 	struct mii_data *mii = &sc->sc_mii;
141 	struct mii_softc *child;
142 	bus_dma_tag_t dmatag = sc->sc_dmatag;
143 	bus_dma_segment_t seg;
144 	bus_size_t size;
145 	int rseg, error;
146 
147 	/*
148 	 * HME common initialization.
149 	 *
150 	 * hme_softc fields that must be initialized by the front-end:
151 	 *
152 	 * the bus tag:
153 	 *	sc_bustag
154 	 *
155 	 * the DMA bus tag:
156 	 *	sc_dmatag
157 	 *
158 	 * the bus handles:
159 	 *	sc_seb		(Shared Ethernet Block registers)
160 	 *	sc_erx		(Receiver Unit registers)
161 	 *	sc_etx		(Transmitter Unit registers)
162 	 *	sc_mac		(MAC registers)
163 	 *	sc_mif		(Management Interface registers)
164 	 *
165 	 * the maximum bus burst size:
166 	 *	sc_burst
167 	 *
168 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
169 	 *	rb_membase, rb_dmabase)
170 	 *
171 	 * the local Ethernet address:
172 	 *	sc_enaddr
173 	 *
174 	 */
175 
176 	/* Make sure the chip is stopped. */
177 	hme_stop(sc);
178 
179 
180 	/*
181 	 * Allocate descriptors and buffers
182 	 * XXX - do all this differently.. and more configurably,
183 	 * eg. use things as `dma_load_mbuf()' on transmit,
184 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
185 	 *     all the time) on the receiver side.
186 	 *
187 	 * Note: receive buffers must be 64-byte aligned.
188 	 * Also, apparently, the buffers must extend to a DMA burst
189 	 * boundary beyond the maximum packet size.
190 	 */
191 #define _HME_NDESC	128
192 #define _HME_BUFSZ	1600
193 
194 	/* Note: the # of descriptors must be a multiple of 16 */
195 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
196 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
197 
198 	/*
199 	 * Allocate DMA capable memory
200 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
201 	 * take this into account when calculating the size. Note that
202 	 * the maximum number of descriptors (256) occupies 2048 bytes,
203 	 * so we allocate that much regardless of _HME_NDESC.
204 	 */
205 	size =	2048 +					/* TX descriptors */
206 		2048 +					/* RX descriptors */
207 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
208 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* RX buffers */
209 
210 	/* Allocate DMA buffer */
211 	if ((error = bus_dmamem_alloc(dmatag, size,
212 				      2048, 0,
213 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
214 		printf("%s: DMA buffer alloc error %d\n",
215 			sc->sc_dev.dv_xname, error);
216 		return;
217 	}
218 
219 	/* Map DMA memory in CPU addressable space */
220 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
221 				    &sc->sc_rb.rb_membase,
222 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
223 		printf("%s: DMA buffer map error %d\n",
224 			sc->sc_dev.dv_xname, error);
225 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
226 		bus_dmamem_free(dmatag, &seg, rseg);
227 		return;
228 	}
229 
230 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
231 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
232 		printf("%s: DMA map create error %d\n",
233 			sc->sc_dev.dv_xname, error);
234 		return;
235 	}
236 
237 	/* Load the buffer */
238 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
239 	    sc->sc_rb.rb_membase, size, NULL,
240 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
241 		printf("%s: DMA buffer map load error %d\n",
242 			sc->sc_dev.dv_xname, error);
243 		bus_dmamem_free(dmatag, &seg, rseg);
244 		return;
245 	}
246 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
247 
248 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
249 	    ether_sprintf(sc->sc_enaddr));
250 
251 	/* Initialize ifnet structure. */
252 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
253 	ifp->if_softc = sc;
254 	ifp->if_start = hme_start;
255 	ifp->if_ioctl = hme_ioctl;
256 	ifp->if_watchdog = hme_watchdog;
257 	ifp->if_flags =
258 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
259 	sc->sc_if_flags = ifp->if_flags;
260 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
261 				IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
262 	IFQ_SET_READY(&ifp->if_snd);
263 
264 	/* Initialize ifmedia structures and MII info */
265 	mii->mii_ifp = ifp;
266 	mii->mii_readreg = hme_mii_readreg;
267 	mii->mii_writereg = hme_mii_writereg;
268 	mii->mii_statchg = hme_mii_statchg;
269 
270 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, hme_mediastatus);
271 
272 	hme_mifinit(sc);
273 
274 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
275 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
276 
277 	child = LIST_FIRST(&mii->mii_phys);
278 	if (child == NULL) {
279 		/* No PHY attached */
280 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
281 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
282 	} else {
283 		/*
284 		 * Walk along the list of attached MII devices and
285 		 * establish an `MII instance' to `phy number'
286 		 * mapping. We'll use this mapping in media change
287 		 * requests to determine which phy to use to program
288 		 * the MIF configuration register.
289 		 */
290 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
291 			/*
292 			 * Note: we support just two PHYs: the built-in
293 			 * internal device and an external on the MII
294 			 * connector.
295 			 */
296 			if (child->mii_phy > 1 || child->mii_inst > 1) {
297 				printf("%s: cannot accomodate MII device %s"
298 				       " at phy %d, instance %d\n",
299 				       sc->sc_dev.dv_xname,
300 				       child->mii_dev.dv_xname,
301 				       child->mii_phy, child->mii_inst);
302 				continue;
303 			}
304 
305 			sc->sc_phys[child->mii_inst] = child->mii_phy;
306 		}
307 
308 		/*
309 		 * XXX - we can really do the following ONLY if the
310 		 * phy indeed has the auto negotiation capability!!
311 		 */
312 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
313 	}
314 
315 	/* claim 802.1q capability */
316 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
317 
318 	/* Attach the interface. */
319 	if_attach(ifp);
320 	ether_ifattach(ifp, sc->sc_enaddr);
321 
322 	sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
323 	if (sc->sc_sh == NULL)
324 		panic("hme_config: can't establish shutdownhook");
325 
326 #if NRND > 0
327 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
328 			  RND_TYPE_NET, 0);
329 #endif
330 
331 	callout_init(&sc->sc_tick_ch);
332 }
333 
334 void
335 hme_tick(arg)
336 	void *arg;
337 {
338 	struct hme_softc *sc = arg;
339 	int s;
340 
341 	s = splnet();
342 	mii_tick(&sc->sc_mii);
343 	splx(s);
344 
345 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
346 }
347 
348 void
349 hme_reset(sc)
350 	struct hme_softc *sc;
351 {
352 	int s;
353 
354 	s = splnet();
355 	hme_init(sc);
356 	splx(s);
357 }
358 
359 void
360 hme_stop(sc)
361 	struct hme_softc *sc;
362 {
363 	bus_space_tag_t t = sc->sc_bustag;
364 	bus_space_handle_t seb = sc->sc_seb;
365 	int n;
366 
367 	callout_stop(&sc->sc_tick_ch);
368 	mii_down(&sc->sc_mii);
369 
370 	/* Mask all interrupts */
371 	bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
372 
373 	/* Reset transmitter and receiver */
374 	bus_space_write_4(t, seb, HME_SEBI_RESET,
375 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
376 
377 	for (n = 0; n < 20; n++) {
378 		u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
379 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
380 			return;
381 		DELAY(20);
382 	}
383 
384 	printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname);
385 }
386 
387 void
388 hme_meminit(sc)
389 	struct hme_softc *sc;
390 {
391 	bus_addr_t txbufdma, rxbufdma;
392 	bus_addr_t dma;
393 	caddr_t p;
394 	unsigned int ntbuf, nrbuf, i;
395 	struct hme_ring *hr = &sc->sc_rb;
396 
397 	p = hr->rb_membase;
398 	dma = hr->rb_dmabase;
399 
400 	ntbuf = hr->rb_ntbuf;
401 	nrbuf = hr->rb_nrbuf;
402 
403 	/*
404 	 * Allocate transmit descriptors
405 	 */
406 	hr->rb_txd = p;
407 	hr->rb_txddma = dma;
408 	p += ntbuf * HME_XD_SIZE;
409 	dma += ntbuf * HME_XD_SIZE;
410 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
411 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
412 	p = (caddr_t)roundup((u_long)p, 2048);
413 
414 	/*
415 	 * Allocate receive descriptors
416 	 */
417 	hr->rb_rxd = p;
418 	hr->rb_rxddma = dma;
419 	p += nrbuf * HME_XD_SIZE;
420 	dma += nrbuf * HME_XD_SIZE;
421 	/* Again move forward to the next 2048 byte boundary.*/
422 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
423 	p = (caddr_t)roundup((u_long)p, 2048);
424 
425 
426 	/*
427 	 * Allocate transmit buffers
428 	 */
429 	hr->rb_txbuf = p;
430 	txbufdma = dma;
431 	p += ntbuf * _HME_BUFSZ;
432 	dma += ntbuf * _HME_BUFSZ;
433 
434 	/*
435 	 * Allocate receive buffers
436 	 */
437 	hr->rb_rxbuf = p;
438 	rxbufdma = dma;
439 	p += nrbuf * _HME_BUFSZ;
440 	dma += nrbuf * _HME_BUFSZ;
441 
442 	/*
443 	 * Initialize transmit buffer descriptors
444 	 */
445 	for (i = 0; i < ntbuf; i++) {
446 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
447 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
448 	}
449 
450 	/*
451 	 * Initialize receive buffer descriptors
452 	 */
453 	for (i = 0; i < nrbuf; i++) {
454 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
455 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
456 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
457 	}
458 
459 	hr->rb_tdhead = hr->rb_tdtail = 0;
460 	hr->rb_td_nbusy = 0;
461 	hr->rb_rdtail = 0;
462 }
463 
464 /*
465  * Initialization of interface; set up initialization block
466  * and transmit/receive descriptor rings.
467  */
468 void
469 hme_init(sc)
470 	struct hme_softc *sc;
471 {
472 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
473 	bus_space_tag_t t = sc->sc_bustag;
474 	bus_space_handle_t seb = sc->sc_seb;
475 	bus_space_handle_t etx = sc->sc_etx;
476 	bus_space_handle_t erx = sc->sc_erx;
477 	bus_space_handle_t mac = sc->sc_mac;
478 	u_int8_t *ea;
479 	u_int32_t v;
480 
481 	/*
482 	 * Initialization sequence. The numbered steps below correspond
483 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
484 	 * Channel Engine manual (part of the PCIO manual).
485 	 * See also the STP2002-STQ document from Sun Microsystems.
486 	 */
487 
488 	/* step 1 & 2. Reset the Ethernet Channel */
489 	hme_stop(sc);
490 
491 	/* Re-initialize the MIF */
492 	hme_mifinit(sc);
493 
494 	/* Call MI reset function if any */
495 	if (sc->sc_hwreset)
496 		(*sc->sc_hwreset)(sc);
497 
498 #if 0
499 	/* Mask all MIF interrupts, just in case */
500 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
501 #endif
502 
503 	/* step 3. Setup data structures in host memory */
504 	hme_meminit(sc);
505 
506 	/* step 4. TX MAC registers & counters */
507 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
508 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
509 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
510 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
511 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
512 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
513 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN :
514             ETHER_MAX_LEN);
515 	sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
516 
517 	/* Load station MAC address */
518 	ea = sc->sc_enaddr;
519 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
520 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
521 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
522 
523 	/*
524 	 * Init seed for backoff
525 	 * (source suggested by manual: low 10 bits of MAC address)
526 	 */
527 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
528 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
529 
530 
531 	/* Note: Accepting power-on default for other MAC registers here.. */
532 
533 
534 	/* step 5. RX MAC registers & counters */
535 	hme_setladrf(sc);
536 
537 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
538 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
539 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
540 
541 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
542 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
543 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
544 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN :
545             ETHER_MAX_LEN);
546 
547 
548 	/* step 8. Global Configuration & Interrupt Mask */
549 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
550 			~(
551 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
552 			  HME_SEB_STAT_HOSTTOTX |
553 			  HME_SEB_STAT_RXTOHOST |
554 			  HME_SEB_STAT_TXALL |
555 			  HME_SEB_STAT_TXPERR |
556 			  HME_SEB_STAT_RCNTEXP |
557 			  /*HME_SEB_STAT_MIFIRQ |*/
558 			  HME_SEB_STAT_ALL_ERRORS ));
559 
560 	switch (sc->sc_burst) {
561 	default:
562 		v = 0;
563 		break;
564 	case 16:
565 		v = HME_SEB_CFG_BURST16;
566 		break;
567 	case 32:
568 		v = HME_SEB_CFG_BURST32;
569 		break;
570 	case 64:
571 		v = HME_SEB_CFG_BURST64;
572 		break;
573 	}
574 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
575 
576 	/* step 9. ETX Configuration: use mostly default values */
577 
578 	/* Enable DMA */
579 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
580 	v |= HME_ETX_CFG_DMAENABLE;
581 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
582 
583 	/* Transmit Descriptor ring size: in increments of 16 */
584 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
585 
586 
587 	/* step 10. ERX Configuration */
588 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
589 
590 	/* Encode Receive Descriptor ring size: four possible values */
591 	switch (_HME_NDESC /*XXX*/) {
592 	case 32:
593 		v |= HME_ERX_CFG_RINGSIZE32;
594 		break;
595 	case 64:
596 		v |= HME_ERX_CFG_RINGSIZE64;
597 		break;
598 	case 128:
599 		v |= HME_ERX_CFG_RINGSIZE128;
600 		break;
601 	case 256:
602 		v |= HME_ERX_CFG_RINGSIZE256;
603 		break;
604 	default:
605 		printf("hme: invalid Receive Descriptor ring size\n");
606 		break;
607 	}
608 
609 	/* Enable DMA */
610 	v |= HME_ERX_CFG_DMAENABLE;
611 
612 	/* set h/w rx checksum start offset (# of half-words) */
613 	v |= (((ETHER_HDR_LEN + sizeof(struct ip) +
614 		((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
615 		ETHER_VLAN_ENCAP_LEN : 0)) / 2) << HME_ERX_CFG_CSUMSHIFT) &
616 		HME_ERX_CFG_CSUMSTART;
617 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
618 
619 	/* step 11. XIF Configuration */
620 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
621 	v |= HME_MAC_XIF_OE;
622 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
623 
624 	/* step 12. RX_MAC Configuration Register */
625 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
626 	v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
627 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
628 
629 	/* step 13. TX_MAC Configuration Register */
630 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
631 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
632 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
633 
634 	/* step 14. Issue Transmit Pending command */
635 
636 	/* Call MI initialization function if any */
637 	if (sc->sc_hwinit)
638 		(*sc->sc_hwinit)(sc);
639 
640 	/* Set the current media. */
641 	mii_mediachg(&sc->sc_mii);
642 
643 	/* Start the one second timer. */
644 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
645 
646 	ifp->if_flags |= IFF_RUNNING;
647 	ifp->if_flags &= ~IFF_OACTIVE;
648 	sc->sc_if_flags = ifp->if_flags;
649 	ifp->if_timer = 0;
650 	hme_start(ifp);
651 }
652 
653 /*
654  * Compare two Ether/802 addresses for equality, inlined and unrolled for
655  * speed.
656  */
657 static __inline__ int
658 ether_cmp(a, b)
659 	u_char *a, *b;
660 {
661 
662 	if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
663 	    a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
664 		return (0);
665 	return (1);
666 }
667 
668 
669 /*
670  * Routine to copy from mbuf chain to transmit buffer in
671  * network buffer memory.
672  * Returns the amount of data copied.
673  */
674 int
675 hme_put(sc, ri, m)
676 	struct hme_softc *sc;
677 	int ri;			/* Ring index */
678 	struct mbuf *m;
679 {
680 	struct mbuf *n;
681 	int len, tlen = 0;
682 	caddr_t bp;
683 
684 	bp = sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
685 	for (; m; m = n) {
686 		len = m->m_len;
687 		if (len == 0) {
688 			MFREE(m, n);
689 			continue;
690 		}
691 		memcpy(bp, mtod(m, caddr_t), len);
692 		bp += len;
693 		tlen += len;
694 		MFREE(m, n);
695 	}
696 	return (tlen);
697 }
698 
699 /*
700  * Pull data off an interface.
701  * Len is length of data, with local net header stripped.
702  * We copy the data into mbufs.  When full cluster sized units are present
703  * we copy into clusters.
704  */
705 struct mbuf *
706 hme_get(sc, ri, flags)
707 	struct hme_softc *sc;
708 	int ri;
709 	u_int32_t flags;
710 {
711 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
712 	struct mbuf *m, *m0, *newm;
713 	caddr_t bp;
714 	int len, totlen;
715 
716 	totlen = HME_XD_DECODE_RSIZE(flags);
717 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
718 	if (m0 == 0)
719 		return (0);
720 	m0->m_pkthdr.rcvif = ifp;
721 	m0->m_pkthdr.len = totlen;
722 	len = MHLEN;
723 	m = m0;
724 
725 	bp = sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
726 
727 	while (totlen > 0) {
728 		if (totlen >= MINCLSIZE) {
729 			MCLGET(m, M_DONTWAIT);
730 			if ((m->m_flags & M_EXT) == 0)
731 				goto bad;
732 			len = MCLBYTES;
733 		}
734 
735 		if (m == m0) {
736 			caddr_t newdata = (caddr_t)
737 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
738 			    sizeof(struct ether_header);
739 			len -= newdata - m->m_data;
740 			m->m_data = newdata;
741 		}
742 
743 		m->m_len = len = min(totlen, len);
744 		memcpy(mtod(m, caddr_t), bp, len);
745 		bp += len;
746 
747 		totlen -= len;
748 		if (totlen > 0) {
749 			MGET(newm, M_DONTWAIT, MT_DATA);
750 			if (newm == 0)
751 				goto bad;
752 			len = MLEN;
753 			m = m->m_next = newm;
754 		}
755 	}
756 
757 	if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_TCPv4)) {
758 		struct ether_header *eh;
759 		struct ip *ip;
760 		struct udphdr *uh;
761 		uint16_t *opts;
762 		int32_t hlen, pktlen;
763 		uint32_t temp;
764 
765 		if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
766 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN -
767 				ETHER_VLAN_ENCAP_LEN;
768 			eh = (struct ether_header *) mtod(m0, caddr_t) +
769 				ETHER_VLAN_ENCAP_LEN;
770 		} else {
771 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
772 			eh = mtod(m0, struct ether_header *);
773 		}
774 		if (ntohs(eh->ether_type) != ETHERTYPE_IP)
775 			goto swcsum;
776 		ip = (struct ip *) ((caddr_t) eh + ETHER_HDR_LEN);
777 
778 		/* IPv4 only */
779 		if (ip->ip_v != IPVERSION)
780 			goto swcsum;
781 
782 		hlen = ip->ip_hl << 2;
783 		if (hlen < sizeof(struct ip))
784 			goto swcsum;
785 
786 		/* too short, truncated, fragment */
787 		if ((ntohs(ip->ip_len) < hlen) || (ntohs(ip->ip_len) > pktlen)
788 		    || (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
789                        goto swcsum;
790 
791 		switch (ip->ip_p) {
792 		case IPPROTO_TCP:
793 			if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
794 				goto swcsum;
795 			if (pktlen < (hlen + sizeof(struct tcphdr)))
796 				goto swcsum;
797 			m0->m_pkthdr.csum_flags = M_CSUM_TCPv4;
798 			break;
799 		case IPPROTO_UDP:
800 			if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
801 				goto swcsum;
802 			if (pktlen < (hlen + sizeof(struct udphdr)))
803 				goto swcsum;
804 			uh = (struct udphdr *)((caddr_t)ip + hlen);
805 			/* no checksum */
806 			if (uh->uh_sum == 0)
807 				goto swcsum;
808 			m0->m_pkthdr.csum_flags = M_CSUM_UDPv4;
809 			break;
810 		default:
811                        goto swcsum;
812 		}
813 
814 		/* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
815 		m0->m_pkthdr.csum_data = (~flags) & HME_XD_RXCKSUM;
816 
817 		/* if the pkt had ip options, we have to deduct them */
818 		if (hlen > sizeof(struct ip)) {
819 			uint32_t optsum;
820 
821 			optsum = 0;
822 			temp = hlen - sizeof(struct ip);
823 			opts = (uint16_t *) ((caddr_t) ip + sizeof(struct ip));
824 
825 		        while (temp > 1) {
826 				optsum += ntohs(*opts++);
827 				temp -= 2;
828 			}
829 			while (optsum >> 16)
830 				optsum = (optsum >> 16) + (optsum & 0xffff);
831 
832 			/* Deduct the ip opts sum from the hwsum (rfc 1624). */
833 			m0->m_pkthdr.csum_data = ~((~m0->m_pkthdr.csum_data) -
834 						   ~optsum);
835 
836 			while (m0->m_pkthdr.csum_data >> 16)
837 				m0->m_pkthdr.csum_data =
838 					(m0->m_pkthdr.csum_data >> 16) +
839 					(m0->m_pkthdr.csum_data & 0xffff);
840 		}
841 
842 		m0->m_pkthdr.csum_flags |= M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
843 	}
844 
845 swcsum:
846 	return (m0);
847 
848 bad:
849 	m_freem(m0);
850 	return (0);
851 }
852 
853 /*
854  * Pass a packet to the higher levels.
855  */
856 void
857 hme_read(sc, ix, flags)
858 	struct hme_softc *sc;
859 	int ix;
860 	u_int32_t flags;
861 {
862 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
863 	struct mbuf *m;
864 	int len;
865 
866 	len = HME_XD_DECODE_RSIZE(flags);
867 	if (len <= sizeof(struct ether_header) ||
868 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
869 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
870 	    ETHERMTU + sizeof(struct ether_header))) {
871 #ifdef HMEDEBUG
872 		printf("%s: invalid packet size %d; dropping\n",
873 		    sc->sc_dev.dv_xname, len);
874 #endif
875 		ifp->if_ierrors++;
876 		return;
877 	}
878 
879 	/* Pull packet off interface. */
880 	m = hme_get(sc, ix, flags);
881 	if (m == 0) {
882 		ifp->if_ierrors++;
883 		return;
884 	}
885 
886 	ifp->if_ipackets++;
887 
888 #if NBPFILTER > 0
889 	/*
890 	 * Check if there's a BPF listener on this interface.
891 	 * If so, hand off the raw packet to BPF.
892 	 */
893 	if (ifp->if_bpf)
894 		bpf_mtap(ifp->if_bpf, m);
895 #endif
896 
897 	/* Pass the packet up. */
898 	(*ifp->if_input)(ifp, m);
899 }
900 
901 void
902 hme_start(ifp)
903 	struct ifnet *ifp;
904 {
905 	struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
906 	caddr_t txd = sc->sc_rb.rb_txd;
907 	struct mbuf *m;
908 	unsigned int txflags;
909 	unsigned int ri, len;
910 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
911 
912 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
913 		return;
914 
915 	ri = sc->sc_rb.rb_tdhead;
916 
917 	for (;;) {
918 		IFQ_DEQUEUE(&ifp->if_snd, m);
919 		if (m == 0)
920 			break;
921 
922 #if NBPFILTER > 0
923 		/*
924 		 * If BPF is listening on this interface, let it see the
925 		 * packet before we commit it to the wire.
926 		 */
927 		if (ifp->if_bpf)
928 			bpf_mtap(ifp->if_bpf, m);
929 #endif
930 
931 		/* collect bits for h/w csum, before hme_put frees the mbuf */
932 		if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
933 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
934 			struct ether_header *eh;
935 			uint16_t offset, start;
936 
937 			eh = mtod(m, struct ether_header *);
938 			switch (ntohs(eh->ether_type)) {
939 			case ETHERTYPE_IP:
940 				start = ETHER_HDR_LEN;
941 				break;
942 			case ETHERTYPE_VLAN:
943 				start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
944 				break;
945 			default:
946 				/* unsupported, drop it */
947 				m_free(m);
948 				continue;
949 			}
950 			start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
951 			offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
952 			    + start;
953 			txflags = HME_XD_TXCKSUM |
954 				  (offset << HME_XD_TXCSSTUFFSHIFT) |
955 		  		  (start << HME_XD_TXCSSTARTSHIFT);
956 		} else
957 			txflags = 0;
958 
959 		/*
960 		 * Copy the mbuf chain into the transmit buffer.
961 		 */
962 		len = hme_put(sc, ri, m);
963 
964 		/*
965 		 * Initialize transmit registers and start transmission
966 		 */
967 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
968 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
969 			HME_XD_ENCODE_TSIZE(len) | txflags);
970 
971 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
972 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
973 				  HME_ETX_TP_DMAWAKEUP);
974 
975 		if (++ri == ntbuf)
976 			ri = 0;
977 
978 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
979 			ifp->if_flags |= IFF_OACTIVE;
980 			break;
981 		}
982 	}
983 
984 	sc->sc_rb.rb_tdhead = ri;
985 }
986 
987 /*
988  * Transmit interrupt.
989  */
990 int
991 hme_tint(sc)
992 	struct hme_softc *sc;
993 {
994 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
995 	bus_space_tag_t t = sc->sc_bustag;
996 	bus_space_handle_t mac = sc->sc_mac;
997 	unsigned int ri, txflags;
998 
999 	/*
1000 	 * Unload collision counters
1001 	 */
1002 	ifp->if_collisions +=
1003 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
1004 		bus_space_read_4(t, mac, HME_MACI_FCCNT) +
1005 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
1006 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
1007 
1008 	/*
1009 	 * then clear the hardware counters.
1010 	 */
1011 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
1012 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
1013 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
1014 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
1015 
1016 	/* Fetch current position in the transmit ring */
1017 	ri = sc->sc_rb.rb_tdtail;
1018 
1019 	for (;;) {
1020 		if (sc->sc_rb.rb_td_nbusy <= 0)
1021 			break;
1022 
1023 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
1024 
1025 		if (txflags & HME_XD_OWN)
1026 			break;
1027 
1028 		ifp->if_flags &= ~IFF_OACTIVE;
1029 		ifp->if_opackets++;
1030 
1031 		if (++ri == sc->sc_rb.rb_ntbuf)
1032 			ri = 0;
1033 
1034 		--sc->sc_rb.rb_td_nbusy;
1035 	}
1036 
1037 	/* Update ring */
1038 	sc->sc_rb.rb_tdtail = ri;
1039 
1040 	hme_start(ifp);
1041 
1042 	if (sc->sc_rb.rb_td_nbusy == 0)
1043 		ifp->if_timer = 0;
1044 
1045 	return (1);
1046 }
1047 
1048 /*
1049  * Receive interrupt.
1050  */
1051 int
1052 hme_rint(sc)
1053 	struct hme_softc *sc;
1054 {
1055 	caddr_t xdr = sc->sc_rb.rb_rxd;
1056 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
1057 	unsigned int ri;
1058 	u_int32_t flags;
1059 
1060 	ri = sc->sc_rb.rb_rdtail;
1061 
1062 	/*
1063 	 * Process all buffers with valid data.
1064 	 */
1065 	for (;;) {
1066 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
1067 		if (flags & HME_XD_OWN)
1068 			break;
1069 
1070 		if (flags & HME_XD_OFL) {
1071 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
1072 					sc->sc_dev.dv_xname, ri, flags);
1073 		} else
1074 			hme_read(sc, ri, flags);
1075 
1076 		/* This buffer can be used by the hardware again */
1077 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
1078 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
1079 
1080 		if (++ri == nrbuf)
1081 			ri = 0;
1082 	}
1083 
1084 	sc->sc_rb.rb_rdtail = ri;
1085 
1086 	return (1);
1087 }
1088 
1089 int
1090 hme_eint(sc, status)
1091 	struct hme_softc *sc;
1092 	u_int status;
1093 {
1094 	char bits[128];
1095 
1096 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
1097 		bus_space_tag_t t = sc->sc_bustag;
1098 		bus_space_handle_t mif = sc->sc_mif;
1099 		u_int32_t cf, st, sm;
1100 		cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
1101 		st = bus_space_read_4(t, mif, HME_MIFI_STAT);
1102 		sm = bus_space_read_4(t, mif, HME_MIFI_SM);
1103 		printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
1104 			sc->sc_dev.dv_xname, cf, st, sm);
1105 		return (1);
1106 	}
1107 
1108 	printf("%s: status=%s\n", sc->sc_dev.dv_xname,
1109 		bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
1110 	return (1);
1111 }
1112 
1113 int
1114 hme_intr(v)
1115 	void *v;
1116 {
1117 	struct hme_softc *sc = (struct hme_softc *)v;
1118 	bus_space_tag_t t = sc->sc_bustag;
1119 	bus_space_handle_t seb = sc->sc_seb;
1120 	u_int32_t status;
1121 	int r = 0;
1122 
1123 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
1124 
1125 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
1126 		r |= hme_eint(sc, status);
1127 
1128 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
1129 		r |= hme_tint(sc);
1130 
1131 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
1132 		r |= hme_rint(sc);
1133 
1134 #if NRND > 0
1135 	rnd_add_uint32(&sc->rnd_source, status);
1136 #endif
1137 
1138 	return (r);
1139 }
1140 
1141 
1142 void
1143 hme_watchdog(ifp)
1144 	struct ifnet *ifp;
1145 {
1146 	struct hme_softc *sc = ifp->if_softc;
1147 
1148 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1149 	++ifp->if_oerrors;
1150 
1151 	hme_reset(sc);
1152 }
1153 
1154 /*
1155  * Initialize the MII Management Interface
1156  */
1157 void
1158 hme_mifinit(sc)
1159 	struct hme_softc *sc;
1160 {
1161 	bus_space_tag_t t = sc->sc_bustag;
1162 	bus_space_handle_t mif = sc->sc_mif;
1163 	bus_space_handle_t mac = sc->sc_mac;
1164 	int instance, phy;
1165 	u_int32_t v;
1166 
1167 	if (sc->sc_media.ifm_cur != NULL) {
1168 		instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1169 		phy = sc->sc_phys[instance];
1170 	} else
1171 		/* No media set yet, pick phy arbitrarily.. */
1172 		phy = HME_PHYAD_EXTERNAL;
1173 
1174 	/* Configure the MIF in frame mode, no poll, current phy select */
1175 	v = 0;
1176 	if (phy == HME_PHYAD_EXTERNAL)
1177 		v |= HME_MIF_CFG_PHY;
1178 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1179 
1180 	/* If an external transceiver is selected, enable its MII drivers */
1181 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
1182 	v &= ~HME_MAC_XIF_MIIENABLE;
1183 	if (phy == HME_PHYAD_EXTERNAL)
1184 		v |= HME_MAC_XIF_MIIENABLE;
1185 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1186 }
1187 
1188 /*
1189  * MII interface
1190  */
1191 static int
1192 hme_mii_readreg(self, phy, reg)
1193 	struct device *self;
1194 	int phy, reg;
1195 {
1196 	struct hme_softc *sc = (void *)self;
1197 	bus_space_tag_t t = sc->sc_bustag;
1198 	bus_space_handle_t mif = sc->sc_mif;
1199 	bus_space_handle_t mac = sc->sc_mac;
1200 	u_int32_t v, xif_cfg, mifi_cfg;
1201 	int n;
1202 
1203 	/* We can at most have two PHYs */
1204 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1205 		return (0);
1206 
1207 	/* Select the desired PHY in the MIF configuration register */
1208 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1209 	v &= ~HME_MIF_CFG_PHY;
1210 	if (phy == HME_PHYAD_EXTERNAL)
1211 		v |= HME_MIF_CFG_PHY;
1212 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1213 
1214 	/* Enable MII drivers on external transceiver */
1215 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1216 	if (phy == HME_PHYAD_EXTERNAL)
1217 		v |= HME_MAC_XIF_MIIENABLE;
1218 	else
1219 		v &= ~HME_MAC_XIF_MIIENABLE;
1220 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1221 
1222 #if 0
1223 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1224 	/*
1225 	 * Check whether a transceiver is connected by testing
1226 	 * the MIF configuration register's MDI_X bits. Note that
1227 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1228 	 */
1229 	mif_mdi_bit = 1 << (8 + (1 - phy));
1230 	delay(100);
1231 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1232 	if ((v & mif_mdi_bit) == 0)
1233 		return (0);
1234 #endif
1235 
1236 	/* Construct the frame command */
1237 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1238 	    HME_MIF_FO_TAMSB |
1239 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1240 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
1241 	    (reg << HME_MIF_FO_REGAD_SHIFT);
1242 
1243 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
1244 	for (n = 0; n < 100; n++) {
1245 		DELAY(1);
1246 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
1247 		if (v & HME_MIF_FO_TALSB) {
1248 			v &= HME_MIF_FO_DATA;
1249 			goto out;
1250 		}
1251 	}
1252 
1253 	v = 0;
1254 	printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1255 
1256 out:
1257 	/* Restore MIFI_CFG register */
1258 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1259 	/* Restore XIF register */
1260 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1261 	return (v);
1262 }
1263 
1264 static void
1265 hme_mii_writereg(self, phy, reg, val)
1266 	struct device *self;
1267 	int phy, reg, val;
1268 {
1269 	struct hme_softc *sc = (void *)self;
1270 	bus_space_tag_t t = sc->sc_bustag;
1271 	bus_space_handle_t mif = sc->sc_mif;
1272 	bus_space_handle_t mac = sc->sc_mac;
1273 	u_int32_t v, xif_cfg, mifi_cfg;
1274 	int n;
1275 
1276 	/* We can at most have two PHYs */
1277 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1278 		return;
1279 
1280 	/* Select the desired PHY in the MIF configuration register */
1281 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1282 	v &= ~HME_MIF_CFG_PHY;
1283 	if (phy == HME_PHYAD_EXTERNAL)
1284 		v |= HME_MIF_CFG_PHY;
1285 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1286 
1287 	/* Enable MII drivers on external transceiver */
1288 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1289 	if (phy == HME_PHYAD_EXTERNAL)
1290 		v |= HME_MAC_XIF_MIIENABLE;
1291 	else
1292 		v &= ~HME_MAC_XIF_MIIENABLE;
1293 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1294 
1295 #if 0
1296 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1297 	/*
1298 	 * Check whether a transceiver is connected by testing
1299 	 * the MIF configuration register's MDI_X bits. Note that
1300 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1301 	 */
1302 	mif_mdi_bit = 1 << (8 + (1 - phy));
1303 	delay(100);
1304 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1305 	if ((v & mif_mdi_bit) == 0)
1306 		return;
1307 #endif
1308 
1309 	/* Construct the frame command */
1310 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
1311 	    HME_MIF_FO_TAMSB				|
1312 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
1313 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
1314 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
1315 	    (val & HME_MIF_FO_DATA);
1316 
1317 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
1318 	for (n = 0; n < 100; n++) {
1319 		DELAY(1);
1320 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
1321 		if (v & HME_MIF_FO_TALSB)
1322 			goto out;
1323 	}
1324 
1325 	printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1326 out:
1327 	/* Restore MIFI_CFG register */
1328 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1329 	/* Restore XIF register */
1330 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1331 }
1332 
1333 static void
1334 hme_mii_statchg(dev)
1335 	struct device *dev;
1336 {
1337 	struct hme_softc *sc = (void *)dev;
1338 	bus_space_tag_t t = sc->sc_bustag;
1339 	bus_space_handle_t mac = sc->sc_mac;
1340 	u_int32_t v;
1341 
1342 #ifdef HMEDEBUG
1343 	if (sc->sc_debug)
1344 		printf("hme_mii_statchg: status change\n");
1345 #endif
1346 
1347 	/* Set the MAC Full Duplex bit appropriately */
1348 	/* Apparently the hme chip is SIMPLEX if working in full duplex mode,
1349 	   but not otherwise. */
1350 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1351 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1352 		v |= HME_MAC_TXCFG_FULLDPLX;
1353 		sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
1354 	} else {
1355 		v &= ~HME_MAC_TXCFG_FULLDPLX;
1356 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
1357 	}
1358 	sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
1359 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1360 }
1361 
1362 int
1363 hme_mediachange(ifp)
1364 	struct ifnet *ifp;
1365 {
1366 	struct hme_softc *sc = ifp->if_softc;
1367 	bus_space_tag_t t = sc->sc_bustag;
1368 	bus_space_handle_t mif = sc->sc_mif;
1369 	bus_space_handle_t mac = sc->sc_mac;
1370 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1371 	int phy = sc->sc_phys[instance];
1372 	u_int32_t v;
1373 
1374 #ifdef HMEDEBUG
1375 	if (sc->sc_debug)
1376 		printf("hme_mediachange: phy = %d\n", phy);
1377 #endif
1378 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1379 		return (EINVAL);
1380 
1381 	/* Select the current PHY in the MIF configuration register */
1382 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1383 	v &= ~HME_MIF_CFG_PHY;
1384 	if (phy == HME_PHYAD_EXTERNAL)
1385 		v |= HME_MIF_CFG_PHY;
1386 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1387 
1388 	/* If an external transceiver is selected, enable its MII drivers */
1389 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
1390 	v &= ~HME_MAC_XIF_MIIENABLE;
1391 	if (phy == HME_PHYAD_EXTERNAL)
1392 		v |= HME_MAC_XIF_MIIENABLE;
1393 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1394 
1395 	return (mii_mediachg(&sc->sc_mii));
1396 }
1397 
1398 void
1399 hme_mediastatus(ifp, ifmr)
1400 	struct ifnet *ifp;
1401 	struct ifmediareq *ifmr;
1402 {
1403 	struct hme_softc *sc = ifp->if_softc;
1404 
1405 	if ((ifp->if_flags & IFF_UP) == 0)
1406 		return;
1407 
1408 	mii_pollstat(&sc->sc_mii);
1409 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1410 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1411 }
1412 
1413 /*
1414  * Process an ioctl request.
1415  */
1416 int
1417 hme_ioctl(ifp, cmd, data)
1418 	struct ifnet *ifp;
1419 	u_long cmd;
1420 	caddr_t data;
1421 {
1422 	struct hme_softc *sc = ifp->if_softc;
1423 	struct ifaddr *ifa = (struct ifaddr *)data;
1424 	struct ifreq *ifr = (struct ifreq *)data;
1425 	int s, error = 0;
1426 
1427 	s = splnet();
1428 
1429 	switch (cmd) {
1430 
1431 	case SIOCSIFADDR:
1432 		switch (ifa->ifa_addr->sa_family) {
1433 #ifdef INET
1434 		case AF_INET:
1435 			if (ifp->if_flags & IFF_UP)
1436 				hme_setladrf(sc);
1437 			else {
1438 				ifp->if_flags |= IFF_UP;
1439 				hme_init(sc);
1440 			}
1441 			arp_ifinit(ifp, ifa);
1442 			break;
1443 #endif
1444 #ifdef NS
1445 		case AF_NS:
1446 		    {
1447 			struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1448 
1449 			if (ns_nullhost(*ina))
1450 				ina->x_host =
1451 				    *(union ns_host *)LLADDR(ifp->if_sadl);
1452 			else {
1453 				memcpy(LLADDR(ifp->if_sadl),
1454 				    ina->x_host.c_host, sizeof(sc->sc_enaddr));
1455 			}
1456 			/* Set new address. */
1457 			if (ifp->if_flags & IFF_UP)
1458 				hme_setladrf(sc);
1459 			else {
1460 				ifp->if_flags |= IFF_UP;
1461 				hme_init(sc);
1462 			}
1463 			break;
1464 		    }
1465 #endif
1466 		default:
1467 			ifp->if_flags |= IFF_UP;
1468 			hme_init(sc);
1469 			break;
1470 		}
1471 		break;
1472 
1473 	case SIOCSIFFLAGS:
1474 #ifdef HMEDEBUG
1475 		sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
1476 #endif
1477 
1478 		if ((ifp->if_flags & IFF_UP) == 0 &&
1479 		    (ifp->if_flags & IFF_RUNNING) != 0) {
1480 			/*
1481 			 * If interface is marked down and it is running, then
1482 			 * stop it.
1483 			 */
1484 			hme_stop(sc);
1485 			ifp->if_flags &= ~IFF_RUNNING;
1486 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
1487 		    	   (ifp->if_flags & IFF_RUNNING) == 0) {
1488 			/*
1489 			 * If interface is marked up and it is stopped, then
1490 			 * start it.
1491 			 */
1492 			hme_init(sc);
1493 		} else if ((ifp->if_flags & IFF_UP) != 0) {
1494 			/*
1495 			 * If setting debug or promiscuous mode, do not reset
1496 			 * the chip; for everything else, call hme_init()
1497 			 * which will trigger a reset.
1498 			 */
1499 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
1500 			if (ifp->if_flags != sc->sc_if_flags) {
1501 				if ((ifp->if_flags & (~RESETIGN))
1502 				    == (sc->sc_if_flags & (~RESETIGN)))
1503 					hme_setladrf(sc);
1504 				else
1505 					hme_init(sc);
1506 			}
1507 #undef RESETIGN
1508 		}
1509 
1510 		if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
1511 			hme_init(sc);
1512 
1513 		break;
1514 
1515 	case SIOCADDMULTI:
1516 	case SIOCDELMULTI:
1517 		error = (cmd == SIOCADDMULTI) ?
1518 		    ether_addmulti(ifr, &sc->sc_ethercom) :
1519 		    ether_delmulti(ifr, &sc->sc_ethercom);
1520 
1521 		if (error == ENETRESET) {
1522 			/*
1523 			 * Multicast list has changed; set the hardware filter
1524 			 * accordingly.
1525 			 */
1526 			if (ifp->if_flags & IFF_RUNNING)
1527 				hme_setladrf(sc);
1528 			error = 0;
1529 		}
1530 		break;
1531 
1532 	case SIOCGIFMEDIA:
1533 	case SIOCSIFMEDIA:
1534 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1535 		break;
1536 
1537 	default:
1538 		error = EINVAL;
1539 		break;
1540 	}
1541 
1542 	sc->sc_if_flags = ifp->if_flags;
1543 	splx(s);
1544 	return (error);
1545 }
1546 
1547 void
1548 hme_shutdown(arg)
1549 	void *arg;
1550 {
1551 
1552 	hme_stop((struct hme_softc *)arg);
1553 }
1554 
1555 /*
1556  * Set up the logical address filter.
1557  */
1558 void
1559 hme_setladrf(sc)
1560 	struct hme_softc *sc;
1561 {
1562 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1563 	struct ether_multi *enm;
1564 	struct ether_multistep step;
1565 	struct ethercom *ec = &sc->sc_ethercom;
1566 	bus_space_tag_t t = sc->sc_bustag;
1567 	bus_space_handle_t mac = sc->sc_mac;
1568 	u_char *cp;
1569 	u_int32_t crc;
1570 	u_int32_t hash[4];
1571 	u_int32_t v;
1572 	int len;
1573 
1574 	/* Clear hash table */
1575 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
1576 
1577 	/* Get current RX configuration */
1578 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1579 
1580 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
1581 		/* Turn on promiscuous mode; turn off the hash filter */
1582 		v |= HME_MAC_RXCFG_PMISC;
1583 		v &= ~HME_MAC_RXCFG_HENABLE;
1584 		ifp->if_flags |= IFF_ALLMULTI;
1585 		goto chipit;
1586 	}
1587 
1588 	/* Turn off promiscuous mode; turn on the hash filter */
1589 	v &= ~HME_MAC_RXCFG_PMISC;
1590 	v |= HME_MAC_RXCFG_HENABLE;
1591 
1592 	/*
1593 	 * Set up multicast address filter by passing all multicast addresses
1594 	 * through a crc generator, and then using the high order 6 bits as an
1595 	 * index into the 64 bit logical address filter.  The high order bit
1596 	 * selects the word, while the rest of the bits select the bit within
1597 	 * the word.
1598 	 */
1599 
1600 	ETHER_FIRST_MULTI(step, ec, enm);
1601 	while (enm != NULL) {
1602 		if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
1603 			/*
1604 			 * We must listen to a range of multicast addresses.
1605 			 * For now, just accept all multicasts, rather than
1606 			 * trying to set only those filter bits needed to match
1607 			 * the range.  (At this time, the only use of address
1608 			 * ranges is for IP multicast routing, for which the
1609 			 * range is big enough to require all bits set.)
1610 			 */
1611 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1612 			ifp->if_flags |= IFF_ALLMULTI;
1613 			goto chipit;
1614 		}
1615 
1616 		cp = enm->enm_addrlo;
1617 		crc = 0xffffffff;
1618 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1619 			int octet = *cp++;
1620 			int i;
1621 
1622 #define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
1623 			for (i = 0; i < 8; i++) {
1624 				if ((crc & 1) ^ (octet & 1)) {
1625 					crc >>= 1;
1626 					crc ^= MC_POLY_LE;
1627 				} else {
1628 					crc >>= 1;
1629 				}
1630 				octet >>= 1;
1631 			}
1632 		}
1633 		/* Just want the 6 most significant bits. */
1634 		crc >>= 26;
1635 
1636 		/* Set the corresponding bit in the filter. */
1637 		hash[crc >> 4] |= 1 << (crc & 0xf);
1638 
1639 		ETHER_NEXT_MULTI(step, enm);
1640 	}
1641 
1642 	ifp->if_flags &= ~IFF_ALLMULTI;
1643 
1644 chipit:
1645 	/* Now load the hash table into the chip */
1646 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1647 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1648 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1649 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1650 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1651 }
1652 
1653 /*
1654  * Routines for accessing the transmit and receive buffers.
1655  * The various CPU and adapter configurations supported by this
1656  * driver require three different access methods for buffers
1657  * and descriptors:
1658  *	(1) contig (contiguous data; no padding),
1659  *	(2) gap2 (two bytes of data followed by two bytes of padding),
1660  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
1661  */
1662 
1663 #if 0
1664 /*
1665  * contig: contiguous data with no padding.
1666  *
1667  * Buffers may have any alignment.
1668  */
1669 
1670 void
1671 hme_copytobuf_contig(sc, from, ri, len)
1672 	struct hme_softc *sc;
1673 	void *from;
1674 	int ri, len;
1675 {
1676 	volatile caddr_t buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1677 
1678 	/*
1679 	 * Just call memcpy() to do the work.
1680 	 */
1681 	memcpy(buf, from, len);
1682 }
1683 
1684 void
1685 hme_copyfrombuf_contig(sc, to, boff, len)
1686 	struct hme_softc *sc;
1687 	void *to;
1688 	int boff, len;
1689 {
1690 	volatile caddr_t buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1691 
1692 	/*
1693 	 * Just call memcpy() to do the work.
1694 	 */
1695 	memcpy(to, buf, len);
1696 }
1697 #endif
1698