xref: /netbsd-src/sys/dev/ic/gem.c (revision d909946ca08dceb44d7d0f22ec9488679695d976)
1 /*	$NetBSD: gem.c,v 1.106 2016/06/10 13:27:13 ozaki-r Exp $ */
2 
3 /*
4  *
5  * Copyright (C) 2001 Eduardo Horvath.
6  * Copyright (c) 2001-2003 Thomas Moestl
7  * All rights reserved.
8  *
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  */
32 
33 /*
34  * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
35  * See `GEM Gigabit Ethernet ASIC Specification'
36  *   http://www.sun.com/processors/manuals/ge.pdf
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.106 2016/06/10 13:27:13 ozaki-r Exp $");
41 
42 #include "opt_inet.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/callout.h>
47 #include <sys/mbuf.h>
48 #include <sys/syslog.h>
49 #include <sys/malloc.h>
50 #include <sys/kernel.h>
51 #include <sys/socket.h>
52 #include <sys/ioctl.h>
53 #include <sys/errno.h>
54 #include <sys/device.h>
55 
56 #include <machine/endian.h>
57 
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_ether.h>
62 
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/tcp.h>
69 #include <netinet/udp.h>
70 #endif
71 
72 #include <net/bpf.h>
73 
74 #include <sys/bus.h>
75 #include <sys/intr.h>
76 
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79 #include <dev/mii/mii_bitbang.h>
80 
81 #include <dev/ic/gemreg.h>
82 #include <dev/ic/gemvar.h>
83 
84 #define TRIES	10000
85 
86 static void	gem_inten(struct gem_softc *);
87 static void	gem_start(struct ifnet *);
88 static void	gem_stop(struct ifnet *, int);
89 int		gem_ioctl(struct ifnet *, u_long, void *);
90 void		gem_tick(void *);
91 void		gem_watchdog(struct ifnet *);
92 void		gem_rx_watchdog(void *);
93 void		gem_pcs_start(struct gem_softc *sc);
94 void		gem_pcs_stop(struct gem_softc *sc, int);
95 int		gem_init(struct ifnet *);
96 void		gem_init_regs(struct gem_softc *sc);
97 static int	gem_ringsize(int sz);
98 static int	gem_meminit(struct gem_softc *);
99 void		gem_mifinit(struct gem_softc *);
100 static int	gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
101 		    u_int32_t, u_int32_t);
102 void		gem_reset(struct gem_softc *);
103 int		gem_reset_rx(struct gem_softc *sc);
104 static void	gem_reset_rxdma(struct gem_softc *sc);
105 static void	gem_rx_common(struct gem_softc *sc);
106 int		gem_reset_tx(struct gem_softc *sc);
107 int		gem_disable_rx(struct gem_softc *sc);
108 int		gem_disable_tx(struct gem_softc *sc);
109 static void	gem_rxdrain(struct gem_softc *sc);
110 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
111 void		gem_setladrf(struct gem_softc *);
112 
113 /* MII methods & callbacks */
114 static int	gem_mii_readreg(device_t, int, int);
115 static void	gem_mii_writereg(device_t, int, int, int);
116 static void	gem_mii_statchg(struct ifnet *);
117 
118 static int	gem_ifflags_cb(struct ethercom *);
119 
120 void		gem_statuschange(struct gem_softc *);
121 
122 int		gem_ser_mediachange(struct ifnet *);
123 void		gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
124 
125 static void	gem_partial_detach(struct gem_softc *, enum gem_attach_stage);
126 
127 struct mbuf	*gem_get(struct gem_softc *, int, int);
128 int		gem_put(struct gem_softc *, int, struct mbuf *);
129 void		gem_read(struct gem_softc *, int, int);
130 int		gem_pint(struct gem_softc *);
131 int		gem_eint(struct gem_softc *, u_int);
132 int		gem_rint(struct gem_softc *);
133 int		gem_tint(struct gem_softc *);
134 void		gem_power(int, void *);
135 
136 #ifdef GEM_DEBUG
137 static void gem_txsoft_print(const struct gem_softc *, int, int);
138 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
139 				printf x
140 #else
141 #define	DPRINTF(sc, x)	/* nothing */
142 #endif
143 
144 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
145 
146 int
147 gem_detach(struct gem_softc *sc, int flags)
148 {
149 	int i;
150 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
151 	bus_space_tag_t t = sc->sc_bustag;
152 	bus_space_handle_t h = sc->sc_h1;
153 
154 	/*
155 	 * Free any resources we've allocated during the attach.
156 	 * Do this in reverse order and fall through.
157 	 */
158 	switch (sc->sc_att_stage) {
159 	case GEM_ATT_BACKEND_2:
160 	case GEM_ATT_BACKEND_1:
161 	case GEM_ATT_FINISHED:
162 		bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
163 		gem_stop(&sc->sc_ethercom.ec_if, 1);
164 
165 #ifdef GEM_COUNTERS
166 		for (i = __arraycount(sc->sc_ev_rxhist); --i >= 0; )
167 			evcnt_detach(&sc->sc_ev_rxhist[i]);
168 		evcnt_detach(&sc->sc_ev_rxnobuf);
169 		evcnt_detach(&sc->sc_ev_rxfull);
170 		evcnt_detach(&sc->sc_ev_rxint);
171 		evcnt_detach(&sc->sc_ev_txint);
172 #endif
173 		evcnt_detach(&sc->sc_ev_intr);
174 
175 		rnd_detach_source(&sc->rnd_source);
176 		ether_ifdetach(ifp);
177 		if_detach(ifp);
178 		ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
179 
180 		callout_destroy(&sc->sc_tick_ch);
181 		callout_destroy(&sc->sc_rx_watchdog);
182 
183 		/*FALLTHROUGH*/
184 	case GEM_ATT_MII:
185 		sc->sc_att_stage = GEM_ATT_MII;
186 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
187 		/*FALLTHROUGH*/
188 	case GEM_ATT_7:
189 		for (i = 0; i < GEM_NRXDESC; i++) {
190 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
191 				bus_dmamap_destroy(sc->sc_dmatag,
192 				    sc->sc_rxsoft[i].rxs_dmamap);
193 		}
194 		/*FALLTHROUGH*/
195 	case GEM_ATT_6:
196 		for (i = 0; i < GEM_TXQUEUELEN; i++) {
197 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
198 				bus_dmamap_destroy(sc->sc_dmatag,
199 				    sc->sc_txsoft[i].txs_dmamap);
200 		}
201 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
202 		/*FALLTHROUGH*/
203 	case GEM_ATT_5:
204 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_nulldmamap);
205 		/*FALLTHROUGH*/
206 	case GEM_ATT_4:
207 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
208 		/*FALLTHROUGH*/
209 	case GEM_ATT_3:
210 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
211 		/*FALLTHROUGH*/
212 	case GEM_ATT_2:
213 		bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
214 		    sizeof(struct gem_control_data));
215 		/*FALLTHROUGH*/
216 	case GEM_ATT_1:
217 		bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
218 		/*FALLTHROUGH*/
219 	case GEM_ATT_0:
220 		sc->sc_att_stage = GEM_ATT_0;
221 		/*FALLTHROUGH*/
222 	case GEM_ATT_BACKEND_0:
223 		break;
224 	}
225 	return 0;
226 }
227 
228 static void
229 gem_partial_detach(struct gem_softc *sc, enum gem_attach_stage stage)
230 {
231 	cfattach_t ca = device_cfattach(sc->sc_dev);
232 
233 	sc->sc_att_stage = stage;
234 	(*ca->ca_detach)(sc->sc_dev, 0);
235 }
236 
237 /*
238  * gem_attach:
239  *
240  *	Attach a Gem interface to the system.
241  */
242 void
243 gem_attach(struct gem_softc *sc, const uint8_t *enaddr)
244 {
245 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
246 	struct mii_data *mii = &sc->sc_mii;
247 	bus_space_tag_t t = sc->sc_bustag;
248 	bus_space_handle_t h = sc->sc_h1;
249 	struct ifmedia_entry *ifm;
250 	int i, error, phyaddr;
251 	u_int32_t v;
252 	char *nullbuf;
253 
254 	/* Make sure the chip is stopped. */
255 	ifp->if_softc = sc;
256 	gem_reset(sc);
257 
258 	/*
259 	 * Allocate the control data structures, and create and load the
260 	 * DMA map for it. gem_control_data is 9216 bytes, we have space for
261 	 * the padding buffer in the bus_dmamem_alloc()'d memory.
262 	 */
263 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
264 	    sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
265 	    0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
266 		aprint_error_dev(sc->sc_dev,
267 		   "unable to allocate control data, error = %d\n",
268 		    error);
269 		gem_partial_detach(sc, GEM_ATT_0);
270 		return;
271 	}
272 
273 	/* XXX should map this in with correct endianness */
274 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
275 	    sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
276 	    BUS_DMA_COHERENT)) != 0) {
277 		aprint_error_dev(sc->sc_dev,
278 		    "unable to map control data, error = %d\n", error);
279 		gem_partial_detach(sc, GEM_ATT_1);
280 		return;
281 	}
282 
283 	nullbuf =
284 	    (char *)sc->sc_control_data + sizeof(struct gem_control_data);
285 
286 	if ((error = bus_dmamap_create(sc->sc_dmatag,
287 	    sizeof(struct gem_control_data), 1,
288 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
289 		aprint_error_dev(sc->sc_dev,
290 		    "unable to create control data DMA map, error = %d\n",
291 		    error);
292 		gem_partial_detach(sc, GEM_ATT_2);
293 		return;
294 	}
295 
296 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
297 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
298 	    0)) != 0) {
299 		aprint_error_dev(sc->sc_dev,
300 		    "unable to load control data DMA map, error = %d\n",
301 		    error);
302 		gem_partial_detach(sc, GEM_ATT_3);
303 		return;
304 	}
305 
306 	memset(nullbuf, 0, ETHER_MIN_TX);
307 	if ((error = bus_dmamap_create(sc->sc_dmatag,
308 	    ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
309 		aprint_error_dev(sc->sc_dev,
310 		    "unable to create padding DMA map, error = %d\n", error);
311 		gem_partial_detach(sc, GEM_ATT_4);
312 		return;
313 	}
314 
315 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
316 	    nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
317 		aprint_error_dev(sc->sc_dev,
318 		    "unable to load padding DMA map, error = %d\n", error);
319 		gem_partial_detach(sc, GEM_ATT_5);
320 		return;
321 	}
322 
323 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
324 	    BUS_DMASYNC_PREWRITE);
325 
326 	/*
327 	 * Initialize the transmit job descriptors.
328 	 */
329 	SIMPLEQ_INIT(&sc->sc_txfreeq);
330 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
331 
332 	/*
333 	 * Create the transmit buffer DMA maps.
334 	 */
335 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
336 		struct gem_txsoft *txs;
337 
338 		txs = &sc->sc_txsoft[i];
339 		txs->txs_mbuf = NULL;
340 		if ((error = bus_dmamap_create(sc->sc_dmatag,
341 		    ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
342 		    ETHER_MAX_LEN_JUMBO, 0, 0,
343 		    &txs->txs_dmamap)) != 0) {
344 			aprint_error_dev(sc->sc_dev,
345 			    "unable to create tx DMA map %d, error = %d\n",
346 			    i, error);
347 			gem_partial_detach(sc, GEM_ATT_6);
348 			return;
349 		}
350 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
351 	}
352 
353 	/*
354 	 * Create the receive buffer DMA maps.
355 	 */
356 	for (i = 0; i < GEM_NRXDESC; i++) {
357 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
358 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
359 			aprint_error_dev(sc->sc_dev,
360 			    "unable to create rx DMA map %d, error = %d\n",
361 			    i, error);
362 			gem_partial_detach(sc, GEM_ATT_7);
363 			return;
364 		}
365 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
366 	}
367 
368 	/* Initialize ifmedia structures and MII info */
369 	mii->mii_ifp = ifp;
370 	mii->mii_readreg = gem_mii_readreg;
371 	mii->mii_writereg = gem_mii_writereg;
372 	mii->mii_statchg = gem_mii_statchg;
373 
374 	sc->sc_ethercom.ec_mii = mii;
375 
376 	/*
377 	 * Initialization based  on `GEM Gigabit Ethernet ASIC Specification'
378 	 * Section 3.2.1 `Initialization Sequence'.
379 	 * However, we can't assume SERDES or Serialink if neither
380 	 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
381 	 * being set, as both are set on Sun X1141A (with SERDES).  So,
382 	 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
383 	 * Also, for variants that report 2 PHY's, we prefer the external
384 	 * PHY over the internal PHY, so we look for that first.
385 	 */
386 	gem_mifinit(sc);
387 
388 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
389 		ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
390 		    ether_mediastatus);
391 		/* Look for external PHY */
392 		if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
393 			sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
394 			bus_space_write_4(t, h, GEM_MIF_CONFIG,
395 			    sc->sc_mif_config);
396 			switch (sc->sc_variant) {
397 			case GEM_SUN_ERI:
398 				phyaddr = GEM_PHYAD_EXTERNAL;
399 				break;
400 			default:
401 				phyaddr = MII_PHY_ANY;
402 				break;
403 			}
404 			mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
405 			    MII_OFFSET_ANY, MIIF_FORCEANEG);
406 		}
407 #ifdef GEM_DEBUG
408 		  else
409 			aprint_debug_dev(sc->sc_dev, "using external PHY\n");
410 #endif
411 		/* Look for internal PHY if no external PHY was found */
412 		if (LIST_EMPTY(&mii->mii_phys) &&
413 		    sc->sc_mif_config & GEM_MIF_CONFIG_MDI0) {
414 			sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
415 			bus_space_write_4(t, h, GEM_MIF_CONFIG,
416 			    sc->sc_mif_config);
417 			switch (sc->sc_variant) {
418 			case GEM_SUN_ERI:
419 			case GEM_APPLE_K2_GMAC:
420 				phyaddr = GEM_PHYAD_INTERNAL;
421 				break;
422 			case GEM_APPLE_GMAC:
423 				phyaddr = GEM_PHYAD_EXTERNAL;
424 				break;
425 			default:
426 				phyaddr = MII_PHY_ANY;
427 				break;
428 			}
429 			mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
430 			    MII_OFFSET_ANY, MIIF_FORCEANEG);
431 #ifdef GEM_DEBUG
432 			if (!LIST_EMPTY(&mii->mii_phys))
433 				aprint_debug_dev(sc->sc_dev,
434 				    "using internal PHY\n");
435 #endif
436 		}
437 		if (LIST_EMPTY(&mii->mii_phys)) {
438 				/* No PHY attached */
439 				aprint_error_dev(sc->sc_dev,
440 				    "PHY probe failed\n");
441 				gem_partial_detach(sc, GEM_ATT_MII);
442 				return;
443 		} else {
444 			struct mii_softc *child;
445 
446 			/*
447 			 * Walk along the list of attached MII devices and
448 			 * establish an `MII instance' to `PHY number'
449 			 * mapping.
450 			 */
451 			LIST_FOREACH(child, &mii->mii_phys, mii_list) {
452 				/*
453 				 * Note: we support just one PHY: the internal
454 				 * or external MII is already selected for us
455 				 * by the GEM_MIF_CONFIG  register.
456 				 */
457 				if (child->mii_phy > 1 || child->mii_inst > 0) {
458 					aprint_error_dev(sc->sc_dev,
459 					    "cannot accommodate MII device"
460 					    " %s at PHY %d, instance %d\n",
461 					       device_xname(child->mii_dev),
462 					       child->mii_phy, child->mii_inst);
463 					continue;
464 				}
465 				sc->sc_phys[child->mii_inst] = child->mii_phy;
466 			}
467 
468 			if (sc->sc_variant != GEM_SUN_ERI)
469 				bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
470 				    GEM_MII_DATAPATH_MII);
471 
472 			/*
473 			 * XXX - we can really do the following ONLY if the
474 			 * PHY indeed has the auto negotiation capability!!
475 			 */
476 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
477 		}
478 	} else {
479 		ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
480 		    gem_ser_mediastatus);
481 		/* SERDES or Serialink */
482 		if (sc->sc_flags & GEM_SERDES) {
483 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
484 			    GEM_MII_DATAPATH_SERDES);
485 		} else {
486 			sc->sc_flags |= GEM_SERIAL;
487 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
488 			    GEM_MII_DATAPATH_SERIAL);
489 		}
490 
491 		aprint_normal_dev(sc->sc_dev, "using external PCS %s: ",
492 		    sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
493 
494 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0, NULL);
495 		/* Check for FDX and HDX capabilities */
496 		sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
497 		if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
498 			ifmedia_add(&sc->sc_mii.mii_media,
499 			    IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_FDX, 0, NULL);
500 			aprint_normal("1000baseSX-FDX, ");
501 		}
502 		if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
503 			ifmedia_add(&sc->sc_mii.mii_media,
504 			    IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_HDX, 0, NULL);
505 			aprint_normal("1000baseSX-HDX, ");
506 		}
507 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
508 		sc->sc_mii_media = IFM_AUTO;
509 		aprint_normal("auto\n");
510 
511 		gem_pcs_stop(sc, 1);
512 	}
513 
514 	/*
515 	 * From this point forward, the attachment cannot fail.  A failure
516 	 * before this point releases all resources that may have been
517 	 * allocated.
518 	 */
519 
520 	/* Announce ourselves. */
521 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s",
522 	    ether_sprintf(enaddr));
523 
524 	/* Get RX FIFO size */
525 	sc->sc_rxfifosize = 64 *
526 	    bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
527 	aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
528 
529 	/* Get TX FIFO size */
530 	v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
531 	aprint_normal(", %uKB TX fifo\n", v / 16);
532 
533 	/* Initialize ifnet structure. */
534 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
535 	ifp->if_softc = sc;
536 	ifp->if_flags =
537 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
538 	sc->sc_if_flags = ifp->if_flags;
539 #if 0
540 	/*
541 	 * The GEM hardware supports basic TCP checksum offloading only.
542 	 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
543 	 * have bugs in the receive checksum, so don't enable it for now.
544 	 */
545 	if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
546 	    (GEM_IS_APPLE(sc) &&
547 	    (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
548 		ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
549 #endif
550 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
551 	ifp->if_start = gem_start;
552 	ifp->if_ioctl = gem_ioctl;
553 	ifp->if_watchdog = gem_watchdog;
554 	ifp->if_stop = gem_stop;
555 	ifp->if_init = gem_init;
556 	IFQ_SET_READY(&ifp->if_snd);
557 
558 	/*
559 	 * If we support GigE media, we support jumbo frames too.
560 	 * Unless we are Apple.
561 	 */
562 	TAILQ_FOREACH(ifm, &sc->sc_mii.mii_media.ifm_list, ifm_list) {
563 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
564 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
565 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
566 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
567 			if (!GEM_IS_APPLE(sc))
568 				sc->sc_ethercom.ec_capabilities
569 				    |= ETHERCAP_JUMBO_MTU;
570 			sc->sc_flags |= GEM_GIGABIT;
571 			break;
572 		}
573 	}
574 
575 	/* claim 802.1q capability */
576 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
577 
578 	/* Attach the interface. */
579 	if_attach(ifp);
580 	ether_ifattach(ifp, enaddr);
581 	ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
582 
583 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
584 			  RND_TYPE_NET, RND_FLAG_DEFAULT);
585 
586 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
587 	    NULL, device_xname(sc->sc_dev), "interrupts");
588 #ifdef GEM_COUNTERS
589 	evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
590 	    &sc->sc_ev_intr, device_xname(sc->sc_dev), "tx interrupts");
591 	evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
592 	    &sc->sc_ev_intr, device_xname(sc->sc_dev), "rx interrupts");
593 	evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
594 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx ring full");
595 	evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
596 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx malloc failure");
597 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
598 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 0desc");
599 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
600 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 1desc");
601 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
602 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 2desc");
603 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
604 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 3desc");
605 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
606 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >3desc");
607 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
608 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >7desc");
609 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
610 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >15desc");
611 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
612 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >31desc");
613 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
614 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >63desc");
615 #endif
616 
617 	callout_init(&sc->sc_tick_ch, 0);
618 	callout_init(&sc->sc_rx_watchdog, 0);
619 	callout_setfunc(&sc->sc_rx_watchdog, gem_rx_watchdog, sc);
620 
621 	sc->sc_att_stage = GEM_ATT_FINISHED;
622 
623 	return;
624 }
625 
626 void
627 gem_tick(void *arg)
628 {
629 	struct gem_softc *sc = arg;
630 	int s;
631 
632 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
633 		/*
634 		 * We have to reset everything if we failed to get a
635 		 * PCS interrupt.  Restarting the callout is handled
636 		 * in gem_pcs_start().
637 		 */
638 		gem_init(&sc->sc_ethercom.ec_if);
639 	} else {
640 		s = splnet();
641 		mii_tick(&sc->sc_mii);
642 		splx(s);
643 		callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
644 	}
645 }
646 
647 static int
648 gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, u_int32_t clr, u_int32_t set)
649 {
650 	int i;
651 	u_int32_t reg;
652 
653 	for (i = TRIES; i--; DELAY(100)) {
654 		reg = bus_space_read_4(sc->sc_bustag, h, r);
655 		if ((reg & clr) == 0 && (reg & set) == set)
656 			return (1);
657 	}
658 	return (0);
659 }
660 
661 void
662 gem_reset(struct gem_softc *sc)
663 {
664 	bus_space_tag_t t = sc->sc_bustag;
665 	bus_space_handle_t h = sc->sc_h2;
666 	int s;
667 
668 	s = splnet();
669 	DPRINTF(sc, ("%s: gem_reset\n", device_xname(sc->sc_dev)));
670 	gem_reset_rx(sc);
671 	gem_reset_tx(sc);
672 
673 	/* Do a full reset */
674 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
675 	if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
676 		aprint_error_dev(sc->sc_dev, "cannot reset device\n");
677 	splx(s);
678 }
679 
680 
681 /*
682  * gem_rxdrain:
683  *
684  *	Drain the receive queue.
685  */
686 static void
687 gem_rxdrain(struct gem_softc *sc)
688 {
689 	struct gem_rxsoft *rxs;
690 	int i;
691 
692 	for (i = 0; i < GEM_NRXDESC; i++) {
693 		rxs = &sc->sc_rxsoft[i];
694 		if (rxs->rxs_mbuf != NULL) {
695 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
696 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
697 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
698 			m_freem(rxs->rxs_mbuf);
699 			rxs->rxs_mbuf = NULL;
700 		}
701 	}
702 }
703 
704 /*
705  * Reset the whole thing.
706  */
707 static void
708 gem_stop(struct ifnet *ifp, int disable)
709 {
710 	struct gem_softc *sc = ifp->if_softc;
711 	struct gem_txsoft *txs;
712 
713 	DPRINTF(sc, ("%s: gem_stop\n", device_xname(sc->sc_dev)));
714 
715 	callout_halt(&sc->sc_tick_ch, NULL);
716 	callout_halt(&sc->sc_rx_watchdog, NULL);
717 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
718 		gem_pcs_stop(sc, disable);
719 	else
720 		mii_down(&sc->sc_mii);
721 
722 	/* XXX - Should we reset these instead? */
723 	gem_disable_tx(sc);
724 	gem_disable_rx(sc);
725 
726 	/*
727 	 * Release any queued transmit buffers.
728 	 */
729 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
730 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
731 		if (txs->txs_mbuf != NULL) {
732 			bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
733 			    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
734 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
735 			m_freem(txs->txs_mbuf);
736 			txs->txs_mbuf = NULL;
737 		}
738 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
739 	}
740 
741 	/*
742 	 * Mark the interface down and cancel the watchdog timer.
743 	 */
744 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
745 	sc->sc_if_flags = ifp->if_flags;
746 	ifp->if_timer = 0;
747 
748 	if (disable)
749 		gem_rxdrain(sc);
750 }
751 
752 
753 /*
754  * Reset the receiver
755  */
756 int
757 gem_reset_rx(struct gem_softc *sc)
758 {
759 	bus_space_tag_t t = sc->sc_bustag;
760 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
761 
762 	/*
763 	 * Resetting while DMA is in progress can cause a bus hang, so we
764 	 * disable DMA first.
765 	 */
766 	gem_disable_rx(sc);
767 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
768 	bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
769 	/* Wait till it finishes */
770 	if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
771 		aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
772 	/* Wait 5ms extra. */
773 	delay(5000);
774 
775 	/* Finally, reset the ERX */
776 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
777 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
778 	/* Wait till it finishes */
779 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
780 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
781 		return (1);
782 	}
783 	return (0);
784 }
785 
786 
787 /*
788  * Reset the receiver DMA engine.
789  *
790  * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
791  * etc in order to reset the receiver DMA engine only and not do a full
792  * reset which amongst others also downs the link and clears the FIFOs.
793  */
794 static void
795 gem_reset_rxdma(struct gem_softc *sc)
796 {
797 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
798 	bus_space_tag_t t = sc->sc_bustag;
799 	bus_space_handle_t h = sc->sc_h1;
800 	int i;
801 
802 	if (gem_reset_rx(sc) != 0) {
803 		gem_init(ifp);
804 		return;
805 	}
806 	for (i = 0; i < GEM_NRXDESC; i++)
807 		if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
808 			GEM_UPDATE_RXDESC(sc, i);
809 	sc->sc_rxptr = 0;
810 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
811 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
812 
813 	/* Reprogram Descriptor Ring Base Addresses */
814 	/* NOTE: we use only 32-bit DMA addresses here. */
815 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
816 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
817 
818 	/* Redo ERX Configuration */
819 	gem_rx_common(sc);
820 
821 	/* Give the reciever a swift kick */
822 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
823 }
824 
825 /*
826  * Common RX configuration for gem_init() and gem_reset_rxdma().
827  */
828 static void
829 gem_rx_common(struct gem_softc *sc)
830 {
831 	bus_space_tag_t t = sc->sc_bustag;
832 	bus_space_handle_t h = sc->sc_h1;
833 	u_int32_t v;
834 
835 	/* Encode Receive Descriptor ring size: four possible values */
836 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
837 
838 	/* Set receive h/w checksum offset */
839 #ifdef INET
840 	v |= (ETHER_HDR_LEN + sizeof(struct ip) +
841 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
842 	    ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
843 #endif
844 
845 	/* Enable RX DMA */
846 	bus_space_write_4(t, h, GEM_RX_CONFIG,
847 	    v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
848 	    (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
849 
850 	/*
851 	 * The following value is for an OFF Threshold of about 3/4 full
852 	 * and an ON Threshold of 1/4 full.
853 	 */
854 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
855 	    (3 * sc->sc_rxfifosize / 256) |
856 	    ((sc->sc_rxfifosize / 256) << 12));
857 	bus_space_write_4(t, h, GEM_RX_BLANKING,
858 	    (6 << GEM_RX_BLANKING_TIME_SHIFT) | 8);
859 }
860 
861 /*
862  * Reset the transmitter
863  */
864 int
865 gem_reset_tx(struct gem_softc *sc)
866 {
867 	bus_space_tag_t t = sc->sc_bustag;
868 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
869 
870 	/*
871 	 * Resetting while DMA is in progress can cause a bus hang, so we
872 	 * disable DMA first.
873 	 */
874 	gem_disable_tx(sc);
875 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
876 	bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
877 	/* Wait till it finishes */
878 	if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
879 		aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
880 	/* Wait 5ms extra. */
881 	delay(5000);
882 
883 	/* Finally, reset the ETX */
884 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
885 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
886 	/* Wait till it finishes */
887 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
888 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
889 		return (1);
890 	}
891 	return (0);
892 }
893 
894 /*
895  * disable receiver.
896  */
897 int
898 gem_disable_rx(struct gem_softc *sc)
899 {
900 	bus_space_tag_t t = sc->sc_bustag;
901 	bus_space_handle_t h = sc->sc_h1;
902 	u_int32_t cfg;
903 
904 	/* Flip the enable bit */
905 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
906 	cfg &= ~GEM_MAC_RX_ENABLE;
907 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
908 	bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
909 	/* Wait for it to finish */
910 	return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
911 }
912 
913 /*
914  * disable transmitter.
915  */
916 int
917 gem_disable_tx(struct gem_softc *sc)
918 {
919 	bus_space_tag_t t = sc->sc_bustag;
920 	bus_space_handle_t h = sc->sc_h1;
921 	u_int32_t cfg;
922 
923 	/* Flip the enable bit */
924 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
925 	cfg &= ~GEM_MAC_TX_ENABLE;
926 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
927 	bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
928 	/* Wait for it to finish */
929 	return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
930 }
931 
932 /*
933  * Initialize interface.
934  */
935 int
936 gem_meminit(struct gem_softc *sc)
937 {
938 	struct gem_rxsoft *rxs;
939 	int i, error;
940 
941 	/*
942 	 * Initialize the transmit descriptor ring.
943 	 */
944 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
945 	for (i = 0; i < GEM_NTXDESC; i++) {
946 		sc->sc_txdescs[i].gd_flags = 0;
947 		sc->sc_txdescs[i].gd_addr = 0;
948 	}
949 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
950 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
951 	sc->sc_txfree = GEM_NTXDESC-1;
952 	sc->sc_txnext = 0;
953 	sc->sc_txwin = 0;
954 
955 	/*
956 	 * Initialize the receive descriptor and receive job
957 	 * descriptor rings.
958 	 */
959 	for (i = 0; i < GEM_NRXDESC; i++) {
960 		rxs = &sc->sc_rxsoft[i];
961 		if (rxs->rxs_mbuf == NULL) {
962 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
963 				aprint_error_dev(sc->sc_dev,
964 				    "unable to allocate or map rx "
965 				    "buffer %d, error = %d\n",
966 				    i, error);
967 				/*
968 				 * XXX Should attempt to run with fewer receive
969 				 * XXX buffers instead of just failing.
970 				 */
971 				gem_rxdrain(sc);
972 				return (1);
973 			}
974 		} else
975 			GEM_INIT_RXDESC(sc, i);
976 	}
977 	sc->sc_rxptr = 0;
978 	sc->sc_meminited = 1;
979 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
980 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
981 
982 	return (0);
983 }
984 
985 static int
986 gem_ringsize(int sz)
987 {
988 	switch (sz) {
989 	case 32:
990 		return GEM_RING_SZ_32;
991 	case 64:
992 		return GEM_RING_SZ_64;
993 	case 128:
994 		return GEM_RING_SZ_128;
995 	case 256:
996 		return GEM_RING_SZ_256;
997 	case 512:
998 		return GEM_RING_SZ_512;
999 	case 1024:
1000 		return GEM_RING_SZ_1024;
1001 	case 2048:
1002 		return GEM_RING_SZ_2048;
1003 	case 4096:
1004 		return GEM_RING_SZ_4096;
1005 	case 8192:
1006 		return GEM_RING_SZ_8192;
1007 	default:
1008 		printf("gem: invalid Receive Descriptor ring size %d\n", sz);
1009 		return GEM_RING_SZ_32;
1010 	}
1011 }
1012 
1013 
1014 /*
1015  * Start PCS
1016  */
1017 void
1018 gem_pcs_start(struct gem_softc *sc)
1019 {
1020 	bus_space_tag_t t = sc->sc_bustag;
1021 	bus_space_handle_t h = sc->sc_h1;
1022 	uint32_t v;
1023 
1024 #ifdef GEM_DEBUG
1025 	aprint_debug_dev(sc->sc_dev, "gem_pcs_start()\n");
1026 #endif
1027 
1028 	/*
1029 	 * Set up.  We must disable the MII before modifying the
1030 	 * GEM_MII_ANAR register
1031 	 */
1032 	if (sc->sc_flags & GEM_SERDES) {
1033 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1034 		    GEM_MII_DATAPATH_SERDES);
1035 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1036 		    GEM_MII_SLINK_LOOPBACK);
1037 	} else {
1038 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1039 		    GEM_MII_DATAPATH_SERIAL);
1040 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
1041 	}
1042 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1043 	v = bus_space_read_4(t, h, GEM_MII_ANAR);
1044 	v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
1045 	if (sc->sc_mii_media == IFM_AUTO)
1046 		v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
1047 	else if (sc->sc_mii_media == IFM_FDX) {
1048 		v |= GEM_MII_ANEG_FUL_DUPLX;
1049 		v &= ~GEM_MII_ANEG_HLF_DUPLX;
1050 	} else if (sc->sc_mii_media == IFM_HDX) {
1051 		v &= ~GEM_MII_ANEG_FUL_DUPLX;
1052 		v |= GEM_MII_ANEG_HLF_DUPLX;
1053 	}
1054 
1055 	/* Configure link. */
1056 	bus_space_write_4(t, h, GEM_MII_ANAR, v);
1057 	bus_space_write_4(t, h, GEM_MII_CONTROL,
1058 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1059 	bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
1060 	gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
1061 
1062 	/* Start the 10 second timer */
1063 	callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
1064 }
1065 
1066 /*
1067  * Stop PCS
1068  */
1069 void
1070 gem_pcs_stop(struct gem_softc *sc, int disable)
1071 {
1072 	bus_space_tag_t t = sc->sc_bustag;
1073 	bus_space_handle_t h = sc->sc_h1;
1074 
1075 #ifdef GEM_DEBUG
1076 	aprint_debug_dev(sc->sc_dev, "gem_pcs_stop()\n");
1077 #endif
1078 
1079 	/* Tell link partner that we're going away */
1080 	bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
1081 
1082 	/*
1083 	 * Disable PCS MII.  The documentation suggests that setting
1084 	 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
1085 	 * negotiation will shut down the link.  However, it appears
1086 	 * that we also need to unset the datapath mode.
1087 	 */
1088 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1089 	bus_space_write_4(t, h, GEM_MII_CONTROL,
1090 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1091 	bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
1092 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1093 
1094 	if (disable) {
1095 		if (sc->sc_flags & GEM_SERDES)
1096 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1097 				GEM_MII_SLINK_POWER_OFF);
1098 		else
1099 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1100 			    GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
1101 	}
1102 
1103 	sc->sc_flags &= ~GEM_LINK;
1104 	sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
1105 	sc->sc_mii.mii_media_status = IFM_AVALID;
1106 }
1107 
1108 
1109 /*
1110  * Initialization of interface; set up initialization block
1111  * and transmit/receive descriptor rings.
1112  */
1113 int
1114 gem_init(struct ifnet *ifp)
1115 {
1116 	struct gem_softc *sc = ifp->if_softc;
1117 	bus_space_tag_t t = sc->sc_bustag;
1118 	bus_space_handle_t h = sc->sc_h1;
1119 	int rc = 0, s;
1120 	u_int max_frame_size;
1121 	u_int32_t v;
1122 
1123 	s = splnet();
1124 
1125 	DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(sc->sc_dev)));
1126 	/*
1127 	 * Initialization sequence. The numbered steps below correspond
1128 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1129 	 * Channel Engine manual (part of the PCIO manual).
1130 	 * See also the STP2002-STQ document from Sun Microsystems.
1131 	 */
1132 
1133 	/* step 1 & 2. Reset the Ethernet Channel */
1134 	gem_stop(ifp, 0);
1135 	gem_reset(sc);
1136 	DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(sc->sc_dev)));
1137 
1138 	/* Re-initialize the MIF */
1139 	gem_mifinit(sc);
1140 
1141 	/* Set up correct datapath for non-SERDES/Serialink */
1142 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1143 	    sc->sc_variant != GEM_SUN_ERI)
1144 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1145 		    GEM_MII_DATAPATH_MII);
1146 
1147 	/* Call MI reset function if any */
1148 	if (sc->sc_hwreset)
1149 		(*sc->sc_hwreset)(sc);
1150 
1151 	/* step 3. Setup data structures in host memory */
1152 	if (gem_meminit(sc) != 0) {
1153 		splx(s);
1154 		return 1;
1155 	}
1156 
1157 	/* step 4. TX MAC registers & counters */
1158 	gem_init_regs(sc);
1159 	max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
1160 	max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
1161 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1162 		max_frame_size += ETHER_VLAN_ENCAP_LEN;
1163 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1164 	    max_frame_size|/* burst size */(0x2000<<16));
1165 
1166 	/* step 5. RX MAC registers & counters */
1167 	gem_setladrf(sc);
1168 
1169 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
1170 	/* NOTE: we use only 32-bit DMA addresses here. */
1171 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
1172 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
1173 
1174 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
1175 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
1176 
1177 	/* step 8. Global Configuration & Interrupt Mask */
1178 	gem_inten(sc);
1179 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
1180 			GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
1181 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
1182 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
1183 	    GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
1184 
1185 	/* step 9. ETX Configuration: use mostly default values */
1186 
1187 	/* Enable TX DMA */
1188 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
1189 	bus_space_write_4(t, h, GEM_TX_CONFIG,
1190 	    v | GEM_TX_CONFIG_TXDMA_EN |
1191 	    (((sc->sc_flags & GEM_GIGABIT ? 0x4FF : 0x100) << 10) &
1192 	    GEM_TX_CONFIG_TXFIFO_TH));
1193 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
1194 
1195 	/* step 10. ERX Configuration */
1196 	gem_rx_common(sc);
1197 
1198 	/* step 11. Configure Media */
1199 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1200 	    (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
1201 		goto out;
1202 
1203 	/* step 12. RX_MAC Configuration Register */
1204 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1205 	v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
1206 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1207 
1208 	/* step 14. Issue Transmit Pending command */
1209 
1210 	/* Call MI initialization function if any */
1211 	if (sc->sc_hwinit)
1212 		(*sc->sc_hwinit)(sc);
1213 
1214 
1215 	/* step 15.  Give the reciever a swift kick */
1216 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
1217 
1218 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1219 		/* Configure PCS */
1220 		gem_pcs_start(sc);
1221 	else
1222 		/* Start the one second timer. */
1223 		callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
1224 
1225 	sc->sc_flags &= ~GEM_LINK;
1226 	ifp->if_flags |= IFF_RUNNING;
1227 	ifp->if_flags &= ~IFF_OACTIVE;
1228 	ifp->if_timer = 0;
1229 	sc->sc_if_flags = ifp->if_flags;
1230 out:
1231 	splx(s);
1232 
1233 	return (0);
1234 }
1235 
1236 void
1237 gem_init_regs(struct gem_softc *sc)
1238 {
1239 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1240 	bus_space_tag_t t = sc->sc_bustag;
1241 	bus_space_handle_t h = sc->sc_h1;
1242 	const u_char *laddr = CLLADDR(ifp->if_sadl);
1243 	u_int32_t v;
1244 
1245 	/* These regs are not cleared on reset */
1246 	if (!sc->sc_inited) {
1247 
1248 		/* Load recommended values */
1249 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
1250 		bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
1251 		bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
1252 
1253 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1254 		/* Max frame and max burst size */
1255 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1256 		    ETHER_MAX_LEN | (0x2000<<16));
1257 
1258 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
1259 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
1260 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1261 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1262 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1263 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1264 
1265 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
1266 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1267 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1268 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1269 
1270 		/* MAC control addr set to 01:80:c2:00:00:01 */
1271 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1272 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1273 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1274 
1275 		/* MAC filter addr set to 0:0:0:0:0:0 */
1276 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1277 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1278 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1279 
1280 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1281 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1282 
1283 		sc->sc_inited = 1;
1284 	}
1285 
1286 	/* Counters need to be zeroed */
1287 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1288 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1289 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1290 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1291 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1292 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1293 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1294 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1295 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1296 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1297 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1298 
1299 	/* Set XOFF PAUSE time. */
1300 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1301 
1302 	/*
1303 	 * Set the internal arbitration to "infinite" bursts of the
1304 	 * maximum length of 31 * 64 bytes so DMA transfers aren't
1305 	 * split up in cache line size chunks. This greatly improves
1306 	 * especially RX performance.
1307 	 * Enable silicon bug workarounds for the Apple variants.
1308 	 */
1309 	bus_space_write_4(t, h, GEM_CONFIG,
1310 	    GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
1311 	    ((sc->sc_flags & GEM_PCI) ?
1312 	    GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
1313 	    GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
1314 
1315 	/*
1316 	 * Set the station address.
1317 	 */
1318 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1319 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1320 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1321 
1322 	/*
1323 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
1324 	 */
1325 	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1326 	v = GEM_MAC_XIF_TX_MII_ENA;
1327 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)  {
1328 		if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1329 			v |= GEM_MAC_XIF_FDPLX_LED;
1330 				if (sc->sc_flags & GEM_GIGABIT)
1331 					v |= GEM_MAC_XIF_GMII_MODE;
1332 		}
1333 	} else {
1334 		v |= GEM_MAC_XIF_GMII_MODE;
1335 	}
1336 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1337 }
1338 
1339 #ifdef GEM_DEBUG
1340 static void
1341 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
1342 {
1343 	int i;
1344 
1345 	for (i = firstdesc;; i = GEM_NEXTTX(i)) {
1346 		printf("descriptor %d:\t", i);
1347 		printf("gd_flags:   0x%016" PRIx64 "\t",
1348 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1349 		printf("gd_addr: 0x%016" PRIx64 "\n",
1350 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1351 		if (i == lastdesc)
1352 			break;
1353 	}
1354 }
1355 #endif
1356 
1357 static void
1358 gem_start(struct ifnet *ifp)
1359 {
1360 	struct gem_softc *sc = ifp->if_softc;
1361 	struct mbuf *m0, *m;
1362 	struct gem_txsoft *txs;
1363 	bus_dmamap_t dmamap;
1364 	int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
1365 #ifdef GEM_DEBUG
1366 	int otxnext;
1367 #endif
1368 	uint64_t flags = 0;
1369 
1370 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1371 		return;
1372 
1373 	/*
1374 	 * Remember the previous number of free descriptors and
1375 	 * the first descriptor we'll use.
1376 	 */
1377 	ofree = sc->sc_txfree;
1378 #ifdef GEM_DEBUG
1379 	otxnext = sc->sc_txnext;
1380 #endif
1381 
1382 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1383 	    device_xname(sc->sc_dev), ofree, otxnext));
1384 
1385 	/*
1386 	 * Loop through the send queue, setting up transmit descriptors
1387 	 * until we drain the queue, or use up all available transmit
1388 	 * descriptors.
1389 	 */
1390 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1391 	    sc->sc_txfree != 0) {
1392 		/*
1393 		 * Grab a packet off the queue.
1394 		 */
1395 		IFQ_POLL(&ifp->if_snd, m0);
1396 		if (m0 == NULL)
1397 			break;
1398 		m = NULL;
1399 
1400 		dmamap = txs->txs_dmamap;
1401 
1402 		/*
1403 		 * Load the DMA map.  If this fails, the packet either
1404 		 * didn't fit in the alloted number of segments, or we were
1405 		 * short on resources.  In this case, we'll copy and try
1406 		 * again.
1407 		 */
1408 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1409 		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
1410 		      (m0->m_pkthdr.len < ETHER_MIN_TX &&
1411 		       dmamap->dm_nsegs == GEM_NTXSEGS)) {
1412 			if (m0->m_pkthdr.len > MCLBYTES) {
1413 				aprint_error_dev(sc->sc_dev,
1414 				    "unable to allocate jumbo Tx cluster\n");
1415 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1416 				m_freem(m0);
1417 				continue;
1418 			}
1419 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1420 			if (m == NULL) {
1421 				aprint_error_dev(sc->sc_dev,
1422 				    "unable to allocate Tx mbuf\n");
1423 				break;
1424 			}
1425 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1426 			if (m0->m_pkthdr.len > MHLEN) {
1427 				MCLGET(m, M_DONTWAIT);
1428 				if ((m->m_flags & M_EXT) == 0) {
1429 					aprint_error_dev(sc->sc_dev,
1430 					    "unable to allocate Tx cluster\n");
1431 					m_freem(m);
1432 					break;
1433 				}
1434 			}
1435 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1436 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1437 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1438 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1439 			if (error) {
1440 				aprint_error_dev(sc->sc_dev,
1441 				    "unable to load Tx buffer, error = %d\n",
1442 				    error);
1443 				break;
1444 			}
1445 		}
1446 
1447 		/*
1448 		 * Ensure we have enough descriptors free to describe
1449 		 * the packet.
1450 		 */
1451 		if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1452 		     (sc->sc_txfree - 1) : sc->sc_txfree)) {
1453 			/*
1454 			 * Not enough free descriptors to transmit this
1455 			 * packet.  We haven't committed to anything yet,
1456 			 * so just unload the DMA map, put the packet
1457 			 * back on the queue, and punt.  Notify the upper
1458 			 * layer that there are no more slots left.
1459 			 *
1460 			 * XXX We could allocate an mbuf and copy, but
1461 			 * XXX it is worth it?
1462 			 */
1463 			ifp->if_flags |= IFF_OACTIVE;
1464 			sc->sc_if_flags = ifp->if_flags;
1465 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
1466 			if (m != NULL)
1467 				m_freem(m);
1468 			break;
1469 		}
1470 
1471 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1472 		if (m != NULL) {
1473 			m_freem(m0);
1474 			m0 = m;
1475 		}
1476 
1477 		/*
1478 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1479 		 */
1480 
1481 		/* Sync the DMA map. */
1482 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1483 		    BUS_DMASYNC_PREWRITE);
1484 
1485 		/*
1486 		 * Initialize the transmit descriptors.
1487 		 */
1488 		firsttx = sc->sc_txnext;
1489 		for (nexttx = firsttx, seg = 0;
1490 		     seg < dmamap->dm_nsegs;
1491 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
1492 
1493 			/*
1494 			 * If this is the first descriptor we're
1495 			 * enqueueing, set the start of packet flag,
1496 			 * and the checksum stuff if we want the hardware
1497 			 * to do it.
1498 			 */
1499 			sc->sc_txdescs[nexttx].gd_addr =
1500 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1501 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1502 			if (nexttx == firsttx) {
1503 				flags |= GEM_TD_START_OF_PACKET;
1504 				if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1505 					sc->sc_txwin = 0;
1506 					flags |= GEM_TD_INTERRUPT_ME;
1507 				}
1508 
1509 #ifdef INET
1510 				/* h/w checksum */
1511 				if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
1512 				    m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1513 					struct ether_header *eh;
1514 					uint16_t offset, start;
1515 
1516 					eh = mtod(m0, struct ether_header *);
1517 					switch (ntohs(eh->ether_type)) {
1518 					case ETHERTYPE_IP:
1519 						start = ETHER_HDR_LEN;
1520 						break;
1521 					case ETHERTYPE_VLAN:
1522 						start = ETHER_HDR_LEN +
1523 							ETHER_VLAN_ENCAP_LEN;
1524 						break;
1525 					default:
1526 						/* unsupported, drop it */
1527 						m_free(m0);
1528 						continue;
1529 					}
1530 					start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1531 					offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1532 					flags |= (start <<
1533 						  GEM_TD_CXSUM_STARTSHFT) |
1534 						 (offset <<
1535 						  GEM_TD_CXSUM_STUFFSHFT) |
1536 						 GEM_TD_CXSUM_ENABLE;
1537 				}
1538 #endif
1539 			}
1540 			if (seg == dmamap->dm_nsegs - 1) {
1541 				flags |= GEM_TD_END_OF_PACKET;
1542 			} else {
1543 				/* last flag set outside of loop */
1544 				sc->sc_txdescs[nexttx].gd_flags =
1545 					GEM_DMA_WRITE(sc, flags);
1546 			}
1547 			lasttx = nexttx;
1548 		}
1549 		if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1550 			/* add padding buffer at end of chain */
1551 			flags &= ~GEM_TD_END_OF_PACKET;
1552 			sc->sc_txdescs[lasttx].gd_flags =
1553 			    GEM_DMA_WRITE(sc, flags);
1554 
1555 			sc->sc_txdescs[nexttx].gd_addr =
1556 			    GEM_DMA_WRITE(sc,
1557 			    sc->sc_nulldmamap->dm_segs[0].ds_addr);
1558 			flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1559 			    GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1560 			lasttx = nexttx;
1561 			nexttx = GEM_NEXTTX(nexttx);
1562 			seg++;
1563 		}
1564 		sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1565 
1566 		KASSERT(lasttx != -1);
1567 
1568 		/*
1569 		 * Store a pointer to the packet so we can free it later,
1570 		 * and remember what txdirty will be once the packet is
1571 		 * done.
1572 		 */
1573 		txs->txs_mbuf = m0;
1574 		txs->txs_firstdesc = sc->sc_txnext;
1575 		txs->txs_lastdesc = lasttx;
1576 		txs->txs_ndescs = seg;
1577 
1578 #ifdef GEM_DEBUG
1579 		if (ifp->if_flags & IFF_DEBUG) {
1580 			printf("     gem_start %p transmit chain:\n", txs);
1581 			gem_txsoft_print(sc, txs->txs_firstdesc,
1582 			    txs->txs_lastdesc);
1583 		}
1584 #endif
1585 
1586 		/* Sync the descriptors we're using. */
1587 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1588 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1589 
1590 		/* Advance the tx pointer. */
1591 		sc->sc_txfree -= txs->txs_ndescs;
1592 		sc->sc_txnext = nexttx;
1593 
1594 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1595 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1596 
1597 		/*
1598 		 * Pass the packet to any BPF listeners.
1599 		 */
1600 		bpf_mtap(ifp, m0);
1601 	}
1602 
1603 	if (txs == NULL || sc->sc_txfree == 0) {
1604 		/* No more slots left; notify upper layer. */
1605 		ifp->if_flags |= IFF_OACTIVE;
1606 		sc->sc_if_flags = ifp->if_flags;
1607 	}
1608 
1609 	if (sc->sc_txfree != ofree) {
1610 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1611 		    device_xname(sc->sc_dev), lasttx, otxnext));
1612 		/*
1613 		 * The entire packet chain is set up.
1614 		 * Kick the transmitter.
1615 		 */
1616 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1617 			device_xname(sc->sc_dev), nexttx));
1618 		bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
1619 			sc->sc_txnext);
1620 
1621 		/* Set a watchdog timer in case the chip flakes out. */
1622 		ifp->if_timer = 5;
1623 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1624 			device_xname(sc->sc_dev), ifp->if_timer));
1625 	}
1626 }
1627 
1628 /*
1629  * Transmit interrupt.
1630  */
1631 int
1632 gem_tint(struct gem_softc *sc)
1633 {
1634 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1635 	bus_space_tag_t t = sc->sc_bustag;
1636 	bus_space_handle_t mac = sc->sc_h1;
1637 	struct gem_txsoft *txs;
1638 	int txlast;
1639 	int progress = 0;
1640 	u_int32_t v;
1641 
1642 	DPRINTF(sc, ("%s: gem_tint\n", device_xname(sc->sc_dev)));
1643 
1644 	/* Unload collision counters ... */
1645 	v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1646 	    bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1647 	ifp->if_collisions += v +
1648 	    bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1649 	    bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT);
1650 	ifp->if_oerrors += v;
1651 
1652 	/* ... then clear the hardware counters. */
1653 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1654 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1655 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1656 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1657 
1658 	/*
1659 	 * Go through our Tx list and free mbufs for those
1660 	 * frames that have been transmitted.
1661 	 */
1662 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1663 		/*
1664 		 * In theory, we could harvest some descriptors before
1665 		 * the ring is empty, but that's a bit complicated.
1666 		 *
1667 		 * GEM_TX_COMPLETION points to the last descriptor
1668 		 * processed +1.
1669 		 *
1670 		 * Let's assume that the NIC writes back to the Tx
1671 		 * descriptors before it updates the completion
1672 		 * register.  If the NIC has posted writes to the
1673 		 * Tx descriptors, PCI ordering requires that the
1674 		 * posted writes flush to RAM before the register-read
1675 		 * finishes.  So let's read the completion register,
1676 		 * before syncing the descriptors, so that we
1677 		 * examine Tx descriptors that are at least as
1678 		 * current as the completion register.
1679 		 */
1680 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1681 		DPRINTF(sc,
1682 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1683 				txs->txs_lastdesc, txlast));
1684 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1685 			if (txlast >= txs->txs_firstdesc &&
1686 			    txlast <= txs->txs_lastdesc)
1687 				break;
1688 		} else if (txlast >= txs->txs_firstdesc ||
1689 			   txlast <= txs->txs_lastdesc)
1690 			break;
1691 
1692 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1693 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1694 
1695 #ifdef GEM_DEBUG	/* XXX DMA synchronization? */
1696 		if (ifp->if_flags & IFF_DEBUG) {
1697 			printf("    txsoft %p transmit chain:\n", txs);
1698 			gem_txsoft_print(sc, txs->txs_firstdesc,
1699 			    txs->txs_lastdesc);
1700 		}
1701 #endif
1702 
1703 
1704 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1705 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1706 
1707 		sc->sc_txfree += txs->txs_ndescs;
1708 
1709 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1710 		    0, txs->txs_dmamap->dm_mapsize,
1711 		    BUS_DMASYNC_POSTWRITE);
1712 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1713 		if (txs->txs_mbuf != NULL) {
1714 			m_freem(txs->txs_mbuf);
1715 			txs->txs_mbuf = NULL;
1716 		}
1717 
1718 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1719 
1720 		ifp->if_opackets++;
1721 		progress = 1;
1722 	}
1723 
1724 #if 0
1725 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1726 		"GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
1727 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
1728 		((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1729 			GEM_TX_DATA_PTR_HI) << 32) |
1730 			     bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1731 			GEM_TX_DATA_PTR_LO),
1732 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
1733 #endif
1734 
1735 	if (progress) {
1736 		if (sc->sc_txfree == GEM_NTXDESC - 1)
1737 			sc->sc_txwin = 0;
1738 
1739 		/* Freed some descriptors, so reset IFF_OACTIVE and restart. */
1740 		ifp->if_flags &= ~IFF_OACTIVE;
1741 		sc->sc_if_flags = ifp->if_flags;
1742 		ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
1743 		gem_start(ifp);
1744 	}
1745 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1746 		device_xname(sc->sc_dev), ifp->if_timer));
1747 
1748 	return (1);
1749 }
1750 
1751 /*
1752  * Receive interrupt.
1753  */
1754 int
1755 gem_rint(struct gem_softc *sc)
1756 {
1757 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1758 	bus_space_tag_t t = sc->sc_bustag;
1759 	bus_space_handle_t h = sc->sc_h1;
1760 	struct gem_rxsoft *rxs;
1761 	struct mbuf *m;
1762 	u_int64_t rxstat;
1763 	u_int32_t rxcomp;
1764 	int i, len, progress = 0;
1765 
1766 	DPRINTF(sc, ("%s: gem_rint\n", device_xname(sc->sc_dev)));
1767 
1768 	/*
1769 	 * Ignore spurious interrupt that sometimes occurs before
1770 	 * we are set up when we network boot.
1771 	 */
1772 	if (!sc->sc_meminited)
1773 		return 1;
1774 
1775 	/*
1776 	 * Read the completion register once.  This limits
1777 	 * how long the following loop can execute.
1778 	 */
1779 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1780 
1781 	/*
1782 	 * XXX Read the lastrx only once at the top for speed.
1783 	 */
1784 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1785 		sc->sc_rxptr, rxcomp));
1786 
1787 	/*
1788 	 * Go into the loop at least once.
1789 	 */
1790 	for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1791 	     i = GEM_NEXTRX(i)) {
1792 		rxs = &sc->sc_rxsoft[i];
1793 
1794 		GEM_CDRXSYNC(sc, i,
1795 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1796 
1797 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1798 
1799 		if (rxstat & GEM_RD_OWN) {
1800 			GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1801 			/*
1802 			 * We have processed all of the receive buffers.
1803 			 */
1804 			break;
1805 		}
1806 
1807 		progress++;
1808 		ifp->if_ipackets++;
1809 
1810 		if (rxstat & GEM_RD_BAD_CRC) {
1811 			ifp->if_ierrors++;
1812 			aprint_error_dev(sc->sc_dev,
1813 			    "receive error: CRC error\n");
1814 			GEM_INIT_RXDESC(sc, i);
1815 			continue;
1816 		}
1817 
1818 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1819 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1820 #ifdef GEM_DEBUG
1821 		if (ifp->if_flags & IFF_DEBUG) {
1822 			printf("    rxsoft %p descriptor %d: ", rxs, i);
1823 			printf("gd_flags: 0x%016llx\t", (long long)
1824 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1825 			printf("gd_addr: 0x%016llx\n", (long long)
1826 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1827 		}
1828 #endif
1829 
1830 		/* No errors; receive the packet. */
1831 		len = GEM_RD_BUFLEN(rxstat);
1832 
1833 		/*
1834 		 * Allocate a new mbuf cluster.  If that fails, we are
1835 		 * out of memory, and must drop the packet and recycle
1836 		 * the buffer that's already attached to this descriptor.
1837 		 */
1838 		m = rxs->rxs_mbuf;
1839 		if (gem_add_rxbuf(sc, i) != 0) {
1840 			GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1841 			ifp->if_ierrors++;
1842 			aprint_error_dev(sc->sc_dev,
1843 			    "receive error: RX no buffer space\n");
1844 			GEM_INIT_RXDESC(sc, i);
1845 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1846 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1847 			continue;
1848 		}
1849 		m->m_data += 2; /* We're already off by two */
1850 
1851 		m_set_rcvif(m, ifp);
1852 		m->m_pkthdr.len = m->m_len = len;
1853 
1854 		/*
1855 		 * Pass this up to any BPF listeners, but only
1856 		 * pass it up the stack if it's for us.
1857 		 */
1858 		bpf_mtap(ifp, m);
1859 
1860 #ifdef INET
1861 		/* hardware checksum */
1862 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1863 			struct ether_header *eh;
1864 			struct ip *ip;
1865 			int32_t hlen, pktlen;
1866 
1867 			if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1868 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1869 					 ETHER_VLAN_ENCAP_LEN;
1870 				eh = (struct ether_header *) (mtod(m, char *) +
1871 					ETHER_VLAN_ENCAP_LEN);
1872 			} else {
1873 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1874 				eh = mtod(m, struct ether_header *);
1875 			}
1876 			if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1877 				goto swcsum;
1878 			ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
1879 
1880 			/* IPv4 only */
1881 			if (ip->ip_v != IPVERSION)
1882 				goto swcsum;
1883 
1884 			hlen = ip->ip_hl << 2;
1885 			if (hlen < sizeof(struct ip))
1886 				goto swcsum;
1887 
1888 			/*
1889 			 * bail if too short, has random trailing garbage,
1890 			 * truncated, fragment, or has ethernet pad.
1891 			 */
1892 			if ((ntohs(ip->ip_len) < hlen) ||
1893 			    (ntohs(ip->ip_len) != pktlen) ||
1894 			    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1895 				goto swcsum;
1896 
1897 			switch (ip->ip_p) {
1898 			case IPPROTO_TCP:
1899 				if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1900 					goto swcsum;
1901 				if (pktlen < (hlen + sizeof(struct tcphdr)))
1902 					goto swcsum;
1903 				m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1904 				break;
1905 			case IPPROTO_UDP:
1906 				/* FALLTHROUGH */
1907 			default:
1908 				goto swcsum;
1909 			}
1910 
1911 			/* the uncomplemented sum is expected */
1912 			m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1913 
1914 			/* if the pkt had ip options, we have to deduct them */
1915 			if (hlen > sizeof(struct ip)) {
1916 				uint16_t *opts;
1917 				uint32_t optsum, temp;
1918 
1919 				optsum = 0;
1920 				temp = hlen - sizeof(struct ip);
1921 				opts = (uint16_t *) ((char *) ip +
1922 					sizeof(struct ip));
1923 
1924 				while (temp > 1) {
1925 					optsum += ntohs(*opts++);
1926 					temp -= 2;
1927 				}
1928 				while (optsum >> 16)
1929 					optsum = (optsum >> 16) +
1930 						 (optsum & 0xffff);
1931 
1932 				/* Deduct ip opts sum from hwsum. */
1933 				m->m_pkthdr.csum_data += (uint16_t)~optsum;
1934 
1935 				while (m->m_pkthdr.csum_data >> 16)
1936 					m->m_pkthdr.csum_data =
1937 						(m->m_pkthdr.csum_data >> 16) +
1938 						(m->m_pkthdr.csum_data &
1939 						 0xffff);
1940 			}
1941 
1942 			m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1943 						  M_CSUM_NO_PSEUDOHDR;
1944 		} else
1945 swcsum:
1946 			m->m_pkthdr.csum_flags = 0;
1947 #endif
1948 		/* Pass it on. */
1949 		if_percpuq_enqueue(ifp->if_percpuq, m);
1950 	}
1951 
1952 	if (progress) {
1953 		/* Update the receive pointer. */
1954 		if (i == sc->sc_rxptr) {
1955 			GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1956 #ifdef GEM_DEBUG
1957 			if (ifp->if_flags & IFF_DEBUG)
1958 				printf("%s: rint: ring wrap\n",
1959 				    device_xname(sc->sc_dev));
1960 #endif
1961 		}
1962 		sc->sc_rxptr = i;
1963 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1964 	}
1965 #ifdef GEM_COUNTERS
1966 	if (progress <= 4) {
1967 		GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1968 	} else if (progress < 32) {
1969 		if (progress < 16)
1970 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1971 		else
1972 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1973 
1974 	} else {
1975 		if (progress < 64)
1976 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1977 		else
1978 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1979 	}
1980 #endif
1981 
1982 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1983 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1984 
1985 	/* Read error counters ... */
1986 	ifp->if_ierrors +=
1987 	    bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
1988 	    bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
1989 	    bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
1990 	    bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL);
1991 
1992 	/* ... then clear the hardware counters. */
1993 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1994 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1995 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1996 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1997 
1998 	return (1);
1999 }
2000 
2001 
2002 /*
2003  * gem_add_rxbuf:
2004  *
2005  *	Add a receive buffer to the indicated descriptor.
2006  */
2007 int
2008 gem_add_rxbuf(struct gem_softc *sc, int idx)
2009 {
2010 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
2011 	struct mbuf *m;
2012 	int error;
2013 
2014 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2015 	if (m == NULL)
2016 		return (ENOBUFS);
2017 
2018 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2019 	MCLGET(m, M_DONTWAIT);
2020 	if ((m->m_flags & M_EXT) == 0) {
2021 		m_freem(m);
2022 		return (ENOBUFS);
2023 	}
2024 
2025 #ifdef GEM_DEBUG
2026 /* bzero the packet to check DMA */
2027 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
2028 #endif
2029 
2030 	if (rxs->rxs_mbuf != NULL)
2031 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
2032 
2033 	rxs->rxs_mbuf = m;
2034 
2035 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
2036 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2037 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2038 	if (error) {
2039 		aprint_error_dev(sc->sc_dev,
2040 		    "can't load rx DMA map %d, error = %d\n", idx, error);
2041 		panic("gem_add_rxbuf");	/* XXX */
2042 	}
2043 
2044 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
2045 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2046 
2047 	GEM_INIT_RXDESC(sc, idx);
2048 
2049 	return (0);
2050 }
2051 
2052 
2053 int
2054 gem_eint(struct gem_softc *sc, u_int status)
2055 {
2056 	char bits[128];
2057 	u_int32_t r, v;
2058 
2059 	if ((status & GEM_INTR_MIF) != 0) {
2060 		printf("%s: XXXlink status changed\n", device_xname(sc->sc_dev));
2061 		return (1);
2062 	}
2063 
2064 	if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
2065 		gem_reset_rxdma(sc);
2066 		return (1);
2067 	}
2068 
2069 	if (status & GEM_INTR_BERR) {
2070 		if (sc->sc_flags & GEM_PCI)
2071 			r = GEM_ERROR_STATUS;
2072 		else
2073 			r = GEM_SBUS_ERROR_STATUS;
2074 		bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2075 		v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2076 		aprint_error_dev(sc->sc_dev, "bus error interrupt: 0x%02x\n",
2077 		    v);
2078 		return (1);
2079 	}
2080 	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2081 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
2082 
2083 	return (1);
2084 }
2085 
2086 
2087 /*
2088  * PCS interrupts.
2089  * We should receive these when the link status changes, but sometimes
2090  * we don't receive them for link up.  We compensate for this in the
2091  * gem_tick() callout.
2092  */
2093 int
2094 gem_pint(struct gem_softc *sc)
2095 {
2096 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2097 	bus_space_tag_t t = sc->sc_bustag;
2098 	bus_space_handle_t h = sc->sc_h1;
2099 	u_int32_t v, v2;
2100 
2101 	/*
2102 	 * Clear the PCS interrupt from GEM_STATUS.  The PCS register is
2103 	 * latched, so we have to read it twice.  There is only one bit in
2104 	 * use, so the value is meaningless.
2105 	 */
2106 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2107 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2108 
2109 	if ((ifp->if_flags & IFF_UP) == 0)
2110 		return 1;
2111 
2112 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
2113 		return 1;
2114 
2115 	v = bus_space_read_4(t, h, GEM_MII_STATUS);
2116 	/* If we see remote fault, our link partner is probably going away */
2117 	if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
2118 		gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
2119 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
2120 	/* Otherwise, we may need to wait after auto-negotiation completes */
2121 	} else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
2122 	    GEM_MII_STATUS_ANEG_CPT) {
2123 		gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
2124 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
2125 	}
2126 	if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
2127 		if (sc->sc_flags & GEM_LINK) {
2128 			return 1;
2129 		}
2130 		callout_stop(&sc->sc_tick_ch);
2131 		v = bus_space_read_4(t, h, GEM_MII_ANAR);
2132 		v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
2133 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
2134 		sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
2135 		v &= v2;
2136 		if (v & GEM_MII_ANEG_FUL_DUPLX) {
2137 			sc->sc_mii.mii_media_active |= IFM_FDX;
2138 #ifdef GEM_DEBUG
2139 			aprint_debug_dev(sc->sc_dev, "link up: full duplex\n");
2140 #endif
2141 		} else if (v & GEM_MII_ANEG_HLF_DUPLX) {
2142 			sc->sc_mii.mii_media_active |= IFM_HDX;
2143 #ifdef GEM_DEBUG
2144 			aprint_debug_dev(sc->sc_dev, "link up: half duplex\n");
2145 #endif
2146 		} else {
2147 #ifdef GEM_DEBUG
2148 			aprint_debug_dev(sc->sc_dev, "duplex mismatch\n");
2149 #endif
2150 		}
2151 		gem_statuschange(sc);
2152 	} else {
2153 		if ((sc->sc_flags & GEM_LINK) == 0) {
2154 			return 1;
2155 		}
2156 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
2157 		sc->sc_mii.mii_media_status = IFM_AVALID;
2158 #ifdef GEM_DEBUG
2159 			aprint_debug_dev(sc->sc_dev, "link down\n");
2160 #endif
2161 		gem_statuschange(sc);
2162 
2163 		/* Start the 10 second timer */
2164 		callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
2165 	}
2166 	return 1;
2167 }
2168 
2169 
2170 
2171 int
2172 gem_intr(void *v)
2173 {
2174 	struct gem_softc *sc = v;
2175 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2176 	bus_space_tag_t t = sc->sc_bustag;
2177 	bus_space_handle_t h = sc->sc_h1;
2178 	u_int32_t status;
2179 	int r = 0;
2180 #ifdef GEM_DEBUG
2181 	char bits[128];
2182 #endif
2183 
2184 	/* XXX We should probably mask out interrupts until we're done */
2185 
2186 	sc->sc_ev_intr.ev_count++;
2187 
2188 	status = bus_space_read_4(t, h, GEM_STATUS);
2189 #ifdef GEM_DEBUG
2190 	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2191 #endif
2192 	DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
2193 		device_xname(sc->sc_dev), (status >> 19), bits));
2194 
2195 
2196 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
2197 		r |= gem_eint(sc, status);
2198 
2199 	/* We don't bother with GEM_INTR_TX_DONE */
2200 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
2201 		GEM_COUNTER_INCR(sc, sc_ev_txint);
2202 		r |= gem_tint(sc);
2203 	}
2204 
2205 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
2206 		GEM_COUNTER_INCR(sc, sc_ev_rxint);
2207 		r |= gem_rint(sc);
2208 	}
2209 
2210 	/* We should eventually do more than just print out error stats. */
2211 	if (status & GEM_INTR_TX_MAC) {
2212 		int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
2213 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
2214 			printf("%s: MAC tx fault, status %x\n",
2215 			    device_xname(sc->sc_dev), txstat);
2216 		if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
2217 			gem_init(ifp);
2218 	}
2219 	if (status & GEM_INTR_RX_MAC) {
2220 		int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
2221 		/*
2222 		 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
2223 		 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
2224 		 * silicon bug so handle them silently.  So if we detect
2225 		 * an RX FIFO overflow, we fire off a timer, and check
2226 		 * whether we're still making progress by looking at the
2227 		 * RX FIFO write and read pointers.
2228 		 */
2229 		if (rxstat & GEM_MAC_RX_OVERFLOW) {
2230 			ifp->if_ierrors++;
2231 			aprint_error_dev(sc->sc_dev,
2232 			    "receive error: RX overflow sc->rxptr %d, complete %d\n", sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION));
2233 			sc->sc_rx_fifo_wr_ptr =
2234 				bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2235 			sc->sc_rx_fifo_rd_ptr =
2236 				bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2237 			callout_schedule(&sc->sc_rx_watchdog, 400);
2238 		} else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
2239 			printf("%s: MAC rx fault, status 0x%02x\n",
2240 			    device_xname(sc->sc_dev), rxstat);
2241 	}
2242 	if (status & GEM_INTR_PCS) {
2243 		r |= gem_pint(sc);
2244 	}
2245 
2246 /* Do we need to do anything with these?
2247 	if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
2248 		status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
2249 		if ((status2 & GEM_MAC_PAUSED) != 0)
2250 			aprintf_debug_dev(sc->sc_dev, "PAUSE received (%d slots)\n",
2251 			    GEM_MAC_PAUSE_TIME(status2));
2252 		if ((status2 & GEM_MAC_PAUSE) != 0)
2253 			aprintf_debug_dev(sc->sc_dev, "transited to PAUSE state\n");
2254 		if ((status2 & GEM_MAC_RESUME) != 0)
2255 			aprintf_debug_dev(sc->sc_dev, "transited to non-PAUSE state\n");
2256 	}
2257 	if ((status & GEM_INTR_MIF) != 0)
2258 		aprintf_debug_dev(sc->sc_dev, "MIF interrupt\n");
2259 */
2260 	rnd_add_uint32(&sc->rnd_source, status);
2261 	return (r);
2262 }
2263 
2264 void
2265 gem_rx_watchdog(void *arg)
2266 {
2267 	struct gem_softc *sc = arg;
2268 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2269 	bus_space_tag_t t = sc->sc_bustag;
2270 	bus_space_handle_t h = sc->sc_h1;
2271 	u_int32_t rx_fifo_wr_ptr;
2272 	u_int32_t rx_fifo_rd_ptr;
2273 	u_int32_t state;
2274 
2275 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
2276 		aprint_error_dev(sc->sc_dev, "receiver not running\n");
2277 		return;
2278 	}
2279 
2280 	rx_fifo_wr_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2281 	rx_fifo_rd_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2282 	state = bus_space_read_4(t, h, GEM_MAC_MAC_STATE);
2283 	if ((state & GEM_MAC_STATE_OVERFLOW) == GEM_MAC_STATE_OVERFLOW &&
2284 	    ((rx_fifo_wr_ptr == rx_fifo_rd_ptr) ||
2285 	     ((sc->sc_rx_fifo_wr_ptr == rx_fifo_wr_ptr) &&
2286 	      (sc->sc_rx_fifo_rd_ptr == rx_fifo_rd_ptr))))
2287 	{
2288 		/*
2289 		 * The RX state machine is still in overflow state and
2290 		 * the RX FIFO write and read pointers seem to be
2291 		 * stuck.  Whack the chip over the head to get things
2292 		 * going again.
2293 		 */
2294 		aprint_error_dev(sc->sc_dev,
2295 		    "receiver stuck in overflow, resetting\n");
2296 		gem_init(ifp);
2297 	} else {
2298 		if ((state & GEM_MAC_STATE_OVERFLOW) != GEM_MAC_STATE_OVERFLOW) {
2299 			aprint_error_dev(sc->sc_dev,
2300 				"rx_watchdog: not in overflow state: 0x%x\n",
2301 				state);
2302 		}
2303 		if (rx_fifo_wr_ptr != rx_fifo_rd_ptr) {
2304 			aprint_error_dev(sc->sc_dev,
2305 				"rx_watchdog: wr & rd ptr different\n");
2306 		}
2307 		if (sc->sc_rx_fifo_wr_ptr != rx_fifo_wr_ptr) {
2308 			aprint_error_dev(sc->sc_dev,
2309 				"rx_watchdog: wr pointer != saved\n");
2310 		}
2311 		if (sc->sc_rx_fifo_rd_ptr != rx_fifo_rd_ptr) {
2312 			aprint_error_dev(sc->sc_dev,
2313 				"rx_watchdog: rd pointer != saved\n");
2314 		}
2315 		aprint_error_dev(sc->sc_dev, "resetting anyway\n");
2316 		gem_init(ifp);
2317 	}
2318 }
2319 
2320 void
2321 gem_watchdog(struct ifnet *ifp)
2322 {
2323 	struct gem_softc *sc = ifp->if_softc;
2324 
2325 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
2326 		"GEM_MAC_RX_CONFIG %x\n",
2327 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
2328 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
2329 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
2330 
2331 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
2332 	++ifp->if_oerrors;
2333 
2334 	/* Try to get more packets going. */
2335 	gem_init(ifp);
2336 	gem_start(ifp);
2337 }
2338 
2339 /*
2340  * Initialize the MII Management Interface
2341  */
2342 void
2343 gem_mifinit(struct gem_softc *sc)
2344 {
2345 	bus_space_tag_t t = sc->sc_bustag;
2346 	bus_space_handle_t mif = sc->sc_h1;
2347 
2348 	/* Configure the MIF in frame mode */
2349 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
2350 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
2351 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
2352 }
2353 
2354 /*
2355  * MII interface
2356  *
2357  * The GEM MII interface supports at least three different operating modes:
2358  *
2359  * Bitbang mode is implemented using data, clock and output enable registers.
2360  *
2361  * Frame mode is implemented by loading a complete frame into the frame
2362  * register and polling the valid bit for completion.
2363  *
2364  * Polling mode uses the frame register but completion is indicated by
2365  * an interrupt.
2366  *
2367  */
2368 static int
2369 gem_mii_readreg(device_t self, int phy, int reg)
2370 {
2371 	struct gem_softc *sc = device_private(self);
2372 	bus_space_tag_t t = sc->sc_bustag;
2373 	bus_space_handle_t mif = sc->sc_h1;
2374 	int n;
2375 	u_int32_t v;
2376 
2377 #ifdef GEM_DEBUG1
2378 	if (sc->sc_debug)
2379 		printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
2380 #endif
2381 
2382 	/* Construct the frame command */
2383 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
2384 		GEM_MIF_FRAME_READ;
2385 
2386 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2387 	for (n = 0; n < 100; n++) {
2388 		DELAY(1);
2389 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2390 		if (v & GEM_MIF_FRAME_TA0)
2391 			return (v & GEM_MIF_FRAME_DATA);
2392 	}
2393 
2394 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
2395 	return (0);
2396 }
2397 
2398 static void
2399 gem_mii_writereg(device_t self, int phy, int reg, int val)
2400 {
2401 	struct gem_softc *sc = device_private(self);
2402 	bus_space_tag_t t = sc->sc_bustag;
2403 	bus_space_handle_t mif = sc->sc_h1;
2404 	int n;
2405 	u_int32_t v;
2406 
2407 #ifdef GEM_DEBUG1
2408 	if (sc->sc_debug)
2409 		printf("gem_mii_writereg: PHY %d reg %d val %x\n",
2410 			phy, reg, val);
2411 #endif
2412 
2413 	/* Construct the frame command */
2414 	v = GEM_MIF_FRAME_WRITE			|
2415 	    (phy << GEM_MIF_PHY_SHIFT)		|
2416 	    (reg << GEM_MIF_REG_SHIFT)		|
2417 	    (val & GEM_MIF_FRAME_DATA);
2418 
2419 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2420 	for (n = 0; n < 100; n++) {
2421 		DELAY(1);
2422 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2423 		if (v & GEM_MIF_FRAME_TA0)
2424 			return;
2425 	}
2426 
2427 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
2428 }
2429 
2430 static void
2431 gem_mii_statchg(struct ifnet *ifp)
2432 {
2433 	struct gem_softc *sc = ifp->if_softc;
2434 #ifdef GEM_DEBUG
2435 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
2436 #endif
2437 
2438 #ifdef GEM_DEBUG
2439 	if (sc->sc_debug)
2440 		printf("gem_mii_statchg: status change: phy = %d\n",
2441 			sc->sc_phys[instance]);
2442 #endif
2443 	gem_statuschange(sc);
2444 }
2445 
2446 /*
2447  * Common status change for gem_mii_statchg() and gem_pint()
2448  */
2449 void
2450 gem_statuschange(struct gem_softc* sc)
2451 {
2452 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2453 	bus_space_tag_t t = sc->sc_bustag;
2454 	bus_space_handle_t mac = sc->sc_h1;
2455 	int gigabit;
2456 	u_int32_t rxcfg, txcfg, v;
2457 
2458 	if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
2459 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
2460 		sc->sc_flags |= GEM_LINK;
2461 	else
2462 		sc->sc_flags &= ~GEM_LINK;
2463 
2464 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2465 		gigabit = 1;
2466 	else
2467 		gigabit = 0;
2468 
2469 	/*
2470 	 * The configuration done here corresponds to the steps F) and
2471 	 * G) and as far as enabling of RX and TX MAC goes also step H)
2472 	 * of the initialization sequence outlined in section 3.2.1 of
2473 	 * the GEM Gigabit Ethernet ASIC Specification.
2474 	 */
2475 
2476 	rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
2477 	rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
2478 	txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
2479 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2480 		txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
2481 	else if (gigabit) {
2482 		rxcfg |= GEM_MAC_RX_CARR_EXTEND;
2483 		txcfg |= GEM_MAC_RX_CARR_EXTEND;
2484 	}
2485 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
2486 	bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
2487 	    BUS_SPACE_BARRIER_WRITE);
2488 	if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
2489 		aprint_normal_dev(sc->sc_dev, "cannot disable TX MAC\n");
2490 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
2491 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
2492 	bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
2493 	    BUS_SPACE_BARRIER_WRITE);
2494 	if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
2495 		aprint_normal_dev(sc->sc_dev, "cannot disable RX MAC\n");
2496 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
2497 
2498 	v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
2499 	    ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
2500 	bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
2501 
2502 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
2503 	    gigabit != 0)
2504 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2505 		    GEM_MAC_SLOT_TIME_CARR_EXTEND);
2506 	else
2507 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2508 		    GEM_MAC_SLOT_TIME_NORMAL);
2509 
2510 	/* XIF Configuration */
2511 	if (sc->sc_flags & GEM_LINK)
2512 		v = GEM_MAC_XIF_LINK_LED;
2513 	else
2514 		v = 0;
2515 	v |= GEM_MAC_XIF_TX_MII_ENA;
2516 
2517 	/* If an external transceiver is connected, enable its MII drivers */
2518 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
2519 	if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
2520 		if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
2521 			if (gigabit)
2522 				v |= GEM_MAC_XIF_GMII_MODE;
2523 			else
2524 				v &= ~GEM_MAC_XIF_GMII_MODE;
2525 		} else
2526 			/* Internal MII needs buf enable */
2527 			v |= GEM_MAC_XIF_MII_BUF_ENA;
2528 		/* MII needs echo disable if half duplex. */
2529 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2530 			/* turn on full duplex LED */
2531 			v |= GEM_MAC_XIF_FDPLX_LED;
2532 		else
2533 			/* half duplex -- disable echo */
2534 			v |= GEM_MAC_XIF_ECHO_DISABL;
2535 	} else {
2536 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2537 			v |= GEM_MAC_XIF_FDPLX_LED;
2538 		v |= GEM_MAC_XIF_GMII_MODE;
2539 	}
2540 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
2541 
2542 	if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2543 	    (sc->sc_flags & GEM_LINK) != 0) {
2544 		bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
2545 		    txcfg | GEM_MAC_TX_ENABLE);
2546 		bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
2547 		    rxcfg | GEM_MAC_RX_ENABLE);
2548 	}
2549 }
2550 
2551 int
2552 gem_ser_mediachange(struct ifnet *ifp)
2553 {
2554 	struct gem_softc *sc = ifp->if_softc;
2555 	u_int s, t;
2556 
2557 	if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
2558 		return EINVAL;
2559 
2560 	s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
2561 	if (s == IFM_AUTO) {
2562 		if (sc->sc_mii_media != s) {
2563 #ifdef GEM_DEBUG
2564 			aprint_debug_dev(sc->sc_dev, "setting media to auto\n");
2565 #endif
2566 			sc->sc_mii_media = s;
2567 			if (ifp->if_flags & IFF_UP) {
2568 				gem_pcs_stop(sc, 0);
2569 				gem_pcs_start(sc);
2570 			}
2571 		}
2572 		return 0;
2573 	}
2574 	if (s == IFM_1000_SX) {
2575 		t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media);
2576 		if (t == IFM_FDX || t == IFM_HDX) {
2577 			if (sc->sc_mii_media != t) {
2578 				sc->sc_mii_media = t;
2579 #ifdef GEM_DEBUG
2580 				aprint_debug_dev(sc->sc_dev,
2581 				    "setting media to 1000baseSX-%s\n",
2582 				    t == IFM_FDX ? "FDX" : "HDX");
2583 #endif
2584 				if (ifp->if_flags & IFF_UP) {
2585 					gem_pcs_stop(sc, 0);
2586 					gem_pcs_start(sc);
2587 				}
2588 			}
2589 			return 0;
2590 		}
2591 	}
2592 	return EINVAL;
2593 }
2594 
2595 void
2596 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2597 {
2598 	struct gem_softc *sc = ifp->if_softc;
2599 
2600 	if ((ifp->if_flags & IFF_UP) == 0)
2601 		return;
2602 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
2603 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
2604 }
2605 
2606 static int
2607 gem_ifflags_cb(struct ethercom *ec)
2608 {
2609 	struct ifnet *ifp = &ec->ec_if;
2610 	struct gem_softc *sc = ifp->if_softc;
2611 	int change = ifp->if_flags ^ sc->sc_if_flags;
2612 
2613 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
2614 		return ENETRESET;
2615 	else if ((change & IFF_PROMISC) != 0)
2616 		gem_setladrf(sc);
2617 	return 0;
2618 }
2619 
2620 /*
2621  * Process an ioctl request.
2622  */
2623 int
2624 gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
2625 {
2626 	struct gem_softc *sc = ifp->if_softc;
2627 	int s, error = 0;
2628 
2629 	s = splnet();
2630 
2631 	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2632 		error = 0;
2633 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2634 			;
2635 		else if (ifp->if_flags & IFF_RUNNING) {
2636 			/*
2637 			 * Multicast list has changed; set the hardware filter
2638 			 * accordingly.
2639 			 */
2640 			gem_setladrf(sc);
2641 		}
2642 	}
2643 
2644 	/* Try to get things going again */
2645 	if (ifp->if_flags & IFF_UP)
2646 		gem_start(ifp);
2647 	splx(s);
2648 	return (error);
2649 }
2650 
2651 static void
2652 gem_inten(struct gem_softc *sc)
2653 {
2654 	bus_space_tag_t t = sc->sc_bustag;
2655 	bus_space_handle_t h = sc->sc_h1;
2656 	uint32_t v;
2657 
2658 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
2659 		v = GEM_INTR_PCS;
2660 	else
2661 		v = GEM_INTR_MIF;
2662 	bus_space_write_4(t, h, GEM_INTMASK,
2663 		      ~(GEM_INTR_TX_INTME |
2664 			GEM_INTR_TX_EMPTY |
2665 			GEM_INTR_TX_MAC |
2666 			GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF|
2667 			GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL|
2668 			GEM_INTR_BERR | v));
2669 }
2670 
2671 bool
2672 gem_resume(device_t self, const pmf_qual_t *qual)
2673 {
2674 	struct gem_softc *sc = device_private(self);
2675 
2676 	gem_inten(sc);
2677 
2678 	return true;
2679 }
2680 
2681 bool
2682 gem_suspend(device_t self, const pmf_qual_t *qual)
2683 {
2684 	struct gem_softc *sc = device_private(self);
2685 	bus_space_tag_t t = sc->sc_bustag;
2686 	bus_space_handle_t h = sc->sc_h1;
2687 
2688 	bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
2689 
2690 	return true;
2691 }
2692 
2693 bool
2694 gem_shutdown(device_t self, int howto)
2695 {
2696 	struct gem_softc *sc = device_private(self);
2697 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2698 
2699 	gem_stop(ifp, 1);
2700 
2701 	return true;
2702 }
2703 
2704 /*
2705  * Set up the logical address filter.
2706  */
2707 void
2708 gem_setladrf(struct gem_softc *sc)
2709 {
2710 	struct ethercom *ec = &sc->sc_ethercom;
2711 	struct ifnet *ifp = &ec->ec_if;
2712 	struct ether_multi *enm;
2713 	struct ether_multistep step;
2714 	bus_space_tag_t t = sc->sc_bustag;
2715 	bus_space_handle_t h = sc->sc_h1;
2716 	u_int32_t crc;
2717 	u_int32_t hash[16];
2718 	u_int32_t v;
2719 	int i;
2720 
2721 	/* Get current RX configuration */
2722 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2723 
2724 	/*
2725 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2726 	 * and hash filter.  Depending on the case, the right bit will be
2727 	 * enabled.
2728 	 */
2729 	v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
2730 	    GEM_MAC_RX_PROMISC_GRP);
2731 
2732 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
2733 		/* Turn on promiscuous mode */
2734 		v |= GEM_MAC_RX_PROMISCUOUS;
2735 		ifp->if_flags |= IFF_ALLMULTI;
2736 		goto chipit;
2737 	}
2738 
2739 	/*
2740 	 * Set up multicast address filter by passing all multicast addresses
2741 	 * through a crc generator, and then using the high order 8 bits as an
2742 	 * index into the 256 bit logical address filter.  The high order 4
2743 	 * bits selects the word, while the other 4 bits select the bit within
2744 	 * the word (where bit 0 is the MSB).
2745 	 */
2746 
2747 	/* Clear hash table */
2748 	memset(hash, 0, sizeof(hash));
2749 
2750 	ETHER_FIRST_MULTI(step, ec, enm);
2751 	while (enm != NULL) {
2752 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2753 			/*
2754 			 * We must listen to a range of multicast addresses.
2755 			 * For now, just accept all multicasts, rather than
2756 			 * trying to set only those filter bits needed to match
2757 			 * the range.  (At this time, the only use of address
2758 			 * ranges is for IP multicast routing, for which the
2759 			 * range is big enough to require all bits set.)
2760 			 * XXX should use the address filters for this
2761 			 */
2762 			ifp->if_flags |= IFF_ALLMULTI;
2763 			v |= GEM_MAC_RX_PROMISC_GRP;
2764 			goto chipit;
2765 		}
2766 
2767 		/* Get the LE CRC32 of the address */
2768 		crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2769 
2770 		/* Just want the 8 most significant bits. */
2771 		crc >>= 24;
2772 
2773 		/* Set the corresponding bit in the filter. */
2774 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
2775 
2776 		ETHER_NEXT_MULTI(step, enm);
2777 	}
2778 
2779 	v |= GEM_MAC_RX_HASH_FILTER;
2780 	ifp->if_flags &= ~IFF_ALLMULTI;
2781 
2782 	/* Now load the hash table into the chip (if we are using it) */
2783 	for (i = 0; i < 16; i++) {
2784 		bus_space_write_4(t, h,
2785 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2786 		    hash[i]);
2787 	}
2788 
2789 chipit:
2790 	sc->sc_if_flags = ifp->if_flags;
2791 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2792 }
2793