xref: /netbsd-src/sys/dev/ic/gem.c (revision da9817918ec7e88db2912a2882967c7570a83f47)
1 /*	$NetBSD: gem.c,v 1.84 2009/05/12 14:25:17 cegger Exp $ */
2 
3 /*
4  *
5  * Copyright (C) 2001 Eduardo Horvath.
6  * Copyright (c) 2001-2003 Thomas Moestl
7  * All rights reserved.
8  *
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  */
32 
33 /*
34  * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
35  * See `GEM Gigabit Ethernet ASIC Specification'
36  *   http://www.sun.com/processors/manuals/ge.pdf
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.84 2009/05/12 14:25:17 cegger Exp $");
41 
42 #include "opt_inet.h"
43 #include "bpfilter.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/callout.h>
48 #include <sys/mbuf.h>
49 #include <sys/syslog.h>
50 #include <sys/malloc.h>
51 #include <sys/kernel.h>
52 #include <sys/socket.h>
53 #include <sys/ioctl.h>
54 #include <sys/errno.h>
55 #include <sys/device.h>
56 
57 #include <machine/endian.h>
58 
59 #include <uvm/uvm_extern.h>
60 
61 #include <net/if.h>
62 #include <net/if_dl.h>
63 #include <net/if_media.h>
64 #include <net/if_ether.h>
65 
66 #ifdef INET
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/in_var.h>
70 #include <netinet/ip.h>
71 #include <netinet/tcp.h>
72 #include <netinet/udp.h>
73 #endif
74 
75 #if NBPFILTER > 0
76 #include <net/bpf.h>
77 #endif
78 
79 #include <sys/bus.h>
80 #include <sys/intr.h>
81 
82 #include <dev/mii/mii.h>
83 #include <dev/mii/miivar.h>
84 #include <dev/mii/mii_bitbang.h>
85 
86 #include <dev/ic/gemreg.h>
87 #include <dev/ic/gemvar.h>
88 
89 #define TRIES	10000
90 
91 static void	gem_start(struct ifnet *);
92 static void	gem_stop(struct ifnet *, int);
93 int		gem_ioctl(struct ifnet *, u_long, void *);
94 void		gem_tick(void *);
95 void		gem_watchdog(struct ifnet *);
96 void		gem_shutdown(void *);
97 void		gem_pcs_start(struct gem_softc *sc);
98 void		gem_pcs_stop(struct gem_softc *sc, int);
99 int		gem_init(struct ifnet *);
100 void		gem_init_regs(struct gem_softc *sc);
101 static int	gem_ringsize(int sz);
102 static int	gem_meminit(struct gem_softc *);
103 void		gem_mifinit(struct gem_softc *);
104 static int	gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
105 		    u_int32_t, u_int32_t);
106 void		gem_reset(struct gem_softc *);
107 int		gem_reset_rx(struct gem_softc *sc);
108 static void	gem_reset_rxdma(struct gem_softc *sc);
109 static void	gem_rx_common(struct gem_softc *sc);
110 int		gem_reset_tx(struct gem_softc *sc);
111 int		gem_disable_rx(struct gem_softc *sc);
112 int		gem_disable_tx(struct gem_softc *sc);
113 static void	gem_rxdrain(struct gem_softc *sc);
114 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
115 void		gem_setladrf(struct gem_softc *);
116 
117 /* MII methods & callbacks */
118 static int	gem_mii_readreg(device_t, int, int);
119 static void	gem_mii_writereg(device_t, int, int, int);
120 static void	gem_mii_statchg(device_t);
121 
122 static int	gem_ifflags_cb(struct ethercom *);
123 
124 void		gem_statuschange(struct gem_softc *);
125 
126 int		gem_ser_mediachange(struct ifnet *);
127 void		gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
128 
129 struct mbuf	*gem_get(struct gem_softc *, int, int);
130 int		gem_put(struct gem_softc *, int, struct mbuf *);
131 void		gem_read(struct gem_softc *, int, int);
132 int		gem_pint(struct gem_softc *);
133 int		gem_eint(struct gem_softc *, u_int);
134 int		gem_rint(struct gem_softc *);
135 int		gem_tint(struct gem_softc *);
136 void		gem_power(int, void *);
137 
138 #ifdef GEM_DEBUG
139 static void gem_txsoft_print(const struct gem_softc *, int, int);
140 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
141 				printf x
142 #else
143 #define	DPRINTF(sc, x)	/* nothing */
144 #endif
145 
146 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
147 
148 
149 /*
150  * gem_attach:
151  *
152  *	Attach a Gem interface to the system.
153  */
154 void
155 gem_attach(struct gem_softc *sc, const uint8_t *enaddr)
156 {
157 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
158 	struct mii_data *mii = &sc->sc_mii;
159 	bus_space_tag_t t = sc->sc_bustag;
160 	bus_space_handle_t h = sc->sc_h1;
161 	struct ifmedia_entry *ifm;
162 	int i, error;
163 	u_int32_t v;
164 	char *nullbuf;
165 
166 	/* Make sure the chip is stopped. */
167 	ifp->if_softc = sc;
168 	gem_reset(sc);
169 
170 	/*
171 	 * Allocate the control data structures, and create and load the
172 	 * DMA map for it. gem_control_data is 9216 bytes, we have space for
173 	 * the padding buffer in the bus_dmamem_alloc()'d memory.
174 	 */
175 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
176 	    sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
177 	    0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
178 		aprint_error_dev(&sc->sc_dev,
179 		   "unable to allocate control data, error = %d\n",
180 		    error);
181 		goto fail_0;
182 	}
183 
184 	/* XXX should map this in with correct endianness */
185 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
186 	    sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
187 	    BUS_DMA_COHERENT)) != 0) {
188 		aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
189 		    error);
190 		goto fail_1;
191 	}
192 
193 	nullbuf =
194 	    (char *)sc->sc_control_data + sizeof(struct gem_control_data);
195 
196 	if ((error = bus_dmamap_create(sc->sc_dmatag,
197 	    sizeof(struct gem_control_data), 1,
198 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
199 		aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
200 		    "error = %d\n", error);
201 		goto fail_2;
202 	}
203 
204 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
205 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
206 	    0)) != 0) {
207 		aprint_error_dev(&sc->sc_dev,
208 		    "unable to load control data DMA map, error = %d\n",
209 		    error);
210 		goto fail_3;
211 	}
212 
213 	memset(nullbuf, 0, ETHER_MIN_TX);
214 	if ((error = bus_dmamap_create(sc->sc_dmatag,
215 	    ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
216 		aprint_error_dev(&sc->sc_dev, "unable to create padding DMA map, "
217 		    "error = %d\n", error);
218 		goto fail_4;
219 	}
220 
221 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
222 	    nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
223 		aprint_error_dev(&sc->sc_dev,
224 		    "unable to load padding DMA map, error = %d\n",
225 		    error);
226 		goto fail_5;
227 	}
228 
229 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
230 	    BUS_DMASYNC_PREWRITE);
231 
232 	/*
233 	 * Initialize the transmit job descriptors.
234 	 */
235 	SIMPLEQ_INIT(&sc->sc_txfreeq);
236 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
237 
238 	/*
239 	 * Create the transmit buffer DMA maps.
240 	 */
241 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
242 		struct gem_txsoft *txs;
243 
244 		txs = &sc->sc_txsoft[i];
245 		txs->txs_mbuf = NULL;
246 		if ((error = bus_dmamap_create(sc->sc_dmatag,
247 		    ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
248 		    ETHER_MAX_LEN_JUMBO, 0, 0,
249 		    &txs->txs_dmamap)) != 0) {
250 			aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
251 			    "error = %d\n", i, error);
252 			goto fail_6;
253 		}
254 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
255 	}
256 
257 	/*
258 	 * Create the receive buffer DMA maps.
259 	 */
260 	for (i = 0; i < GEM_NRXDESC; i++) {
261 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
262 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
263 			aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
264 			    "error = %d\n", i, error);
265 			goto fail_7;
266 		}
267 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
268 	}
269 
270 	/* Initialize ifmedia structures and MII info */
271 	mii->mii_ifp = ifp;
272 	mii->mii_readreg = gem_mii_readreg;
273 	mii->mii_writereg = gem_mii_writereg;
274 	mii->mii_statchg = gem_mii_statchg;
275 
276 	sc->sc_ethercom.ec_mii = mii;
277 
278 	/*
279 	 * Initialization based  on `GEM Gigabit Ethernet ASIC Specification'
280 	 * Section 3.2.1 `Initialization Sequence'.
281 	 * However, we can't assume SERDES or Serialink if neither
282 	 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
283 	 * being set, as both are set on Sun X1141A (with SERDES).  So,
284 	 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
285 	 * Also, for Apple variants with 2 PHY's, we prefer the external
286 	 * PHY over the internal PHY.
287 	 */
288 	gem_mifinit(sc);
289 
290 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
291 		ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
292 		    ether_mediastatus);
293 		mii_attach(&sc->sc_dev, mii, 0xffffffff,
294 		    MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
295 		if (LIST_EMPTY(&mii->mii_phys)) {
296 				/* No PHY attached */
297 				aprint_error_dev(&sc->sc_dev, "PHY probe failed\n");
298 				goto fail_7;
299 		} else {
300 			struct mii_softc *child;
301 
302 			/*
303 			 * Walk along the list of attached MII devices and
304 			 * establish an `MII instance' to `PHY number'
305 			 * mapping.
306 			 */
307 			LIST_FOREACH(child, &mii->mii_phys, mii_list) {
308 				/*
309 				 * Note: we support just one PHY: the internal
310 				 * or external MII is already selected for us
311 				 * by the GEM_MIF_CONFIG  register.
312 				 */
313 				if (child->mii_phy > 1 || child->mii_inst > 0) {
314 					aprint_error_dev(&sc->sc_dev,
315 					    "cannot accommodate MII device"
316 					    " %s at PHY %d, instance %d\n",
317 					       device_xname(child->mii_dev),
318 					       child->mii_phy, child->mii_inst);
319 					continue;
320 				}
321 				sc->sc_phys[child->mii_inst] = child->mii_phy;
322 			}
323 
324 			/*
325 			 * Now select and activate the PHY we will use.
326 			 *
327 			 * The order of preference is External (MDI1),
328 			 * then Internal (MDI0),
329 			 */
330 			if (sc->sc_phys[1]) {
331 #ifdef GEM_DEBUG
332 				aprint_debug_dev(&sc->sc_dev, "using external PHY\n");
333 #endif
334 				sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
335 			} else {
336 #ifdef GEM_DEBUG
337 				aprint_debug_dev(&sc->sc_dev, "using internal PHY\n");
338 				sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
339 #endif
340 			}
341 			bus_space_write_4(t, h, GEM_MIF_CONFIG,
342 			    sc->sc_mif_config);
343 			if (sc->sc_variant != GEM_SUN_ERI)
344 				bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
345 				    GEM_MII_DATAPATH_MII);
346 
347 			/*
348 			 * XXX - we can really do the following ONLY if the
349 			 * PHY indeed has the auto negotiation capability!!
350 			 */
351 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
352 		}
353 	} else {
354 		ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
355 		    gem_ser_mediastatus);
356 		/* SERDES or Serialink */
357 		if (sc->sc_flags & GEM_SERDES) {
358 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
359 			    GEM_MII_DATAPATH_SERDES);
360 		} else {
361 			sc->sc_flags |= GEM_SERIAL;
362 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
363 			    GEM_MII_DATAPATH_SERIAL);
364 		}
365 
366 		aprint_normal_dev(&sc->sc_dev, "using external PCS %s: ",
367 		    sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
368 
369 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0, NULL);
370 		/* Check for FDX and HDX capabilities */
371 		sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
372 		if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
373 			ifmedia_add(&sc->sc_mii.mii_media,
374 			    IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_FDX, 0, NULL);
375 			aprint_normal("1000baseSX-FDX, ");
376 		}
377 		if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
378 			ifmedia_add(&sc->sc_mii.mii_media,
379 			    IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_HDX, 0, NULL);
380 			aprint_normal("1000baseSX-HDX, ");
381 		}
382 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
383 		sc->sc_mii_media = IFM_AUTO;
384 		aprint_normal("auto\n");
385 
386 		gem_pcs_stop(sc, 1);
387 	}
388 
389 	/*
390 	 * From this point forward, the attachment cannot fail.  A failure
391 	 * before this point releases all resources that may have been
392 	 * allocated.
393 	 */
394 
395 	/* Announce ourselves. */
396 	aprint_normal_dev(&sc->sc_dev, "Ethernet address %s",
397 	    ether_sprintf(enaddr));
398 
399 	/* Get RX FIFO size */
400 	sc->sc_rxfifosize = 64 *
401 	    bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
402 	aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
403 
404 	/* Get TX FIFO size */
405 	v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
406 	aprint_normal(", %uKB TX fifo\n", v / 16);
407 
408 	/* Initialize ifnet structure. */
409 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
410 	ifp->if_softc = sc;
411 	ifp->if_flags =
412 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
413 	sc->sc_if_flags = ifp->if_flags;
414 	/*
415 	 * The GEM hardware supports basic TCP checksum offloading only.
416 	 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
417 	 * have bugs in the receive checksum, so don't enable it for now.
418 	if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
419 	    (GEM_IS_APPLE(sc) &&
420 	    (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
421 		ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
422 	*/
423 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
424 	ifp->if_start = gem_start;
425 	ifp->if_ioctl = gem_ioctl;
426 	ifp->if_watchdog = gem_watchdog;
427 	ifp->if_stop = gem_stop;
428 	ifp->if_init = gem_init;
429 	IFQ_SET_READY(&ifp->if_snd);
430 
431 	/*
432 	 * If we support GigE media, we support jumbo frames too.
433 	 * Unless we are Apple.
434 	 */
435 	TAILQ_FOREACH(ifm, &sc->sc_mii.mii_media.ifm_list, ifm_list) {
436 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
437 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
438 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
439 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
440 			if (!GEM_IS_APPLE(sc))
441 				sc->sc_ethercom.ec_capabilities
442 				    |= ETHERCAP_JUMBO_MTU;
443 			sc->sc_flags |= GEM_GIGABIT;
444 			break;
445 		}
446 	}
447 
448 	/* claim 802.1q capability */
449 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
450 
451 	/* Attach the interface. */
452 	if_attach(ifp);
453 	ether_ifattach(ifp, enaddr);
454 	ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
455 
456 	sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
457 	if (sc->sc_sh == NULL)
458 		panic("gem_config: can't establish shutdownhook");
459 
460 #if NRND > 0
461 	rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
462 			  RND_TYPE_NET, 0);
463 #endif
464 
465 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
466 	    NULL, device_xname(&sc->sc_dev), "interrupts");
467 #ifdef GEM_COUNTERS
468 	evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
469 	    &sc->sc_ev_intr, device_xname(&sc->sc_dev), "tx interrupts");
470 	evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
471 	    &sc->sc_ev_intr, device_xname(&sc->sc_dev), "rx interrupts");
472 	evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
473 	    &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx ring full");
474 	evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
475 	    &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx malloc failure");
476 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
477 	    &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx 0desc");
478 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
479 	    &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx 1desc");
480 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
481 	    &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx 2desc");
482 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
483 	    &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx 3desc");
484 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
485 	    &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx >3desc");
486 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
487 	    &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx >7desc");
488 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
489 	    &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx >15desc");
490 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
491 	    &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx >31desc");
492 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
493 	    &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx >63desc");
494 #endif
495 
496 #if notyet
497 	/*
498 	 * Add a suspend hook to make sure we come back up after a
499 	 * resume.
500 	 */
501 	sc->sc_powerhook = powerhook_establish(device_xname(&sc->sc_dev),
502 	    gem_power, sc);
503 	if (sc->sc_powerhook == NULL)
504 		aprint_error_dev(&sc->sc_dev, "WARNING: unable to establish power hook\n");
505 #endif
506 
507 	callout_init(&sc->sc_tick_ch, 0);
508 	return;
509 
510 	/*
511 	 * Free any resources we've allocated during the failed attach
512 	 * attempt.  Do this in reverse order and fall through.
513 	 */
514  fail_7:
515 	for (i = 0; i < GEM_NRXDESC; i++) {
516 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
517 			bus_dmamap_destroy(sc->sc_dmatag,
518 			    sc->sc_rxsoft[i].rxs_dmamap);
519 	}
520  fail_6:
521 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
522 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
523 			bus_dmamap_destroy(sc->sc_dmatag,
524 			    sc->sc_txsoft[i].txs_dmamap);
525 	}
526 	bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
527  fail_5:
528 	bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
529  fail_4:
530 	bus_dmamem_unmap(sc->sc_dmatag, (void *)nullbuf, ETHER_MIN_TX);
531  fail_3:
532 	bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
533  fail_2:
534 	bus_dmamem_unmap(sc->sc_dmatag, (void *)sc->sc_control_data,
535 	    sizeof(struct gem_control_data));
536  fail_1:
537 	bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
538  fail_0:
539 	return;
540 }
541 
542 
543 void
544 gem_tick(void *arg)
545 {
546 	struct gem_softc *sc = arg;
547 	int s;
548 
549 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
550 		/*
551 		 * We have to reset everything if we failed to get a
552 		 * PCS interrupt.  Restarting the callout is handled
553 		 * in gem_pcs_start().
554 		 */
555 		gem_init(&sc->sc_ethercom.ec_if);
556 	} else {
557 		s = splnet();
558 		mii_tick(&sc->sc_mii);
559 		splx(s);
560 		callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
561 	}
562 }
563 
564 static int
565 gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, u_int32_t clr, u_int32_t set)
566 {
567 	int i;
568 	u_int32_t reg;
569 
570 	for (i = TRIES; i--; DELAY(100)) {
571 		reg = bus_space_read_4(sc->sc_bustag, h, r);
572 		if ((reg & clr) == 0 && (reg & set) == set)
573 			return (1);
574 	}
575 	return (0);
576 }
577 
578 void
579 gem_reset(struct gem_softc *sc)
580 {
581 	bus_space_tag_t t = sc->sc_bustag;
582 	bus_space_handle_t h = sc->sc_h2;
583 	int s;
584 
585 	s = splnet();
586 	DPRINTF(sc, ("%s: gem_reset\n", device_xname(&sc->sc_dev)));
587 	gem_reset_rx(sc);
588 	gem_reset_tx(sc);
589 
590 	/* Do a full reset */
591 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
592 	if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
593 		aprint_error_dev(&sc->sc_dev, "cannot reset device\n");
594 	splx(s);
595 }
596 
597 
598 /*
599  * gem_rxdrain:
600  *
601  *	Drain the receive queue.
602  */
603 static void
604 gem_rxdrain(struct gem_softc *sc)
605 {
606 	struct gem_rxsoft *rxs;
607 	int i;
608 
609 	for (i = 0; i < GEM_NRXDESC; i++) {
610 		rxs = &sc->sc_rxsoft[i];
611 		if (rxs->rxs_mbuf != NULL) {
612 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
613 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
614 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
615 			m_freem(rxs->rxs_mbuf);
616 			rxs->rxs_mbuf = NULL;
617 		}
618 	}
619 }
620 
621 /*
622  * Reset the whole thing.
623  */
624 static void
625 gem_stop(struct ifnet *ifp, int disable)
626 {
627 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
628 	struct gem_txsoft *txs;
629 
630 	DPRINTF(sc, ("%s: gem_stop\n", device_xname(&sc->sc_dev)));
631 
632 	callout_stop(&sc->sc_tick_ch);
633 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
634 		gem_pcs_stop(sc, disable);
635 	else
636 		mii_down(&sc->sc_mii);
637 
638 	/* XXX - Should we reset these instead? */
639 	gem_disable_tx(sc);
640 	gem_disable_rx(sc);
641 
642 	/*
643 	 * Release any queued transmit buffers.
644 	 */
645 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
646 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
647 		if (txs->txs_mbuf != NULL) {
648 			bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
649 			    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
650 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
651 			m_freem(txs->txs_mbuf);
652 			txs->txs_mbuf = NULL;
653 		}
654 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
655 	}
656 
657 	/*
658 	 * Mark the interface down and cancel the watchdog timer.
659 	 */
660 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
661 	sc->sc_if_flags = ifp->if_flags;
662 	ifp->if_timer = 0;
663 
664 	if (disable)
665 		gem_rxdrain(sc);
666 }
667 
668 
669 /*
670  * Reset the receiver
671  */
672 int
673 gem_reset_rx(struct gem_softc *sc)
674 {
675 	bus_space_tag_t t = sc->sc_bustag;
676 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
677 
678 	/*
679 	 * Resetting while DMA is in progress can cause a bus hang, so we
680 	 * disable DMA first.
681 	 */
682 	gem_disable_rx(sc);
683 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
684 	bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
685 	/* Wait till it finishes */
686 	if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
687 		aprint_error_dev(&sc->sc_dev, "cannot disable read dma\n");
688 
689 	/* Finally, reset the ERX */
690 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
691 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
692 	/* Wait till it finishes */
693 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
694 		aprint_error_dev(&sc->sc_dev, "cannot reset receiver\n");
695 		return (1);
696 	}
697 	return (0);
698 }
699 
700 
701 /*
702  * Reset the receiver DMA engine.
703  *
704  * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
705  * etc in order to reset the receiver DMA engine only and not do a full
706  * reset which amongst others also downs the link and clears the FIFOs.
707  */
708 static void
709 gem_reset_rxdma(struct gem_softc *sc)
710 {
711 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
712 	bus_space_tag_t t = sc->sc_bustag;
713 	bus_space_handle_t h = sc->sc_h1;
714 	int i;
715 
716 	if (gem_reset_rx(sc) != 0) {
717 		gem_init(ifp);
718 		return;
719 	}
720 	for (i = 0; i < GEM_NRXDESC; i++)
721 		if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
722 			GEM_UPDATE_RXDESC(sc, i);
723 	sc->sc_rxptr = 0;
724 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
725 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
726 
727 	/* Reprogram Descriptor Ring Base Addresses */
728 	/* NOTE: we use only 32-bit DMA addresses here. */
729 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
730 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
731 
732 	/* Redo ERX Configuration */
733 	gem_rx_common(sc);
734 
735 	/* Give the reciever a swift kick */
736 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
737 }
738 
739 /*
740  * Common RX configuration for gem_init() and gem_reset_rxdma().
741  */
742 static void
743 gem_rx_common(struct gem_softc *sc)
744 {
745 	bus_space_tag_t t = sc->sc_bustag;
746 	bus_space_handle_t h = sc->sc_h1;
747 	u_int32_t v;
748 
749 	/* Encode Receive Descriptor ring size: four possible values */
750 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
751 
752 	/* Set receive h/w checksum offset */
753 #ifdef INET
754 	v |= (ETHER_HDR_LEN + sizeof(struct ip) +
755 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
756 	    ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
757 #endif
758 
759 	/* Enable RX DMA */
760 	bus_space_write_4(t, h, GEM_RX_CONFIG,
761 	    v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
762 	    (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
763 
764 	/*
765 	 * The following value is for an OFF Threshold of about 3/4 full
766 	 * and an ON Threshold of 1/4 full.
767 	 */
768 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
769 	    (3 * sc->sc_rxfifosize / 256) |
770 	    ((sc->sc_rxfifosize / 256) << 12));
771 	bus_space_write_4(t, h, GEM_RX_BLANKING,
772 	    (6 << GEM_RX_BLANKING_TIME_SHIFT) | 6);
773 }
774 
775 /*
776  * Reset the transmitter
777  */
778 int
779 gem_reset_tx(struct gem_softc *sc)
780 {
781 	bus_space_tag_t t = sc->sc_bustag;
782 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
783 
784 	/*
785 	 * Resetting while DMA is in progress can cause a bus hang, so we
786 	 * disable DMA first.
787 	 */
788 	gem_disable_tx(sc);
789 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
790 	bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
791 	/* Wait till it finishes */
792 	if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
793 		aprint_error_dev(&sc->sc_dev, "cannot disable read dma\n");
794 	/* Wait 5ms extra. */
795 	delay(5000);
796 
797 	/* Finally, reset the ETX */
798 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
799 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
800 	/* Wait till it finishes */
801 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
802 		aprint_error_dev(&sc->sc_dev, "cannot reset receiver\n");
803 		return (1);
804 	}
805 	return (0);
806 }
807 
808 /*
809  * disable receiver.
810  */
811 int
812 gem_disable_rx(struct gem_softc *sc)
813 {
814 	bus_space_tag_t t = sc->sc_bustag;
815 	bus_space_handle_t h = sc->sc_h1;
816 	u_int32_t cfg;
817 
818 	/* Flip the enable bit */
819 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
820 	cfg &= ~GEM_MAC_RX_ENABLE;
821 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
822 	bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
823 	/* Wait for it to finish */
824 	return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
825 }
826 
827 /*
828  * disable transmitter.
829  */
830 int
831 gem_disable_tx(struct gem_softc *sc)
832 {
833 	bus_space_tag_t t = sc->sc_bustag;
834 	bus_space_handle_t h = sc->sc_h1;
835 	u_int32_t cfg;
836 
837 	/* Flip the enable bit */
838 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
839 	cfg &= ~GEM_MAC_TX_ENABLE;
840 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
841 	bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
842 	/* Wait for it to finish */
843 	return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
844 }
845 
846 /*
847  * Initialize interface.
848  */
849 int
850 gem_meminit(struct gem_softc *sc)
851 {
852 	struct gem_rxsoft *rxs;
853 	int i, error;
854 
855 	/*
856 	 * Initialize the transmit descriptor ring.
857 	 */
858 	memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
859 	for (i = 0; i < GEM_NTXDESC; i++) {
860 		sc->sc_txdescs[i].gd_flags = 0;
861 		sc->sc_txdescs[i].gd_addr = 0;
862 	}
863 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
864 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
865 	sc->sc_txfree = GEM_NTXDESC-1;
866 	sc->sc_txnext = 0;
867 	sc->sc_txwin = 0;
868 
869 	/*
870 	 * Initialize the receive descriptor and receive job
871 	 * descriptor rings.
872 	 */
873 	for (i = 0; i < GEM_NRXDESC; i++) {
874 		rxs = &sc->sc_rxsoft[i];
875 		if (rxs->rxs_mbuf == NULL) {
876 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
877 				aprint_error_dev(&sc->sc_dev, "unable to allocate or map rx "
878 				    "buffer %d, error = %d\n",
879 				    i, error);
880 				/*
881 				 * XXX Should attempt to run with fewer receive
882 				 * XXX buffers instead of just failing.
883 				 */
884 				gem_rxdrain(sc);
885 				return (1);
886 			}
887 		} else
888 			GEM_INIT_RXDESC(sc, i);
889 	}
890 	sc->sc_rxptr = 0;
891 	sc->sc_meminited = 1;
892 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
893 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
894 
895 	return (0);
896 }
897 
898 static int
899 gem_ringsize(int sz)
900 {
901 	switch (sz) {
902 	case 32:
903 		return GEM_RING_SZ_32;
904 	case 64:
905 		return GEM_RING_SZ_64;
906 	case 128:
907 		return GEM_RING_SZ_128;
908 	case 256:
909 		return GEM_RING_SZ_256;
910 	case 512:
911 		return GEM_RING_SZ_512;
912 	case 1024:
913 		return GEM_RING_SZ_1024;
914 	case 2048:
915 		return GEM_RING_SZ_2048;
916 	case 4096:
917 		return GEM_RING_SZ_4096;
918 	case 8192:
919 		return GEM_RING_SZ_8192;
920 	default:
921 		printf("gem: invalid Receive Descriptor ring size %d\n", sz);
922 		return GEM_RING_SZ_32;
923 	}
924 }
925 
926 
927 /*
928  * Start PCS
929  */
930 void
931 gem_pcs_start(struct gem_softc *sc)
932 {
933 	bus_space_tag_t t = sc->sc_bustag;
934 	bus_space_handle_t h = sc->sc_h1;
935 	uint32_t v;
936 
937 #ifdef GEM_DEBUG
938 	aprint_debug_dev(&sc->sc_dev, "gem_pcs_start()\n");
939 #endif
940 
941 	/*
942 	 * Set up.  We must disable the MII before modifying the
943 	 * GEM_MII_ANAR register
944 	 */
945 	if (sc->sc_flags & GEM_SERDES) {
946 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
947 		    GEM_MII_DATAPATH_SERDES);
948 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
949 		    GEM_MII_SLINK_LOOPBACK);
950 	} else {
951 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
952 		    GEM_MII_DATAPATH_SERIAL);
953 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
954 	}
955 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
956 	v = bus_space_read_4(t, h, GEM_MII_ANAR);
957 	v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
958 	if (sc->sc_mii_media == IFM_AUTO)
959 		v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
960 	else if (sc->sc_mii_media == IFM_FDX) {
961 		v |= GEM_MII_ANEG_FUL_DUPLX;
962 		v &= ~GEM_MII_ANEG_HLF_DUPLX;
963 	} else if (sc->sc_mii_media == IFM_HDX) {
964 		v &= ~GEM_MII_ANEG_FUL_DUPLX;
965 		v |= GEM_MII_ANEG_HLF_DUPLX;
966 	}
967 
968 	/* Configure link. */
969 	bus_space_write_4(t, h, GEM_MII_ANAR, v);
970 	bus_space_write_4(t, h, GEM_MII_CONTROL,
971 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
972 	bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
973 	gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
974 
975 	/* Start the 10 second timer */
976 	callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
977 }
978 
979 /*
980  * Stop PCS
981  */
982 void
983 gem_pcs_stop(struct gem_softc *sc, int disable)
984 {
985 	bus_space_tag_t t = sc->sc_bustag;
986 	bus_space_handle_t h = sc->sc_h1;
987 
988 #ifdef GEM_DEBUG
989 	aprint_debug_dev(&sc->sc_dev, "gem_pcs_stop()\n");
990 #endif
991 
992 	/* Tell link partner that we're going away */
993 	bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
994 
995 	/*
996 	 * Disable PCS MII.  The documentation suggests that setting
997 	 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
998 	 * negotiation will shut down the link.  However, it appears
999 	 * that we also need to unset the datapath mode.
1000 	 */
1001 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1002 	bus_space_write_4(t, h, GEM_MII_CONTROL,
1003 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1004 	bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
1005 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1006 
1007 	if (disable) {
1008 		if (sc->sc_flags & GEM_SERDES)
1009 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1010 				GEM_MII_SLINK_POWER_OFF);
1011 		else
1012 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1013 			    GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
1014 	}
1015 
1016 	sc->sc_flags &= ~GEM_LINK;
1017 	sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
1018 	sc->sc_mii.mii_media_status = IFM_AVALID;
1019 }
1020 
1021 
1022 /*
1023  * Initialization of interface; set up initialization block
1024  * and transmit/receive descriptor rings.
1025  */
1026 int
1027 gem_init(struct ifnet *ifp)
1028 {
1029 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
1030 	bus_space_tag_t t = sc->sc_bustag;
1031 	bus_space_handle_t h = sc->sc_h1;
1032 	int rc = 0, s;
1033 	u_int max_frame_size;
1034 	u_int32_t v;
1035 
1036 	s = splnet();
1037 
1038 	DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(&sc->sc_dev)));
1039 	/*
1040 	 * Initialization sequence. The numbered steps below correspond
1041 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1042 	 * Channel Engine manual (part of the PCIO manual).
1043 	 * See also the STP2002-STQ document from Sun Microsystems.
1044 	 */
1045 
1046 	/* step 1 & 2. Reset the Ethernet Channel */
1047 	gem_stop(ifp, 0);
1048 	gem_reset(sc);
1049 	DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(&sc->sc_dev)));
1050 
1051 	/* Re-initialize the MIF */
1052 	gem_mifinit(sc);
1053 
1054 	/* Set up correct datapath for non-SERDES/Serialink */
1055 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1056 	    sc->sc_variant != GEM_SUN_ERI)
1057 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1058 		    GEM_MII_DATAPATH_MII);
1059 
1060 	/* Call MI reset function if any */
1061 	if (sc->sc_hwreset)
1062 		(*sc->sc_hwreset)(sc);
1063 
1064 	/* step 3. Setup data structures in host memory */
1065 	if (gem_meminit(sc) != 0)
1066 		return 1;
1067 
1068 	/* step 4. TX MAC registers & counters */
1069 	gem_init_regs(sc);
1070 	max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
1071 	max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
1072 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1073 		max_frame_size += ETHER_VLAN_ENCAP_LEN;
1074 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1075 	    max_frame_size|/* burst size */(0x2000<<16));
1076 
1077 	/* step 5. RX MAC registers & counters */
1078 	gem_setladrf(sc);
1079 
1080 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
1081 	/* NOTE: we use only 32-bit DMA addresses here. */
1082 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
1083 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
1084 
1085 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
1086 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
1087 
1088 	/* step 8. Global Configuration & Interrupt Mask */
1089 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1090 		v = GEM_INTR_PCS;
1091 	else
1092 		v = GEM_INTR_MIF;
1093 	bus_space_write_4(t, h, GEM_INTMASK,
1094 		      ~(GEM_INTR_TX_INTME |
1095 			GEM_INTR_TX_EMPTY |
1096 			GEM_INTR_TX_MAC |
1097 			GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF|
1098 			GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL|
1099 			GEM_INTR_BERR | v));
1100 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
1101 			GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
1102 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
1103 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
1104 	    GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
1105 
1106 	/* step 9. ETX Configuration: use mostly default values */
1107 
1108 	/* Enable TX DMA */
1109 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
1110 	bus_space_write_4(t, h, GEM_TX_CONFIG,
1111 		v|GEM_TX_CONFIG_TXDMA_EN|
1112 		((0x4FF<<10)&GEM_TX_CONFIG_TXFIFO_TH));
1113 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
1114 
1115 	/* step 10. ERX Configuration */
1116 	gem_rx_common(sc);
1117 
1118 	/* step 11. Configure Media */
1119 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1120 	    (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
1121 		goto out;
1122 
1123 	/* step 12. RX_MAC Configuration Register */
1124 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1125 	v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
1126 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1127 
1128 	/* step 14. Issue Transmit Pending command */
1129 
1130 	/* Call MI initialization function if any */
1131 	if (sc->sc_hwinit)
1132 		(*sc->sc_hwinit)(sc);
1133 
1134 
1135 	/* step 15.  Give the reciever a swift kick */
1136 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
1137 
1138 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1139 		/* Configure PCS */
1140 		gem_pcs_start(sc);
1141 	else
1142 		/* Start the one second timer. */
1143 		callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
1144 
1145 	sc->sc_flags &= ~GEM_LINK;
1146 	ifp->if_flags |= IFF_RUNNING;
1147 	ifp->if_flags &= ~IFF_OACTIVE;
1148 	ifp->if_timer = 0;
1149 	sc->sc_if_flags = ifp->if_flags;
1150 out:
1151 	splx(s);
1152 
1153 	return (0);
1154 }
1155 
1156 void
1157 gem_init_regs(struct gem_softc *sc)
1158 {
1159 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1160 	bus_space_tag_t t = sc->sc_bustag;
1161 	bus_space_handle_t h = sc->sc_h1;
1162 	const u_char *laddr = CLLADDR(ifp->if_sadl);
1163 	u_int32_t v;
1164 
1165 	/* These regs are not cleared on reset */
1166 	if (!sc->sc_inited) {
1167 
1168 		/* Load recommended values */
1169 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
1170 		bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
1171 		bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
1172 
1173 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1174 		/* Max frame and max burst size */
1175 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1176 		    ETHER_MAX_LEN | (0x2000<<16));
1177 
1178 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
1179 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
1180 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1181 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1182 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1183 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1184 
1185 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
1186 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1187 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1188 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1189 
1190 		/* MAC control addr set to 01:80:c2:00:00:01 */
1191 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1192 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1193 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1194 
1195 		/* MAC filter addr set to 0:0:0:0:0:0 */
1196 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1197 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1198 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1199 
1200 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1201 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1202 
1203 		sc->sc_inited = 1;
1204 	}
1205 
1206 	/* Counters need to be zeroed */
1207 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1208 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1209 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1210 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1211 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1212 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1213 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1214 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1215 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1216 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1217 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1218 
1219 	/* Set XOFF PAUSE time. */
1220 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1221 
1222 	/*
1223 	 * Set the internal arbitration to "infinite" bursts of the
1224 	 * maximum length of 31 * 64 bytes so DMA transfers aren't
1225 	 * split up in cache line size chunks. This greatly improves
1226 	 * especially RX performance.
1227 	 * Enable silicon bug workarounds for the Apple variants.
1228 	 */
1229 	bus_space_write_4(t, h, GEM_CONFIG,
1230 	    GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
1231 	    ((sc->sc_flags & GEM_PCI) ?
1232 	    GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
1233 	    GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
1234 
1235 	/*
1236 	 * Set the station address.
1237 	 */
1238 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1239 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1240 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1241 
1242 	/*
1243 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
1244 	 */
1245 	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1246 	v = GEM_MAC_XIF_TX_MII_ENA;
1247 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)  {
1248 		if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1249 			v |= GEM_MAC_XIF_FDPLX_LED;
1250 				if (sc->sc_flags & GEM_GIGABIT)
1251 					v |= GEM_MAC_XIF_GMII_MODE;
1252 		}
1253 	} else {
1254 		v |= GEM_MAC_XIF_GMII_MODE;
1255 	}
1256 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1257 }
1258 
1259 #ifdef GEM_DEBUG
1260 static void
1261 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
1262 {
1263 	int i;
1264 
1265 	for (i = firstdesc;; i = GEM_NEXTTX(i)) {
1266 		printf("descriptor %d:\t", i);
1267 		printf("gd_flags:   0x%016" PRIx64 "\t",
1268 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1269 		printf("gd_addr: 0x%016" PRIx64 "\n",
1270 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1271 		if (i == lastdesc)
1272 			break;
1273 	}
1274 }
1275 #endif
1276 
1277 static void
1278 gem_start(struct ifnet *ifp)
1279 {
1280 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
1281 	struct mbuf *m0, *m;
1282 	struct gem_txsoft *txs;
1283 	bus_dmamap_t dmamap;
1284 	int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
1285 	uint64_t flags = 0;
1286 
1287 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1288 		return;
1289 
1290 	/*
1291 	 * Remember the previous number of free descriptors and
1292 	 * the first descriptor we'll use.
1293 	 */
1294 	ofree = sc->sc_txfree;
1295 	firsttx = sc->sc_txnext;
1296 
1297 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1298 	    device_xname(&sc->sc_dev), ofree, firsttx));
1299 
1300 	/*
1301 	 * Loop through the send queue, setting up transmit descriptors
1302 	 * until we drain the queue, or use up all available transmit
1303 	 * descriptors.
1304 	 */
1305 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1306 	    sc->sc_txfree != 0) {
1307 		/*
1308 		 * Grab a packet off the queue.
1309 		 */
1310 		IFQ_POLL(&ifp->if_snd, m0);
1311 		if (m0 == NULL)
1312 			break;
1313 		m = NULL;
1314 
1315 		dmamap = txs->txs_dmamap;
1316 
1317 		/*
1318 		 * Load the DMA map.  If this fails, the packet either
1319 		 * didn't fit in the alloted number of segments, or we were
1320 		 * short on resources.  In this case, we'll copy and try
1321 		 * again.
1322 		 */
1323 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1324 		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
1325 		      (m0->m_pkthdr.len < ETHER_MIN_TX &&
1326 		       dmamap->dm_nsegs == GEM_NTXSEGS)) {
1327 			if (m0->m_pkthdr.len > MCLBYTES) {
1328 				aprint_error_dev(&sc->sc_dev, "unable to allocate jumbo Tx "
1329 				    "cluster\n");
1330 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1331 				m_freem(m0);
1332 				continue;
1333 			}
1334 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1335 			if (m == NULL) {
1336 				aprint_error_dev(&sc->sc_dev, "unable to allocate Tx mbuf\n");
1337 				break;
1338 			}
1339 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1340 			if (m0->m_pkthdr.len > MHLEN) {
1341 				MCLGET(m, M_DONTWAIT);
1342 				if ((m->m_flags & M_EXT) == 0) {
1343 					aprint_error_dev(&sc->sc_dev, "unable to allocate Tx "
1344 					    "cluster\n");
1345 					m_freem(m);
1346 					break;
1347 				}
1348 			}
1349 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1350 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1351 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1352 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1353 			if (error) {
1354 				aprint_error_dev(&sc->sc_dev, "unable to load Tx buffer, "
1355 				    "error = %d\n", error);
1356 				break;
1357 			}
1358 		}
1359 
1360 		/*
1361 		 * Ensure we have enough descriptors free to describe
1362 		 * the packet.
1363 		 */
1364 		if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1365 		     (sc->sc_txfree - 1) : sc->sc_txfree)) {
1366 			/*
1367 			 * Not enough free descriptors to transmit this
1368 			 * packet.  We haven't committed to anything yet,
1369 			 * so just unload the DMA map, put the packet
1370 			 * back on the queue, and punt.  Notify the upper
1371 			 * layer that there are no more slots left.
1372 			 *
1373 			 * XXX We could allocate an mbuf and copy, but
1374 			 * XXX it is worth it?
1375 			 */
1376 			ifp->if_flags |= IFF_OACTIVE;
1377 			sc->sc_if_flags = ifp->if_flags;
1378 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
1379 			if (m != NULL)
1380 				m_freem(m);
1381 			break;
1382 		}
1383 
1384 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1385 		if (m != NULL) {
1386 			m_freem(m0);
1387 			m0 = m;
1388 		}
1389 
1390 		/*
1391 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1392 		 */
1393 
1394 		/* Sync the DMA map. */
1395 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1396 		    BUS_DMASYNC_PREWRITE);
1397 
1398 		/*
1399 		 * Initialize the transmit descriptors.
1400 		 */
1401 		for (nexttx = sc->sc_txnext, seg = 0;
1402 		     seg < dmamap->dm_nsegs;
1403 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
1404 
1405 			/*
1406 			 * If this is the first descriptor we're
1407 			 * enqueueing, set the start of packet flag,
1408 			 * and the checksum stuff if we want the hardware
1409 			 * to do it.
1410 			 */
1411 			sc->sc_txdescs[nexttx].gd_addr =
1412 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1413 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1414 			if (nexttx == firsttx) {
1415 				flags |= GEM_TD_START_OF_PACKET;
1416 				if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1417 					sc->sc_txwin = 0;
1418 					flags |= GEM_TD_INTERRUPT_ME;
1419 				}
1420 
1421 #ifdef INET
1422 				/* h/w checksum */
1423 				if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
1424 				    m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1425 					struct ether_header *eh;
1426 					uint16_t offset, start;
1427 
1428 					eh = mtod(m0, struct ether_header *);
1429 					switch (ntohs(eh->ether_type)) {
1430 					case ETHERTYPE_IP:
1431 						start = ETHER_HDR_LEN;
1432 						break;
1433 					case ETHERTYPE_VLAN:
1434 						start = ETHER_HDR_LEN +
1435 							ETHER_VLAN_ENCAP_LEN;
1436 						break;
1437 					default:
1438 						/* unsupported, drop it */
1439 						m_free(m0);
1440 						continue;
1441 					}
1442 					start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1443 					offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1444 					flags |= (start <<
1445 						  GEM_TD_CXSUM_STARTSHFT) |
1446 						 (offset <<
1447 						  GEM_TD_CXSUM_STUFFSHFT) |
1448 						 GEM_TD_CXSUM_ENABLE;
1449 				}
1450 #endif
1451 			}
1452 			if (seg == dmamap->dm_nsegs - 1) {
1453 				flags |= GEM_TD_END_OF_PACKET;
1454 			} else {
1455 				/* last flag set outside of loop */
1456 				sc->sc_txdescs[nexttx].gd_flags =
1457 					GEM_DMA_WRITE(sc, flags);
1458 			}
1459 			lasttx = nexttx;
1460 		}
1461 		if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1462 			/* add padding buffer at end of chain */
1463 			flags &= ~GEM_TD_END_OF_PACKET;
1464 			sc->sc_txdescs[lasttx].gd_flags =
1465 			    GEM_DMA_WRITE(sc, flags);
1466 
1467 			sc->sc_txdescs[nexttx].gd_addr =
1468 			    GEM_DMA_WRITE(sc,
1469 			    sc->sc_nulldmamap->dm_segs[0].ds_addr);
1470 			flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1471 			    GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1472 			lasttx = nexttx;
1473 			nexttx = GEM_NEXTTX(nexttx);
1474 			seg++;
1475 		}
1476 		sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1477 
1478 		KASSERT(lasttx != -1);
1479 
1480 		/*
1481 		 * Store a pointer to the packet so we can free it later,
1482 		 * and remember what txdirty will be once the packet is
1483 		 * done.
1484 		 */
1485 		txs->txs_mbuf = m0;
1486 		txs->txs_firstdesc = sc->sc_txnext;
1487 		txs->txs_lastdesc = lasttx;
1488 		txs->txs_ndescs = seg;
1489 
1490 #ifdef GEM_DEBUG
1491 		if (ifp->if_flags & IFF_DEBUG) {
1492 			printf("     gem_start %p transmit chain:\n", txs);
1493 			gem_txsoft_print(sc, txs->txs_firstdesc,
1494 			    txs->txs_lastdesc);
1495 		}
1496 #endif
1497 
1498 		/* Sync the descriptors we're using. */
1499 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1500 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1501 
1502 		/* Advance the tx pointer. */
1503 		sc->sc_txfree -= txs->txs_ndescs;
1504 		sc->sc_txnext = nexttx;
1505 
1506 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1507 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1508 
1509 #if NBPFILTER > 0
1510 		/*
1511 		 * Pass the packet to any BPF listeners.
1512 		 */
1513 		if (ifp->if_bpf)
1514 			bpf_mtap(ifp->if_bpf, m0);
1515 #endif /* NBPFILTER > 0 */
1516 	}
1517 
1518 	if (txs == NULL || sc->sc_txfree == 0) {
1519 		/* No more slots left; notify upper layer. */
1520 		ifp->if_flags |= IFF_OACTIVE;
1521 		sc->sc_if_flags = ifp->if_flags;
1522 	}
1523 
1524 	if (sc->sc_txfree != ofree) {
1525 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1526 		    device_xname(&sc->sc_dev), lasttx, firsttx));
1527 		/*
1528 		 * The entire packet chain is set up.
1529 		 * Kick the transmitter.
1530 		 */
1531 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1532 			device_xname(&sc->sc_dev), nexttx));
1533 		bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
1534 			sc->sc_txnext);
1535 
1536 		/* Set a watchdog timer in case the chip flakes out. */
1537 		ifp->if_timer = 5;
1538 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1539 			device_xname(&sc->sc_dev), ifp->if_timer));
1540 	}
1541 }
1542 
1543 /*
1544  * Transmit interrupt.
1545  */
1546 int
1547 gem_tint(struct gem_softc *sc)
1548 {
1549 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1550 	bus_space_tag_t t = sc->sc_bustag;
1551 	bus_space_handle_t mac = sc->sc_h1;
1552 	struct gem_txsoft *txs;
1553 	int txlast;
1554 	int progress = 0;
1555 	u_int32_t v;
1556 
1557 	DPRINTF(sc, ("%s: gem_tint\n", device_xname(&sc->sc_dev)));
1558 
1559 	/* Unload collision counters ... */
1560 	v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1561 	    bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1562 	ifp->if_collisions += v +
1563 	    bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1564 	    bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT);
1565 	ifp->if_oerrors += v;
1566 
1567 	/* ... then clear the hardware counters. */
1568 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1569 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1570 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1571 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1572 
1573 	/*
1574 	 * Go through our Tx list and free mbufs for those
1575 	 * frames that have been transmitted.
1576 	 */
1577 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1578 		/*
1579 		 * In theory, we could harvest some descriptors before
1580 		 * the ring is empty, but that's a bit complicated.
1581 		 *
1582 		 * GEM_TX_COMPLETION points to the last descriptor
1583 		 * processed +1.
1584 		 *
1585 		 * Let's assume that the NIC writes back to the Tx
1586 		 * descriptors before it updates the completion
1587 		 * register.  If the NIC has posted writes to the
1588 		 * Tx descriptors, PCI ordering requires that the
1589 		 * posted writes flush to RAM before the register-read
1590 		 * finishes.  So let's read the completion register,
1591 		 * before syncing the descriptors, so that we
1592 		 * examine Tx descriptors that are at least as
1593 		 * current as the completion register.
1594 		 */
1595 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1596 		DPRINTF(sc,
1597 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1598 				txs->txs_lastdesc, txlast));
1599 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1600 			if (txlast >= txs->txs_firstdesc &&
1601 			    txlast <= txs->txs_lastdesc)
1602 				break;
1603 		} else if (txlast >= txs->txs_firstdesc ||
1604 			   txlast <= txs->txs_lastdesc)
1605 			break;
1606 
1607 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1608 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1609 
1610 #ifdef GEM_DEBUG	/* XXX DMA synchronization? */
1611 		if (ifp->if_flags & IFF_DEBUG) {
1612 			printf("    txsoft %p transmit chain:\n", txs);
1613 			gem_txsoft_print(sc, txs->txs_firstdesc,
1614 			    txs->txs_lastdesc);
1615 		}
1616 #endif
1617 
1618 
1619 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1620 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1621 
1622 		sc->sc_txfree += txs->txs_ndescs;
1623 
1624 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1625 		    0, txs->txs_dmamap->dm_mapsize,
1626 		    BUS_DMASYNC_POSTWRITE);
1627 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1628 		if (txs->txs_mbuf != NULL) {
1629 			m_freem(txs->txs_mbuf);
1630 			txs->txs_mbuf = NULL;
1631 		}
1632 
1633 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1634 
1635 		ifp->if_opackets++;
1636 		progress = 1;
1637 	}
1638 
1639 #if 0
1640 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1641 		"GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
1642 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
1643 		((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1644 			GEM_TX_DATA_PTR_HI) << 32) |
1645 			     bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1646 			GEM_TX_DATA_PTR_LO),
1647 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
1648 #endif
1649 
1650 	if (progress) {
1651 		if (sc->sc_txfree == GEM_NTXDESC - 1)
1652 			sc->sc_txwin = 0;
1653 
1654 		/* Freed some descriptors, so reset IFF_OACTIVE and restart. */
1655 		ifp->if_flags &= ~IFF_OACTIVE;
1656 		sc->sc_if_flags = ifp->if_flags;
1657 		ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
1658 		gem_start(ifp);
1659 	}
1660 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1661 		device_xname(&sc->sc_dev), ifp->if_timer));
1662 
1663 	return (1);
1664 }
1665 
1666 /*
1667  * Receive interrupt.
1668  */
1669 int
1670 gem_rint(struct gem_softc *sc)
1671 {
1672 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1673 	bus_space_tag_t t = sc->sc_bustag;
1674 	bus_space_handle_t h = sc->sc_h1;
1675 	struct gem_rxsoft *rxs;
1676 	struct mbuf *m;
1677 	u_int64_t rxstat;
1678 	u_int32_t rxcomp;
1679 	int i, len, progress = 0;
1680 
1681 	DPRINTF(sc, ("%s: gem_rint\n", device_xname(&sc->sc_dev)));
1682 
1683 	/*
1684 	 * Ignore spurious interrupt that sometimes occurs before
1685 	 * we are set up when we network boot.
1686 	 */
1687 	if (!sc->sc_meminited)
1688 		return 1;
1689 
1690 	/*
1691 	 * Read the completion register once.  This limits
1692 	 * how long the following loop can execute.
1693 	 */
1694 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1695 
1696 	/*
1697 	 * XXX Read the lastrx only once at the top for speed.
1698 	 */
1699 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1700 		sc->sc_rxptr, rxcomp));
1701 
1702 	/*
1703 	 * Go into the loop at least once.
1704 	 */
1705 	for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1706 	     i = GEM_NEXTRX(i)) {
1707 		rxs = &sc->sc_rxsoft[i];
1708 
1709 		GEM_CDRXSYNC(sc, i,
1710 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1711 
1712 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1713 
1714 		if (rxstat & GEM_RD_OWN) {
1715 			GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1716 			/*
1717 			 * We have processed all of the receive buffers.
1718 			 */
1719 			break;
1720 		}
1721 
1722 		progress++;
1723 		ifp->if_ipackets++;
1724 
1725 		if (rxstat & GEM_RD_BAD_CRC) {
1726 			ifp->if_ierrors++;
1727 			aprint_error_dev(&sc->sc_dev, "receive error: CRC error\n");
1728 			GEM_INIT_RXDESC(sc, i);
1729 			continue;
1730 		}
1731 
1732 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1733 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1734 #ifdef GEM_DEBUG
1735 		if (ifp->if_flags & IFF_DEBUG) {
1736 			printf("    rxsoft %p descriptor %d: ", rxs, i);
1737 			printf("gd_flags: 0x%016llx\t", (long long)
1738 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1739 			printf("gd_addr: 0x%016llx\n", (long long)
1740 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1741 		}
1742 #endif
1743 
1744 		/* No errors; receive the packet. */
1745 		len = GEM_RD_BUFLEN(rxstat);
1746 
1747 		/*
1748 		 * Allocate a new mbuf cluster.  If that fails, we are
1749 		 * out of memory, and must drop the packet and recycle
1750 		 * the buffer that's already attached to this descriptor.
1751 		 */
1752 		m = rxs->rxs_mbuf;
1753 		if (gem_add_rxbuf(sc, i) != 0) {
1754 			GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1755 			ifp->if_ierrors++;
1756 			GEM_INIT_RXDESC(sc, i);
1757 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1758 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1759 			continue;
1760 		}
1761 		m->m_data += 2; /* We're already off by two */
1762 
1763 		m->m_pkthdr.rcvif = ifp;
1764 		m->m_pkthdr.len = m->m_len = len;
1765 
1766 #if NBPFILTER > 0
1767 		/*
1768 		 * Pass this up to any BPF listeners, but only
1769 		 * pass it up the stack if it's for us.
1770 		 */
1771 		if (ifp->if_bpf)
1772 			bpf_mtap(ifp->if_bpf, m);
1773 #endif /* NBPFILTER > 0 */
1774 
1775 #ifdef INET
1776 		/* hardware checksum */
1777 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1778 			struct ether_header *eh;
1779 			struct ip *ip;
1780 			int32_t hlen, pktlen;
1781 
1782 			if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1783 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1784 					 ETHER_VLAN_ENCAP_LEN;
1785 				eh = (struct ether_header *) (mtod(m, char *) +
1786 					ETHER_VLAN_ENCAP_LEN);
1787 			} else {
1788 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1789 				eh = mtod(m, struct ether_header *);
1790 			}
1791 			if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1792 				goto swcsum;
1793 			ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
1794 
1795 			/* IPv4 only */
1796 			if (ip->ip_v != IPVERSION)
1797 				goto swcsum;
1798 
1799 			hlen = ip->ip_hl << 2;
1800 			if (hlen < sizeof(struct ip))
1801 				goto swcsum;
1802 
1803 			/*
1804 			 * bail if too short, has random trailing garbage,
1805 			 * truncated, fragment, or has ethernet pad.
1806 			 */
1807 			if ((ntohs(ip->ip_len) < hlen) ||
1808 			    (ntohs(ip->ip_len) != pktlen) ||
1809 			    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1810 				goto swcsum;
1811 
1812 			switch (ip->ip_p) {
1813 			case IPPROTO_TCP:
1814 				if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1815 					goto swcsum;
1816 				if (pktlen < (hlen + sizeof(struct tcphdr)))
1817 					goto swcsum;
1818 				m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1819 				break;
1820 			case IPPROTO_UDP:
1821 				/* FALLTHROUGH */
1822 			default:
1823 				goto swcsum;
1824 			}
1825 
1826 			/* the uncomplemented sum is expected */
1827 			m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1828 
1829 			/* if the pkt had ip options, we have to deduct them */
1830 			if (hlen > sizeof(struct ip)) {
1831 				uint16_t *opts;
1832 				uint32_t optsum, temp;
1833 
1834 				optsum = 0;
1835 				temp = hlen - sizeof(struct ip);
1836 				opts = (uint16_t *) ((char *) ip +
1837 					sizeof(struct ip));
1838 
1839 				while (temp > 1) {
1840 					optsum += ntohs(*opts++);
1841 					temp -= 2;
1842 				}
1843 				while (optsum >> 16)
1844 					optsum = (optsum >> 16) +
1845 						 (optsum & 0xffff);
1846 
1847 				/* Deduct ip opts sum from hwsum. */
1848 				m->m_pkthdr.csum_data += (uint16_t)~optsum;
1849 
1850 				while (m->m_pkthdr.csum_data >> 16)
1851 					m->m_pkthdr.csum_data =
1852 						(m->m_pkthdr.csum_data >> 16) +
1853 						(m->m_pkthdr.csum_data &
1854 						 0xffff);
1855 			}
1856 
1857 			m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1858 						  M_CSUM_NO_PSEUDOHDR;
1859 		} else
1860 swcsum:
1861 			m->m_pkthdr.csum_flags = 0;
1862 #endif
1863 		/* Pass it on. */
1864 		(*ifp->if_input)(ifp, m);
1865 	}
1866 
1867 	if (progress) {
1868 		/* Update the receive pointer. */
1869 		if (i == sc->sc_rxptr) {
1870 			GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1871 #ifdef GEM_DEBUG
1872 			if (ifp->if_flags & IFF_DEBUG)
1873 				printf("%s: rint: ring wrap\n",
1874 				    device_xname(&sc->sc_dev));
1875 #endif
1876 		}
1877 		sc->sc_rxptr = i;
1878 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1879 	}
1880 #ifdef GEM_COUNTERS
1881 	if (progress <= 4) {
1882 		GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1883 	} else if (progress < 32) {
1884 		if (progress < 16)
1885 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1886 		else
1887 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1888 
1889 	} else {
1890 		if (progress < 64)
1891 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1892 		else
1893 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1894 	}
1895 #endif
1896 
1897 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1898 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1899 
1900 	/* Read error counters ... */
1901 	ifp->if_ierrors +=
1902 	    bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
1903 	    bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
1904 	    bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
1905 	    bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL);
1906 
1907 	/* ... then clear the hardware counters. */
1908 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1909 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1910 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1911 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1912 
1913 	return (1);
1914 }
1915 
1916 
1917 /*
1918  * gem_add_rxbuf:
1919  *
1920  *	Add a receive buffer to the indicated descriptor.
1921  */
1922 int
1923 gem_add_rxbuf(struct gem_softc *sc, int idx)
1924 {
1925 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1926 	struct mbuf *m;
1927 	int error;
1928 
1929 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1930 	if (m == NULL)
1931 		return (ENOBUFS);
1932 
1933 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1934 	MCLGET(m, M_DONTWAIT);
1935 	if ((m->m_flags & M_EXT) == 0) {
1936 		m_freem(m);
1937 		return (ENOBUFS);
1938 	}
1939 
1940 #ifdef GEM_DEBUG
1941 /* bzero the packet to check DMA */
1942 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
1943 #endif
1944 
1945 	if (rxs->rxs_mbuf != NULL)
1946 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
1947 
1948 	rxs->rxs_mbuf = m;
1949 
1950 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
1951 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1952 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1953 	if (error) {
1954 		aprint_error_dev(&sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
1955 		    idx, error);
1956 		panic("gem_add_rxbuf");	/* XXX */
1957 	}
1958 
1959 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1960 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1961 
1962 	GEM_INIT_RXDESC(sc, idx);
1963 
1964 	return (0);
1965 }
1966 
1967 
1968 int
1969 gem_eint(struct gem_softc *sc, u_int status)
1970 {
1971 	char bits[128];
1972 	u_int32_t r, v;
1973 
1974 	if ((status & GEM_INTR_MIF) != 0) {
1975 		printf("%s: XXXlink status changed\n", device_xname(&sc->sc_dev));
1976 		return (1);
1977 	}
1978 
1979 	if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
1980 		gem_reset_rxdma(sc);
1981 		return (1);
1982 	}
1983 
1984 	if (status & GEM_INTR_BERR) {
1985 		if (sc->sc_flags & GEM_PCI)
1986 			r = GEM_ERROR_STATUS;
1987 		else
1988 			r = GEM_SBUS_ERROR_STATUS;
1989 		bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
1990 		v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
1991 		aprint_error_dev(&sc->sc_dev, "bus error interrupt: 0x%02x\n",
1992 		    v);
1993 		return (1);
1994 	}
1995 	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
1996 	printf("%s: status=%s\n", device_xname(&sc->sc_dev), bits);
1997 
1998 	return (1);
1999 }
2000 
2001 
2002 /*
2003  * PCS interrupts.
2004  * We should receive these when the link status changes, but sometimes
2005  * we don't receive them for link up.  We compensate for this in the
2006  * gem_tick() callout.
2007  */
2008 int
2009 gem_pint(struct gem_softc *sc)
2010 {
2011 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2012 	bus_space_tag_t t = sc->sc_bustag;
2013 	bus_space_handle_t h = sc->sc_h1;
2014 	u_int32_t v, v2;
2015 
2016 	/*
2017 	 * Clear the PCS interrupt from GEM_STATUS.  The PCS register is
2018 	 * latched, so we have to read it twice.  There is only one bit in
2019 	 * use, so the value is meaningless.
2020 	 */
2021 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2022 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2023 
2024 	if ((ifp->if_flags & IFF_UP) == 0)
2025 		return 1;
2026 
2027 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
2028 		return 1;
2029 
2030 	v = bus_space_read_4(t, h, GEM_MII_STATUS);
2031 	/* If we see remote fault, our link partner is probably going away */
2032 	if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
2033 		gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
2034 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
2035 	/* Otherwise, we may need to wait after auto-negotiation completes */
2036 	} else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
2037 	    GEM_MII_STATUS_ANEG_CPT) {
2038 		gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
2039 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
2040 	}
2041 	if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
2042 		if (sc->sc_flags & GEM_LINK) {
2043 			return 1;
2044 		}
2045 		callout_stop(&sc->sc_tick_ch);
2046 		v = bus_space_read_4(t, h, GEM_MII_ANAR);
2047 		v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
2048 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
2049 		sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
2050 		v &= v2;
2051 		if (v & GEM_MII_ANEG_FUL_DUPLX) {
2052 			sc->sc_mii.mii_media_active |= IFM_FDX;
2053 #ifdef GEM_DEBUG
2054 			aprint_debug_dev(&sc->sc_dev, "link up: full duplex\n");
2055 #endif
2056 		} else if (v & GEM_MII_ANEG_HLF_DUPLX) {
2057 			sc->sc_mii.mii_media_active |= IFM_HDX;
2058 #ifdef GEM_DEBUG
2059 			aprint_debug_dev(&sc->sc_dev, "link up: half duplex\n");
2060 #endif
2061 		} else {
2062 #ifdef GEM_DEBUG
2063 			aprint_debug_dev(&sc->sc_dev, "duplex mismatch\n");
2064 #endif
2065 		}
2066 		gem_statuschange(sc);
2067 	} else {
2068 		if ((sc->sc_flags & GEM_LINK) == 0) {
2069 			return 1;
2070 		}
2071 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
2072 		sc->sc_mii.mii_media_status = IFM_AVALID;
2073 #ifdef GEM_DEBUG
2074 			aprint_debug_dev(&sc->sc_dev, "link down\n");
2075 #endif
2076 		gem_statuschange(sc);
2077 
2078 		/* Start the 10 second timer */
2079 		callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
2080 	}
2081 	return 1;
2082 }
2083 
2084 
2085 
2086 int
2087 gem_intr(void *v)
2088 {
2089 	struct gem_softc *sc = (struct gem_softc *)v;
2090 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2091 	bus_space_tag_t t = sc->sc_bustag;
2092 	bus_space_handle_t h = sc->sc_h1;
2093 	u_int32_t status;
2094 	int r = 0;
2095 #ifdef GEM_DEBUG
2096 	char bits[128];
2097 #endif
2098 
2099 	/* XXX We should probably mask out interrupts until we're done */
2100 
2101 	sc->sc_ev_intr.ev_count++;
2102 
2103 	status = bus_space_read_4(t, h, GEM_STATUS);
2104 #ifdef GEM_DEBUG
2105 	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2106 #endif
2107 	DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
2108 		device_xname(&sc->sc_dev), (status >> 19), bits));
2109 
2110 
2111 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
2112 		r |= gem_eint(sc, status);
2113 
2114 	/* We don't bother with GEM_INTR_TX_DONE */
2115 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
2116 		GEM_COUNTER_INCR(sc, sc_ev_txint);
2117 		r |= gem_tint(sc);
2118 	}
2119 
2120 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
2121 		GEM_COUNTER_INCR(sc, sc_ev_rxint);
2122 		r |= gem_rint(sc);
2123 	}
2124 
2125 	/* We should eventually do more than just print out error stats. */
2126 	if (status & GEM_INTR_TX_MAC) {
2127 		int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
2128 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
2129 			printf("%s: MAC tx fault, status %x\n",
2130 			    device_xname(&sc->sc_dev), txstat);
2131 		if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
2132 			gem_init(ifp);
2133 	}
2134 	if (status & GEM_INTR_RX_MAC) {
2135 		int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
2136 		/*
2137 		 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
2138 		 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
2139 		 * silicon bug so handle them silently. Moreover, it's
2140 		 * likely that the receiver has hung so we reset it.
2141 		 */
2142 		if (rxstat & GEM_MAC_RX_OVERFLOW) {
2143 			ifp->if_ierrors++;
2144 			gem_reset_rxdma(sc);
2145 		} else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
2146 			printf("%s: MAC rx fault, status 0x%02x\n",
2147 			    device_xname(&sc->sc_dev), rxstat);
2148 	}
2149 	if (status & GEM_INTR_PCS) {
2150 		r |= gem_pint(sc);
2151 	}
2152 
2153 /* Do we need to do anything with these?
2154 	if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
2155 		status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
2156 		if ((status2 & GEM_MAC_PAUSED) != 0)
2157 			aprintf_debug_dev(&sc->sc_dev, "PAUSE received (%d slots)\n",
2158 			    GEM_MAC_PAUSE_TIME(status2));
2159 		if ((status2 & GEM_MAC_PAUSE) != 0)
2160 			aprintf_debug_dev(&sc->sc_dev, "transited to PAUSE state\n");
2161 		if ((status2 & GEM_MAC_RESUME) != 0)
2162 			aprintf_debug_dev(&sc->sc_dev, "transited to non-PAUSE state\n");
2163 	}
2164 	if ((status & GEM_INTR_MIF) != 0)
2165 		aprintf_debug_dev(&sc->sc_dev, "MIF interrupt\n");
2166 */
2167 #if NRND > 0
2168 	rnd_add_uint32(&sc->rnd_source, status);
2169 #endif
2170 	return (r);
2171 }
2172 
2173 
2174 void
2175 gem_watchdog(struct ifnet *ifp)
2176 {
2177 	struct gem_softc *sc = ifp->if_softc;
2178 
2179 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
2180 		"GEM_MAC_RX_CONFIG %x\n",
2181 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
2182 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
2183 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
2184 
2185 	log(LOG_ERR, "%s: device timeout\n", device_xname(&sc->sc_dev));
2186 	++ifp->if_oerrors;
2187 
2188 	/* Try to get more packets going. */
2189 	gem_start(ifp);
2190 }
2191 
2192 /*
2193  * Initialize the MII Management Interface
2194  */
2195 void
2196 gem_mifinit(struct gem_softc *sc)
2197 {
2198 	bus_space_tag_t t = sc->sc_bustag;
2199 	bus_space_handle_t mif = sc->sc_h1;
2200 
2201 	/* Configure the MIF in frame mode */
2202 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
2203 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
2204 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
2205 }
2206 
2207 /*
2208  * MII interface
2209  *
2210  * The GEM MII interface supports at least three different operating modes:
2211  *
2212  * Bitbang mode is implemented using data, clock and output enable registers.
2213  *
2214  * Frame mode is implemented by loading a complete frame into the frame
2215  * register and polling the valid bit for completion.
2216  *
2217  * Polling mode uses the frame register but completion is indicated by
2218  * an interrupt.
2219  *
2220  */
2221 static int
2222 gem_mii_readreg(device_t self, int phy, int reg)
2223 {
2224 	struct gem_softc *sc = (void *)self;
2225 	bus_space_tag_t t = sc->sc_bustag;
2226 	bus_space_handle_t mif = sc->sc_h1;
2227 	int n;
2228 	u_int32_t v;
2229 
2230 #ifdef GEM_DEBUG1
2231 	if (sc->sc_debug)
2232 		printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
2233 #endif
2234 
2235 	/* Construct the frame command */
2236 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
2237 		GEM_MIF_FRAME_READ;
2238 
2239 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2240 	for (n = 0; n < 100; n++) {
2241 		DELAY(1);
2242 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2243 		if (v & GEM_MIF_FRAME_TA0)
2244 			return (v & GEM_MIF_FRAME_DATA);
2245 	}
2246 
2247 	printf("%s: mii_read timeout\n", device_xname(&sc->sc_dev));
2248 	return (0);
2249 }
2250 
2251 static void
2252 gem_mii_writereg(device_t self, int phy, int reg, int val)
2253 {
2254 	struct gem_softc *sc = (void *)self;
2255 	bus_space_tag_t t = sc->sc_bustag;
2256 	bus_space_handle_t mif = sc->sc_h1;
2257 	int n;
2258 	u_int32_t v;
2259 
2260 #ifdef GEM_DEBUG1
2261 	if (sc->sc_debug)
2262 		printf("gem_mii_writereg: PHY %d reg %d val %x\n",
2263 			phy, reg, val);
2264 #endif
2265 
2266 	/* Construct the frame command */
2267 	v = GEM_MIF_FRAME_WRITE			|
2268 	    (phy << GEM_MIF_PHY_SHIFT)		|
2269 	    (reg << GEM_MIF_REG_SHIFT)		|
2270 	    (val & GEM_MIF_FRAME_DATA);
2271 
2272 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2273 	for (n = 0; n < 100; n++) {
2274 		DELAY(1);
2275 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2276 		if (v & GEM_MIF_FRAME_TA0)
2277 			return;
2278 	}
2279 
2280 	printf("%s: mii_write timeout\n", device_xname(&sc->sc_dev));
2281 }
2282 
2283 static void
2284 gem_mii_statchg(device_t dev)
2285 {
2286 	struct gem_softc *sc = (void *)dev;
2287 #ifdef GEM_DEBUG
2288 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
2289 #endif
2290 
2291 #ifdef GEM_DEBUG
2292 	if (sc->sc_debug)
2293 		printf("gem_mii_statchg: status change: phy = %d\n",
2294 			sc->sc_phys[instance]);
2295 #endif
2296 	gem_statuschange(sc);
2297 }
2298 
2299 /*
2300  * Common status change for gem_mii_statchg() and gem_pint()
2301  */
2302 void
2303 gem_statuschange(struct gem_softc* sc)
2304 {
2305 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2306 	bus_space_tag_t t = sc->sc_bustag;
2307 	bus_space_handle_t mac = sc->sc_h1;
2308 	int gigabit;
2309 	u_int32_t rxcfg, txcfg, v;
2310 
2311 	if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
2312 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
2313 		sc->sc_flags |= GEM_LINK;
2314 	else
2315 		sc->sc_flags &= ~GEM_LINK;
2316 
2317 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2318 		gigabit = 1;
2319 	else
2320 		gigabit = 0;
2321 
2322 	/*
2323 	 * The configuration done here corresponds to the steps F) and
2324 	 * G) and as far as enabling of RX and TX MAC goes also step H)
2325 	 * of the initialization sequence outlined in section 3.2.1 of
2326 	 * the GEM Gigabit Ethernet ASIC Specification.
2327 	 */
2328 
2329 	rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
2330 	rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
2331 	txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
2332 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2333 		txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
2334 	else if (gigabit) {
2335 		rxcfg |= GEM_MAC_RX_CARR_EXTEND;
2336 		txcfg |= GEM_MAC_RX_CARR_EXTEND;
2337 	}
2338 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
2339 	bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
2340 	    BUS_SPACE_BARRIER_WRITE);
2341 	if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
2342 		aprint_normal_dev(&sc->sc_dev, "cannot disable TX MAC\n");
2343 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
2344 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
2345 	bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
2346 	    BUS_SPACE_BARRIER_WRITE);
2347 	if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
2348 		aprint_normal_dev(&sc->sc_dev, "cannot disable RX MAC\n");
2349 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
2350 
2351 	v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
2352 	    ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
2353 	bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
2354 
2355 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
2356 	    gigabit != 0)
2357 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2358 		    GEM_MAC_SLOT_TIME_CARR_EXTEND);
2359 	else
2360 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2361 		    GEM_MAC_SLOT_TIME_NORMAL);
2362 
2363 	/* XIF Configuration */
2364 	if (sc->sc_flags & GEM_LINK)
2365 		v = GEM_MAC_XIF_LINK_LED;
2366 	else
2367 		v = 0;
2368 	v |= GEM_MAC_XIF_TX_MII_ENA;
2369 
2370 	/* If an external transceiver is connected, enable its MII drivers */
2371 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
2372 	if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
2373 		if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
2374 			/* External MII needs echo disable if half duplex. */
2375 			if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) &
2376 			    IFM_FDX) != 0)
2377 				/* turn on full duplex LED */
2378 				v |= GEM_MAC_XIF_FDPLX_LED;
2379 			else
2380 				/* half duplex -- disable echo */
2381 				v |= GEM_MAC_XIF_ECHO_DISABL;
2382 			if (gigabit)
2383 				v |= GEM_MAC_XIF_GMII_MODE;
2384 			else
2385 				v &= ~GEM_MAC_XIF_GMII_MODE;
2386 		} else
2387 			/* Internal MII needs buf enable */
2388 			v |= GEM_MAC_XIF_MII_BUF_ENA;
2389 	} else {
2390 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2391 			v |= GEM_MAC_XIF_FDPLX_LED;
2392 		v |= GEM_MAC_XIF_GMII_MODE;
2393 	}
2394 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
2395 
2396 	if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2397 	    (sc->sc_flags & GEM_LINK) != 0) {
2398 		bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
2399 		    txcfg | GEM_MAC_TX_ENABLE);
2400 		bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
2401 		    rxcfg | GEM_MAC_RX_ENABLE);
2402 	}
2403 }
2404 
2405 int
2406 gem_ser_mediachange(struct ifnet *ifp)
2407 {
2408 	struct gem_softc *sc = ifp->if_softc;
2409 	u_int s, t;
2410 
2411 	if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
2412 		return EINVAL;
2413 
2414 	s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
2415 	if (s == IFM_AUTO) {
2416 		if (sc->sc_mii_media != s) {
2417 #ifdef GEM_DEBUG
2418 			aprint_debug_dev(&sc->sc_dev, "setting media to auto\n");
2419 #endif
2420 			sc->sc_mii_media = s;
2421 			if (ifp->if_flags & IFF_UP) {
2422 				gem_pcs_stop(sc, 0);
2423 				gem_pcs_start(sc);
2424 			}
2425 		}
2426 		return 0;
2427 	}
2428 	if (s == IFM_1000_SX) {
2429 		t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media);
2430 		if (t == IFM_FDX || t == IFM_HDX) {
2431 			if (sc->sc_mii_media != t) {
2432 				sc->sc_mii_media = t;
2433 #ifdef GEM_DEBUG
2434 				aprint_debug_dev(&sc->sc_dev,
2435 				    "setting media to 1000baseSX-%s\n",
2436 				    t == IFM_FDX ? "FDX" : "HDX");
2437 #endif
2438 				if (ifp->if_flags & IFF_UP) {
2439 					gem_pcs_stop(sc, 0);
2440 					gem_pcs_start(sc);
2441 				}
2442 			}
2443 			return 0;
2444 		}
2445 	}
2446 	return EINVAL;
2447 }
2448 
2449 void
2450 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2451 {
2452 	struct gem_softc *sc = ifp->if_softc;
2453 
2454 	if ((ifp->if_flags & IFF_UP) == 0)
2455 		return;
2456 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
2457 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
2458 }
2459 
2460 static int
2461 gem_ifflags_cb(struct ethercom *ec)
2462 {
2463 	struct ifnet *ifp = &ec->ec_if;
2464 	struct gem_softc *sc = ifp->if_softc;
2465 	int change = ifp->if_flags ^ sc->sc_if_flags;
2466 
2467 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
2468 		return ENETRESET;
2469 	else if ((change & IFF_PROMISC) != 0)
2470 		gem_setladrf(sc);
2471 	return 0;
2472 }
2473 
2474 /*
2475  * Process an ioctl request.
2476  */
2477 int
2478 gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
2479 {
2480 	struct gem_softc *sc = ifp->if_softc;
2481 	int s, error = 0;
2482 
2483 	s = splnet();
2484 
2485 	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2486 		error = 0;
2487 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2488 			;
2489 		else if (ifp->if_flags & IFF_RUNNING) {
2490 			/*
2491 			 * Multicast list has changed; set the hardware filter
2492 			 * accordingly.
2493 			 */
2494 			gem_setladrf(sc);
2495 		}
2496 	}
2497 
2498 	/* Try to get things going again */
2499 	if (ifp->if_flags & IFF_UP)
2500 		gem_start(ifp);
2501 	splx(s);
2502 	return (error);
2503 }
2504 
2505 
2506 void
2507 gem_shutdown(void *arg)
2508 {
2509 	struct gem_softc *sc = (struct gem_softc *)arg;
2510 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2511 
2512 	gem_stop(ifp, 1);
2513 }
2514 
2515 /*
2516  * Set up the logical address filter.
2517  */
2518 void
2519 gem_setladrf(struct gem_softc *sc)
2520 {
2521 	struct ethercom *ec = &sc->sc_ethercom;
2522 	struct ifnet *ifp = &ec->ec_if;
2523 	struct ether_multi *enm;
2524 	struct ether_multistep step;
2525 	bus_space_tag_t t = sc->sc_bustag;
2526 	bus_space_handle_t h = sc->sc_h1;
2527 	u_int32_t crc;
2528 	u_int32_t hash[16];
2529 	u_int32_t v;
2530 	int i;
2531 
2532 	/* Get current RX configuration */
2533 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2534 
2535 	/*
2536 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2537 	 * and hash filter.  Depending on the case, the right bit will be
2538 	 * enabled.
2539 	 */
2540 	v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
2541 	    GEM_MAC_RX_PROMISC_GRP);
2542 
2543 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
2544 		/* Turn on promiscuous mode */
2545 		v |= GEM_MAC_RX_PROMISCUOUS;
2546 		ifp->if_flags |= IFF_ALLMULTI;
2547 		goto chipit;
2548 	}
2549 
2550 	/*
2551 	 * Set up multicast address filter by passing all multicast addresses
2552 	 * through a crc generator, and then using the high order 8 bits as an
2553 	 * index into the 256 bit logical address filter.  The high order 4
2554 	 * bits selects the word, while the other 4 bits select the bit within
2555 	 * the word (where bit 0 is the MSB).
2556 	 */
2557 
2558 	/* Clear hash table */
2559 	memset(hash, 0, sizeof(hash));
2560 
2561 	ETHER_FIRST_MULTI(step, ec, enm);
2562 	while (enm != NULL) {
2563 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2564 			/*
2565 			 * We must listen to a range of multicast addresses.
2566 			 * For now, just accept all multicasts, rather than
2567 			 * trying to set only those filter bits needed to match
2568 			 * the range.  (At this time, the only use of address
2569 			 * ranges is for IP multicast routing, for which the
2570 			 * range is big enough to require all bits set.)
2571 			 * XXX should use the address filters for this
2572 			 */
2573 			ifp->if_flags |= IFF_ALLMULTI;
2574 			v |= GEM_MAC_RX_PROMISC_GRP;
2575 			goto chipit;
2576 		}
2577 
2578 		/* Get the LE CRC32 of the address */
2579 		crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2580 
2581 		/* Just want the 8 most significant bits. */
2582 		crc >>= 24;
2583 
2584 		/* Set the corresponding bit in the filter. */
2585 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
2586 
2587 		ETHER_NEXT_MULTI(step, enm);
2588 	}
2589 
2590 	v |= GEM_MAC_RX_HASH_FILTER;
2591 	ifp->if_flags &= ~IFF_ALLMULTI;
2592 
2593 	/* Now load the hash table into the chip (if we are using it) */
2594 	for (i = 0; i < 16; i++) {
2595 		bus_space_write_4(t, h,
2596 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2597 		    hash[i]);
2598 	}
2599 
2600 chipit:
2601 	sc->sc_if_flags = ifp->if_flags;
2602 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2603 }
2604 
2605 #if notyet
2606 
2607 /*
2608  * gem_power:
2609  *
2610  *	Power management (suspend/resume) hook.
2611  */
2612 void
2613 gem_power(int why, void *arg)
2614 {
2615 	struct gem_softc *sc = arg;
2616 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2617 	int s;
2618 
2619 	s = splnet();
2620 	switch (why) {
2621 	case PWR_SUSPEND:
2622 	case PWR_STANDBY:
2623 		gem_stop(ifp, 1);
2624 		if (sc->sc_power != NULL)
2625 			(*sc->sc_power)(sc, why);
2626 		break;
2627 	case PWR_RESUME:
2628 		if (ifp->if_flags & IFF_UP) {
2629 			if (sc->sc_power != NULL)
2630 				(*sc->sc_power)(sc, why);
2631 			gem_init(ifp);
2632 		}
2633 		break;
2634 	case PWR_SOFTSUSPEND:
2635 	case PWR_SOFTSTANDBY:
2636 	case PWR_SOFTRESUME:
2637 		break;
2638 	}
2639 	splx(s);
2640 }
2641 #endif
2642