xref: /netbsd-src/sys/dev/ic/hme.c (revision 10ad5ffa714ce1a679dcc9dd8159648df2d67b5a)
1 /*	$NetBSD: hme.c,v 1.79 2009/05/17 00:40:43 tsutsui Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * HME Ethernet module driver.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.79 2009/05/17 00:40:43 tsutsui Exp $");
38 
39 /* #define HMEDEBUG */
40 
41 #include "opt_inet.h"
42 #include "bpfilter.h"
43 #include "rnd.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/kernel.h>
48 #include <sys/mbuf.h>
49 #include <sys/syslog.h>
50 #include <sys/socket.h>
51 #include <sys/device.h>
52 #include <sys/malloc.h>
53 #include <sys/ioctl.h>
54 #include <sys/errno.h>
55 #if NRND > 0
56 #include <sys/rnd.h>
57 #endif
58 
59 #include <net/if.h>
60 #include <net/if_dl.h>
61 #include <net/if_ether.h>
62 #include <net/if_media.h>
63 
64 #ifdef INET
65 #include <net/if_vlanvar.h>
66 #include <netinet/in.h>
67 #include <netinet/if_inarp.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/in_var.h>
70 #include <netinet/ip.h>
71 #include <netinet/tcp.h>
72 #include <netinet/udp.h>
73 #endif
74 
75 
76 #if NBPFILTER > 0
77 #include <net/bpf.h>
78 #include <net/bpfdesc.h>
79 #endif
80 
81 #include <dev/mii/mii.h>
82 #include <dev/mii/miivar.h>
83 
84 #include <sys/bus.h>
85 
86 #include <dev/ic/hmereg.h>
87 #include <dev/ic/hmevar.h>
88 
89 void		hme_start(struct ifnet *);
90 void		hme_stop(struct hme_softc *,bool);
91 int		hme_ioctl(struct ifnet *, u_long, void *);
92 void		hme_tick(void *);
93 void		hme_watchdog(struct ifnet *);
94 void		hme_shutdown(void *);
95 int		hme_init(struct hme_softc *);
96 void		hme_meminit(struct hme_softc *);
97 void		hme_mifinit(struct hme_softc *);
98 void		hme_reset(struct hme_softc *);
99 void		hme_setladrf(struct hme_softc *);
100 
101 /* MII methods & callbacks */
102 static int	hme_mii_readreg(device_t, int, int);
103 static void	hme_mii_writereg(device_t, int, int, int);
104 static void	hme_mii_statchg(device_t);
105 
106 int		hme_mediachange(struct ifnet *);
107 
108 struct mbuf	*hme_get(struct hme_softc *, int, uint32_t);
109 int		hme_put(struct hme_softc *, int, struct mbuf *);
110 void		hme_read(struct hme_softc *, int, uint32_t);
111 int		hme_eint(struct hme_softc *, u_int);
112 int		hme_rint(struct hme_softc *);
113 int		hme_tint(struct hme_softc *);
114 
115 /* Default buffer copy routines */
116 void	hme_copytobuf_contig(struct hme_softc *, void *, int, int);
117 void	hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
118 void	hme_zerobuf_contig(struct hme_softc *, int, int);
119 
120 
121 void
122 hme_config(struct hme_softc *sc)
123 {
124 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
125 	struct mii_data *mii = &sc->sc_mii;
126 	struct mii_softc *child;
127 	bus_dma_tag_t dmatag = sc->sc_dmatag;
128 	bus_dma_segment_t seg;
129 	bus_size_t size;
130 	int rseg, error;
131 
132 	/*
133 	 * HME common initialization.
134 	 *
135 	 * hme_softc fields that must be initialized by the front-end:
136 	 *
137 	 * the bus tag:
138 	 *	sc_bustag
139 	 *
140 	 * the DMA bus tag:
141 	 *	sc_dmatag
142 	 *
143 	 * the bus handles:
144 	 *	sc_seb		(Shared Ethernet Block registers)
145 	 *	sc_erx		(Receiver Unit registers)
146 	 *	sc_etx		(Transmitter Unit registers)
147 	 *	sc_mac		(MAC registers)
148 	 *	sc_mif		(Management Interface registers)
149 	 *
150 	 * the maximum bus burst size:
151 	 *	sc_burst
152 	 *
153 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
154 	 *	rb_membase, rb_dmabase)
155 	 *
156 	 * the local Ethernet address:
157 	 *	sc_enaddr
158 	 *
159 	 */
160 
161 	/* Make sure the chip is stopped. */
162 	hme_stop(sc, true);
163 
164 
165 	/*
166 	 * Allocate descriptors and buffers
167 	 * XXX - do all this differently.. and more configurably,
168 	 * eg. use things as `dma_load_mbuf()' on transmit,
169 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
170 	 *     all the time) on the receiver side.
171 	 *
172 	 * Note: receive buffers must be 64-byte aligned.
173 	 * Also, apparently, the buffers must extend to a DMA burst
174 	 * boundary beyond the maximum packet size.
175 	 */
176 #define _HME_NDESC	128
177 #define _HME_BUFSZ	1600
178 
179 	/* Note: the # of descriptors must be a multiple of 16 */
180 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
181 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
182 
183 	/*
184 	 * Allocate DMA capable memory
185 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
186 	 * take this into account when calculating the size. Note that
187 	 * the maximum number of descriptors (256) occupies 2048 bytes,
188 	 * so we allocate that much regardless of _HME_NDESC.
189 	 */
190 	size =	2048 +					/* TX descriptors */
191 		2048 +					/* RX descriptors */
192 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
193 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* RX buffers */
194 
195 	/* Allocate DMA buffer */
196 	if ((error = bus_dmamem_alloc(dmatag, size,
197 				      2048, 0,
198 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
199 		aprint_error_dev(sc->sc_dev, "DMA buffer alloc error %d\n",
200 			error);
201 		return;
202 	}
203 
204 	/* Map DMA memory in CPU addressable space */
205 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
206 				    &sc->sc_rb.rb_membase,
207 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
208 		aprint_error_dev(sc->sc_dev, "DMA buffer map error %d\n",
209 			error);
210 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
211 		bus_dmamem_free(dmatag, &seg, rseg);
212 		return;
213 	}
214 
215 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
216 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
217 		aprint_error_dev(sc->sc_dev, "DMA map create error %d\n",
218 			error);
219 		return;
220 	}
221 
222 	/* Load the buffer */
223 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
224 	    sc->sc_rb.rb_membase, size, NULL,
225 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
226 		aprint_error_dev(sc->sc_dev, "DMA buffer map load error %d\n",
227 			error);
228 		bus_dmamem_free(dmatag, &seg, rseg);
229 		return;
230 	}
231 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
232 
233 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
234 	    ether_sprintf(sc->sc_enaddr));
235 
236 	/* Initialize ifnet structure. */
237 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
238 	ifp->if_softc = sc;
239 	ifp->if_start = hme_start;
240 	ifp->if_ioctl = hme_ioctl;
241 	ifp->if_watchdog = hme_watchdog;
242 	ifp->if_flags =
243 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
244 	sc->sc_if_flags = ifp->if_flags;
245 	ifp->if_capabilities |=
246 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
247 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
248 	IFQ_SET_READY(&ifp->if_snd);
249 
250 	/* Initialize ifmedia structures and MII info */
251 	mii->mii_ifp = ifp;
252 	mii->mii_readreg = hme_mii_readreg;
253 	mii->mii_writereg = hme_mii_writereg;
254 	mii->mii_statchg = hme_mii_statchg;
255 
256 	sc->sc_ethercom.ec_mii = mii;
257 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
258 
259 	hme_mifinit(sc);
260 
261 	/*
262 	 * Some HME's have an MII connector, as well as RJ45.  Try attaching
263 	 * the RJ45 (internal) PHY first, so that the MII PHY is always
264 	 * instance 1.
265 	 */
266 	mii_attach(sc->sc_dev, mii, 0xffffffff,
267 			HME_PHYAD_INTERNAL, MII_OFFSET_ANY, MIIF_FORCEANEG);
268 	mii_attach(sc->sc_dev, mii, 0xffffffff,
269 			HME_PHYAD_EXTERNAL, MII_OFFSET_ANY, MIIF_FORCEANEG);
270 
271 	child = LIST_FIRST(&mii->mii_phys);
272 	if (child == NULL) {
273 		/* No PHY attached */
274 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
275 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
276 	} else {
277 		/*
278 		 * Walk along the list of attached MII devices and
279 		 * establish an `MII instance' to `phy number'
280 		 * mapping. We'll use this mapping in media change
281 		 * requests to determine which phy to use to program
282 		 * the MIF configuration register.
283 		 */
284 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
285 			/*
286 			 * Note: we support just two PHYs: the built-in
287 			 * internal device and an external on the MII
288 			 * connector.
289 			 */
290 			if (child->mii_phy > 1 || child->mii_inst > 1) {
291 				aprint_error_dev(sc->sc_dev,
292 				    "cannot accommodate MII device %s"
293 				       " at phy %d, instance %d\n",
294 				       device_xname(child->mii_dev),
295 				       child->mii_phy, child->mii_inst);
296 				continue;
297 			}
298 
299 			sc->sc_phys[child->mii_inst] = child->mii_phy;
300 		}
301 
302 		/*
303 		 * Set the default media to auto negotiation if the phy has
304 		 * the auto negotiation capability.
305 		 * XXX; What to do otherwise?
306 		 */
307 		if (ifmedia_match(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0))
308 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
309 /*
310 		else
311 			ifmedia_set(&sc->sc_mii.mii_media, sc->sc_defaultmedia);
312 */
313 	}
314 
315 	/* claim 802.1q capability */
316 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
317 
318 	/* Attach the interface. */
319 	if_attach(ifp);
320 	ether_ifattach(ifp, sc->sc_enaddr);
321 
322 	sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
323 	if (sc->sc_sh == NULL)
324 		panic("hme_config: can't establish shutdownhook");
325 
326 #if NRND > 0
327 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
328 			  RND_TYPE_NET, 0);
329 #endif
330 
331 	callout_init(&sc->sc_tick_ch, 0);
332 }
333 
334 void
335 hme_tick(void *arg)
336 {
337 	struct hme_softc *sc = arg;
338 	int s;
339 
340 	s = splnet();
341 	mii_tick(&sc->sc_mii);
342 	splx(s);
343 
344 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
345 }
346 
347 void
348 hme_reset(struct hme_softc *sc)
349 {
350 	int s;
351 
352 	s = splnet();
353 	(void)hme_init(sc);
354 	splx(s);
355 }
356 
357 void
358 hme_stop(struct hme_softc *sc, bool chip_only)
359 {
360 	bus_space_tag_t t = sc->sc_bustag;
361 	bus_space_handle_t seb = sc->sc_seb;
362 	int n;
363 
364 	if (!chip_only) {
365 		callout_stop(&sc->sc_tick_ch);
366 		mii_down(&sc->sc_mii);
367 	}
368 
369 	/* Mask all interrupts */
370 	bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
371 
372 	/* Reset transmitter and receiver */
373 	bus_space_write_4(t, seb, HME_SEBI_RESET,
374 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
375 
376 	for (n = 0; n < 20; n++) {
377 		uint32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
378 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
379 			return;
380 		DELAY(20);
381 	}
382 
383 	printf("%s: hme_stop: reset failed\n", device_xname(sc->sc_dev));
384 }
385 
386 void
387 hme_meminit(struct hme_softc *sc)
388 {
389 	bus_addr_t txbufdma, rxbufdma;
390 	bus_addr_t dma;
391 	char *p;
392 	unsigned int ntbuf, nrbuf, i;
393 	struct hme_ring *hr = &sc->sc_rb;
394 
395 	p = hr->rb_membase;
396 	dma = hr->rb_dmabase;
397 
398 	ntbuf = hr->rb_ntbuf;
399 	nrbuf = hr->rb_nrbuf;
400 
401 	/*
402 	 * Allocate transmit descriptors
403 	 */
404 	hr->rb_txd = p;
405 	hr->rb_txddma = dma;
406 	p += ntbuf * HME_XD_SIZE;
407 	dma += ntbuf * HME_XD_SIZE;
408 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
409 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
410 	p = (void *)roundup((u_long)p, 2048);
411 
412 	/*
413 	 * Allocate receive descriptors
414 	 */
415 	hr->rb_rxd = p;
416 	hr->rb_rxddma = dma;
417 	p += nrbuf * HME_XD_SIZE;
418 	dma += nrbuf * HME_XD_SIZE;
419 	/* Again move forward to the next 2048 byte boundary.*/
420 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
421 	p = (void *)roundup((u_long)p, 2048);
422 
423 
424 	/*
425 	 * Allocate transmit buffers
426 	 */
427 	hr->rb_txbuf = p;
428 	txbufdma = dma;
429 	p += ntbuf * _HME_BUFSZ;
430 	dma += ntbuf * _HME_BUFSZ;
431 
432 	/*
433 	 * Allocate receive buffers
434 	 */
435 	hr->rb_rxbuf = p;
436 	rxbufdma = dma;
437 	p += nrbuf * _HME_BUFSZ;
438 	dma += nrbuf * _HME_BUFSZ;
439 
440 	/*
441 	 * Initialize transmit buffer descriptors
442 	 */
443 	for (i = 0; i < ntbuf; i++) {
444 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
445 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
446 	}
447 
448 	/*
449 	 * Initialize receive buffer descriptors
450 	 */
451 	for (i = 0; i < nrbuf; i++) {
452 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
453 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
454 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
455 	}
456 
457 	hr->rb_tdhead = hr->rb_tdtail = 0;
458 	hr->rb_td_nbusy = 0;
459 	hr->rb_rdtail = 0;
460 }
461 
462 /*
463  * Initialization of interface; set up initialization block
464  * and transmit/receive descriptor rings.
465  */
466 int
467 hme_init(struct hme_softc *sc)
468 {
469 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
470 	bus_space_tag_t t = sc->sc_bustag;
471 	bus_space_handle_t seb = sc->sc_seb;
472 	bus_space_handle_t etx = sc->sc_etx;
473 	bus_space_handle_t erx = sc->sc_erx;
474 	bus_space_handle_t mac = sc->sc_mac;
475 	uint8_t *ea;
476 	uint32_t v;
477 	int rc;
478 
479 	/*
480 	 * Initialization sequence. The numbered steps below correspond
481 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
482 	 * Channel Engine manual (part of the PCIO manual).
483 	 * See also the STP2002-STQ document from Sun Microsystems.
484 	 */
485 
486 	/* step 1 & 2. Reset the Ethernet Channel */
487 	hme_stop(sc, false);
488 
489 	/* Re-initialize the MIF */
490 	hme_mifinit(sc);
491 
492 	/* Call MI reset function if any */
493 	if (sc->sc_hwreset)
494 		(*sc->sc_hwreset)(sc);
495 
496 #if 0
497 	/* Mask all MIF interrupts, just in case */
498 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
499 #endif
500 
501 	/* step 3. Setup data structures in host memory */
502 	hme_meminit(sc);
503 
504 	/* step 4. TX MAC registers & counters */
505 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
506 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
507 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
508 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
509 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
510 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
511 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
512 	sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
513 
514 	/* Load station MAC address */
515 	ea = sc->sc_enaddr;
516 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
517 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
518 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
519 
520 	/*
521 	 * Init seed for backoff
522 	 * (source suggested by manual: low 10 bits of MAC address)
523 	 */
524 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
525 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
526 
527 
528 	/* Note: Accepting power-on default for other MAC registers here.. */
529 
530 
531 	/* step 5. RX MAC registers & counters */
532 	hme_setladrf(sc);
533 
534 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
535 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
536 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
537 
538 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
539 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
540 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
541 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
542 
543 	/* step 8. Global Configuration & Interrupt Mask */
544 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
545 			~(
546 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
547 			  HME_SEB_STAT_HOSTTOTX |
548 			  HME_SEB_STAT_RXTOHOST |
549 			  HME_SEB_STAT_TXALL |
550 			  HME_SEB_STAT_TXPERR |
551 			  HME_SEB_STAT_RCNTEXP |
552 			  HME_SEB_STAT_MIFIRQ |
553 			  HME_SEB_STAT_ALL_ERRORS ));
554 
555 	switch (sc->sc_burst) {
556 	default:
557 		v = 0;
558 		break;
559 	case 16:
560 		v = HME_SEB_CFG_BURST16;
561 		break;
562 	case 32:
563 		v = HME_SEB_CFG_BURST32;
564 		break;
565 	case 64:
566 		v = HME_SEB_CFG_BURST64;
567 		break;
568 	}
569 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
570 
571 	/* step 9. ETX Configuration: use mostly default values */
572 
573 	/* Enable DMA */
574 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
575 	v |= HME_ETX_CFG_DMAENABLE;
576 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
577 
578 	/* Transmit Descriptor ring size: in increments of 16 */
579 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
580 
581 
582 	/* step 10. ERX Configuration */
583 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
584 
585 	/* Encode Receive Descriptor ring size: four possible values */
586 	switch (_HME_NDESC /*XXX*/) {
587 	case 32:
588 		v |= HME_ERX_CFG_RINGSIZE32;
589 		break;
590 	case 64:
591 		v |= HME_ERX_CFG_RINGSIZE64;
592 		break;
593 	case 128:
594 		v |= HME_ERX_CFG_RINGSIZE128;
595 		break;
596 	case 256:
597 		v |= HME_ERX_CFG_RINGSIZE256;
598 		break;
599 	default:
600 		printf("hme: invalid Receive Descriptor ring size\n");
601 		break;
602 	}
603 
604 	/* Enable DMA */
605 	v |= HME_ERX_CFG_DMAENABLE;
606 
607 	/* set h/w rx checksum start offset (# of half-words) */
608 #ifdef INET
609 	v |= (((ETHER_HDR_LEN + sizeof(struct ip)) / sizeof(uint16_t))
610 		<< HME_ERX_CFG_CSUMSHIFT) &
611 		HME_ERX_CFG_CSUMSTART;
612 #endif
613 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
614 
615 	/* step 11. XIF Configuration */
616 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
617 	v |= HME_MAC_XIF_OE;
618 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
619 
620 	/* step 12. RX_MAC Configuration Register */
621 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
622 	v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
623 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
624 
625 	/* step 13. TX_MAC Configuration Register */
626 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
627 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
628 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
629 
630 	/* step 14. Issue Transmit Pending command */
631 
632 	/* Call MI initialization function if any */
633 	if (sc->sc_hwinit)
634 		(*sc->sc_hwinit)(sc);
635 
636 	/* Set the current media. */
637 	if ((rc = hme_mediachange(ifp)) != 0)
638 		return rc;
639 
640 	/* Start the one second timer. */
641 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
642 
643 	ifp->if_flags |= IFF_RUNNING;
644 	ifp->if_flags &= ~IFF_OACTIVE;
645 	sc->sc_if_flags = ifp->if_flags;
646 	ifp->if_timer = 0;
647 	hme_start(ifp);
648 	return 0;
649 }
650 
651 /*
652  * Routine to copy from mbuf chain to transmit buffer in
653  * network buffer memory.
654  * Returns the amount of data copied.
655  */
656 int
657 hme_put(struct hme_softc *sc, int ri, struct mbuf *m)
658 	/* ri:			 Ring index */
659 {
660 	struct mbuf *n;
661 	int len, tlen = 0;
662 	char *bp;
663 
664 	bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
665 	for (; m; m = n) {
666 		len = m->m_len;
667 		if (len == 0) {
668 			MFREE(m, n);
669 			continue;
670 		}
671 		memcpy(bp, mtod(m, void *), len);
672 		bp += len;
673 		tlen += len;
674 		MFREE(m, n);
675 	}
676 	return (tlen);
677 }
678 
679 /*
680  * Pull data off an interface.
681  * Len is length of data, with local net header stripped.
682  * We copy the data into mbufs.  When full cluster sized units are present
683  * we copy into clusters.
684  */
685 struct mbuf *
686 hme_get(struct hme_softc *sc, int ri, uint32_t flags)
687 {
688 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
689 	struct mbuf *m, *m0, *newm;
690 	char *bp;
691 	int len, totlen;
692 #ifdef INET
693 	int csum_flags;
694 #endif
695 
696 	totlen = HME_XD_DECODE_RSIZE(flags);
697 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
698 	if (m0 == 0)
699 		return (0);
700 	m0->m_pkthdr.rcvif = ifp;
701 	m0->m_pkthdr.len = totlen;
702 	len = MHLEN;
703 	m = m0;
704 
705 	bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
706 
707 	while (totlen > 0) {
708 		if (totlen >= MINCLSIZE) {
709 			MCLGET(m, M_DONTWAIT);
710 			if ((m->m_flags & M_EXT) == 0)
711 				goto bad;
712 			len = MCLBYTES;
713 		}
714 
715 		if (m == m0) {
716 			char *newdata = (char *)
717 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
718 			    sizeof(struct ether_header);
719 			len -= newdata - m->m_data;
720 			m->m_data = newdata;
721 		}
722 
723 		m->m_len = len = min(totlen, len);
724 		memcpy(mtod(m, void *), bp, len);
725 		bp += len;
726 
727 		totlen -= len;
728 		if (totlen > 0) {
729 			MGET(newm, M_DONTWAIT, MT_DATA);
730 			if (newm == 0)
731 				goto bad;
732 			len = MLEN;
733 			m = m->m_next = newm;
734 		}
735 	}
736 
737 #ifdef INET
738 	/* hardware checksum */
739 	csum_flags = 0;
740 	if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
741 		struct ether_header *eh;
742 		struct ether_vlan_header *evh;
743 		struct ip *ip;
744 		struct udphdr *uh;
745 		uint16_t *opts;
746 		int32_t hlen, pktlen;
747 		uint32_t csum_data;
748 
749 		eh = mtod(m0, struct ether_header *);
750 		if (ntohs(eh->ether_type) == ETHERTYPE_IP) {
751 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN);
752 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
753 		} else if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
754 			evh = (struct ether_vlan_header *)eh;
755 			if (ntohs(evh->evl_proto != ETHERTYPE_IP))
756 				goto swcsum;
757 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN +
758 			    ETHER_VLAN_ENCAP_LEN);
759 			pktlen = m0->m_pkthdr.len -
760 			    ETHER_HDR_LEN - ETHER_VLAN_ENCAP_LEN;
761 		} else
762 			goto swcsum;
763 
764 		/* IPv4 only */
765 		if (ip->ip_v != IPVERSION)
766 			goto swcsum;
767 
768 		hlen = ip->ip_hl << 2;
769 		if (hlen < sizeof(struct ip))
770 			goto swcsum;
771 
772 		/*
773 		 * bail if too short, has random trailing garbage, truncated,
774 		 * fragment, or has ethernet pad.
775 		 */
776 		if (ntohs(ip->ip_len) < hlen ||
777 		    ntohs(ip->ip_len) != pktlen ||
778 		    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
779 			goto swcsum;
780 
781 		switch (ip->ip_p) {
782 		case IPPROTO_TCP:
783 			if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0)
784 				goto swcsum;
785 			if (pktlen < (hlen + sizeof(struct tcphdr)))
786 				goto swcsum;
787 			csum_flags =
788 			    M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
789 			break;
790 		case IPPROTO_UDP:
791 			if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0)
792 				goto swcsum;
793 			if (pktlen < (hlen + sizeof(struct udphdr)))
794 				goto swcsum;
795 			uh = (struct udphdr *)((char *)ip + hlen);
796 			/* no checksum */
797 			if (uh->uh_sum == 0)
798 				goto swcsum;
799 			csum_flags =
800 			    M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
801 			break;
802 		default:
803 			goto swcsum;
804 		}
805 
806 		/* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
807 		csum_data = ~flags & HME_XD_RXCKSUM;
808 
809 		/*
810 		 * If data offset is different from RX cksum start offset,
811 		 * we have to deduct them.
812 		 */
813 		hlen = ((char *)ip + hlen) -
814 		    ((char *)eh + ETHER_HDR_LEN + sizeof(struct ip));
815 		if (hlen > 1) {
816 			uint32_t optsum;
817 
818 			optsum = 0;
819 			opts = (uint16_t *)((char *)eh +
820 			    ETHER_HDR_LEN + sizeof(struct ip));
821 
822 			while (hlen > 1) {
823 				optsum += ntohs(*opts++);
824 				hlen -= 2;
825 			}
826 			while (optsum >> 16)
827 				optsum = (optsum >> 16) + (optsum & 0xffff);
828 
829 			/* Deduct the ip opts sum from the hwsum. */
830 			csum_data += (uint16_t)~optsum;
831 
832 			while (csum_data >> 16)
833 				csum_data =
834 				    (csum_data >> 16) + (csum_data & 0xffff);
835 		}
836 		m0->m_pkthdr.csum_data = csum_data;
837 	}
838 swcsum:
839 	m0->m_pkthdr.csum_flags = csum_flags;
840 #endif
841 
842 	return (m0);
843 
844 bad:
845 	m_freem(m0);
846 	return (0);
847 }
848 
849 /*
850  * Pass a packet to the higher levels.
851  */
852 void
853 hme_read(struct hme_softc *sc, int ix, uint32_t flags)
854 {
855 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
856 	struct mbuf *m;
857 	int len;
858 
859 	len = HME_XD_DECODE_RSIZE(flags);
860 	if (len <= sizeof(struct ether_header) ||
861 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
862 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
863 	    ETHERMTU + sizeof(struct ether_header))) {
864 #ifdef HMEDEBUG
865 		printf("%s: invalid packet size %d; dropping\n",
866 		    device_xname(sc->sc_dev), len);
867 #endif
868 		ifp->if_ierrors++;
869 		return;
870 	}
871 
872 	/* Pull packet off interface. */
873 	m = hme_get(sc, ix, flags);
874 	if (m == 0) {
875 		ifp->if_ierrors++;
876 		return;
877 	}
878 
879 	ifp->if_ipackets++;
880 
881 #if NBPFILTER > 0
882 	/*
883 	 * Check if there's a BPF listener on this interface.
884 	 * If so, hand off the raw packet to BPF.
885 	 */
886 	if (ifp->if_bpf)
887 		bpf_mtap(ifp->if_bpf, m);
888 #endif
889 
890 	/* Pass the packet up. */
891 	(*ifp->if_input)(ifp, m);
892 }
893 
894 void
895 hme_start(struct ifnet *ifp)
896 {
897 	struct hme_softc *sc = ifp->if_softc;
898 	void *txd = sc->sc_rb.rb_txd;
899 	struct mbuf *m;
900 	unsigned int txflags;
901 	unsigned int ri, len;
902 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
903 
904 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
905 		return;
906 
907 	ri = sc->sc_rb.rb_tdhead;
908 
909 	for (;;) {
910 		IFQ_DEQUEUE(&ifp->if_snd, m);
911 		if (m == 0)
912 			break;
913 
914 #if NBPFILTER > 0
915 		/*
916 		 * If BPF is listening on this interface, let it see the
917 		 * packet before we commit it to the wire.
918 		 */
919 		if (ifp->if_bpf)
920 			bpf_mtap(ifp->if_bpf, m);
921 #endif
922 
923 #ifdef INET
924 		/* collect bits for h/w csum, before hme_put frees the mbuf */
925 		if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
926 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
927 			struct ether_header *eh;
928 			uint16_t offset, start;
929 
930 			eh = mtod(m, struct ether_header *);
931 			switch (ntohs(eh->ether_type)) {
932 			case ETHERTYPE_IP:
933 				start = ETHER_HDR_LEN;
934 				break;
935 			case ETHERTYPE_VLAN:
936 				start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
937 				break;
938 			default:
939 				/* unsupported, drop it */
940 				m_free(m);
941 				continue;
942 			}
943 			start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
944 			offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
945 			    + start;
946 			txflags = HME_XD_TXCKSUM |
947 				  (offset << HME_XD_TXCSSTUFFSHIFT) |
948 		  		  (start << HME_XD_TXCSSTARTSHIFT);
949 		} else
950 #endif
951 			txflags = 0;
952 
953 		/*
954 		 * Copy the mbuf chain into the transmit buffer.
955 		 */
956 		len = hme_put(sc, ri, m);
957 
958 		/*
959 		 * Initialize transmit registers and start transmission
960 		 */
961 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
962 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
963 			HME_XD_ENCODE_TSIZE(len) | txflags);
964 
965 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
966 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
967 				  HME_ETX_TP_DMAWAKEUP);
968 
969 		if (++ri == ntbuf)
970 			ri = 0;
971 
972 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
973 			ifp->if_flags |= IFF_OACTIVE;
974 			break;
975 		}
976 	}
977 
978 	sc->sc_rb.rb_tdhead = ri;
979 }
980 
981 /*
982  * Transmit interrupt.
983  */
984 int
985 hme_tint(struct hme_softc *sc)
986 {
987 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
988 	bus_space_tag_t t = sc->sc_bustag;
989 	bus_space_handle_t mac = sc->sc_mac;
990 	unsigned int ri, txflags;
991 
992 	/*
993 	 * Unload collision counters
994 	 */
995 	ifp->if_collisions +=
996 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
997 		bus_space_read_4(t, mac, HME_MACI_FCCNT);
998 	ifp->if_oerrors +=
999 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
1000 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
1001 
1002 	/*
1003 	 * then clear the hardware counters.
1004 	 */
1005 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
1006 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
1007 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
1008 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
1009 
1010 	/* Fetch current position in the transmit ring */
1011 	ri = sc->sc_rb.rb_tdtail;
1012 
1013 	for (;;) {
1014 		if (sc->sc_rb.rb_td_nbusy <= 0)
1015 			break;
1016 
1017 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
1018 
1019 		if (txflags & HME_XD_OWN)
1020 			break;
1021 
1022 		ifp->if_flags &= ~IFF_OACTIVE;
1023 		ifp->if_opackets++;
1024 
1025 		if (++ri == sc->sc_rb.rb_ntbuf)
1026 			ri = 0;
1027 
1028 		--sc->sc_rb.rb_td_nbusy;
1029 	}
1030 
1031 	/* Update ring */
1032 	sc->sc_rb.rb_tdtail = ri;
1033 
1034 	hme_start(ifp);
1035 
1036 	if (sc->sc_rb.rb_td_nbusy == 0)
1037 		ifp->if_timer = 0;
1038 
1039 	return (1);
1040 }
1041 
1042 /*
1043  * Receive interrupt.
1044  */
1045 int
1046 hme_rint(struct hme_softc *sc)
1047 {
1048 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1049 	bus_space_tag_t t = sc->sc_bustag;
1050 	bus_space_handle_t mac = sc->sc_mac;
1051 	void *xdr = sc->sc_rb.rb_rxd;
1052 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
1053 	unsigned int ri;
1054 	uint32_t flags;
1055 
1056 	ri = sc->sc_rb.rb_rdtail;
1057 
1058 	/*
1059 	 * Process all buffers with valid data.
1060 	 */
1061 	for (;;) {
1062 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
1063 		if (flags & HME_XD_OWN)
1064 			break;
1065 
1066 		if (flags & HME_XD_OFL) {
1067 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
1068 					device_xname(sc->sc_dev), ri, flags);
1069 		} else
1070 			hme_read(sc, ri, flags);
1071 
1072 		/* This buffer can be used by the hardware again */
1073 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
1074 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
1075 
1076 		if (++ri == nrbuf)
1077 			ri = 0;
1078 	}
1079 
1080 	sc->sc_rb.rb_rdtail = ri;
1081 
1082 	/* Read error counters ... */
1083 	ifp->if_ierrors +=
1084 	    bus_space_read_4(t, mac, HME_MACI_STAT_LCNT) +
1085 	    bus_space_read_4(t, mac, HME_MACI_STAT_ACNT) +
1086 	    bus_space_read_4(t, mac, HME_MACI_STAT_CCNT) +
1087 	    bus_space_read_4(t, mac, HME_MACI_STAT_CVCNT);
1088 
1089 	/* ... then clear the hardware counters. */
1090 	bus_space_write_4(t, mac, HME_MACI_STAT_LCNT, 0);
1091 	bus_space_write_4(t, mac, HME_MACI_STAT_ACNT, 0);
1092 	bus_space_write_4(t, mac, HME_MACI_STAT_CCNT, 0);
1093 	bus_space_write_4(t, mac, HME_MACI_STAT_CVCNT, 0);
1094 	return (1);
1095 }
1096 
1097 int
1098 hme_eint(struct hme_softc *sc, u_int status)
1099 {
1100 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1101 	char bits[128];
1102 
1103 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
1104 		bus_space_tag_t t = sc->sc_bustag;
1105 		bus_space_handle_t mif = sc->sc_mif;
1106 		uint32_t cf, st, sm;
1107 		cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
1108 		st = bus_space_read_4(t, mif, HME_MIFI_STAT);
1109 		sm = bus_space_read_4(t, mif, HME_MIFI_SM);
1110 		printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
1111 			device_xname(sc->sc_dev), cf, st, sm);
1112 		return (1);
1113 	}
1114 
1115 	/* Receive error counters rolled over */
1116 	if (status & HME_SEB_STAT_ACNTEXP)
1117 		ifp->if_ierrors += 0xff;
1118 	if (status & HME_SEB_STAT_CCNTEXP)
1119 		ifp->if_ierrors += 0xff;
1120 	if (status & HME_SEB_STAT_LCNTEXP)
1121 		ifp->if_ierrors += 0xff;
1122 	if (status & HME_SEB_STAT_CVCNTEXP)
1123 		ifp->if_ierrors += 0xff;
1124 
1125 	/* RXTERR locks up the interface, so do a reset */
1126 	if (status & HME_SEB_STAT_RXTERR)
1127 		hme_reset(sc);
1128 
1129 	snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
1130 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1131 
1132 	return (1);
1133 }
1134 
1135 int
1136 hme_intr(void *v)
1137 {
1138 	struct hme_softc *sc = v;
1139 	bus_space_tag_t t = sc->sc_bustag;
1140 	bus_space_handle_t seb = sc->sc_seb;
1141 	uint32_t status;
1142 	int r = 0;
1143 
1144 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
1145 
1146 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
1147 		r |= hme_eint(sc, status);
1148 
1149 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
1150 		r |= hme_tint(sc);
1151 
1152 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
1153 		r |= hme_rint(sc);
1154 
1155 #if NRND > 0
1156 	rnd_add_uint32(&sc->rnd_source, status);
1157 #endif
1158 
1159 	return (r);
1160 }
1161 
1162 
1163 void
1164 hme_watchdog(struct ifnet *ifp)
1165 {
1166 	struct hme_softc *sc = ifp->if_softc;
1167 
1168 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1169 	++ifp->if_oerrors;
1170 
1171 	hme_reset(sc);
1172 }
1173 
1174 /*
1175  * Initialize the MII Management Interface
1176  */
1177 void
1178 hme_mifinit(struct hme_softc *sc)
1179 {
1180 	bus_space_tag_t t = sc->sc_bustag;
1181 	bus_space_handle_t mif = sc->sc_mif;
1182 	bus_space_handle_t mac = sc->sc_mac;
1183 	int instance, phy;
1184 	uint32_t v;
1185 
1186 	if (sc->sc_mii.mii_media.ifm_cur != NULL) {
1187 		instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1188 		phy = sc->sc_phys[instance];
1189 	} else
1190 		/* No media set yet, pick phy arbitrarily.. */
1191 		phy = HME_PHYAD_EXTERNAL;
1192 
1193 	/* Configure the MIF in frame mode, no poll, current phy select */
1194 	v = 0;
1195 	if (phy == HME_PHYAD_EXTERNAL)
1196 		v |= HME_MIF_CFG_PHY;
1197 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1198 
1199 	/* If an external transceiver is selected, enable its MII drivers */
1200 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
1201 	v &= ~HME_MAC_XIF_MIIENABLE;
1202 	if (phy == HME_PHYAD_EXTERNAL)
1203 		v |= HME_MAC_XIF_MIIENABLE;
1204 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1205 }
1206 
1207 /*
1208  * MII interface
1209  */
1210 static int
1211 hme_mii_readreg(device_t self, int phy, int reg)
1212 {
1213 	struct hme_softc *sc = device_private(self);
1214 	bus_space_tag_t t = sc->sc_bustag;
1215 	bus_space_handle_t mif = sc->sc_mif;
1216 	bus_space_handle_t mac = sc->sc_mac;
1217 	uint32_t v, xif_cfg, mifi_cfg;
1218 	int n;
1219 
1220 	/* We can at most have two PHYs */
1221 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1222 		return (0);
1223 
1224 	/* Select the desired PHY in the MIF configuration register */
1225 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1226 	v &= ~HME_MIF_CFG_PHY;
1227 	if (phy == HME_PHYAD_EXTERNAL)
1228 		v |= HME_MIF_CFG_PHY;
1229 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1230 
1231 	/* Enable MII drivers on external transceiver */
1232 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1233 	if (phy == HME_PHYAD_EXTERNAL)
1234 		v |= HME_MAC_XIF_MIIENABLE;
1235 	else
1236 		v &= ~HME_MAC_XIF_MIIENABLE;
1237 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1238 
1239 #if 0
1240 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1241 	/*
1242 	 * Check whether a transceiver is connected by testing
1243 	 * the MIF configuration register's MDI_X bits. Note that
1244 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1245 	 */
1246 	mif_mdi_bit = 1 << (8 + (1 - phy));
1247 	delay(100);
1248 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1249 	if ((v & mif_mdi_bit) == 0)
1250 		return (0);
1251 #endif
1252 
1253 	/* Construct the frame command */
1254 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1255 	    HME_MIF_FO_TAMSB |
1256 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1257 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
1258 	    (reg << HME_MIF_FO_REGAD_SHIFT);
1259 
1260 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
1261 	for (n = 0; n < 100; n++) {
1262 		DELAY(1);
1263 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
1264 		if (v & HME_MIF_FO_TALSB) {
1265 			v &= HME_MIF_FO_DATA;
1266 			goto out;
1267 		}
1268 	}
1269 
1270 	v = 0;
1271 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1272 
1273 out:
1274 	/* Restore MIFI_CFG register */
1275 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1276 	/* Restore XIF register */
1277 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1278 	return (v);
1279 }
1280 
1281 static void
1282 hme_mii_writereg(device_t self, int phy, int reg, int val)
1283 {
1284 	struct hme_softc *sc = device_private(self);
1285 	bus_space_tag_t t = sc->sc_bustag;
1286 	bus_space_handle_t mif = sc->sc_mif;
1287 	bus_space_handle_t mac = sc->sc_mac;
1288 	uint32_t v, xif_cfg, mifi_cfg;
1289 	int n;
1290 
1291 	/* We can at most have two PHYs */
1292 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1293 		return;
1294 
1295 	/* Select the desired PHY in the MIF configuration register */
1296 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1297 	v &= ~HME_MIF_CFG_PHY;
1298 	if (phy == HME_PHYAD_EXTERNAL)
1299 		v |= HME_MIF_CFG_PHY;
1300 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1301 
1302 	/* Enable MII drivers on external transceiver */
1303 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1304 	if (phy == HME_PHYAD_EXTERNAL)
1305 		v |= HME_MAC_XIF_MIIENABLE;
1306 	else
1307 		v &= ~HME_MAC_XIF_MIIENABLE;
1308 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1309 
1310 #if 0
1311 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1312 	/*
1313 	 * Check whether a transceiver is connected by testing
1314 	 * the MIF configuration register's MDI_X bits. Note that
1315 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1316 	 */
1317 	mif_mdi_bit = 1 << (8 + (1 - phy));
1318 	delay(100);
1319 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1320 	if ((v & mif_mdi_bit) == 0)
1321 		return;
1322 #endif
1323 
1324 	/* Construct the frame command */
1325 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
1326 	    HME_MIF_FO_TAMSB				|
1327 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
1328 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
1329 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
1330 	    (val & HME_MIF_FO_DATA);
1331 
1332 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
1333 	for (n = 0; n < 100; n++) {
1334 		DELAY(1);
1335 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
1336 		if (v & HME_MIF_FO_TALSB)
1337 			goto out;
1338 	}
1339 
1340 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1341 out:
1342 	/* Restore MIFI_CFG register */
1343 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1344 	/* Restore XIF register */
1345 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1346 }
1347 
1348 static void
1349 hme_mii_statchg(device_t dev)
1350 {
1351 	struct hme_softc *sc = device_private(dev);
1352 	bus_space_tag_t t = sc->sc_bustag;
1353 	bus_space_handle_t mac = sc->sc_mac;
1354 	uint32_t v;
1355 
1356 #ifdef HMEDEBUG
1357 	if (sc->sc_debug)
1358 		printf("hme_mii_statchg: status change\n");
1359 #endif
1360 
1361 	/* Set the MAC Full Duplex bit appropriately */
1362 	/* Apparently the hme chip is SIMPLEX if working in full duplex mode,
1363 	   but not otherwise. */
1364 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1365 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1366 		v |= HME_MAC_TXCFG_FULLDPLX;
1367 		sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
1368 	} else {
1369 		v &= ~HME_MAC_TXCFG_FULLDPLX;
1370 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
1371 	}
1372 	sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
1373 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1374 }
1375 
1376 int
1377 hme_mediachange(struct ifnet *ifp)
1378 {
1379 	struct hme_softc *sc = ifp->if_softc;
1380 	bus_space_tag_t t = sc->sc_bustag;
1381 	bus_space_handle_t mif = sc->sc_mif;
1382 	bus_space_handle_t mac = sc->sc_mac;
1383 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1384 	int phy = sc->sc_phys[instance];
1385 	int rc;
1386 	uint32_t v;
1387 
1388 #ifdef HMEDEBUG
1389 	if (sc->sc_debug)
1390 		printf("hme_mediachange: phy = %d\n", phy);
1391 #endif
1392 
1393 	/* Select the current PHY in the MIF configuration register */
1394 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1395 	v &= ~HME_MIF_CFG_PHY;
1396 	if (phy == HME_PHYAD_EXTERNAL)
1397 		v |= HME_MIF_CFG_PHY;
1398 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1399 
1400 	/* If an external transceiver is selected, enable its MII drivers */
1401 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
1402 	v &= ~HME_MAC_XIF_MIIENABLE;
1403 	if (phy == HME_PHYAD_EXTERNAL)
1404 		v |= HME_MAC_XIF_MIIENABLE;
1405 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
1406 
1407 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
1408 		return 0;
1409 	return rc;
1410 }
1411 
1412 /*
1413  * Process an ioctl request.
1414  */
1415 int
1416 hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
1417 {
1418 	struct hme_softc *sc = ifp->if_softc;
1419 	struct ifaddr *ifa = (struct ifaddr *)data;
1420 	int s, error = 0;
1421 
1422 	s = splnet();
1423 
1424 	switch (cmd) {
1425 
1426 	case SIOCINITIFADDR:
1427 		switch (ifa->ifa_addr->sa_family) {
1428 #ifdef INET
1429 		case AF_INET:
1430 			if (ifp->if_flags & IFF_UP)
1431 				hme_setladrf(sc);
1432 			else {
1433 				ifp->if_flags |= IFF_UP;
1434 				error = hme_init(sc);
1435 			}
1436 			arp_ifinit(ifp, ifa);
1437 			break;
1438 #endif
1439 		default:
1440 			ifp->if_flags |= IFF_UP;
1441 			error = hme_init(sc);
1442 			break;
1443 		}
1444 		break;
1445 
1446 	case SIOCSIFFLAGS:
1447 #ifdef HMEDEBUG
1448 		{
1449 			struct ifreq *ifr = data;
1450 			sc->sc_debug =
1451 			    (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
1452 		}
1453 #endif
1454 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1455 			break;
1456 
1457 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1458 		case IFF_RUNNING:
1459 			/*
1460 			 * If interface is marked down and it is running, then
1461 			 * stop it.
1462 			 */
1463 			hme_stop(sc, false);
1464 			ifp->if_flags &= ~IFF_RUNNING;
1465 			break;
1466 		case IFF_UP:
1467 			/*
1468 			 * If interface is marked up and it is stopped, then
1469 			 * start it.
1470 			 */
1471 			error = hme_init(sc);
1472 			break;
1473 		case IFF_UP|IFF_RUNNING:
1474 			/*
1475 			 * If setting debug or promiscuous mode, do not reset
1476 			 * the chip; for everything else, call hme_init()
1477 			 * which will trigger a reset.
1478 			 */
1479 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
1480 			if (ifp->if_flags != sc->sc_if_flags) {
1481 				if ((ifp->if_flags & (~RESETIGN))
1482 				    == (sc->sc_if_flags & (~RESETIGN)))
1483 					hme_setladrf(sc);
1484 				else
1485 					error = hme_init(sc);
1486 			}
1487 #undef RESETIGN
1488 			break;
1489 		case 0:
1490 			break;
1491 		}
1492 
1493 		if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
1494 			error = hme_init(sc);
1495 
1496 		break;
1497 
1498 	default:
1499 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1500 			break;
1501 
1502 		error = 0;
1503 
1504 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1505 			;
1506 		else if (ifp->if_flags & IFF_RUNNING) {
1507 			/*
1508 			 * Multicast list has changed; set the hardware filter
1509 			 * accordingly.
1510 			 */
1511 			hme_setladrf(sc);
1512 		}
1513 		break;
1514 	}
1515 
1516 	sc->sc_if_flags = ifp->if_flags;
1517 	splx(s);
1518 	return (error);
1519 }
1520 
1521 void
1522 hme_shutdown(void *arg)
1523 {
1524 	struct hme_softc *sc;
1525 
1526 	sc = arg;
1527 	hme_stop(sc, false);
1528 }
1529 
1530 /*
1531  * Set up the logical address filter.
1532  */
1533 void
1534 hme_setladrf(struct hme_softc *sc)
1535 {
1536 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1537 	struct ether_multi *enm;
1538 	struct ether_multistep step;
1539 	struct ethercom *ec = &sc->sc_ethercom;
1540 	bus_space_tag_t t = sc->sc_bustag;
1541 	bus_space_handle_t mac = sc->sc_mac;
1542 	u_char *cp;
1543 	uint32_t crc;
1544 	uint32_t hash[4];
1545 	uint32_t v;
1546 	int len;
1547 
1548 	/* Clear hash table */
1549 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
1550 
1551 	/* Get current RX configuration */
1552 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1553 
1554 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
1555 		/* Turn on promiscuous mode; turn off the hash filter */
1556 		v |= HME_MAC_RXCFG_PMISC;
1557 		v &= ~HME_MAC_RXCFG_HENABLE;
1558 		ifp->if_flags |= IFF_ALLMULTI;
1559 		goto chipit;
1560 	}
1561 
1562 	/* Turn off promiscuous mode; turn on the hash filter */
1563 	v &= ~HME_MAC_RXCFG_PMISC;
1564 	v |= HME_MAC_RXCFG_HENABLE;
1565 
1566 	/*
1567 	 * Set up multicast address filter by passing all multicast addresses
1568 	 * through a crc generator, and then using the high order 6 bits as an
1569 	 * index into the 64 bit logical address filter.  The high order bit
1570 	 * selects the word, while the rest of the bits select the bit within
1571 	 * the word.
1572 	 */
1573 
1574 	ETHER_FIRST_MULTI(step, ec, enm);
1575 	while (enm != NULL) {
1576 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1577 			/*
1578 			 * We must listen to a range of multicast addresses.
1579 			 * For now, just accept all multicasts, rather than
1580 			 * trying to set only those filter bits needed to match
1581 			 * the range.  (At this time, the only use of address
1582 			 * ranges is for IP multicast routing, for which the
1583 			 * range is big enough to require all bits set.)
1584 			 */
1585 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1586 			ifp->if_flags |= IFF_ALLMULTI;
1587 			goto chipit;
1588 		}
1589 
1590 		cp = enm->enm_addrlo;
1591 		crc = 0xffffffff;
1592 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1593 			int octet = *cp++;
1594 			int i;
1595 
1596 #define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
1597 			for (i = 0; i < 8; i++) {
1598 				if ((crc & 1) ^ (octet & 1)) {
1599 					crc >>= 1;
1600 					crc ^= MC_POLY_LE;
1601 				} else {
1602 					crc >>= 1;
1603 				}
1604 				octet >>= 1;
1605 			}
1606 		}
1607 		/* Just want the 6 most significant bits. */
1608 		crc >>= 26;
1609 
1610 		/* Set the corresponding bit in the filter. */
1611 		hash[crc >> 4] |= 1 << (crc & 0xf);
1612 
1613 		ETHER_NEXT_MULTI(step, enm);
1614 	}
1615 
1616 	ifp->if_flags &= ~IFF_ALLMULTI;
1617 
1618 chipit:
1619 	/* Now load the hash table into the chip */
1620 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1621 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1622 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1623 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1624 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1625 }
1626 
1627 /*
1628  * Routines for accessing the transmit and receive buffers.
1629  * The various CPU and adapter configurations supported by this
1630  * driver require three different access methods for buffers
1631  * and descriptors:
1632  *	(1) contig (contiguous data; no padding),
1633  *	(2) gap2 (two bytes of data followed by two bytes of padding),
1634  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
1635  */
1636 
1637 #if 0
1638 /*
1639  * contig: contiguous data with no padding.
1640  *
1641  * Buffers may have any alignment.
1642  */
1643 
1644 void
1645 hme_copytobuf_contig(struct hme_softc *sc, void *from, int ri, int len)
1646 {
1647 	volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1648 
1649 	/*
1650 	 * Just call memcpy() to do the work.
1651 	 */
1652 	memcpy(buf, from, len);
1653 }
1654 
1655 void
1656 hme_copyfrombuf_contig(struct hme_softc *sc, void *to, int boff, int len)
1657 {
1658 	volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1659 
1660 	/*
1661 	 * Just call memcpy() to do the work.
1662 	 */
1663 	memcpy(to, buf, len);
1664 }
1665 #endif
1666