xref: /netbsd-src/sys/dev/ic/gem.c (revision f4748aaa01faf324805f9747191535eb6600f82c)
1 /*	$NetBSD: gem.c,v 1.135 2022/09/25 18:43:32 thorpej Exp $ */
2 
3 /*
4  *
5  * Copyright (C) 2001 Eduardo Horvath.
6  * Copyright (c) 2001-2003 Thomas Moestl
7  * All rights reserved.
8  *
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  */
32 
33 /*
34  * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
35  * See `GEM Gigabit Ethernet ASIC Specification'
36  *   http://www.sun.com/processors/manuals/ge.pdf
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.135 2022/09/25 18:43:32 thorpej Exp $");
41 
42 #include "opt_inet.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/callout.h>
47 #include <sys/mbuf.h>
48 #include <sys/syslog.h>
49 #include <sys/kernel.h>
50 #include <sys/socket.h>
51 #include <sys/ioctl.h>
52 #include <sys/errno.h>
53 #include <sys/device.h>
54 
55 #include <machine/endian.h>
56 
57 #include <net/if.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_ether.h>
61 
62 #ifdef INET
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip.h>
67 #include <netinet/tcp.h>
68 #include <netinet/udp.h>
69 #endif
70 
71 #include <net/bpf.h>
72 
73 #include <sys/bus.h>
74 #include <sys/intr.h>
75 
76 #include <dev/mii/mii.h>
77 #include <dev/mii/miivar.h>
78 #include <dev/mii/mii_bitbang.h>
79 
80 #include <dev/ic/gemreg.h>
81 #include <dev/ic/gemvar.h>
82 
83 #define TRIES	10000
84 
85 static void	gem_inten(struct gem_softc *);
86 static void	gem_start(struct ifnet *);
87 static void	gem_stop(struct ifnet *, int);
88 int		gem_ioctl(struct ifnet *, u_long, void *);
89 void		gem_tick(void *);
90 void		gem_watchdog(struct ifnet *);
91 void		gem_rx_watchdog(void *);
92 void		gem_pcs_start(struct gem_softc *sc);
93 void		gem_pcs_stop(struct gem_softc *sc, int);
94 int		gem_init(struct ifnet *);
95 void		gem_init_regs(struct gem_softc *sc);
96 static int	gem_ringsize(int sz);
97 static int	gem_meminit(struct gem_softc *);
98 void		gem_mifinit(struct gem_softc *);
99 static int	gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
100 		    uint32_t, uint32_t);
101 void		gem_reset(struct gem_softc *);
102 int		gem_reset_rx(struct gem_softc *sc);
103 static void	gem_reset_rxdma(struct gem_softc *sc);
104 static void	gem_rx_common(struct gem_softc *sc);
105 int		gem_reset_tx(struct gem_softc *sc);
106 int		gem_disable_rx(struct gem_softc *sc);
107 int		gem_disable_tx(struct gem_softc *sc);
108 static void	gem_rxdrain(struct gem_softc *sc);
109 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
110 void		gem_setladrf(struct gem_softc *);
111 
112 /* MII methods & callbacks */
113 static int	gem_mii_readreg(device_t, int, int, uint16_t *);
114 static int	gem_mii_writereg(device_t, int, int, uint16_t);
115 static void	gem_mii_statchg(struct ifnet *);
116 
117 static int	gem_ifflags_cb(struct ethercom *);
118 
119 void		gem_statuschange(struct gem_softc *);
120 
121 int		gem_ser_mediachange(struct ifnet *);
122 void		gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
123 
124 static void	gem_partial_detach(struct gem_softc *, enum gem_attach_stage);
125 
126 struct mbuf	*gem_get(struct gem_softc *, int, int);
127 int		gem_put(struct gem_softc *, int, struct mbuf *);
128 void		gem_read(struct gem_softc *, int, int);
129 int		gem_pint(struct gem_softc *);
130 int		gem_eint(struct gem_softc *, u_int);
131 int		gem_rint(struct gem_softc *);
132 int		gem_tint(struct gem_softc *);
133 void		gem_power(int, void *);
134 
135 #ifdef GEM_DEBUG
136 static void gem_txsoft_print(const struct gem_softc *, int, int);
137 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
138 				printf x
139 #else
140 #define	DPRINTF(sc, x)	/* nothing */
141 #endif
142 
143 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
144 
145 int
146 gem_detach(struct gem_softc *sc, int flags)
147 {
148 	int i;
149 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
150 	bus_space_tag_t t = sc->sc_bustag;
151 	bus_space_handle_t h = sc->sc_h1;
152 
153 	/*
154 	 * Free any resources we've allocated during the attach.
155 	 * Do this in reverse order and fall through.
156 	 */
157 	switch (sc->sc_att_stage) {
158 	case GEM_ATT_BACKEND_2:
159 	case GEM_ATT_BACKEND_1:
160 	case GEM_ATT_FINISHED:
161 		bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
162 		gem_stop(&sc->sc_ethercom.ec_if, 1);
163 
164 #ifdef GEM_COUNTERS
165 		for (i = __arraycount(sc->sc_ev_rxhist); --i >= 0; )
166 			evcnt_detach(&sc->sc_ev_rxhist[i]);
167 		evcnt_detach(&sc->sc_ev_rxnobuf);
168 		evcnt_detach(&sc->sc_ev_rxfull);
169 		evcnt_detach(&sc->sc_ev_rxint);
170 		evcnt_detach(&sc->sc_ev_txint);
171 		evcnt_detach(&sc->sc_ev_rxoverflow);
172 #endif
173 		evcnt_detach(&sc->sc_ev_intr);
174 
175 		rnd_detach_source(&sc->rnd_source);
176 		ether_ifdetach(ifp);
177 		if_detach(ifp);
178 
179 		callout_destroy(&sc->sc_tick_ch);
180 		callout_destroy(&sc->sc_rx_watchdog);
181 
182 		/*FALLTHROUGH*/
183 	case GEM_ATT_MII:
184 		sc->sc_att_stage = GEM_ATT_MII;
185 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
186 		ifmedia_fini(&sc->sc_mii.mii_media);
187 
188 		/*FALLTHROUGH*/
189 	case GEM_ATT_7:
190 		for (i = 0; i < GEM_NRXDESC; i++) {
191 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
192 				bus_dmamap_destroy(sc->sc_dmatag,
193 				    sc->sc_rxsoft[i].rxs_dmamap);
194 		}
195 		/*FALLTHROUGH*/
196 	case GEM_ATT_6:
197 		for (i = 0; i < GEM_TXQUEUELEN; i++) {
198 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
199 				bus_dmamap_destroy(sc->sc_dmatag,
200 				    sc->sc_txsoft[i].txs_dmamap);
201 		}
202 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
203 		/*FALLTHROUGH*/
204 	case GEM_ATT_5:
205 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_nulldmamap);
206 		/*FALLTHROUGH*/
207 	case GEM_ATT_4:
208 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
209 		/*FALLTHROUGH*/
210 	case GEM_ATT_3:
211 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
212 		/*FALLTHROUGH*/
213 	case GEM_ATT_2:
214 		bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
215 		    sizeof(struct gem_control_data));
216 		/*FALLTHROUGH*/
217 	case GEM_ATT_1:
218 		bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
219 		/*FALLTHROUGH*/
220 	case GEM_ATT_0:
221 		sc->sc_att_stage = GEM_ATT_0;
222 		/*FALLTHROUGH*/
223 	case GEM_ATT_BACKEND_0:
224 		break;
225 	}
226 	return 0;
227 }
228 
229 static void
230 gem_partial_detach(struct gem_softc *sc, enum gem_attach_stage stage)
231 {
232 	cfattach_t ca = device_cfattach(sc->sc_dev);
233 
234 	sc->sc_att_stage = stage;
235 	(*ca->ca_detach)(sc->sc_dev, 0);
236 }
237 
238 /*
239  * gem_attach:
240  *
241  *	Attach a Gem interface to the system.
242  */
243 void
244 gem_attach(struct gem_softc *sc, const uint8_t *enaddr)
245 {
246 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
247 	struct mii_data *mii = &sc->sc_mii;
248 	bus_space_tag_t t = sc->sc_bustag;
249 	bus_space_handle_t h = sc->sc_h1;
250 	struct ifmedia_entry *ife;
251 	int i, error, phyaddr;
252 	uint32_t v;
253 	char *nullbuf;
254 
255 	/* Make sure the chip is stopped. */
256 	ifp->if_softc = sc;
257 	gem_reset(sc);
258 
259 	/*
260 	 * Allocate the control data structures, and create and load the
261 	 * DMA map for it. gem_control_data is 9216 bytes, we have space for
262 	 * the padding buffer in the bus_dmamem_alloc()'d memory.
263 	 */
264 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
265 	    sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
266 	    0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
267 		aprint_error_dev(sc->sc_dev,
268 		   "unable to allocate control data, error = %d\n",
269 		    error);
270 		gem_partial_detach(sc, GEM_ATT_0);
271 		return;
272 	}
273 
274 	/* XXX should map this in with correct endianness */
275 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
276 	    sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
277 	    BUS_DMA_COHERENT)) != 0) {
278 		aprint_error_dev(sc->sc_dev,
279 		    "unable to map control data, error = %d\n", error);
280 		gem_partial_detach(sc, GEM_ATT_1);
281 		return;
282 	}
283 
284 	nullbuf =
285 	    (char *)sc->sc_control_data + sizeof(struct gem_control_data);
286 
287 	if ((error = bus_dmamap_create(sc->sc_dmatag,
288 	    sizeof(struct gem_control_data), 1,
289 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
290 		aprint_error_dev(sc->sc_dev,
291 		    "unable to create control data DMA map, error = %d\n",
292 		    error);
293 		gem_partial_detach(sc, GEM_ATT_2);
294 		return;
295 	}
296 
297 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
298 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
299 	    0)) != 0) {
300 		aprint_error_dev(sc->sc_dev,
301 		    "unable to load control data DMA map, error = %d\n",
302 		    error);
303 		gem_partial_detach(sc, GEM_ATT_3);
304 		return;
305 	}
306 
307 	memset(nullbuf, 0, ETHER_MIN_TX);
308 	if ((error = bus_dmamap_create(sc->sc_dmatag,
309 	    ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
310 		aprint_error_dev(sc->sc_dev,
311 		    "unable to create padding DMA map, error = %d\n", error);
312 		gem_partial_detach(sc, GEM_ATT_4);
313 		return;
314 	}
315 
316 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
317 	    nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
318 		aprint_error_dev(sc->sc_dev,
319 		    "unable to load padding DMA map, error = %d\n", error);
320 		gem_partial_detach(sc, GEM_ATT_5);
321 		return;
322 	}
323 
324 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
325 	    BUS_DMASYNC_PREWRITE);
326 
327 	/*
328 	 * Initialize the transmit job descriptors.
329 	 */
330 	SIMPLEQ_INIT(&sc->sc_txfreeq);
331 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
332 
333 	/*
334 	 * Create the transmit buffer DMA maps.
335 	 */
336 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
337 		struct gem_txsoft *txs;
338 
339 		txs = &sc->sc_txsoft[i];
340 		txs->txs_mbuf = NULL;
341 		if ((error = bus_dmamap_create(sc->sc_dmatag,
342 		    ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
343 		    ETHER_MAX_LEN_JUMBO, 0, 0,
344 		    &txs->txs_dmamap)) != 0) {
345 			aprint_error_dev(sc->sc_dev,
346 			    "unable to create tx DMA map %d, error = %d\n",
347 			    i, error);
348 			gem_partial_detach(sc, GEM_ATT_6);
349 			return;
350 		}
351 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
352 	}
353 
354 	/*
355 	 * Create the receive buffer DMA maps.
356 	 */
357 	for (i = 0; i < GEM_NRXDESC; i++) {
358 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
359 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
360 			aprint_error_dev(sc->sc_dev,
361 			    "unable to create rx DMA map %d, error = %d\n",
362 			    i, error);
363 			gem_partial_detach(sc, GEM_ATT_7);
364 			return;
365 		}
366 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
367 	}
368 
369 	/* Initialize ifmedia structures and MII info */
370 	mii->mii_ifp = ifp;
371 	mii->mii_readreg = gem_mii_readreg;
372 	mii->mii_writereg = gem_mii_writereg;
373 	mii->mii_statchg = gem_mii_statchg;
374 
375 	sc->sc_ethercom.ec_mii = mii;
376 
377 	/*
378 	 * Initialization based  on `GEM Gigabit Ethernet ASIC Specification'
379 	 * Section 3.2.1 `Initialization Sequence'.
380 	 * However, we can't assume SERDES or Serialink if neither
381 	 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
382 	 * being set, as both are set on Sun X1141A (with SERDES).  So,
383 	 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
384 	 * Also, for variants that report 2 PHY's, we prefer the external
385 	 * PHY over the internal PHY, so we look for that first.
386 	 */
387 	gem_mifinit(sc);
388 
389 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
390 		ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
391 		    ether_mediastatus);
392 		/* Look for external PHY */
393 		if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
394 			sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
395 			bus_space_write_4(t, h, GEM_MIF_CONFIG,
396 			    sc->sc_mif_config);
397 			switch (sc->sc_variant) {
398 			case GEM_SUN_ERI:
399 				phyaddr = GEM_PHYAD_EXTERNAL;
400 				break;
401 			default:
402 				phyaddr = MII_PHY_ANY;
403 				break;
404 			}
405 			mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
406 			    MII_OFFSET_ANY, MIIF_FORCEANEG);
407 		}
408 #ifdef GEM_DEBUG
409 		  else
410 			aprint_debug_dev(sc->sc_dev, "using external PHY\n");
411 #endif
412 		/* Look for internal PHY if no external PHY was found */
413 		if (LIST_EMPTY(&mii->mii_phys) &&
414 		    ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI0) ||
415 		     (sc->sc_variant == GEM_APPLE_K2_GMAC))) {
416 			sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
417 			bus_space_write_4(t, h, GEM_MIF_CONFIG,
418 			    sc->sc_mif_config);
419 			switch (sc->sc_variant) {
420 			case GEM_SUN_ERI:
421 			case GEM_APPLE_K2_GMAC:
422 				phyaddr = GEM_PHYAD_INTERNAL;
423 				break;
424 			case GEM_APPLE_GMAC:
425 				phyaddr = GEM_PHYAD_EXTERNAL;
426 				break;
427 			default:
428 				phyaddr = MII_PHY_ANY;
429 				break;
430 			}
431 			mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
432 			    MII_OFFSET_ANY, MIIF_FORCEANEG);
433 #ifdef GEM_DEBUG
434 			if (!LIST_EMPTY(&mii->mii_phys))
435 				aprint_debug_dev(sc->sc_dev,
436 				    "using internal PHY\n");
437 #endif
438 		}
439 		if (LIST_EMPTY(&mii->mii_phys)) {
440 				/* No PHY attached */
441 				aprint_error_dev(sc->sc_dev,
442 				    "PHY probe failed\n");
443 				gem_partial_detach(sc, GEM_ATT_MII);
444 				return;
445 		} else {
446 			struct mii_softc *child;
447 
448 			/*
449 			 * Walk along the list of attached MII devices and
450 			 * establish an `MII instance' to `PHY number'
451 			 * mapping.
452 			 */
453 			LIST_FOREACH(child, &mii->mii_phys, mii_list) {
454 				/*
455 				 * Note: we support just one PHY: the internal
456 				 * or external MII is already selected for us
457 				 * by the GEM_MIF_CONFIG  register.
458 				 */
459 				if (child->mii_phy > 1 || child->mii_inst > 0) {
460 					aprint_error_dev(sc->sc_dev,
461 					    "cannot accommodate MII device"
462 					    " %s at PHY %d, instance %d\n",
463 					       device_xname(child->mii_dev),
464 					       child->mii_phy, child->mii_inst);
465 					continue;
466 				}
467 				sc->sc_phys[child->mii_inst] = child->mii_phy;
468 			}
469 
470 			if (sc->sc_variant != GEM_SUN_ERI)
471 				bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
472 				    GEM_MII_DATAPATH_MII);
473 
474 			/*
475 			 * XXX - we can really do the following ONLY if the
476 			 * PHY indeed has the auto negotiation capability!!
477 			 */
478 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
479 		}
480 	} else {
481 		ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
482 		    gem_ser_mediastatus);
483 		/* SERDES or Serialink */
484 		if (sc->sc_flags & GEM_SERDES) {
485 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
486 			    GEM_MII_DATAPATH_SERDES);
487 		} else {
488 			sc->sc_flags |= GEM_SERIAL;
489 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
490 			    GEM_MII_DATAPATH_SERIAL);
491 		}
492 
493 		aprint_normal_dev(sc->sc_dev, "using external PCS %s: ",
494 		    sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
495 
496 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_AUTO, 0, NULL);
497 		/* Check for FDX and HDX capabilities */
498 		sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
499 		if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
500 			ifmedia_add(&mii->mii_media, IFM_ETHER |
501 			    IFM_1000_SX | IFM_MANUAL | IFM_FDX, 0, NULL);
502 			aprint_normal("1000baseSX-FDX, ");
503 		}
504 		if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
505 			ifmedia_add(&mii->mii_media, IFM_ETHER |
506 			    IFM_1000_SX | IFM_MANUAL | IFM_HDX, 0, NULL);
507 			aprint_normal("1000baseSX-HDX, ");
508 		}
509 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
510 		sc->sc_mii_media = IFM_AUTO;
511 		aprint_normal("auto\n");
512 
513 		gem_pcs_stop(sc, 1);
514 	}
515 
516 	/*
517 	 * From this point forward, the attachment cannot fail.  A failure
518 	 * before this point releases all resources that may have been
519 	 * allocated.
520 	 */
521 
522 	/* Announce ourselves. */
523 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s",
524 	    ether_sprintf(enaddr));
525 
526 	/* Get RX FIFO size */
527 	sc->sc_rxfifosize = 64 *
528 	    bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
529 	aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
530 
531 	/* Get TX FIFO size */
532 	v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
533 	aprint_normal(", %uKB TX fifo\n", v / 16);
534 
535 	/* Initialize ifnet structure. */
536 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
537 	ifp->if_softc = sc;
538 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
539 	sc->sc_if_flags = ifp->if_flags;
540 #if 0
541 	/*
542 	 * The GEM hardware supports basic TCP checksum offloading only.
543 	 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
544 	 * have bugs in the receive checksum, so don't enable it for now.
545 	 */
546 	if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
547 	    (GEM_IS_APPLE(sc) &&
548 	    (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
549 		ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
550 #endif
551 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
552 	ifp->if_start = gem_start;
553 	ifp->if_ioctl = gem_ioctl;
554 	ifp->if_watchdog = gem_watchdog;
555 	ifp->if_stop = gem_stop;
556 	ifp->if_init = gem_init;
557 	IFQ_SET_READY(&ifp->if_snd);
558 
559 	/*
560 	 * If we support GigE media, we support jumbo frames too.
561 	 * Unless we are Apple.
562 	 */
563 	TAILQ_FOREACH(ife, &mii->mii_media.ifm_list, ifm_list) {
564 		if (IFM_SUBTYPE(ife->ifm_media) == IFM_1000_T ||
565 		    IFM_SUBTYPE(ife->ifm_media) == IFM_1000_SX ||
566 		    IFM_SUBTYPE(ife->ifm_media) == IFM_1000_LX ||
567 		    IFM_SUBTYPE(ife->ifm_media) == IFM_1000_CX) {
568 			if (!GEM_IS_APPLE(sc))
569 				sc->sc_ethercom.ec_capabilities
570 				    |= ETHERCAP_JUMBO_MTU;
571 			sc->sc_flags |= GEM_GIGABIT;
572 			break;
573 		}
574 	}
575 
576 	/* claim 802.1q capability */
577 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
578 
579 	/* Attach the interface. */
580 	if_attach(ifp);
581 	if_deferred_start_init(ifp, NULL);
582 	ether_ifattach(ifp, enaddr);
583 	ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
584 
585 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
586 			  RND_TYPE_NET, RND_FLAG_DEFAULT);
587 
588 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
589 	    NULL, device_xname(sc->sc_dev), "interrupts");
590 #ifdef GEM_COUNTERS
591 	evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
592 	    &sc->sc_ev_intr, device_xname(sc->sc_dev), "tx interrupts");
593 	evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
594 	    &sc->sc_ev_intr, device_xname(sc->sc_dev), "rx interrupts");
595 	evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
596 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx ring full");
597 	evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
598 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx malloc failure");
599 	evcnt_attach_dynamic(&sc->sc_ev_rxoverflow, EVCNT_TYPE_INTR,
600 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx overflow");
601 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
602 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 0desc");
603 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
604 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 1desc");
605 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
606 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 2desc");
607 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
608 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 3desc");
609 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
610 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >3desc");
611 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
612 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >7desc");
613 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
614 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >15desc");
615 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
616 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >31desc");
617 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
618 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >63desc");
619 #endif
620 
621 	callout_init(&sc->sc_tick_ch, 0);
622 	callout_setfunc(&sc->sc_tick_ch, gem_tick, sc);
623 
624 	callout_init(&sc->sc_rx_watchdog, 0);
625 	callout_setfunc(&sc->sc_rx_watchdog, gem_rx_watchdog, sc);
626 
627 	sc->sc_att_stage = GEM_ATT_FINISHED;
628 
629 	return;
630 }
631 
632 void
633 gem_tick(void *arg)
634 {
635 	struct gem_softc *sc = arg;
636 	int s;
637 
638 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
639 		/*
640 		 * We have to reset everything if we failed to get a
641 		 * PCS interrupt.  Restarting the callout is handled
642 		 * in gem_pcs_start().
643 		 */
644 		gem_init(&sc->sc_ethercom.ec_if);
645 	} else {
646 		s = splnet();
647 		mii_tick(&sc->sc_mii);
648 		splx(s);
649 		callout_schedule(&sc->sc_tick_ch, hz);
650 	}
651 }
652 
653 static int
654 gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, uint32_t clr,
655     uint32_t set)
656 {
657 	int i;
658 	uint32_t reg;
659 
660 	for (i = TRIES; i--; DELAY(100)) {
661 		reg = bus_space_read_4(sc->sc_bustag, h, r);
662 		if ((reg & clr) == 0 && (reg & set) == set)
663 			return (1);
664 	}
665 	return (0);
666 }
667 
668 void
669 gem_reset(struct gem_softc *sc)
670 {
671 	bus_space_tag_t t = sc->sc_bustag;
672 	bus_space_handle_t h = sc->sc_h2;
673 	int s;
674 
675 	s = splnet();
676 	DPRINTF(sc, ("%s: gem_reset\n", device_xname(sc->sc_dev)));
677 	gem_reset_rx(sc);
678 	gem_reset_tx(sc);
679 
680 	/* Do a full reset */
681 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX);
682 	if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
683 		aprint_error_dev(sc->sc_dev, "cannot reset device\n");
684 	splx(s);
685 }
686 
687 
688 /*
689  * gem_rxdrain:
690  *
691  *	Drain the receive queue.
692  */
693 static void
694 gem_rxdrain(struct gem_softc *sc)
695 {
696 	struct gem_rxsoft *rxs;
697 	int i;
698 
699 	for (i = 0; i < GEM_NRXDESC; i++) {
700 		rxs = &sc->sc_rxsoft[i];
701 		if (rxs->rxs_mbuf != NULL) {
702 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
703 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
704 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
705 			m_freem(rxs->rxs_mbuf);
706 			rxs->rxs_mbuf = NULL;
707 		}
708 	}
709 }
710 
711 /*
712  * Reset the whole thing.
713  */
714 static void
715 gem_stop(struct ifnet *ifp, int disable)
716 {
717 	struct gem_softc *sc = ifp->if_softc;
718 	struct gem_txsoft *txs;
719 
720 	DPRINTF(sc, ("%s: gem_stop\n", device_xname(sc->sc_dev)));
721 
722 	callout_halt(&sc->sc_tick_ch, NULL);
723 	callout_halt(&sc->sc_rx_watchdog, NULL);
724 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
725 		gem_pcs_stop(sc, disable);
726 	else
727 		mii_down(&sc->sc_mii);
728 
729 	/* XXX - Should we reset these instead? */
730 	gem_disable_tx(sc);
731 	gem_disable_rx(sc);
732 
733 	/*
734 	 * Release any queued transmit buffers.
735 	 */
736 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
737 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
738 		if (txs->txs_mbuf != NULL) {
739 			bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
740 			    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
741 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
742 			m_freem(txs->txs_mbuf);
743 			txs->txs_mbuf = NULL;
744 		}
745 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
746 	}
747 
748 	/*
749 	 * Mark the interface down and cancel the watchdog timer.
750 	 */
751 	ifp->if_flags &= ~IFF_RUNNING;
752 	sc->sc_if_flags = ifp->if_flags;
753 	ifp->if_timer = 0;
754 
755 	if (disable)
756 		gem_rxdrain(sc);
757 }
758 
759 
760 /*
761  * Reset the receiver
762  */
763 int
764 gem_reset_rx(struct gem_softc *sc)
765 {
766 	bus_space_tag_t t = sc->sc_bustag;
767 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
768 
769 	/*
770 	 * Resetting while DMA is in progress can cause a bus hang, so we
771 	 * disable DMA first.
772 	 */
773 	gem_disable_rx(sc);
774 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
775 	bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
776 	/* Wait till it finishes */
777 	if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
778 		aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
779 	/* Wait 5ms extra. */
780 	delay(5000);
781 
782 	/* Finally, reset the ERX */
783 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
784 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
785 	/* Wait till it finishes */
786 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
787 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
788 		return (1);
789 	}
790 	return (0);
791 }
792 
793 
794 /*
795  * Reset the receiver DMA engine.
796  *
797  * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
798  * etc in order to reset the receiver DMA engine only and not do a full
799  * reset which amongst others also downs the link and clears the FIFOs.
800  */
801 static void
802 gem_reset_rxdma(struct gem_softc *sc)
803 {
804 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
805 	bus_space_tag_t t = sc->sc_bustag;
806 	bus_space_handle_t h = sc->sc_h1;
807 	int i;
808 
809 	if (gem_reset_rx(sc) != 0) {
810 		gem_init(ifp);
811 		return;
812 	}
813 	for (i = 0; i < GEM_NRXDESC; i++)
814 		if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
815 			GEM_UPDATE_RXDESC(sc, i);
816 	sc->sc_rxptr = 0;
817 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
818 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
819 
820 	/* Reprogram Descriptor Ring Base Addresses */
821 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI,
822 	    ((uint64_t)GEM_CDRXADDR(sc, 0)) >> 32);
823 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
824 
825 	/* Redo ERX Configuration */
826 	gem_rx_common(sc);
827 
828 	/* Give the receiver a swift kick */
829 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
830 }
831 
832 /*
833  * Common RX configuration for gem_init() and gem_reset_rxdma().
834  */
835 static void
836 gem_rx_common(struct gem_softc *sc)
837 {
838 	bus_space_tag_t t = sc->sc_bustag;
839 	bus_space_handle_t h = sc->sc_h1;
840 	uint32_t v;
841 
842 	/* Encode Receive Descriptor ring size: four possible values */
843 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
844 
845 	/* Set receive h/w checksum offset */
846 #ifdef INET
847 	v |= (ETHER_HDR_LEN + sizeof(struct ip) +
848 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
849 	    ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
850 #endif
851 
852 	/* Enable RX DMA */
853 	bus_space_write_4(t, h, GEM_RX_CONFIG,
854 	    v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
855 	    (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
856 
857 	/*
858 	 * The following value is for an OFF Threshold of about 3/4 full
859 	 * and an ON Threshold of 1/4 full.
860 	 */
861 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
862 	    (3 * sc->sc_rxfifosize / 256) |
863 	    ((sc->sc_rxfifosize / 256) << 12));
864 	bus_space_write_4(t, h, GEM_RX_BLANKING,
865 	    (6 << GEM_RX_BLANKING_TIME_SHIFT) | 8);
866 }
867 
868 /*
869  * Reset the transmitter
870  */
871 int
872 gem_reset_tx(struct gem_softc *sc)
873 {
874 	bus_space_tag_t t = sc->sc_bustag;
875 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
876 
877 	/*
878 	 * Resetting while DMA is in progress can cause a bus hang, so we
879 	 * disable DMA first.
880 	 */
881 	gem_disable_tx(sc);
882 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
883 	bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
884 	/* Wait till it finishes */
885 	if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
886 		aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
887 	/* Wait 5ms extra. */
888 	delay(5000);
889 
890 	/* Finally, reset the ETX */
891 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
892 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
893 	/* Wait till it finishes */
894 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
895 		aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
896 		return (1);
897 	}
898 	return (0);
899 }
900 
901 /*
902  * disable receiver.
903  */
904 int
905 gem_disable_rx(struct gem_softc *sc)
906 {
907 	bus_space_tag_t t = sc->sc_bustag;
908 	bus_space_handle_t h = sc->sc_h1;
909 	uint32_t cfg;
910 
911 	/* Flip the enable bit */
912 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
913 	cfg &= ~GEM_MAC_RX_ENABLE;
914 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
915 	bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
916 	/* Wait for it to finish */
917 	return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
918 }
919 
920 /*
921  * disable transmitter.
922  */
923 int
924 gem_disable_tx(struct gem_softc *sc)
925 {
926 	bus_space_tag_t t = sc->sc_bustag;
927 	bus_space_handle_t h = sc->sc_h1;
928 	uint32_t cfg;
929 
930 	/* Flip the enable bit */
931 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
932 	cfg &= ~GEM_MAC_TX_ENABLE;
933 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
934 	bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
935 	/* Wait for it to finish */
936 	return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
937 }
938 
939 /*
940  * Initialize interface.
941  */
942 int
943 gem_meminit(struct gem_softc *sc)
944 {
945 	struct gem_rxsoft *rxs;
946 	int i, error;
947 
948 	/*
949 	 * Initialize the transmit descriptor ring.
950 	 */
951 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
952 	for (i = 0; i < GEM_NTXDESC; i++) {
953 		sc->sc_txdescs[i].gd_flags = 0;
954 		sc->sc_txdescs[i].gd_addr = 0;
955 	}
956 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
957 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
958 	sc->sc_txfree = GEM_NTXDESC-1;
959 	sc->sc_txnext = 0;
960 	sc->sc_txwin = 0;
961 
962 	/*
963 	 * Initialize the receive descriptor and receive job
964 	 * descriptor rings.
965 	 */
966 	for (i = 0; i < GEM_NRXDESC; i++) {
967 		rxs = &sc->sc_rxsoft[i];
968 		if (rxs->rxs_mbuf == NULL) {
969 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
970 				aprint_error_dev(sc->sc_dev,
971 				    "unable to allocate or map rx "
972 				    "buffer %d, error = %d\n",
973 				    i, error);
974 				/*
975 				 * XXX Should attempt to run with fewer receive
976 				 * XXX buffers instead of just failing.
977 				 */
978 				gem_rxdrain(sc);
979 				return (1);
980 			}
981 		} else
982 			GEM_INIT_RXDESC(sc, i);
983 	}
984 	sc->sc_rxptr = 0;
985 	sc->sc_meminited = 1;
986 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
987 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
988 
989 	return (0);
990 }
991 
992 static int
993 gem_ringsize(int sz)
994 {
995 	switch (sz) {
996 	case 32:
997 		return GEM_RING_SZ_32;
998 	case 64:
999 		return GEM_RING_SZ_64;
1000 	case 128:
1001 		return GEM_RING_SZ_128;
1002 	case 256:
1003 		return GEM_RING_SZ_256;
1004 	case 512:
1005 		return GEM_RING_SZ_512;
1006 	case 1024:
1007 		return GEM_RING_SZ_1024;
1008 	case 2048:
1009 		return GEM_RING_SZ_2048;
1010 	case 4096:
1011 		return GEM_RING_SZ_4096;
1012 	case 8192:
1013 		return GEM_RING_SZ_8192;
1014 	default:
1015 		printf("gem: invalid Receive Descriptor ring size %d\n", sz);
1016 		return GEM_RING_SZ_32;
1017 	}
1018 }
1019 
1020 
1021 /*
1022  * Start PCS
1023  */
1024 void
1025 gem_pcs_start(struct gem_softc *sc)
1026 {
1027 	bus_space_tag_t t = sc->sc_bustag;
1028 	bus_space_handle_t h = sc->sc_h1;
1029 	uint32_t v;
1030 
1031 #ifdef GEM_DEBUG
1032 	aprint_debug_dev(sc->sc_dev, "gem_pcs_start()\n");
1033 #endif
1034 
1035 	/*
1036 	 * Set up.  We must disable the MII before modifying the
1037 	 * GEM_MII_ANAR register
1038 	 */
1039 	if (sc->sc_flags & GEM_SERDES) {
1040 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1041 		    GEM_MII_DATAPATH_SERDES);
1042 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1043 		    GEM_MII_SLINK_LOOPBACK);
1044 	} else {
1045 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1046 		    GEM_MII_DATAPATH_SERIAL);
1047 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
1048 	}
1049 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1050 	v = bus_space_read_4(t, h, GEM_MII_ANAR);
1051 	v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
1052 	if (IFM_SUBTYPE(sc->sc_mii_media) == IFM_AUTO)
1053 		v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
1054 	else if ((IFM_OPTIONS(sc->sc_mii_media) & IFM_FDX) != 0) {
1055 		v |= GEM_MII_ANEG_FUL_DUPLX;
1056 		v &= ~GEM_MII_ANEG_HLF_DUPLX;
1057 	} else if ((IFM_OPTIONS(sc->sc_mii_media) & IFM_HDX) != 0) {
1058 		v &= ~GEM_MII_ANEG_FUL_DUPLX;
1059 		v |= GEM_MII_ANEG_HLF_DUPLX;
1060 	}
1061 
1062 	/* Configure link. */
1063 	bus_space_write_4(t, h, GEM_MII_ANAR, v);
1064 	bus_space_write_4(t, h, GEM_MII_CONTROL,
1065 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1066 	bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
1067 	gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
1068 
1069 	/* Start the 10 second timer */
1070 	callout_schedule(&sc->sc_tick_ch, hz * 10);
1071 }
1072 
1073 /*
1074  * Stop PCS
1075  */
1076 void
1077 gem_pcs_stop(struct gem_softc *sc, int disable)
1078 {
1079 	bus_space_tag_t t = sc->sc_bustag;
1080 	bus_space_handle_t h = sc->sc_h1;
1081 
1082 #ifdef GEM_DEBUG
1083 	aprint_debug_dev(sc->sc_dev, "gem_pcs_stop()\n");
1084 #endif
1085 
1086 	/* Tell link partner that we're going away */
1087 	bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
1088 
1089 	/*
1090 	 * Disable PCS MII.  The documentation suggests that setting
1091 	 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
1092 	 * negotiation will shut down the link.  However, it appears
1093 	 * that we also need to unset the datapath mode.
1094 	 */
1095 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1096 	bus_space_write_4(t, h, GEM_MII_CONTROL,
1097 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1098 	bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
1099 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1100 
1101 	if (disable) {
1102 		if (sc->sc_flags & GEM_SERDES)
1103 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1104 				GEM_MII_SLINK_POWER_OFF);
1105 		else
1106 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1107 			    GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
1108 	}
1109 
1110 	sc->sc_flags &= ~GEM_LINK;
1111 	sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
1112 	sc->sc_mii.mii_media_status = IFM_AVALID;
1113 }
1114 
1115 
1116 /*
1117  * Initialization of interface; set up initialization block
1118  * and transmit/receive descriptor rings.
1119  */
1120 int
1121 gem_init(struct ifnet *ifp)
1122 {
1123 	struct gem_softc *sc = ifp->if_softc;
1124 	bus_space_tag_t t = sc->sc_bustag;
1125 	bus_space_handle_t h = sc->sc_h1;
1126 	int rc = 0, s;
1127 	u_int max_frame_size;
1128 	uint32_t v;
1129 
1130 	s = splnet();
1131 
1132 	DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(sc->sc_dev)));
1133 	/*
1134 	 * Initialization sequence. The numbered steps below correspond
1135 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1136 	 * Channel Engine manual (part of the PCIO manual).
1137 	 * See also the STP2002-STQ document from Sun Microsystems.
1138 	 */
1139 
1140 	/* step 1 & 2. Reset the Ethernet Channel */
1141 	gem_stop(ifp, 0);
1142 	gem_reset(sc);
1143 	DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(sc->sc_dev)));
1144 
1145 	/* Re-initialize the MIF */
1146 	gem_mifinit(sc);
1147 
1148 	/* Set up correct datapath for non-SERDES/Serialink */
1149 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1150 	    sc->sc_variant != GEM_SUN_ERI)
1151 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1152 		    GEM_MII_DATAPATH_MII);
1153 
1154 	/* Call MI reset function if any */
1155 	if (sc->sc_hwreset)
1156 		(*sc->sc_hwreset)(sc);
1157 
1158 	/* step 3. Setup data structures in host memory */
1159 	if (gem_meminit(sc) != 0) {
1160 		splx(s);
1161 		return 1;
1162 	}
1163 
1164 	/* step 4. TX MAC registers & counters */
1165 	gem_init_regs(sc);
1166 	max_frame_size = uimax(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
1167 	max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
1168 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1169 		max_frame_size += ETHER_VLAN_ENCAP_LEN;
1170 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1171 	    max_frame_size|/* burst size */(0x2000<<16));
1172 
1173 	/* step 5. RX MAC registers & counters */
1174 	gem_setladrf(sc);
1175 
1176 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
1177 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI,
1178 	    ((uint64_t)GEM_CDTXADDR(sc, 0)) >> 32);
1179 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
1180 
1181 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI,
1182 	    ((uint64_t)GEM_CDRXADDR(sc, 0)) >> 32);
1183 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
1184 
1185 	/* step 8. Global Configuration & Interrupt Mask */
1186 	gem_inten(sc);
1187 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
1188 			GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
1189 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
1190 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
1191 	    GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
1192 
1193 	/* step 9. ETX Configuration: use mostly default values */
1194 
1195 	/* Enable TX DMA */
1196 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
1197 	bus_space_write_4(t, h, GEM_TX_CONFIG,
1198 	    v | GEM_TX_CONFIG_TXDMA_EN |
1199 	    (((sc->sc_flags & GEM_GIGABIT ? 0x4FF : 0x100) << 10) &
1200 	    GEM_TX_CONFIG_TXFIFO_TH));
1201 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
1202 
1203 	/* step 10. ERX Configuration */
1204 	gem_rx_common(sc);
1205 
1206 	/* step 11. Configure Media */
1207 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1208 	    (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
1209 		goto out;
1210 
1211 	/* step 12. RX_MAC Configuration Register */
1212 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1213 	v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
1214 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1215 
1216 	/* step 14. Issue Transmit Pending command */
1217 
1218 	/* Call MI initialization function if any */
1219 	if (sc->sc_hwinit)
1220 		(*sc->sc_hwinit)(sc);
1221 
1222 	/* step 15.  Give the receiver a swift kick */
1223 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
1224 
1225 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1226 		/* Configure PCS */
1227 		gem_pcs_start(sc);
1228 	else
1229 		/* Start the one second timer. */
1230 		callout_schedule(&sc->sc_tick_ch, hz);
1231 
1232 	sc->sc_flags &= ~GEM_LINK;
1233 	ifp->if_flags |= IFF_RUNNING;
1234 	ifp->if_timer = 0;
1235 	sc->sc_if_flags = ifp->if_flags;
1236 out:
1237 	splx(s);
1238 
1239 	return (0);
1240 }
1241 
1242 void
1243 gem_init_regs(struct gem_softc *sc)
1244 {
1245 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1246 	bus_space_tag_t t = sc->sc_bustag;
1247 	bus_space_handle_t h = sc->sc_h1;
1248 	const u_char *laddr = CLLADDR(ifp->if_sadl);
1249 	uint32_t v;
1250 
1251 	/* These regs are not cleared on reset */
1252 	if (!sc->sc_inited) {
1253 
1254 		/* Load recommended values */
1255 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
1256 		bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
1257 		bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
1258 
1259 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1260 		/* Max frame and max burst size */
1261 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1262 		    ETHER_MAX_LEN | (0x2000<<16));
1263 
1264 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
1265 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
1266 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1267 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1268 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1269 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1270 
1271 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
1272 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1273 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1274 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1275 
1276 		/* MAC control addr set to 01:80:c2:00:00:01 */
1277 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1278 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1279 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1280 
1281 		/* MAC filter addr set to 0:0:0:0:0:0 */
1282 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1283 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1284 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1285 
1286 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1287 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1288 
1289 		sc->sc_inited = 1;
1290 	}
1291 
1292 	/* Counters need to be zeroed */
1293 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1294 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1295 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1296 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1297 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1298 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1299 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1300 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1301 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1302 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1303 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1304 
1305 	/* Set XOFF PAUSE time. */
1306 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1307 
1308 	/*
1309 	 * Set the internal arbitration to "infinite" bursts of the
1310 	 * maximum length of 31 * 64 bytes so DMA transfers aren't
1311 	 * split up in cache line size chunks. This greatly improves
1312 	 * especially RX performance.
1313 	 * Enable silicon bug workarounds for the Apple variants.
1314 	 */
1315 	bus_space_write_4(t, h, GEM_CONFIG,
1316 	    GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
1317 	    ((sc->sc_flags & GEM_PCI) ?
1318 	    GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
1319 	    GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
1320 
1321 	/*
1322 	 * Set the station address.
1323 	 */
1324 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1325 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1326 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1327 
1328 	/*
1329 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
1330 	 */
1331 	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1332 	v = GEM_MAC_XIF_TX_MII_ENA;
1333 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
1334 		if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1335 			v |= GEM_MAC_XIF_FDPLX_LED;
1336 				if (sc->sc_flags & GEM_GIGABIT)
1337 					v |= GEM_MAC_XIF_GMII_MODE;
1338 		}
1339 	} else {
1340 		v |= GEM_MAC_XIF_GMII_MODE;
1341 	}
1342 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1343 }
1344 
1345 #ifdef GEM_DEBUG
1346 static void
1347 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
1348 {
1349 	int i;
1350 
1351 	for (i = firstdesc;; i = GEM_NEXTTX(i)) {
1352 		printf("descriptor %d:\t", i);
1353 		printf("gd_flags:   0x%016" PRIx64 "\t",
1354 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1355 		printf("gd_addr: 0x%016" PRIx64 "\n",
1356 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1357 		if (i == lastdesc)
1358 			break;
1359 	}
1360 }
1361 #endif
1362 
1363 static void
1364 gem_start(struct ifnet *ifp)
1365 {
1366 	struct gem_softc *sc = ifp->if_softc;
1367 	struct mbuf *m0, *m;
1368 	struct gem_txsoft *txs;
1369 	bus_dmamap_t dmamap;
1370 	int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
1371 #ifdef GEM_DEBUG
1372 	int otxnext;
1373 #endif
1374 	uint64_t flags = 0;
1375 
1376 	if ((ifp->if_flags & IFF_RUNNING) != IFF_RUNNING)
1377 		return;
1378 
1379 	/*
1380 	 * Remember the previous number of free descriptors and
1381 	 * the first descriptor we'll use.
1382 	 */
1383 	ofree = sc->sc_txfree;
1384 #ifdef GEM_DEBUG
1385 	otxnext = sc->sc_txnext;
1386 #endif
1387 
1388 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1389 	    device_xname(sc->sc_dev), ofree, otxnext));
1390 
1391 	/*
1392 	 * Loop through the send queue, setting up transmit descriptors
1393 	 * until we drain the queue, or use up all available transmit
1394 	 * descriptors.
1395 	 */
1396 #ifdef INET
1397 next:
1398 #endif
1399 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1400 	    sc->sc_txfree != 0) {
1401 		/*
1402 		 * Grab a packet off the queue.
1403 		 */
1404 		IFQ_POLL(&ifp->if_snd, m0);
1405 		if (m0 == NULL)
1406 			break;
1407 		m = NULL;
1408 
1409 		dmamap = txs->txs_dmamap;
1410 
1411 		/*
1412 		 * Load the DMA map.  If this fails, the packet either
1413 		 * didn't fit in the alloted number of segments, or we were
1414 		 * short on resources.  In this case, we'll copy and try
1415 		 * again.
1416 		 */
1417 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1418 		      BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0 ||
1419 		      (m0->m_pkthdr.len < ETHER_MIN_TX &&
1420 		       dmamap->dm_nsegs == GEM_NTXSEGS)) {
1421 			if (m0->m_pkthdr.len > MCLBYTES) {
1422 				aprint_error_dev(sc->sc_dev,
1423 				    "unable to allocate jumbo Tx cluster\n");
1424 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1425 				m_freem(m0);
1426 				continue;
1427 			}
1428 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1429 			if (m == NULL) {
1430 				aprint_error_dev(sc->sc_dev,
1431 				    "unable to allocate Tx mbuf\n");
1432 				break;
1433 			}
1434 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1435 			if (m0->m_pkthdr.len > MHLEN) {
1436 				MCLGET(m, M_DONTWAIT);
1437 				if ((m->m_flags & M_EXT) == 0) {
1438 					aprint_error_dev(sc->sc_dev,
1439 					    "unable to allocate Tx cluster\n");
1440 					m_freem(m);
1441 					break;
1442 				}
1443 			}
1444 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1445 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1446 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1447 			    m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1448 			if (error) {
1449 				aprint_error_dev(sc->sc_dev,
1450 				    "unable to load Tx buffer, error = %d\n",
1451 				    error);
1452 				break;
1453 			}
1454 		}
1455 
1456 		/*
1457 		 * Ensure we have enough descriptors free to describe
1458 		 * the packet.
1459 		 */
1460 		if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1461 		     (sc->sc_txfree - 1) : sc->sc_txfree)) {
1462 			/*
1463 			 * Not enough free descriptors to transmit this
1464 			 * packet.
1465 			 */
1466 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
1467 			if (m != NULL)
1468 				m_freem(m);
1469 			break;
1470 		}
1471 
1472 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1473 		if (m != NULL) {
1474 			m_freem(m0);
1475 			m0 = m;
1476 		}
1477 
1478 		/*
1479 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1480 		 */
1481 
1482 		/* Sync the DMA map. */
1483 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1484 		    BUS_DMASYNC_PREWRITE);
1485 
1486 		/*
1487 		 * Initialize the transmit descriptors.
1488 		 */
1489 		firsttx = sc->sc_txnext;
1490 		for (nexttx = firsttx, seg = 0;
1491 		     seg < dmamap->dm_nsegs;
1492 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
1493 
1494 			/*
1495 			 * If this is the first descriptor we're
1496 			 * enqueueing, set the start of packet flag,
1497 			 * and the checksum stuff if we want the hardware
1498 			 * to do it.
1499 			 */
1500 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1501 			if (nexttx == firsttx) {
1502 				flags |= GEM_TD_START_OF_PACKET;
1503 #ifdef INET
1504 				/* h/w checksum */
1505 				if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
1506 				    m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1507 					struct ether_header *eh;
1508 					uint16_t offset, start;
1509 
1510 					eh = mtod(m0, struct ether_header *);
1511 					switch (ntohs(eh->ether_type)) {
1512 					case ETHERTYPE_IP:
1513 						start = ETHER_HDR_LEN;
1514 						break;
1515 					case ETHERTYPE_VLAN:
1516 						start = ETHER_HDR_LEN +
1517 							ETHER_VLAN_ENCAP_LEN;
1518 						break;
1519 					default:
1520 						/* unsupported, drop it */
1521 						bus_dmamap_unload(sc->sc_dmatag,
1522 							dmamap);
1523 						m_freem(m0);
1524 						goto next;
1525 					}
1526 					start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1527 					offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1528 					flags |= (start <<
1529 						  GEM_TD_CXSUM_STARTSHFT) |
1530 						 (offset <<
1531 						  GEM_TD_CXSUM_STUFFSHFT) |
1532 						 GEM_TD_CXSUM_ENABLE;
1533 				}
1534 #endif
1535 				if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1536 					sc->sc_txwin = 0;
1537 					flags |= GEM_TD_INTERRUPT_ME;
1538 				}
1539 			}
1540 			sc->sc_txdescs[nexttx].gd_addr =
1541 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1542 			if (seg == dmamap->dm_nsegs - 1) {
1543 				flags |= GEM_TD_END_OF_PACKET;
1544 			} else {
1545 				/* last flag set outside of loop */
1546 				sc->sc_txdescs[nexttx].gd_flags =
1547 					GEM_DMA_WRITE(sc, flags);
1548 			}
1549 			lasttx = nexttx;
1550 		}
1551 		if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1552 			/* add padding buffer at end of chain */
1553 			flags &= ~GEM_TD_END_OF_PACKET;
1554 			sc->sc_txdescs[lasttx].gd_flags =
1555 			    GEM_DMA_WRITE(sc, flags);
1556 
1557 			sc->sc_txdescs[nexttx].gd_addr =
1558 			    GEM_DMA_WRITE(sc,
1559 			    sc->sc_nulldmamap->dm_segs[0].ds_addr);
1560 			flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1561 			    GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1562 			lasttx = nexttx;
1563 			nexttx = GEM_NEXTTX(nexttx);
1564 			seg++;
1565 		}
1566 		sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1567 
1568 		KASSERT(lasttx != -1);
1569 
1570 		/*
1571 		 * Store a pointer to the packet so we can free it later,
1572 		 * and remember what txdirty will be once the packet is
1573 		 * done.
1574 		 */
1575 		txs->txs_mbuf = m0;
1576 		txs->txs_firstdesc = sc->sc_txnext;
1577 		txs->txs_lastdesc = lasttx;
1578 		txs->txs_ndescs = seg;
1579 
1580 #ifdef GEM_DEBUG
1581 		if (ifp->if_flags & IFF_DEBUG) {
1582 			printf("     gem_start %p transmit chain:\n", txs);
1583 			gem_txsoft_print(sc, txs->txs_firstdesc,
1584 			    txs->txs_lastdesc);
1585 		}
1586 #endif
1587 
1588 		/* Sync the descriptors we're using. */
1589 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1590 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1591 
1592 		/* Advance the tx pointer. */
1593 		sc->sc_txfree -= txs->txs_ndescs;
1594 		sc->sc_txnext = nexttx;
1595 
1596 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1597 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1598 
1599 		/*
1600 		 * Pass the packet to any BPF listeners.
1601 		 */
1602 		bpf_mtap(ifp, m0, BPF_D_OUT);
1603 	}
1604 
1605 	if (sc->sc_txfree != ofree) {
1606 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1607 		    device_xname(sc->sc_dev), lasttx, otxnext));
1608 		/*
1609 		 * The entire packet chain is set up.
1610 		 * Kick the transmitter.
1611 		 */
1612 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1613 			device_xname(sc->sc_dev), nexttx));
1614 		bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
1615 			sc->sc_txnext);
1616 
1617 		/* Set a watchdog timer in case the chip flakes out. */
1618 		ifp->if_timer = 5;
1619 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1620 			device_xname(sc->sc_dev), ifp->if_timer));
1621 	}
1622 }
1623 
1624 /*
1625  * Transmit interrupt.
1626  */
1627 int
1628 gem_tint(struct gem_softc *sc)
1629 {
1630 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1631 	bus_space_tag_t t = sc->sc_bustag;
1632 	bus_space_handle_t mac = sc->sc_h1;
1633 	struct gem_txsoft *txs;
1634 	int txlast;
1635 	int progress = 0;
1636 	uint32_t v;
1637 
1638 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1639 
1640 	DPRINTF(sc, ("%s: gem_tint\n", device_xname(sc->sc_dev)));
1641 
1642 	/* Unload collision counters ... */
1643 	v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1644 	    bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1645 	if_statadd_ref(nsr, if_collisions, v +
1646 	    bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1647 	    bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT));
1648 	if_statadd_ref(nsr, if_oerrors, v);
1649 
1650 	/* ... then clear the hardware counters. */
1651 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1652 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1653 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1654 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1655 
1656 	/*
1657 	 * Go through our Tx list and free mbufs for those
1658 	 * frames that have been transmitted.
1659 	 */
1660 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1661 		/*
1662 		 * In theory, we could harvest some descriptors before
1663 		 * the ring is empty, but that's a bit complicated.
1664 		 *
1665 		 * GEM_TX_COMPLETION points to the last descriptor
1666 		 * processed +1.
1667 		 *
1668 		 * Let's assume that the NIC writes back to the Tx
1669 		 * descriptors before it updates the completion
1670 		 * register.  If the NIC has posted writes to the
1671 		 * Tx descriptors, PCI ordering requires that the
1672 		 * posted writes flush to RAM before the register-read
1673 		 * finishes.  So let's read the completion register,
1674 		 * before syncing the descriptors, so that we
1675 		 * examine Tx descriptors that are at least as
1676 		 * current as the completion register.
1677 		 */
1678 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1679 		DPRINTF(sc,
1680 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1681 				txs->txs_lastdesc, txlast));
1682 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1683 			if (txlast >= txs->txs_firstdesc &&
1684 			    txlast <= txs->txs_lastdesc)
1685 				break;
1686 		} else if (txlast >= txs->txs_firstdesc ||
1687 			   txlast <= txs->txs_lastdesc)
1688 			break;
1689 
1690 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1691 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1692 
1693 #ifdef GEM_DEBUG	/* XXX DMA synchronization? */
1694 		if (ifp->if_flags & IFF_DEBUG) {
1695 			printf("    txsoft %p transmit chain:\n", txs);
1696 			gem_txsoft_print(sc, txs->txs_firstdesc,
1697 			    txs->txs_lastdesc);
1698 		}
1699 #endif
1700 
1701 
1702 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1703 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1704 
1705 		sc->sc_txfree += txs->txs_ndescs;
1706 
1707 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1708 		    0, txs->txs_dmamap->dm_mapsize,
1709 		    BUS_DMASYNC_POSTWRITE);
1710 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1711 		if (txs->txs_mbuf != NULL) {
1712 			m_freem(txs->txs_mbuf);
1713 			txs->txs_mbuf = NULL;
1714 		}
1715 
1716 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1717 
1718 		if_statinc_ref(nsr, if_opackets);
1719 		progress = 1;
1720 	}
1721 
1722 	IF_STAT_PUTREF(ifp);
1723 
1724 #if 0
1725 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1726 		"GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
1727 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
1728 		((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1729 			GEM_TX_DATA_PTR_HI) << 32) |
1730 			     bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1731 			GEM_TX_DATA_PTR_LO),
1732 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
1733 #endif
1734 
1735 	if (progress) {
1736 		if (sc->sc_txfree == GEM_NTXDESC - 1)
1737 			sc->sc_txwin = 0;
1738 
1739 		ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
1740 		if_schedule_deferred_start(ifp);
1741 	}
1742 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1743 		device_xname(sc->sc_dev), ifp->if_timer));
1744 
1745 	return (1);
1746 }
1747 
1748 /*
1749  * Receive interrupt.
1750  */
1751 int
1752 gem_rint(struct gem_softc *sc)
1753 {
1754 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1755 	bus_space_tag_t t = sc->sc_bustag;
1756 	bus_space_handle_t h = sc->sc_h1;
1757 	struct gem_rxsoft *rxs;
1758 	struct mbuf *m;
1759 	uint64_t rxstat;
1760 	uint32_t rxcomp;
1761 	int i, len, progress = 0;
1762 
1763 	DPRINTF(sc, ("%s: gem_rint\n", device_xname(sc->sc_dev)));
1764 
1765 	/*
1766 	 * Ignore spurious interrupt that sometimes occurs before
1767 	 * we are set up when we network boot.
1768 	 */
1769 	if (!sc->sc_meminited)
1770 		return 1;
1771 
1772 	/*
1773 	 * Read the completion register once.  This limits
1774 	 * how long the following loop can execute.
1775 	 */
1776 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1777 
1778 	/*
1779 	 * XXX Read the lastrx only once at the top for speed.
1780 	 */
1781 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1782 		sc->sc_rxptr, rxcomp));
1783 
1784 	/*
1785 	 * Go into the loop at least once.
1786 	 */
1787 	for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1788 	     i = GEM_NEXTRX(i)) {
1789 		rxs = &sc->sc_rxsoft[i];
1790 
1791 		GEM_CDRXSYNC(sc, i,
1792 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1793 
1794 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1795 
1796 		if (rxstat & GEM_RD_OWN) {
1797 			GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1798 			/*
1799 			 * We have processed all of the receive buffers.
1800 			 */
1801 			break;
1802 		}
1803 
1804 		progress++;
1805 
1806 		if (rxstat & GEM_RD_BAD_CRC) {
1807 			if_statinc(ifp, if_ierrors);
1808 			DPRINTF(sc, ("%s: receive error: CRC error\n",
1809 			    device_xname(sc->sc_dev)));
1810 			GEM_INIT_RXDESC(sc, i);
1811 			continue;
1812 		}
1813 
1814 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1815 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1816 #ifdef GEM_DEBUG
1817 		if (ifp->if_flags & IFF_DEBUG) {
1818 			printf("    rxsoft %p descriptor %d: ", rxs, i);
1819 			printf("gd_flags: 0x%016llx\t", (long long)
1820 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1821 			printf("gd_addr: 0x%016llx\n", (long long)
1822 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1823 		}
1824 #endif
1825 
1826 		/* No errors; receive the packet. */
1827 		len = GEM_RD_BUFLEN(rxstat);
1828 
1829 		/*
1830 		 * Allocate a new mbuf cluster.  If that fails, we are
1831 		 * out of memory, and must drop the packet and recycle
1832 		 * the buffer that's already attached to this descriptor.
1833 		 */
1834 		m = rxs->rxs_mbuf;
1835 		if (gem_add_rxbuf(sc, i) != 0) {
1836 			GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1837 			if_statinc(ifp, if_ierrors);
1838 			aprint_error_dev(sc->sc_dev,
1839 			    "receive error: RX no buffer space\n");
1840 			GEM_INIT_RXDESC(sc, i);
1841 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1842 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1843 			continue;
1844 		}
1845 		m->m_data += 2; /* We're already off by two */
1846 
1847 		m_set_rcvif(m, ifp);
1848 		m->m_pkthdr.len = m->m_len = len;
1849 
1850 #ifdef INET
1851 		/* hardware checksum */
1852 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1853 			struct ether_header *eh;
1854 			struct ip *ip;
1855 			int32_t hlen, pktlen;
1856 
1857 			if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1858 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1859 					 ETHER_VLAN_ENCAP_LEN;
1860 				eh = (struct ether_header *) (mtod(m, char *) +
1861 					ETHER_VLAN_ENCAP_LEN);
1862 			} else {
1863 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1864 				eh = mtod(m, struct ether_header *);
1865 			}
1866 			if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1867 				goto swcsum;
1868 			ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
1869 
1870 			/* IPv4 only */
1871 			if (ip->ip_v != IPVERSION)
1872 				goto swcsum;
1873 
1874 			hlen = ip->ip_hl << 2;
1875 			if (hlen < sizeof(struct ip))
1876 				goto swcsum;
1877 
1878 			/*
1879 			 * bail if too short, has random trailing garbage,
1880 			 * truncated, fragment, or has ethernet pad.
1881 			 */
1882 			if ((ntohs(ip->ip_len) < hlen) ||
1883 			    (ntohs(ip->ip_len) != pktlen) ||
1884 			    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1885 				goto swcsum;
1886 
1887 			switch (ip->ip_p) {
1888 			case IPPROTO_TCP:
1889 				if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1890 					goto swcsum;
1891 				if (pktlen < (hlen + sizeof(struct tcphdr)))
1892 					goto swcsum;
1893 				m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1894 				break;
1895 			case IPPROTO_UDP:
1896 				/* FALLTHROUGH */
1897 			default:
1898 				goto swcsum;
1899 			}
1900 
1901 			/* the uncomplemented sum is expected */
1902 			m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1903 
1904 			/* if the pkt had ip options, we have to deduct them */
1905 			if (hlen > sizeof(struct ip)) {
1906 				uint16_t *opts;
1907 				uint32_t optsum, temp;
1908 
1909 				optsum = 0;
1910 				temp = hlen - sizeof(struct ip);
1911 				opts = (uint16_t *) ((char *) ip +
1912 					sizeof(struct ip));
1913 
1914 				while (temp > 1) {
1915 					optsum += ntohs(*opts++);
1916 					temp -= 2;
1917 				}
1918 				while (optsum >> 16)
1919 					optsum = (optsum >> 16) +
1920 						 (optsum & 0xffff);
1921 
1922 				/* Deduct ip opts sum from hwsum. */
1923 				m->m_pkthdr.csum_data += (uint16_t)~optsum;
1924 
1925 				while (m->m_pkthdr.csum_data >> 16)
1926 					m->m_pkthdr.csum_data =
1927 						(m->m_pkthdr.csum_data >> 16) +
1928 						(m->m_pkthdr.csum_data &
1929 						 0xffff);
1930 			}
1931 
1932 			m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1933 						  M_CSUM_NO_PSEUDOHDR;
1934 		} else
1935 swcsum:
1936 			m->m_pkthdr.csum_flags = 0;
1937 #endif
1938 		/* Pass it on. */
1939 		if_percpuq_enqueue(ifp->if_percpuq, m);
1940 	}
1941 
1942 	if (progress) {
1943 		/* Update the receive pointer. */
1944 		if (i == sc->sc_rxptr) {
1945 			GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1946 #ifdef GEM_DEBUG
1947 			if (ifp->if_flags & IFF_DEBUG)
1948 				printf("%s: rint: ring wrap\n",
1949 				    device_xname(sc->sc_dev));
1950 #endif
1951 		}
1952 		sc->sc_rxptr = i;
1953 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1954 	}
1955 #ifdef GEM_COUNTERS
1956 	if (progress <= 4) {
1957 		GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1958 	} else if (progress < 32) {
1959 		if (progress < 16)
1960 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1961 		else
1962 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1963 
1964 	} else {
1965 		if (progress < 64)
1966 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1967 		else
1968 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1969 	}
1970 #endif
1971 
1972 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1973 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1974 
1975 	/* Read error counters ... */
1976 	if_statadd(ifp, if_ierrors,
1977 	    bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
1978 	    bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
1979 	    bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
1980 	    bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL));
1981 
1982 	/* ... then clear the hardware counters. */
1983 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1984 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1985 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1986 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1987 
1988 	return (1);
1989 }
1990 
1991 
1992 /*
1993  * gem_add_rxbuf:
1994  *
1995  *	Add a receive buffer to the indicated descriptor.
1996  */
1997 int
1998 gem_add_rxbuf(struct gem_softc *sc, int idx)
1999 {
2000 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
2001 	struct mbuf *m;
2002 	int error;
2003 
2004 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2005 	if (m == NULL)
2006 		return (ENOBUFS);
2007 
2008 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2009 	MCLGET(m, M_DONTWAIT);
2010 	if ((m->m_flags & M_EXT) == 0) {
2011 		m_freem(m);
2012 		return (ENOBUFS);
2013 	}
2014 
2015 #ifdef GEM_DEBUG
2016 /* bzero the packet to check DMA */
2017 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
2018 #endif
2019 
2020 	if (rxs->rxs_mbuf != NULL)
2021 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
2022 
2023 	rxs->rxs_mbuf = m;
2024 
2025 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
2026 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2027 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
2028 	if (error) {
2029 		aprint_error_dev(sc->sc_dev,
2030 		    "can't load rx DMA map %d, error = %d\n", idx, error);
2031 		panic("gem_add_rxbuf");	/* XXX */
2032 	}
2033 
2034 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
2035 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2036 
2037 	GEM_INIT_RXDESC(sc, idx);
2038 
2039 	return (0);
2040 }
2041 
2042 
2043 int
2044 gem_eint(struct gem_softc *sc, u_int status)
2045 {
2046 	char bits[128];
2047 	uint32_t r, v;
2048 
2049 	if ((status & GEM_INTR_MIF) != 0) {
2050 		printf("%s: XXXlink status changed\n", device_xname(sc->sc_dev));
2051 		return (1);
2052 	}
2053 
2054 	if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
2055 		gem_reset_rxdma(sc);
2056 		return (1);
2057 	}
2058 
2059 	if (status & GEM_INTR_BERR) {
2060 		if (sc->sc_flags & GEM_PCI)
2061 			r = GEM_ERROR_STATUS;
2062 		else
2063 			r = GEM_SBUS_ERROR_STATUS;
2064 		bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2065 		v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2066 		aprint_error_dev(sc->sc_dev, "bus error interrupt: 0x%02x\n",
2067 		    v);
2068 		return (1);
2069 	}
2070 	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2071 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
2072 
2073 	return (1);
2074 }
2075 
2076 
2077 /*
2078  * PCS interrupts.
2079  * We should receive these when the link status changes, but sometimes
2080  * we don't receive them for link up.  We compensate for this in the
2081  * gem_tick() callout.
2082  */
2083 int
2084 gem_pint(struct gem_softc *sc)
2085 {
2086 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2087 	bus_space_tag_t t = sc->sc_bustag;
2088 	bus_space_handle_t h = sc->sc_h1;
2089 	uint32_t v, v2;
2090 
2091 	/*
2092 	 * Clear the PCS interrupt from GEM_STATUS.  The PCS register is
2093 	 * latched, so we have to read it twice.  There is only one bit in
2094 	 * use, so the value is meaningless.
2095 	 */
2096 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2097 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2098 
2099 	if ((ifp->if_flags & IFF_UP) == 0)
2100 		return 1;
2101 
2102 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
2103 		return 1;
2104 
2105 	v = bus_space_read_4(t, h, GEM_MII_STATUS);
2106 	/* If we see remote fault, our link partner is probably going away */
2107 	if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
2108 		gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
2109 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
2110 	/* Otherwise, we may need to wait after auto-negotiation completes */
2111 	} else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
2112 	    GEM_MII_STATUS_ANEG_CPT) {
2113 		gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
2114 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
2115 	}
2116 	if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
2117 		if (sc->sc_flags & GEM_LINK) {
2118 			return 1;
2119 		}
2120 		callout_stop(&sc->sc_tick_ch);
2121 		v = bus_space_read_4(t, h, GEM_MII_ANAR);
2122 		v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
2123 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
2124 		sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
2125 		v &= v2;
2126 		if (v & GEM_MII_ANEG_FUL_DUPLX) {
2127 			sc->sc_mii.mii_media_active |= IFM_FDX;
2128 #ifdef GEM_DEBUG
2129 			aprint_debug_dev(sc->sc_dev, "link up: full duplex\n");
2130 #endif
2131 		} else if (v & GEM_MII_ANEG_HLF_DUPLX) {
2132 			sc->sc_mii.mii_media_active |= IFM_HDX;
2133 #ifdef GEM_DEBUG
2134 			aprint_debug_dev(sc->sc_dev, "link up: half duplex\n");
2135 #endif
2136 		} else {
2137 #ifdef GEM_DEBUG
2138 			aprint_debug_dev(sc->sc_dev, "duplex mismatch\n");
2139 #endif
2140 		}
2141 		gem_statuschange(sc);
2142 	} else {
2143 		if ((sc->sc_flags & GEM_LINK) == 0) {
2144 			return 1;
2145 		}
2146 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
2147 		sc->sc_mii.mii_media_status = IFM_AVALID;
2148 #ifdef GEM_DEBUG
2149 			aprint_debug_dev(sc->sc_dev, "link down\n");
2150 #endif
2151 		gem_statuschange(sc);
2152 
2153 		/* Start the 10 second timer */
2154 		callout_schedule(&sc->sc_tick_ch, hz * 10);
2155 	}
2156 	return 1;
2157 }
2158 
2159 
2160 
2161 int
2162 gem_intr(void *v)
2163 {
2164 	struct gem_softc *sc = v;
2165 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2166 	bus_space_tag_t t = sc->sc_bustag;
2167 	bus_space_handle_t h = sc->sc_h1;
2168 	uint32_t status;
2169 	int r = 0;
2170 #ifdef GEM_DEBUG
2171 	char bits[128];
2172 #endif
2173 
2174 	/* XXX We should probably mask out interrupts until we're done */
2175 
2176 	sc->sc_ev_intr.ev_count++;
2177 
2178 	status = bus_space_read_4(t, h, GEM_STATUS);
2179 #ifdef GEM_DEBUG
2180 	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2181 #endif
2182 	DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
2183 		device_xname(sc->sc_dev), (status >> 19), bits));
2184 
2185 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
2186 		r |= gem_eint(sc, status);
2187 
2188 	/* We don't bother with GEM_INTR_TX_DONE */
2189 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
2190 		GEM_COUNTER_INCR(sc, sc_ev_txint);
2191 		r |= gem_tint(sc);
2192 	}
2193 
2194 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
2195 		GEM_COUNTER_INCR(sc, sc_ev_rxint);
2196 		r |= gem_rint(sc);
2197 	}
2198 
2199 	/* We should eventually do more than just print out error stats. */
2200 	if (status & GEM_INTR_TX_MAC) {
2201 		int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
2202 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
2203 			printf("%s: MAC tx fault, status %x\n",
2204 			    device_xname(sc->sc_dev), txstat);
2205 		if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
2206 			gem_init(ifp);
2207 	}
2208 	if (status & GEM_INTR_RX_MAC) {
2209 		int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
2210 		/*
2211 		 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
2212 		 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
2213 		 * silicon bug so handle them silently.  So if we detect
2214 		 * an RX FIFO overflow, we fire off a timer, and check
2215 		 * whether we're still making progress by looking at the
2216 		 * RX FIFO write and read pointers.
2217 		 */
2218 		if (rxstat & GEM_MAC_RX_OVERFLOW) {
2219 			if_statinc(ifp, if_ierrors);
2220 			GEM_COUNTER_INCR(sc, sc_ev_rxoverflow);
2221 #ifdef GEM_DEBUG
2222 			aprint_error_dev(sc->sc_dev,
2223 			    "receive error: RX overflow sc->rxptr %d, complete %d\n", sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION));
2224 #endif
2225 			sc->sc_rx_fifo_wr_ptr =
2226 				bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2227 			sc->sc_rx_fifo_rd_ptr =
2228 				bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2229 			callout_schedule(&sc->sc_rx_watchdog, 400);
2230 		} else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
2231 			printf("%s: MAC rx fault, status 0x%02x\n",
2232 			    device_xname(sc->sc_dev), rxstat);
2233 	}
2234 	if (status & GEM_INTR_PCS) {
2235 		r |= gem_pint(sc);
2236 	}
2237 
2238 /* Do we need to do anything with these?
2239 	if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
2240 		status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
2241 		if ((status2 & GEM_MAC_PAUSED) != 0)
2242 			aprintf_debug_dev(sc->sc_dev, "PAUSE received (%d slots)\n",
2243 			    GEM_MAC_PAUSE_TIME(status2));
2244 		if ((status2 & GEM_MAC_PAUSE) != 0)
2245 			aprintf_debug_dev(sc->sc_dev, "transited to PAUSE state\n");
2246 		if ((status2 & GEM_MAC_RESUME) != 0)
2247 			aprintf_debug_dev(sc->sc_dev, "transited to non-PAUSE state\n");
2248 	}
2249 	if ((status & GEM_INTR_MIF) != 0)
2250 		aprintf_debug_dev(sc->sc_dev, "MIF interrupt\n");
2251 */
2252 	rnd_add_uint32(&sc->rnd_source, status);
2253 	return (r);
2254 }
2255 
2256 void
2257 gem_rx_watchdog(void *arg)
2258 {
2259 	struct gem_softc *sc = arg;
2260 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2261 	bus_space_tag_t t = sc->sc_bustag;
2262 	bus_space_handle_t h = sc->sc_h1;
2263 	uint32_t rx_fifo_wr_ptr;
2264 	uint32_t rx_fifo_rd_ptr;
2265 	uint32_t state;
2266 
2267 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
2268 		aprint_error_dev(sc->sc_dev, "receiver not running\n");
2269 		return;
2270 	}
2271 
2272 	rx_fifo_wr_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2273 	rx_fifo_rd_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2274 	state = bus_space_read_4(t, h, GEM_MAC_MAC_STATE);
2275 	if ((state & GEM_MAC_STATE_OVERFLOW) == GEM_MAC_STATE_OVERFLOW &&
2276 	    ((rx_fifo_wr_ptr == rx_fifo_rd_ptr) ||
2277 	     ((sc->sc_rx_fifo_wr_ptr == rx_fifo_wr_ptr) &&
2278 	      (sc->sc_rx_fifo_rd_ptr == rx_fifo_rd_ptr))))
2279 	{
2280 		/*
2281 		 * The RX state machine is still in overflow state and
2282 		 * the RX FIFO write and read pointers seem to be
2283 		 * stuck.  Whack the chip over the head to get things
2284 		 * going again.
2285 		 */
2286 		aprint_error_dev(sc->sc_dev,
2287 		    "receiver stuck in overflow, resetting\n");
2288 		gem_init(ifp);
2289 	} else {
2290 		int needreset = 1;
2291 		if ((state & GEM_MAC_STATE_OVERFLOW) != GEM_MAC_STATE_OVERFLOW) {
2292 			DPRINTF(sc,
2293 			    ("%s: rx_watchdog: not in overflow state: 0x%x\n",
2294 			    device_xname(sc->sc_dev), state));
2295 		}
2296 		if (rx_fifo_wr_ptr != rx_fifo_rd_ptr) {
2297 			DPRINTF(sc,
2298 			    ("%s: rx_watchdog: wr & rd ptr different\n",
2299 			    device_xname(sc->sc_dev)));
2300 			needreset = 0;
2301 		}
2302 		if (sc->sc_rx_fifo_wr_ptr != rx_fifo_wr_ptr) {
2303 			DPRINTF(sc, ("%s: rx_watchdog: wr pointer != saved\n",
2304 			    device_xname(sc->sc_dev)));
2305 			needreset = 0;
2306 		}
2307 		if (sc->sc_rx_fifo_rd_ptr != rx_fifo_rd_ptr) {
2308 			DPRINTF(sc, ("%s: rx_watchdog: rd pointer != saved\n",
2309 			    device_xname(sc->sc_dev)));
2310 			needreset = 0;
2311 		}
2312 		if (needreset) {
2313 			aprint_error_dev(sc->sc_dev,
2314 			    "rx_watchdog: resetting anyway\n");
2315 			gem_init(ifp);
2316 		}
2317 	}
2318 }
2319 
2320 void
2321 gem_watchdog(struct ifnet *ifp)
2322 {
2323 	struct gem_softc *sc = ifp->if_softc;
2324 
2325 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
2326 		"GEM_MAC_RX_CONFIG %x\n",
2327 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
2328 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
2329 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
2330 
2331 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
2332 	if_statinc(ifp, if_oerrors);
2333 
2334 	/* Try to get more packets going. */
2335 	gem_init(ifp);
2336 	gem_start(ifp);
2337 }
2338 
2339 /*
2340  * Initialize the MII Management Interface
2341  */
2342 void
2343 gem_mifinit(struct gem_softc *sc)
2344 {
2345 	bus_space_tag_t t = sc->sc_bustag;
2346 	bus_space_handle_t mif = sc->sc_h1;
2347 
2348 	/* Configure the MIF in frame mode */
2349 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
2350 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
2351 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
2352 }
2353 
2354 /*
2355  * MII interface
2356  *
2357  * The GEM MII interface supports at least three different operating modes:
2358  *
2359  * Bitbang mode is implemented using data, clock and output enable registers.
2360  *
2361  * Frame mode is implemented by loading a complete frame into the frame
2362  * register and polling the valid bit for completion.
2363  *
2364  * Polling mode uses the frame register but completion is indicated by
2365  * an interrupt.
2366  *
2367  */
2368 static int
2369 gem_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
2370 {
2371 	struct gem_softc *sc = device_private(self);
2372 	bus_space_tag_t t = sc->sc_bustag;
2373 	bus_space_handle_t mif = sc->sc_h1;
2374 	int n;
2375 	uint32_t v;
2376 
2377 #ifdef GEM_DEBUG1
2378 	if (sc->sc_debug)
2379 		printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
2380 #endif
2381 
2382 	/* Construct the frame command */
2383 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
2384 		GEM_MIF_FRAME_READ;
2385 
2386 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2387 	for (n = 0; n < 100; n++) {
2388 		DELAY(1);
2389 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2390 		if (v & GEM_MIF_FRAME_TA0) {
2391 			*val = v & GEM_MIF_FRAME_DATA;
2392 			return 0;
2393 		}
2394 	}
2395 
2396 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
2397 	return ETIMEDOUT;
2398 }
2399 
2400 static int
2401 gem_mii_writereg(device_t self, int phy, int reg, uint16_t val)
2402 {
2403 	struct gem_softc *sc = device_private(self);
2404 	bus_space_tag_t t = sc->sc_bustag;
2405 	bus_space_handle_t mif = sc->sc_h1;
2406 	int n;
2407 	uint32_t v;
2408 
2409 #ifdef GEM_DEBUG1
2410 	if (sc->sc_debug)
2411 		printf("gem_mii_writereg: PHY %d reg %d val %x\n",
2412 			phy, reg, val);
2413 #endif
2414 
2415 	/* Construct the frame command */
2416 	v = GEM_MIF_FRAME_WRITE			|
2417 	    (phy << GEM_MIF_PHY_SHIFT)		|
2418 	    (reg << GEM_MIF_REG_SHIFT)		|
2419 	    (val & GEM_MIF_FRAME_DATA);
2420 
2421 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2422 	for (n = 0; n < 100; n++) {
2423 		DELAY(1);
2424 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2425 		if (v & GEM_MIF_FRAME_TA0)
2426 			return 0;
2427 	}
2428 
2429 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
2430 	return ETIMEDOUT;
2431 }
2432 
2433 static void
2434 gem_mii_statchg(struct ifnet *ifp)
2435 {
2436 	struct gem_softc *sc = ifp->if_softc;
2437 #ifdef GEM_DEBUG
2438 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
2439 #endif
2440 
2441 #ifdef GEM_DEBUG
2442 	if (sc->sc_debug)
2443 		printf("gem_mii_statchg: status change: phy = %d\n",
2444 			sc->sc_phys[instance]);
2445 #endif
2446 	gem_statuschange(sc);
2447 }
2448 
2449 /*
2450  * Common status change for gem_mii_statchg() and gem_pint()
2451  */
2452 void
2453 gem_statuschange(struct gem_softc* sc)
2454 {
2455 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2456 	bus_space_tag_t t = sc->sc_bustag;
2457 	bus_space_handle_t mac = sc->sc_h1;
2458 	int gigabit;
2459 	uint32_t rxcfg, txcfg, v;
2460 
2461 	if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
2462 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
2463 		sc->sc_flags |= GEM_LINK;
2464 	else
2465 		sc->sc_flags &= ~GEM_LINK;
2466 
2467 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2468 		gigabit = 1;
2469 	else
2470 		gigabit = 0;
2471 
2472 	/*
2473 	 * The configuration done here corresponds to the steps F) and
2474 	 * G) and as far as enabling of RX and TX MAC goes also step H)
2475 	 * of the initialization sequence outlined in section 3.2.1 of
2476 	 * the GEM Gigabit Ethernet ASIC Specification.
2477 	 */
2478 
2479 	rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
2480 	rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
2481 	txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
2482 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2483 		txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
2484 	else if (gigabit) {
2485 		rxcfg |= GEM_MAC_RX_CARR_EXTEND;
2486 		txcfg |= GEM_MAC_RX_CARR_EXTEND;
2487 	}
2488 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
2489 	bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
2490 	    BUS_SPACE_BARRIER_WRITE);
2491 	if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
2492 		aprint_normal_dev(sc->sc_dev, "cannot disable TX MAC\n");
2493 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
2494 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
2495 	bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
2496 	    BUS_SPACE_BARRIER_WRITE);
2497 	if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
2498 		aprint_normal_dev(sc->sc_dev, "cannot disable RX MAC\n");
2499 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
2500 
2501 	v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
2502 	    ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
2503 	bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
2504 
2505 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
2506 	    gigabit != 0)
2507 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2508 		    GEM_MAC_SLOT_TIME_CARR_EXTEND);
2509 	else
2510 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2511 		    GEM_MAC_SLOT_TIME_NORMAL);
2512 
2513 	/* XIF Configuration */
2514 	if (sc->sc_flags & GEM_LINK)
2515 		v = GEM_MAC_XIF_LINK_LED;
2516 	else
2517 		v = 0;
2518 	v |= GEM_MAC_XIF_TX_MII_ENA;
2519 
2520 	/* If an external transceiver is connected, enable its MII drivers */
2521 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
2522 	if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
2523 		if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
2524 			if (gigabit)
2525 				v |= GEM_MAC_XIF_GMII_MODE;
2526 			else
2527 				v &= ~GEM_MAC_XIF_GMII_MODE;
2528 		} else
2529 			/* Internal MII needs buf enable */
2530 			v |= GEM_MAC_XIF_MII_BUF_ENA;
2531 		/* MII needs echo disable if half duplex. */
2532 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2533 			/* turn on full duplex LED */
2534 			v |= GEM_MAC_XIF_FDPLX_LED;
2535 		else
2536 			/* half duplex -- disable echo */
2537 			v |= GEM_MAC_XIF_ECHO_DISABL;
2538 	} else {
2539 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2540 			v |= GEM_MAC_XIF_FDPLX_LED;
2541 		v |= GEM_MAC_XIF_GMII_MODE;
2542 	}
2543 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
2544 
2545 	if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2546 	    (sc->sc_flags & GEM_LINK) != 0) {
2547 		bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
2548 		    txcfg | GEM_MAC_TX_ENABLE);
2549 		bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
2550 		    rxcfg | GEM_MAC_RX_ENABLE);
2551 	}
2552 }
2553 
2554 int
2555 gem_ser_mediachange(struct ifnet *ifp)
2556 {
2557 	struct gem_softc *sc = ifp->if_softc;
2558 	u_int s, t;
2559 
2560 	if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
2561 		return EINVAL;
2562 
2563 	s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
2564 	if (s == IFM_AUTO) {
2565 		if (sc->sc_mii_media != s) {
2566 #ifdef GEM_DEBUG
2567 			aprint_debug_dev(sc->sc_dev, "setting media to auto\n");
2568 #endif
2569 			sc->sc_mii_media = s;
2570 			if (ifp->if_flags & IFF_UP) {
2571 				gem_pcs_stop(sc, 0);
2572 				gem_pcs_start(sc);
2573 			}
2574 		}
2575 		return 0;
2576 	}
2577 	if (s == IFM_1000_SX) {
2578 		t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media)
2579 		    & (IFM_FDX | IFM_HDX);
2580 		if ((sc->sc_mii_media & (IFM_FDX | IFM_HDX)) != t) {
2581 			sc->sc_mii_media &= ~(IFM_FDX | IFM_HDX);
2582 			sc->sc_mii_media |= t;
2583 #ifdef GEM_DEBUG
2584 			aprint_debug_dev(sc->sc_dev,
2585 			    "setting media to 1000baseSX-%s\n",
2586 			    t == IFM_FDX ? "FDX" : "HDX");
2587 #endif
2588 			if (ifp->if_flags & IFF_UP) {
2589 				gem_pcs_stop(sc, 0);
2590 				gem_pcs_start(sc);
2591 			}
2592 		}
2593 		return 0;
2594 	}
2595 	return EINVAL;
2596 }
2597 
2598 void
2599 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2600 {
2601 	struct gem_softc *sc = ifp->if_softc;
2602 
2603 	if ((ifp->if_flags & IFF_UP) == 0)
2604 		return;
2605 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
2606 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
2607 }
2608 
2609 static int
2610 gem_ifflags_cb(struct ethercom *ec)
2611 {
2612 	struct ifnet *ifp = &ec->ec_if;
2613 	struct gem_softc *sc = ifp->if_softc;
2614 	u_short change = ifp->if_flags ^ sc->sc_if_flags;
2615 
2616 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
2617 		return ENETRESET;
2618 	else if ((change & IFF_PROMISC) != 0)
2619 		gem_setladrf(sc);
2620 	return 0;
2621 }
2622 
2623 /*
2624  * Process an ioctl request.
2625  */
2626 int
2627 gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
2628 {
2629 	struct gem_softc *sc = ifp->if_softc;
2630 	int s, error = 0;
2631 
2632 	s = splnet();
2633 
2634 	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2635 		error = 0;
2636 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2637 			;
2638 		else if (ifp->if_flags & IFF_RUNNING) {
2639 			/*
2640 			 * Multicast list has changed; set the hardware filter
2641 			 * accordingly.
2642 			 */
2643 			gem_setladrf(sc);
2644 		}
2645 	}
2646 
2647 	/* Try to get things going again */
2648 	if (ifp->if_flags & IFF_UP)
2649 		gem_start(ifp);
2650 	splx(s);
2651 	return (error);
2652 }
2653 
2654 static void
2655 gem_inten(struct gem_softc *sc)
2656 {
2657 	bus_space_tag_t t = sc->sc_bustag;
2658 	bus_space_handle_t h = sc->sc_h1;
2659 	uint32_t v;
2660 
2661 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
2662 		v = GEM_INTR_PCS;
2663 	else
2664 		v = GEM_INTR_MIF;
2665 	bus_space_write_4(t, h, GEM_INTMASK,
2666 		      ~(GEM_INTR_TX_INTME |
2667 			GEM_INTR_TX_EMPTY |
2668 			GEM_INTR_TX_MAC |
2669 			GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF |
2670 			GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL |
2671 			GEM_INTR_BERR | v));
2672 }
2673 
2674 bool
2675 gem_resume(device_t self, const pmf_qual_t *qual)
2676 {
2677 	struct gem_softc *sc = device_private(self);
2678 
2679 	gem_inten(sc);
2680 
2681 	return true;
2682 }
2683 
2684 bool
2685 gem_suspend(device_t self, const pmf_qual_t *qual)
2686 {
2687 	struct gem_softc *sc = device_private(self);
2688 	bus_space_tag_t t = sc->sc_bustag;
2689 	bus_space_handle_t h = sc->sc_h1;
2690 
2691 	bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
2692 
2693 	return true;
2694 }
2695 
2696 bool
2697 gem_shutdown(device_t self, int howto)
2698 {
2699 	struct gem_softc *sc = device_private(self);
2700 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2701 
2702 	gem_stop(ifp, 1);
2703 
2704 	return true;
2705 }
2706 
2707 /*
2708  * Set up the logical address filter.
2709  */
2710 void
2711 gem_setladrf(struct gem_softc *sc)
2712 {
2713 	struct ethercom *ec = &sc->sc_ethercom;
2714 	struct ifnet *ifp = &ec->ec_if;
2715 	struct ether_multi *enm;
2716 	struct ether_multistep step;
2717 	bus_space_tag_t t = sc->sc_bustag;
2718 	bus_space_handle_t h = sc->sc_h1;
2719 	uint32_t crc;
2720 	uint32_t hash[16];
2721 	uint32_t v;
2722 	int i;
2723 
2724 	/* Get current RX configuration */
2725 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2726 
2727 	/*
2728 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2729 	 * and hash filter.  Depending on the case, the right bit will be
2730 	 * enabled.
2731 	 */
2732 	v &= ~(GEM_MAC_RX_PROMISCUOUS | GEM_MAC_RX_HASH_FILTER |
2733 	    GEM_MAC_RX_PROMISC_GRP);
2734 
2735 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
2736 		/* Turn on promiscuous mode */
2737 		v |= GEM_MAC_RX_PROMISCUOUS;
2738 		ifp->if_flags |= IFF_ALLMULTI;
2739 		goto chipit;
2740 	}
2741 
2742 	/*
2743 	 * Set up multicast address filter by passing all multicast addresses
2744 	 * through a crc generator, and then using the high order 8 bits as an
2745 	 * index into the 256 bit logical address filter.  The high order 4
2746 	 * bits selects the word, while the other 4 bits select the bit within
2747 	 * the word (where bit 0 is the MSB).
2748 	 */
2749 
2750 	/* Clear hash table */
2751 	memset(hash, 0, sizeof(hash));
2752 
2753 	ETHER_LOCK(ec);
2754 	ETHER_FIRST_MULTI(step, ec, enm);
2755 	while (enm != NULL) {
2756 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2757 			/*
2758 			 * We must listen to a range of multicast addresses.
2759 			 * For now, just accept all multicasts, rather than
2760 			 * trying to set only those filter bits needed to match
2761 			 * the range.  (At this time, the only use of address
2762 			 * ranges is for IP multicast routing, for which the
2763 			 * range is big enough to require all bits set.)
2764 			 * XXX should use the address filters for this
2765 			 */
2766 			ifp->if_flags |= IFF_ALLMULTI;
2767 			v |= GEM_MAC_RX_PROMISC_GRP;
2768 			ETHER_UNLOCK(ec);
2769 			goto chipit;
2770 		}
2771 
2772 		/* Get the LE CRC32 of the address */
2773 		crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2774 
2775 		/* Just want the 8 most significant bits. */
2776 		crc >>= 24;
2777 
2778 		/* Set the corresponding bit in the filter. */
2779 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
2780 
2781 		ETHER_NEXT_MULTI(step, enm);
2782 	}
2783 	ETHER_UNLOCK(ec);
2784 
2785 	v |= GEM_MAC_RX_HASH_FILTER;
2786 	ifp->if_flags &= ~IFF_ALLMULTI;
2787 
2788 	/* Now load the hash table into the chip (if we are using it) */
2789 	for (i = 0; i < 16; i++) {
2790 		bus_space_write_4(t, h,
2791 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2792 		    hash[i]);
2793 	}
2794 
2795 chipit:
2796 	sc->sc_if_flags = ifp->if_flags;
2797 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2798 }
2799