xref: /netbsd-src/sys/dev/ic/gem.c (revision d48f14661dda8638fee055ba15d35bdfb29b9fa8)
1 /*	$NetBSD: gem.c,v 1.46 2006/05/26 12:52:45 blymn Exp $ */
2 
3 /*
4  *
5  * Copyright (C) 2001 Eduardo Horvath.
6  * All rights reserved.
7  *
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  */
31 
32 /*
33  * Driver for Sun GEM ethernet controllers.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.46 2006/05/26 12:52:45 blymn Exp $");
38 
39 #include "opt_inet.h"
40 #include "bpfilter.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/mbuf.h>
46 #include <sys/syslog.h>
47 #include <sys/malloc.h>
48 #include <sys/kernel.h>
49 #include <sys/socket.h>
50 #include <sys/ioctl.h>
51 #include <sys/errno.h>
52 #include <sys/device.h>
53 
54 #include <machine/endian.h>
55 
56 #include <uvm/uvm_extern.h>
57 
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_ether.h>
62 
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/tcp.h>
69 #include <netinet/udp.h>
70 #endif
71 
72 #if NBPFILTER > 0
73 #include <net/bpf.h>
74 #endif
75 
76 #include <machine/bus.h>
77 #include <machine/intr.h>
78 
79 #include <dev/mii/mii.h>
80 #include <dev/mii/miivar.h>
81 #include <dev/mii/mii_bitbang.h>
82 
83 #include <dev/ic/gemreg.h>
84 #include <dev/ic/gemvar.h>
85 
86 #define TRIES	10000
87 
88 static void	gem_start(struct ifnet *);
89 static void	gem_stop(struct ifnet *, int);
90 int		gem_ioctl(struct ifnet *, u_long, caddr_t);
91 void		gem_tick(void *);
92 void		gem_watchdog(struct ifnet *);
93 void		gem_shutdown(void *);
94 int		gem_init(struct ifnet *);
95 void		gem_init_regs(struct gem_softc *sc);
96 static int	gem_ringsize(int sz);
97 static int	gem_meminit(struct gem_softc *);
98 void		gem_mifinit(struct gem_softc *);
99 static int	gem_bitwait(struct gem_softc *sc, int, u_int32_t, u_int32_t);
100 void		gem_reset(struct gem_softc *);
101 int		gem_reset_rx(struct gem_softc *sc);
102 int		gem_reset_tx(struct gem_softc *sc);
103 int		gem_disable_rx(struct gem_softc *sc);
104 int		gem_disable_tx(struct gem_softc *sc);
105 static void	gem_rxdrain(struct gem_softc *sc);
106 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
107 void		gem_setladrf(struct gem_softc *);
108 
109 /* MII methods & callbacks */
110 static int	gem_mii_readreg(struct device *, int, int);
111 static void	gem_mii_writereg(struct device *, int, int, int);
112 static void	gem_mii_statchg(struct device *);
113 
114 int		gem_mediachange(struct ifnet *);
115 void		gem_mediastatus(struct ifnet *, struct ifmediareq *);
116 
117 struct mbuf	*gem_get(struct gem_softc *, int, int);
118 int		gem_put(struct gem_softc *, int, struct mbuf *);
119 void		gem_read(struct gem_softc *, int, int);
120 int		gem_eint(struct gem_softc *, u_int);
121 int		gem_rint(struct gem_softc *);
122 int		gem_tint(struct gem_softc *);
123 void		gem_power(int, void *);
124 
125 #ifdef GEM_DEBUG
126 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
127 				printf x
128 #else
129 #define	DPRINTF(sc, x)	/* nothing */
130 #endif
131 
132 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
133 
134 
135 /*
136  * gem_attach:
137  *
138  *	Attach a Gem interface to the system.
139  */
140 void
141 gem_attach(sc, enaddr)
142 	struct gem_softc *sc;
143 	const uint8_t *enaddr;
144 {
145 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
146 	struct mii_data *mii = &sc->sc_mii;
147 	struct mii_softc *child;
148 	struct ifmedia_entry *ifm;
149 	int i, error;
150 	u_int32_t v;
151 	char *nullbuf;
152 
153 	/* Make sure the chip is stopped. */
154 	ifp->if_softc = sc;
155 	gem_reset(sc);
156 
157 	/*
158 	 * Allocate the control data structures, and create and load the
159 	 * DMA map for it. gem_control_data is 9216 bytes, we have space for
160 	 * the padding buffer in the bus_dmamem_alloc()'d memory.
161 	 */
162 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
163 	    sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
164 	    0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
165 		aprint_error(
166 		   "%s: unable to allocate control data, error = %d\n",
167 		    sc->sc_dev.dv_xname, error);
168 		goto fail_0;
169 	}
170 
171 /* XXX should map this in with correct endianness */
172 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
173 	    sizeof(struct gem_control_data), (caddr_t *)&sc->sc_control_data,
174 	    BUS_DMA_COHERENT)) != 0) {
175 		aprint_error("%s: unable to map control data, error = %d\n",
176 		    sc->sc_dev.dv_xname, error);
177 		goto fail_1;
178 	}
179 
180 	nullbuf =
181 	    (caddr_t)sc->sc_control_data + sizeof(struct gem_control_data);
182 
183 	if ((error = bus_dmamap_create(sc->sc_dmatag,
184 	    sizeof(struct gem_control_data), 1,
185 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
186 		aprint_error("%s: unable to create control data DMA map, "
187 		    "error = %d\n", sc->sc_dev.dv_xname, error);
188 		goto fail_2;
189 	}
190 
191 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
192 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
193 	    0)) != 0) {
194 		aprint_error(
195 		    "%s: unable to load control data DMA map, error = %d\n",
196 		    sc->sc_dev.dv_xname, error);
197 		goto fail_3;
198 	}
199 
200 	memset(nullbuf, 0, ETHER_MIN_TX);
201 	if ((error = bus_dmamap_create(sc->sc_dmatag,
202 	    ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
203 		aprint_error("%s: unable to create padding DMA map, "
204 		    "error = %d\n", sc->sc_dev.dv_xname, error);
205 		goto fail_4;
206 	}
207 
208 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
209 	    nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
210 		aprint_error(
211 		    "%s: unable to load padding DMA map, error = %d\n",
212 		    sc->sc_dev.dv_xname, error);
213 		goto fail_5;
214 	}
215 
216 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
217 	    BUS_DMASYNC_PREWRITE);
218 
219 	/*
220 	 * Initialize the transmit job descriptors.
221 	 */
222 	SIMPLEQ_INIT(&sc->sc_txfreeq);
223 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
224 
225 	/*
226 	 * Create the transmit buffer DMA maps.
227 	 */
228 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
229 		struct gem_txsoft *txs;
230 
231 		txs = &sc->sc_txsoft[i];
232 		txs->txs_mbuf = NULL;
233 		if ((error = bus_dmamap_create(sc->sc_dmatag,
234 		    ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
235 		    ETHER_MAX_LEN_JUMBO, 0, 0,
236 		    &txs->txs_dmamap)) != 0) {
237 			aprint_error("%s: unable to create tx DMA map %d, "
238 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
239 			goto fail_6;
240 		}
241 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
242 	}
243 
244 	/*
245 	 * Create the receive buffer DMA maps.
246 	 */
247 	for (i = 0; i < GEM_NRXDESC; i++) {
248 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
249 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
250 			aprint_error("%s: unable to create rx DMA map %d, "
251 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
252 			goto fail_7;
253 		}
254 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
255 	}
256 
257 	/*
258 	 * From this point forward, the attachment cannot fail.  A failure
259 	 * before this point releases all resources that may have been
260 	 * allocated.
261 	 */
262 
263 	/* Announce ourselves. */
264 	aprint_normal("%s: Ethernet address %s", sc->sc_dev.dv_xname,
265 	    ether_sprintf(enaddr));
266 
267 	/* Get RX FIFO size */
268 	sc->sc_rxfifosize = 64 *
269 	    bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_FIFO_SIZE);
270 	aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
271 
272 	/* Get TX FIFO size */
273 	v = bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_FIFO_SIZE);
274 	aprint_normal(", %uKB TX fifo\n", v / 16);
275 
276 	/* Initialize ifnet structure. */
277 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
278 	ifp->if_softc = sc;
279 	ifp->if_flags =
280 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
281 	sc->sc_if_flags = ifp->if_flags;
282 	ifp->if_capabilities |=
283 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
284 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
285 	ifp->if_start = gem_start;
286 	ifp->if_ioctl = gem_ioctl;
287 	ifp->if_watchdog = gem_watchdog;
288 	ifp->if_stop = gem_stop;
289 	ifp->if_init = gem_init;
290 	IFQ_SET_READY(&ifp->if_snd);
291 
292 	/* Initialize ifmedia structures and MII info */
293 	mii->mii_ifp = ifp;
294 	mii->mii_readreg = gem_mii_readreg;
295 	mii->mii_writereg = gem_mii_writereg;
296 	mii->mii_statchg = gem_mii_statchg;
297 
298 	ifmedia_init(&mii->mii_media, IFM_IMASK, gem_mediachange, gem_mediastatus);
299 
300 	gem_mifinit(sc);
301 
302 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
303 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
304 
305 	child = LIST_FIRST(&mii->mii_phys);
306 	if (child == NULL) {
307 		/* No PHY attached */
308 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
309 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
310 	} else {
311 		/*
312 		 * Walk along the list of attached MII devices and
313 		 * establish an `MII instance' to `phy number'
314 		 * mapping. We'll use this mapping in media change
315 		 * requests to determine which phy to use to program
316 		 * the MIF configuration register.
317 		 */
318 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
319 			/*
320 			 * Note: we support just two PHYs: the built-in
321 			 * internal device and an external on the MII
322 			 * connector.
323 			 */
324 			if (child->mii_phy > 1 || child->mii_inst > 1) {
325 				aprint_error(
326 				    "%s: cannot accomodate MII device %s"
327 				       " at phy %d, instance %d\n",
328 				       sc->sc_dev.dv_xname,
329 				       child->mii_dev.dv_xname,
330 				       child->mii_phy, child->mii_inst);
331 				continue;
332 			}
333 
334 			sc->sc_phys[child->mii_inst] = child->mii_phy;
335 		}
336 
337 		/*
338 		 * Now select and activate the PHY we will use.
339 		 *
340 		 * The order of preference is External (MDI1),
341 		 * Internal (MDI0), Serial Link (no MII).
342 		 */
343 		if (sc->sc_phys[1]) {
344 #ifdef GEM_DEBUG
345 			aprint_debug("using external phy\n");
346 #endif
347 			sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
348 		} else {
349 #ifdef GEM_DEBUG
350 			aprint_debug("using internal phy\n");
351 #endif
352 			sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
353 		}
354 		bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG,
355 			sc->sc_mif_config);
356 
357 		/*
358 		 * XXX - we can really do the following ONLY if the
359 		 * phy indeed has the auto negotiation capability!!
360 		 */
361 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
362 	}
363 
364 	/*
365 	 * If we support GigE media, we support jumbo frames too.
366 	 * Unless we are Apple.
367 	 */
368 	TAILQ_FOREACH(ifm, &sc->sc_media.ifm_list, ifm_list) {
369 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
370 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
371 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
372 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
373 			if (sc->sc_variant != GEM_APPLE_GMAC)
374 				sc->sc_ethercom.ec_capabilities
375 				    |= ETHERCAP_JUMBO_MTU;
376 
377 			sc->sc_flags |= GEM_GIGABIT;
378 			break;
379 		}
380 	}
381 
382 	/* claim 802.1q capability */
383 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
384 
385 	/* Attach the interface. */
386 	if_attach(ifp);
387 	ether_ifattach(ifp, enaddr);
388 
389 	sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
390 	if (sc->sc_sh == NULL)
391 		panic("gem_config: can't establish shutdownhook");
392 
393 #if NRND > 0
394 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
395 			  RND_TYPE_NET, 0);
396 #endif
397 
398 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
399 	    NULL, sc->sc_dev.dv_xname, "interrupts");
400 #ifdef GEM_COUNTERS
401 	evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
402 	    &sc->sc_ev_intr, sc->sc_dev.dv_xname, "tx interrupts");
403 	evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
404 	    &sc->sc_ev_intr, sc->sc_dev.dv_xname, "rx interrupts");
405 	evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
406 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx ring full");
407 	evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
408 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx malloc failure");
409 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
410 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 0desc");
411 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
412 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 1desc");
413 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
414 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 2desc");
415 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
416 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 3desc");
417 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
418 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >3desc");
419 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
420 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >7desc");
421 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
422 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >15desc");
423 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
424 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >31desc");
425 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
426 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >63desc");
427 #endif
428 
429 #if notyet
430 	/*
431 	 * Add a suspend hook to make sure we come back up after a
432 	 * resume.
433 	 */
434 	sc->sc_powerhook = powerhook_establish(gem_power, sc);
435 	if (sc->sc_powerhook == NULL)
436 		aprint_error("%s: WARNING: unable to establish power hook\n",
437 		    sc->sc_dev.dv_xname);
438 #endif
439 
440 	callout_init(&sc->sc_tick_ch);
441 	return;
442 
443 	/*
444 	 * Free any resources we've allocated during the failed attach
445 	 * attempt.  Do this in reverse order and fall through.
446 	 */
447  fail_7:
448 	for (i = 0; i < GEM_NRXDESC; i++) {
449 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
450 			bus_dmamap_destroy(sc->sc_dmatag,
451 			    sc->sc_rxsoft[i].rxs_dmamap);
452 	}
453  fail_6:
454 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
455 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
456 			bus_dmamap_destroy(sc->sc_dmatag,
457 			    sc->sc_txsoft[i].txs_dmamap);
458 	}
459 	bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
460  fail_5:
461 	bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
462  fail_4:
463 	bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)nullbuf, ETHER_MIN_TX);
464  fail_3:
465 	bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
466  fail_2:
467 	bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sc_control_data,
468 	    sizeof(struct gem_control_data));
469  fail_1:
470 	bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
471  fail_0:
472 	return;
473 }
474 
475 
476 void
477 gem_tick(arg)
478 	void *arg;
479 {
480 	struct gem_softc *sc = arg;
481 	int s;
482 
483 	s = splnet();
484 	mii_tick(&sc->sc_mii);
485 	splx(s);
486 
487 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
488 
489 }
490 
491 static int
492 gem_bitwait(sc, r, clr, set)
493 	struct gem_softc *sc;
494 	int r;
495 	u_int32_t clr;
496 	u_int32_t set;
497 {
498 	int i;
499 	u_int32_t reg;
500 
501 	for (i = TRIES; i--; DELAY(100)) {
502 		reg = bus_space_read_4(sc->sc_bustag, sc->sc_h, r);
503 		if ((r & clr) == 0 && (r & set) == set)
504 			return (1);
505 	}
506 	return (0);
507 }
508 
509 void
510 gem_reset(sc)
511 	struct gem_softc *sc;
512 {
513 	bus_space_tag_t t = sc->sc_bustag;
514 	bus_space_handle_t h = sc->sc_h;
515 	int s;
516 
517 	s = splnet();
518 	DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
519 	gem_reset_rx(sc);
520 	gem_reset_tx(sc);
521 
522 	/* Do a full reset */
523 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
524 	if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
525 		printf("%s: cannot reset device\n", sc->sc_dev.dv_xname);
526 	splx(s);
527 }
528 
529 
530 /*
531  * gem_rxdrain:
532  *
533  *	Drain the receive queue.
534  */
535 static void
536 gem_rxdrain(struct gem_softc *sc)
537 {
538 	struct gem_rxsoft *rxs;
539 	int i;
540 
541 	for (i = 0; i < GEM_NRXDESC; i++) {
542 		rxs = &sc->sc_rxsoft[i];
543 		if (rxs->rxs_mbuf != NULL) {
544 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
545 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
546 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
547 			m_freem(rxs->rxs_mbuf);
548 			rxs->rxs_mbuf = NULL;
549 		}
550 	}
551 }
552 
553 /*
554  * Reset the whole thing.
555  */
556 static void
557 gem_stop(struct ifnet *ifp, int disable)
558 {
559 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
560 	struct gem_txsoft *txs;
561 
562 	DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
563 
564 	callout_stop(&sc->sc_tick_ch);
565 	mii_down(&sc->sc_mii);
566 
567 	/* XXX - Should we reset these instead? */
568 	gem_disable_rx(sc);
569 	gem_disable_tx(sc);
570 
571 	/*
572 	 * Release any queued transmit buffers.
573 	 */
574 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
575 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
576 		if (txs->txs_mbuf != NULL) {
577 			bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
578 			    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
579 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
580 			m_freem(txs->txs_mbuf);
581 			txs->txs_mbuf = NULL;
582 		}
583 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
584 	}
585 
586 	if (disable) {
587 		gem_rxdrain(sc);
588 	}
589 
590 	/*
591 	 * Mark the interface down and cancel the watchdog timer.
592 	 */
593 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
594 	sc->sc_if_flags = ifp->if_flags;
595 	ifp->if_timer = 0;
596 }
597 
598 
599 /*
600  * Reset the receiver
601  */
602 int
603 gem_reset_rx(struct gem_softc *sc)
604 {
605 	bus_space_tag_t t = sc->sc_bustag;
606 	bus_space_handle_t h = sc->sc_h;
607 
608 	/*
609 	 * Resetting while DMA is in progress can cause a bus hang, so we
610 	 * disable DMA first.
611 	 */
612 	gem_disable_rx(sc);
613 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
614 	/* Wait till it finishes */
615 	if (!gem_bitwait(sc, GEM_RX_CONFIG, 1, 0))
616 		printf("%s: cannot disable read dma\n", sc->sc_dev.dv_xname);
617 	/* Wait 5ms extra. */
618 	delay(5000);
619 
620 	/* Finally, reset the ERX */
621 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX);
622 	/* Wait till it finishes */
623 	if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_TX, 0)) {
624 		printf("%s: cannot reset receiver\n", sc->sc_dev.dv_xname);
625 		return (1);
626 	}
627 	return (0);
628 }
629 
630 
631 /*
632  * Reset the transmitter
633  */
634 int
635 gem_reset_tx(struct gem_softc *sc)
636 {
637 	bus_space_tag_t t = sc->sc_bustag;
638 	bus_space_handle_t h = sc->sc_h;
639 
640 	/*
641 	 * Resetting while DMA is in progress can cause a bus hang, so we
642 	 * disable DMA first.
643 	 */
644 	gem_disable_tx(sc);
645 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
646 	/* Wait till it finishes */
647 	if (!gem_bitwait(sc, GEM_TX_CONFIG, 1, 0))
648 		printf("%s: cannot disable read dma\n", sc->sc_dev.dv_xname);
649 	/* Wait 5ms extra. */
650 	delay(5000);
651 
652 	/* Finally, reset the ETX */
653 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX);
654 	/* Wait till it finishes */
655 	if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_TX, 0)) {
656 		printf("%s: cannot reset receiver\n",
657 			sc->sc_dev.dv_xname);
658 		return (1);
659 	}
660 	return (0);
661 }
662 
663 /*
664  * disable receiver.
665  */
666 int
667 gem_disable_rx(struct gem_softc *sc)
668 {
669 	bus_space_tag_t t = sc->sc_bustag;
670 	bus_space_handle_t h = sc->sc_h;
671 	u_int32_t cfg;
672 
673 	/* Flip the enable bit */
674 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
675 	cfg &= ~GEM_MAC_RX_ENABLE;
676 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
677 
678 	/* Wait for it to finish */
679 	return (gem_bitwait(sc, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
680 }
681 
682 /*
683  * disable transmitter.
684  */
685 int
686 gem_disable_tx(struct gem_softc *sc)
687 {
688 	bus_space_tag_t t = sc->sc_bustag;
689 	bus_space_handle_t h = sc->sc_h;
690 	u_int32_t cfg;
691 
692 	/* Flip the enable bit */
693 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
694 	cfg &= ~GEM_MAC_TX_ENABLE;
695 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
696 
697 	/* Wait for it to finish */
698 	return (gem_bitwait(sc, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
699 }
700 
701 /*
702  * Initialize interface.
703  */
704 int
705 gem_meminit(struct gem_softc *sc)
706 {
707 	struct gem_rxsoft *rxs;
708 	int i, error;
709 
710 	/*
711 	 * Initialize the transmit descriptor ring.
712 	 */
713 	memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
714 	for (i = 0; i < GEM_NTXDESC; i++) {
715 		sc->sc_txdescs[i].gd_flags = 0;
716 		sc->sc_txdescs[i].gd_addr = 0;
717 	}
718 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
719 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
720 	sc->sc_txfree = GEM_NTXDESC-1;
721 	sc->sc_txnext = 0;
722 	sc->sc_txwin = 0;
723 
724 	/*
725 	 * Initialize the receive descriptor and receive job
726 	 * descriptor rings.
727 	 */
728 	for (i = 0; i < GEM_NRXDESC; i++) {
729 		rxs = &sc->sc_rxsoft[i];
730 		if (rxs->rxs_mbuf == NULL) {
731 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
732 				printf("%s: unable to allocate or map rx "
733 				    "buffer %d, error = %d\n",
734 				    sc->sc_dev.dv_xname, i, error);
735 				/*
736 				 * XXX Should attempt to run with fewer receive
737 				 * XXX buffers instead of just failing.
738 				 */
739 				gem_rxdrain(sc);
740 				return (1);
741 			}
742 		} else
743 			GEM_INIT_RXDESC(sc, i);
744 	}
745 	sc->sc_rxptr = 0;
746 
747 	return (0);
748 }
749 
750 static int
751 gem_ringsize(int sz)
752 {
753 	switch (sz) {
754 	case 32:
755 		return GEM_RING_SZ_32;
756 	case 64:
757 		return GEM_RING_SZ_64;
758 	case 128:
759 		return GEM_RING_SZ_128;
760 	case 256:
761 		return GEM_RING_SZ_256;
762 	case 512:
763 		return GEM_RING_SZ_512;
764 	case 1024:
765 		return GEM_RING_SZ_1024;
766 	case 2048:
767 		return GEM_RING_SZ_2048;
768 	case 4096:
769 		return GEM_RING_SZ_4096;
770 	case 8192:
771 		return GEM_RING_SZ_8192;
772 	default:
773 		printf("gem: invalid Receive Descriptor ring size %d\n", sz);
774 		return GEM_RING_SZ_32;
775 	}
776 }
777 
778 /*
779  * Initialization of interface; set up initialization block
780  * and transmit/receive descriptor rings.
781  */
782 int
783 gem_init(struct ifnet *ifp)
784 {
785 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
786 	bus_space_tag_t t = sc->sc_bustag;
787 	bus_space_handle_t h = sc->sc_h;
788 	int s;
789 	u_int max_frame_size;
790 	u_int32_t v;
791 
792 	s = splnet();
793 
794 	DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
795 	/*
796 	 * Initialization sequence. The numbered steps below correspond
797 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
798 	 * Channel Engine manual (part of the PCIO manual).
799 	 * See also the STP2002-STQ document from Sun Microsystems.
800 	 */
801 
802 	/* step 1 & 2. Reset the Ethernet Channel */
803 	gem_stop(ifp, 0);
804 	gem_reset(sc);
805 	DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
806 
807 	/* Re-initialize the MIF */
808 	gem_mifinit(sc);
809 
810 	/* Call MI reset function if any */
811 	if (sc->sc_hwreset)
812 		(*sc->sc_hwreset)(sc);
813 
814 	/* step 3. Setup data structures in host memory */
815 	gem_meminit(sc);
816 
817 	/* step 4. TX MAC registers & counters */
818 	gem_init_regs(sc);
819 	max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
820 	max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
821 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
822 		max_frame_size += ETHER_VLAN_ENCAP_LEN;
823 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
824 	    max_frame_size|/* burst size */(0x2000<<16));
825 
826 	/* step 5. RX MAC registers & counters */
827 	gem_setladrf(sc);
828 
829 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
830 	/* NOTE: we use only 32-bit DMA addresses here. */
831 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
832 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
833 
834 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
835 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
836 
837 	/* step 8. Global Configuration & Interrupt Mask */
838 	bus_space_write_4(t, h, GEM_INTMASK,
839 		      ~(GEM_INTR_TX_INTME|
840 			GEM_INTR_TX_EMPTY|
841 			GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
842 			GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
843 			GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
844 			GEM_INTR_BERR));
845 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
846 			GEM_MAC_RX_DONE|GEM_MAC_RX_FRAME_CNT);
847 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
848 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
849 
850 	/* step 9. ETX Configuration: use mostly default values */
851 
852 	/* Enable DMA */
853 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
854 	bus_space_write_4(t, h, GEM_TX_CONFIG,
855 		v|GEM_TX_CONFIG_TXDMA_EN|
856 		((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
857 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
858 
859 	/* step 10. ERX Configuration */
860 
861 	/* Encode Receive Descriptor ring size: four possible values */
862 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
863 
864 	/* Set receive h/w checksum offset */
865 #ifdef INET
866 	v |= (ETHER_HDR_LEN + sizeof(struct ip) +
867 	      ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
868 	        ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
869 #endif
870 
871 	/* Enable DMA */
872 	bus_space_write_4(t, h, GEM_RX_CONFIG,
873 		v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
874 		(2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN);
875 
876 	/*
877 	 * The following value is for an OFF Threshold of about 3/4 full
878 	 * and an ON Threshold of 1/4 full.
879 	 */
880 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
881 	     (3 * sc->sc_rxfifosize / 256) |
882 	     (   (sc->sc_rxfifosize / 256) << 12));
883 	bus_space_write_4(t, h, GEM_RX_BLANKING, (6<<12)|6);
884 
885 	/* step 11. Configure Media */
886 	mii_mediachg(&sc->sc_mii);
887 
888 /* XXXX Serial link needs a whole different setup. */
889 
890 
891 	/* step 12. RX_MAC Configuration Register */
892 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
893 	v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
894 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
895 
896 	/* step 14. Issue Transmit Pending command */
897 
898 	/* Call MI initialization function if any */
899 	if (sc->sc_hwinit)
900 		(*sc->sc_hwinit)(sc);
901 
902 
903 	/* step 15.  Give the reciever a swift kick */
904 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
905 
906 	/* Start the one second timer. */
907 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
908 
909 	ifp->if_flags |= IFF_RUNNING;
910 	ifp->if_flags &= ~IFF_OACTIVE;
911 	ifp->if_timer = 0;
912 	sc->sc_if_flags = ifp->if_flags;
913 	splx(s);
914 
915 	return (0);
916 }
917 
918 void
919 gem_init_regs(struct gem_softc *sc)
920 {
921 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
922 	bus_space_tag_t t = sc->sc_bustag;
923 	bus_space_handle_t h = sc->sc_h;
924 	const u_char *laddr = LLADDR(ifp->if_sadl);
925 	u_int32_t v;
926 
927 	/* These regs are not cleared on reset */
928 	if (!sc->sc_inited) {
929 
930 		/* Wooo.  Magic values. */
931 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
932 		bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
933 		bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
934 
935 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
936 		/* Max frame and max burst size */
937 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
938 		     ETHER_MAX_LEN | (0x2000<<16));
939 
940 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
941 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
942 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
943 		/* Dunno.... */
944 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
945 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
946 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
947 
948 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
949 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
950 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
951 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
952 
953 		/* MAC control addr set to 01:80:c2:00:00:01 */
954 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
955 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
956 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
957 
958 		/* MAC filter addr set to 0:0:0:0:0:0 */
959 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
960 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
961 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
962 
963 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
964 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
965 
966 		sc->sc_inited = 1;
967 	}
968 
969 	/* Counters need to be zeroed */
970 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
971 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
972 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
973 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
974 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
975 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
976 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
977 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
978 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
979 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
980 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
981 
982 	/* Un-pause stuff */
983 #if 0
984 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
985 #else
986 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
987 #endif
988 
989 	/*
990 	 * Set the station address.
991 	 */
992 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
993 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
994 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
995 
996 #if 0
997 	if (sc->sc_variant != APPLE_GMAC)
998 		return;
999 #endif
1000 
1001 	/*
1002 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
1003 	 */
1004 	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1005 	v = GEM_MAC_XIF_TX_MII_ENA;
1006 	if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1007 		v |= GEM_MAC_XIF_FDPLX_LED;
1008 		if (sc->sc_flags & GEM_GIGABIT)
1009 			v |= GEM_MAC_XIF_GMII_MODE;
1010 	}
1011 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1012 }
1013 
1014 static void
1015 gem_start(ifp)
1016 	struct ifnet *ifp;
1017 {
1018 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
1019 	struct mbuf *m0, *m;
1020 	struct gem_txsoft *txs, *last_txs;
1021 	bus_dmamap_t dmamap;
1022 	int error, firsttx, nexttx, lasttx = -1, ofree, seg;
1023 	uint64_t flags = 0;
1024 
1025 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1026 		return;
1027 
1028 	/*
1029 	 * Remember the previous number of free descriptors and
1030 	 * the first descriptor we'll use.
1031 	 */
1032 	ofree = sc->sc_txfree;
1033 	firsttx = sc->sc_txnext;
1034 
1035 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1036 	    sc->sc_dev.dv_xname, ofree, firsttx));
1037 
1038 	/*
1039 	 * Loop through the send queue, setting up transmit descriptors
1040 	 * until we drain the queue, or use up all available transmit
1041 	 * descriptors.
1042 	 */
1043 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1044 	       sc->sc_txfree != 0) {
1045 		/*
1046 		 * Grab a packet off the queue.
1047 		 */
1048 		IFQ_POLL(&ifp->if_snd, m0);
1049 		if (m0 == NULL)
1050 			break;
1051 		m = NULL;
1052 
1053 		dmamap = txs->txs_dmamap;
1054 
1055 		/*
1056 		 * Load the DMA map.  If this fails, the packet either
1057 		 * didn't fit in the alloted number of segments, or we were
1058 		 * short on resources.  In this case, we'll copy and try
1059 		 * again.
1060 		 */
1061 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1062 		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
1063 		      (m0->m_pkthdr.len < ETHER_MIN_TX &&
1064 		       dmamap->dm_nsegs == GEM_NTXSEGS)) {
1065 			if (m0->m_pkthdr.len > MCLBYTES) {
1066 				printf("%s: unable to allocate jumbo Tx "
1067 				    "cluster\n", sc->sc_dev.dv_xname);
1068 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1069 				m_freem(m0);
1070 				continue;
1071 			}
1072 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1073 			if (m == NULL) {
1074 				printf("%s: unable to allocate Tx mbuf\n",
1075 				    sc->sc_dev.dv_xname);
1076 				break;
1077 			}
1078 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1079 			if (m0->m_pkthdr.len > MHLEN) {
1080 				MCLGET(m, M_DONTWAIT);
1081 				if ((m->m_flags & M_EXT) == 0) {
1082 					printf("%s: unable to allocate Tx "
1083 					    "cluster\n", sc->sc_dev.dv_xname);
1084 					m_freem(m);
1085 					break;
1086 				}
1087 			}
1088 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1089 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1090 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1091 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1092 			if (error) {
1093 				printf("%s: unable to load Tx buffer, "
1094 				    "error = %d\n", sc->sc_dev.dv_xname, error);
1095 				break;
1096 			}
1097 		}
1098 
1099 		/*
1100 		 * Ensure we have enough descriptors free to describe
1101 		 * the packet.
1102 		 */
1103 		if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1104 		     (sc->sc_txfree - 1) : sc->sc_txfree)) {
1105 			/*
1106 			 * Not enough free descriptors to transmit this
1107 			 * packet.  We haven't committed to anything yet,
1108 			 * so just unload the DMA map, put the packet
1109 			 * back on the queue, and punt.  Notify the upper
1110 			 * layer that there are no more slots left.
1111 			 *
1112 			 * XXX We could allocate an mbuf and copy, but
1113 			 * XXX it is worth it?
1114 			 */
1115 			ifp->if_flags |= IFF_OACTIVE;
1116 			sc->sc_if_flags = ifp->if_flags;
1117 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
1118 			if (m != NULL)
1119 				m_freem(m);
1120 			break;
1121 		}
1122 
1123 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1124 		if (m != NULL) {
1125 			m_freem(m0);
1126 			m0 = m;
1127 		}
1128 
1129 		/*
1130 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1131 		 */
1132 
1133 		/* Sync the DMA map. */
1134 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1135 		    BUS_DMASYNC_PREWRITE);
1136 
1137 		/*
1138 		 * Initialize the transmit descriptors.
1139 		 */
1140 		for (nexttx = sc->sc_txnext, seg = 0;
1141 		     seg < dmamap->dm_nsegs;
1142 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
1143 
1144 			/*
1145 			 * If this is the first descriptor we're
1146 			 * enqueueing, set the start of packet flag,
1147 			 * and the checksum stuff if we want the hardware
1148 			 * to do it.
1149 			 */
1150 			sc->sc_txdescs[nexttx].gd_addr =
1151 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1152 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1153 			if (nexttx == firsttx) {
1154 				flags |= GEM_TD_START_OF_PACKET;
1155 				if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1156 					sc->sc_txwin = 0;
1157 					flags |= GEM_TD_INTERRUPT_ME;
1158 				}
1159 
1160 #ifdef INET
1161 				/* h/w checksum */
1162 				if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 |
1163 				    M_CSUM_UDPv4) && m0->m_pkthdr.csum_flags &
1164 				    (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1165 					struct ether_header *eh;
1166 					uint16_t offset, start;
1167 
1168 					eh = mtod(m0, struct ether_header *);
1169 					switch (ntohs(eh->ether_type)) {
1170 					case ETHERTYPE_IP:
1171 						start = ETHER_HDR_LEN;
1172 						break;
1173 					case ETHERTYPE_VLAN:
1174 						start = ETHER_HDR_LEN +
1175 							ETHER_VLAN_ENCAP_LEN;
1176 						break;
1177 					default:
1178 						/* unsupported, drop it */
1179 						m_free(m0);
1180 						continue;
1181 					}
1182 					start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1183 					offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1184 					flags |= (start <<
1185 						  GEM_TD_CXSUM_STARTSHFT) |
1186 						 (offset <<
1187 						  GEM_TD_CXSUM_STUFFSHFT) |
1188 						 GEM_TD_CXSUM_ENABLE;
1189 				}
1190 #endif
1191 			}
1192 			if (seg == dmamap->dm_nsegs - 1) {
1193 				flags |= GEM_TD_END_OF_PACKET;
1194 			} else {
1195 				/* last flag set outside of loop */
1196 				sc->sc_txdescs[nexttx].gd_flags =
1197 					GEM_DMA_WRITE(sc, flags);
1198 			}
1199 			lasttx = nexttx;
1200 		}
1201 		if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1202 			/* add padding buffer at end of chain */
1203 			flags &= ~GEM_TD_END_OF_PACKET;
1204 			sc->sc_txdescs[lasttx].gd_flags =
1205 			    GEM_DMA_WRITE(sc, flags);
1206 
1207 			sc->sc_txdescs[nexttx].gd_addr =
1208 			    GEM_DMA_WRITE(sc,
1209 			    sc->sc_nulldmamap->dm_segs[0].ds_addr);
1210 			flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1211 			    GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1212 			lasttx = nexttx;
1213 			nexttx = GEM_NEXTTX(nexttx);
1214 			seg++;
1215 		}
1216 		sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1217 
1218 		KASSERT(lasttx != -1);
1219 
1220 		/*
1221 		 * Store a pointer to the packet so we can free it later,
1222 		 * and remember what txdirty will be once the packet is
1223 		 * done.
1224 		 */
1225 		txs->txs_mbuf = m0;
1226 		txs->txs_firstdesc = sc->sc_txnext;
1227 		txs->txs_lastdesc = lasttx;
1228 		txs->txs_ndescs = seg;
1229 
1230 #ifdef GEM_DEBUG
1231 		if (ifp->if_flags & IFF_DEBUG) {
1232 			printf("     gem_start %p transmit chain:\n", txs);
1233 			for (seg = sc->sc_txnext;; seg = GEM_NEXTTX(seg)) {
1234 				printf("descriptor %d:\t", seg);
1235 				printf("gd_flags:   0x%016llx\t", (long long)
1236 					GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_flags));
1237 				printf("gd_addr: 0x%016llx\n", (long long)
1238 					GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_addr));
1239 				if (seg == lasttx)
1240 					break;
1241 			}
1242 		}
1243 #endif
1244 
1245 		/* Sync the descriptors we're using. */
1246 		GEM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1247 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1248 
1249 		/* Advance the tx pointer. */
1250 		sc->sc_txfree -= txs->txs_ndescs;
1251 		sc->sc_txnext = nexttx;
1252 
1253 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1254 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1255 
1256 		last_txs = txs;
1257 
1258 #if NBPFILTER > 0
1259 		/*
1260 		 * Pass the packet to any BPF listeners.
1261 		 */
1262 		if (ifp->if_bpf)
1263 			bpf_mtap(ifp->if_bpf, m0);
1264 #endif /* NBPFILTER > 0 */
1265 	}
1266 
1267 	if (txs == NULL || sc->sc_txfree == 0) {
1268 		/* No more slots left; notify upper layer. */
1269 		ifp->if_flags |= IFF_OACTIVE;
1270 		sc->sc_if_flags = ifp->if_flags;
1271 	}
1272 
1273 	if (sc->sc_txfree != ofree) {
1274 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1275 		    sc->sc_dev.dv_xname, lasttx, firsttx));
1276 		/*
1277 		 * The entire packet chain is set up.
1278 		 * Kick the transmitter.
1279 		 */
1280 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1281 			sc->sc_dev.dv_xname, nexttx));
1282 		bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK,
1283 			sc->sc_txnext);
1284 
1285 		/* Set a watchdog timer in case the chip flakes out. */
1286 		ifp->if_timer = 5;
1287 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1288 			sc->sc_dev.dv_xname, ifp->if_timer));
1289 	}
1290 }
1291 
1292 /*
1293  * Transmit interrupt.
1294  */
1295 int
1296 gem_tint(sc)
1297 	struct gem_softc *sc;
1298 {
1299 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1300 	bus_space_tag_t t = sc->sc_bustag;
1301 	bus_space_handle_t mac = sc->sc_h;
1302 	struct gem_txsoft *txs;
1303 	int txlast;
1304 	int progress = 0;
1305 
1306 
1307 	DPRINTF(sc, ("%s: gem_tint\n", sc->sc_dev.dv_xname));
1308 
1309 	/*
1310 	 * Unload collision counters
1311 	 */
1312 	ifp->if_collisions +=
1313 		bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1314 		bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
1315 		bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1316 		bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1317 
1318 	/*
1319 	 * then clear the hardware counters.
1320 	 */
1321 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1322 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1323 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1324 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1325 
1326 	/*
1327 	 * Go through our Tx list and free mbufs for those
1328 	 * frames that have been transmitted.
1329 	 */
1330 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1331 		GEM_CDTXSYNC(sc, txs->txs_lastdesc,
1332 		    txs->txs_ndescs,
1333 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1334 
1335 #ifdef GEM_DEBUG
1336 		if (ifp->if_flags & IFF_DEBUG) {
1337 			int i;
1338 			printf("    txsoft %p transmit chain:\n", txs);
1339 			for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
1340 				printf("descriptor %d: ", i);
1341 				printf("gd_flags: 0x%016llx\t", (long long)
1342 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1343 				printf("gd_addr: 0x%016llx\n", (long long)
1344 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1345 				if (i == txs->txs_lastdesc)
1346 					break;
1347 			}
1348 		}
1349 #endif
1350 
1351 		/*
1352 		 * In theory, we could harveast some descriptors before
1353 		 * the ring is empty, but that's a bit complicated.
1354 		 *
1355 		 * GEM_TX_COMPLETION points to the last descriptor
1356 		 * processed +1.
1357 		 */
1358 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1359 		DPRINTF(sc,
1360 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1361 				txs->txs_lastdesc, txlast));
1362 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1363 			if ((txlast >= txs->txs_firstdesc) &&
1364 				(txlast <= txs->txs_lastdesc))
1365 				break;
1366 		} else {
1367 			/* Ick -- this command wraps */
1368 			if ((txlast >= txs->txs_firstdesc) ||
1369 				(txlast <= txs->txs_lastdesc))
1370 				break;
1371 		}
1372 
1373 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1374 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1375 
1376 		sc->sc_txfree += txs->txs_ndescs;
1377 
1378 		if (txs->txs_mbuf == NULL) {
1379 #ifdef DIAGNOSTIC
1380 				panic("gem_txintr: null mbuf");
1381 #endif
1382 		}
1383 
1384 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1385 		    0, txs->txs_dmamap->dm_mapsize,
1386 		    BUS_DMASYNC_POSTWRITE);
1387 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1388 		m_freem(txs->txs_mbuf);
1389 		txs->txs_mbuf = NULL;
1390 
1391 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1392 
1393 		ifp->if_opackets++;
1394 		progress = 1;
1395 	}
1396 
1397 #if 0
1398 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1399 		"GEM_TX_DATA_PTR %llx "
1400 		"GEM_TX_COMPLETION %x\n",
1401 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
1402 		((long long) bus_space_read_4(sc->sc_bustag, sc->sc_h,
1403 			GEM_TX_DATA_PTR_HI) << 32) |
1404 			     bus_space_read_4(sc->sc_bustag, sc->sc_h,
1405 			GEM_TX_DATA_PTR_LO),
1406 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION)));
1407 #endif
1408 
1409 	if (progress) {
1410 		if (sc->sc_txfree == GEM_NTXDESC - 1)
1411 			sc->sc_txwin = 0;
1412 
1413 		ifp->if_flags &= ~IFF_OACTIVE;
1414 		sc->sc_if_flags = ifp->if_flags;
1415 		gem_start(ifp);
1416 
1417 		if (SIMPLEQ_EMPTY(&sc->sc_txdirtyq))
1418 			ifp->if_timer = 0;
1419 	}
1420 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1421 		sc->sc_dev.dv_xname, ifp->if_timer));
1422 
1423 	return (1);
1424 }
1425 
1426 /*
1427  * Receive interrupt.
1428  */
1429 int
1430 gem_rint(sc)
1431 	struct gem_softc *sc;
1432 {
1433 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1434 	bus_space_tag_t t = sc->sc_bustag;
1435 	bus_space_handle_t h = sc->sc_h;
1436 	struct gem_rxsoft *rxs;
1437 	struct mbuf *m;
1438 	u_int64_t rxstat;
1439 	u_int32_t rxcomp;
1440 	int i, len, progress = 0;
1441 
1442 	DPRINTF(sc, ("%s: gem_rint\n", sc->sc_dev.dv_xname));
1443 
1444 	/*
1445 	 * Read the completion register once.  This limits
1446 	 * how long the following loop can execute.
1447 	 */
1448 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1449 
1450 	/*
1451 	 * XXXX Read the lastrx only once at the top for speed.
1452 	 */
1453 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1454 		sc->sc_rxptr, rxcomp));
1455 
1456 	/*
1457 	 * Go into the loop at least once.
1458 	 */
1459 	for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1460 	     i = GEM_NEXTRX(i)) {
1461 		rxs = &sc->sc_rxsoft[i];
1462 
1463 		GEM_CDRXSYNC(sc, i,
1464 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1465 
1466 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1467 
1468 		if (rxstat & GEM_RD_OWN) {
1469 			/*
1470 			 * We have processed all of the receive buffers.
1471 			 */
1472 			break;
1473 		}
1474 
1475 		progress++;
1476 		ifp->if_ipackets++;
1477 
1478 		if (rxstat & GEM_RD_BAD_CRC) {
1479 			ifp->if_ierrors++;
1480 			printf("%s: receive error: CRC error\n",
1481 				sc->sc_dev.dv_xname);
1482 			GEM_INIT_RXDESC(sc, i);
1483 			continue;
1484 		}
1485 
1486 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1487 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1488 #ifdef GEM_DEBUG
1489 		if (ifp->if_flags & IFF_DEBUG) {
1490 			printf("    rxsoft %p descriptor %d: ", rxs, i);
1491 			printf("gd_flags: 0x%016llx\t", (long long)
1492 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1493 			printf("gd_addr: 0x%016llx\n", (long long)
1494 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1495 		}
1496 #endif
1497 
1498 		/* No errors; receive the packet. */
1499 		len = GEM_RD_BUFLEN(rxstat);
1500 
1501 		/*
1502 		 * Allocate a new mbuf cluster.  If that fails, we are
1503 		 * out of memory, and must drop the packet and recycle
1504 		 * the buffer that's already attached to this descriptor.
1505 		 */
1506 		m = rxs->rxs_mbuf;
1507 		if (gem_add_rxbuf(sc, i) != 0) {
1508 			GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1509 			ifp->if_ierrors++;
1510 			GEM_INIT_RXDESC(sc, i);
1511 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1512 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1513 			continue;
1514 		}
1515 		m->m_data += 2; /* We're already off by two */
1516 
1517 		m->m_pkthdr.rcvif = ifp;
1518 		m->m_pkthdr.len = m->m_len = len;
1519 
1520 #if NBPFILTER > 0
1521 		/*
1522 		 * Pass this up to any BPF listeners, but only
1523 		 * pass it up the stack if its for us.
1524 		 */
1525 		if (ifp->if_bpf)
1526 			bpf_mtap(ifp->if_bpf, m);
1527 #endif /* NPBFILTER > 0 */
1528 
1529 #ifdef INET
1530 		/* hardware checksum */
1531 		if (ifp->if_csum_flags_rx & (M_CSUM_UDPv4 | M_CSUM_TCPv4)) {
1532 			struct ether_header *eh;
1533 			struct ip *ip;
1534 			struct udphdr *uh;
1535 			int32_t hlen, pktlen;
1536 
1537 			if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1538 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1539 					 ETHER_VLAN_ENCAP_LEN;
1540 				eh = (struct ether_header *) mtod(m, caddr_t) +
1541 					ETHER_VLAN_ENCAP_LEN;
1542 			} else {
1543 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1544 				eh = mtod(m, struct ether_header *);
1545 			}
1546 			if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1547 				goto swcsum;
1548 			ip = (struct ip *) ((caddr_t)eh + ETHER_HDR_LEN);
1549 
1550 			/* IPv4 only */
1551 			if (ip->ip_v != IPVERSION)
1552 				goto swcsum;
1553 
1554 			hlen = ip->ip_hl << 2;
1555 			if (hlen < sizeof(struct ip))
1556 				goto swcsum;
1557 
1558 			/*
1559 			 * bail if too short, has random trailing garbage,
1560 			 * truncated, fragment, or has ethernet pad.
1561 			 */
1562 			if ((ntohs(ip->ip_len) < hlen) ||
1563 			    (ntohs(ip->ip_len) != pktlen) ||
1564 			    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1565 				goto swcsum;
1566 
1567 			switch (ip->ip_p) {
1568 			case IPPROTO_TCP:
1569 				if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1570 					goto swcsum;
1571 				if (pktlen < (hlen + sizeof(struct tcphdr)))
1572 					goto swcsum;
1573 				m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1574 				break;
1575 			case IPPROTO_UDP:
1576 				if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
1577 					goto swcsum;
1578 				if (pktlen < (hlen + sizeof(struct udphdr)))
1579 					goto swcsum;
1580 				uh = (struct udphdr *)((caddr_t)ip + hlen);
1581 				/* no checksum */
1582 				if (uh->uh_sum == 0)
1583 					goto swcsum;
1584 				m->m_pkthdr.csum_flags = M_CSUM_UDPv4;
1585 				break;
1586 			default:
1587 				goto swcsum;
1588 			}
1589 
1590 			/* the uncomplemented sum is expected */
1591 			m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1592 
1593 			/* if the pkt had ip options, we have to deduct them */
1594 			if (hlen > sizeof(struct ip)) {
1595 				uint16_t *opts;
1596 				uint32_t optsum, temp;
1597 
1598 				optsum = 0;
1599 				temp = hlen - sizeof(struct ip);
1600 				opts = (uint16_t *) ((caddr_t) ip +
1601 					sizeof(struct ip));
1602 
1603 				while (temp > 1) {
1604 					optsum += ntohs(*opts++);
1605 					temp -= 2;
1606 				}
1607 				while (optsum >> 16)
1608 					optsum = (optsum >> 16) +
1609 						 (optsum & 0xffff);
1610 
1611 				/* Deduct ip opts sum from hwsum (rfc 1624). */
1612 				m->m_pkthdr.csum_data =
1613 					~((~m->m_pkthdr.csum_data) - ~optsum);
1614 
1615 				while (m->m_pkthdr.csum_data >> 16)
1616 					m->m_pkthdr.csum_data =
1617 						(m->m_pkthdr.csum_data >> 16) +
1618 						(m->m_pkthdr.csum_data &
1619 						 0xffff);
1620 			}
1621 
1622 			m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1623 						  M_CSUM_NO_PSEUDOHDR;
1624 		} else
1625 swcsum:
1626 			m->m_pkthdr.csum_flags = 0;
1627 #endif
1628 		/* Pass it on. */
1629 		(*ifp->if_input)(ifp, m);
1630 	}
1631 
1632 	if (progress) {
1633 		/* Update the receive pointer. */
1634 		if (i == sc->sc_rxptr) {
1635 			GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1636 #ifdef GEM_DEBUG
1637 			if (ifp->if_flags & IFF_DEBUG)
1638 				printf("%s: rint: ring wrap\n",
1639 				    sc->sc_dev.dv_xname);
1640 #endif
1641 		}
1642 		sc->sc_rxptr = i;
1643 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1644 	}
1645 #ifdef GEM_COUNTERS
1646 	if (progress <= 4) {
1647 		GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1648 	} else if (progress < 32) {
1649 		if (progress < 16)
1650 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1651 		else
1652 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1653 
1654 	} else {
1655 		if (progress < 64)
1656 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1657 		else
1658 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1659 	}
1660 #endif
1661 
1662 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1663 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1664 
1665 	return (1);
1666 }
1667 
1668 
1669 /*
1670  * gem_add_rxbuf:
1671  *
1672  *	Add a receive buffer to the indicated descriptor.
1673  */
1674 int
1675 gem_add_rxbuf(struct gem_softc *sc, int idx)
1676 {
1677 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1678 	struct mbuf *m;
1679 	int error;
1680 
1681 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1682 	if (m == NULL)
1683 		return (ENOBUFS);
1684 
1685 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1686 	MCLGET(m, M_DONTWAIT);
1687 	if ((m->m_flags & M_EXT) == 0) {
1688 		m_freem(m);
1689 		return (ENOBUFS);
1690 	}
1691 
1692 #ifdef GEM_DEBUG
1693 /* bzero the packet to check DMA */
1694 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
1695 #endif
1696 
1697 	if (rxs->rxs_mbuf != NULL)
1698 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
1699 
1700 	rxs->rxs_mbuf = m;
1701 
1702 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
1703 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1704 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1705 	if (error) {
1706 		printf("%s: can't load rx DMA map %d, error = %d\n",
1707 		    sc->sc_dev.dv_xname, idx, error);
1708 		panic("gem_add_rxbuf");	/* XXX */
1709 	}
1710 
1711 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1712 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1713 
1714 	GEM_INIT_RXDESC(sc, idx);
1715 
1716 	return (0);
1717 }
1718 
1719 
1720 int
1721 gem_eint(sc, status)
1722 	struct gem_softc *sc;
1723 	u_int status;
1724 {
1725 	char bits[128];
1726 
1727 	if ((status & GEM_INTR_MIF) != 0) {
1728 		printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
1729 		return (1);
1730 	}
1731 
1732 	printf("%s: status=%s\n", sc->sc_dev.dv_xname,
1733 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
1734 	return (1);
1735 }
1736 
1737 
1738 int
1739 gem_intr(v)
1740 	void *v;
1741 {
1742 	struct gem_softc *sc = (struct gem_softc *)v;
1743 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1744 	bus_space_tag_t t = sc->sc_bustag;
1745 	bus_space_handle_t seb = sc->sc_h;
1746 	u_int32_t status;
1747 	int r = 0;
1748 #ifdef GEM_DEBUG
1749 	char bits[128];
1750 #endif
1751 
1752 	sc->sc_ev_intr.ev_count++;
1753 
1754 	status = bus_space_read_4(t, seb, GEM_STATUS);
1755 	DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
1756 		sc->sc_dev.dv_xname, (status >> 19),
1757 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
1758 
1759 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
1760 		r |= gem_eint(sc, status);
1761 
1762 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
1763 		GEM_COUNTER_INCR(sc, sc_ev_txint);
1764 		r |= gem_tint(sc);
1765 	}
1766 
1767 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
1768 		GEM_COUNTER_INCR(sc, sc_ev_rxint);
1769 		r |= gem_rint(sc);
1770 	}
1771 
1772 	/* We should eventually do more than just print out error stats. */
1773 	if (status & GEM_INTR_TX_MAC) {
1774 		int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
1775 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
1776 			printf("%s: MAC tx fault, status %x\n",
1777 			    sc->sc_dev.dv_xname, txstat);
1778 		if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
1779 			gem_init(ifp);
1780 	}
1781 	if (status & GEM_INTR_RX_MAC) {
1782 		int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
1783 		if (rxstat & ~GEM_MAC_RX_DONE)
1784 			printf("%s: MAC rx fault, status %x\n",
1785 			    sc->sc_dev.dv_xname, rxstat);
1786 		/*
1787 		 * On some chip revisions GEM_MAC_RX_OVERFLOW happen often
1788 		 * due to a silicon bug so handle them silently.
1789 		 */
1790 		if (rxstat & GEM_MAC_RX_OVERFLOW)
1791 			gem_init(ifp);
1792 		else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
1793 			printf("%s: MAC rx fault, status %x\n",
1794 			    sc->sc_dev.dv_xname, rxstat);
1795 	}
1796 #if NRND > 0
1797 	rnd_add_uint32(&sc->rnd_source, status);
1798 #endif
1799 	return (r);
1800 }
1801 
1802 
1803 void
1804 gem_watchdog(ifp)
1805 	struct ifnet *ifp;
1806 {
1807 	struct gem_softc *sc = ifp->if_softc;
1808 
1809 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
1810 		"GEM_MAC_RX_CONFIG %x\n",
1811 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
1812 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
1813 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG)));
1814 
1815 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1816 	++ifp->if_oerrors;
1817 
1818 	/* Try to get more packets going. */
1819 	gem_start(ifp);
1820 }
1821 
1822 /*
1823  * Initialize the MII Management Interface
1824  */
1825 void
1826 gem_mifinit(sc)
1827 	struct gem_softc *sc;
1828 {
1829 	bus_space_tag_t t = sc->sc_bustag;
1830 	bus_space_handle_t mif = sc->sc_h;
1831 
1832 	/* Configure the MIF in frame mode */
1833 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1834 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
1835 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
1836 }
1837 
1838 /*
1839  * MII interface
1840  *
1841  * The GEM MII interface supports at least three different operating modes:
1842  *
1843  * Bitbang mode is implemented using data, clock and output enable registers.
1844  *
1845  * Frame mode is implemented by loading a complete frame into the frame
1846  * register and polling the valid bit for completion.
1847  *
1848  * Polling mode uses the frame register but completion is indicated by
1849  * an interrupt.
1850  *
1851  */
1852 static int
1853 gem_mii_readreg(self, phy, reg)
1854 	struct device *self;
1855 	int phy, reg;
1856 {
1857 	struct gem_softc *sc = (void *)self;
1858 	bus_space_tag_t t = sc->sc_bustag;
1859 	bus_space_handle_t mif = sc->sc_h;
1860 	int n;
1861 	u_int32_t v;
1862 
1863 #ifdef GEM_DEBUG1
1864 	if (sc->sc_debug)
1865 		printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
1866 #endif
1867 
1868 #if 0
1869 	/* Select the desired PHY in the MIF configuration register */
1870 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1871 	/* Clear PHY select bit */
1872 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
1873 	if (phy == GEM_PHYAD_EXTERNAL)
1874 		/* Set PHY select bit to get at external device */
1875 		v |= GEM_MIF_CONFIG_PHY_SEL;
1876 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1877 #endif
1878 
1879 	/* Construct the frame command */
1880 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
1881 		GEM_MIF_FRAME_READ;
1882 
1883 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1884 	for (n = 0; n < 100; n++) {
1885 		DELAY(1);
1886 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1887 		if (v & GEM_MIF_FRAME_TA0)
1888 			return (v & GEM_MIF_FRAME_DATA);
1889 	}
1890 
1891 	printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1892 	return (0);
1893 }
1894 
1895 static void
1896 gem_mii_writereg(self, phy, reg, val)
1897 	struct device *self;
1898 	int phy, reg, val;
1899 {
1900 	struct gem_softc *sc = (void *)self;
1901 	bus_space_tag_t t = sc->sc_bustag;
1902 	bus_space_handle_t mif = sc->sc_h;
1903 	int n;
1904 	u_int32_t v;
1905 
1906 #ifdef GEM_DEBUG1
1907 	if (sc->sc_debug)
1908 		printf("gem_mii_writereg: phy %d reg %d val %x\n",
1909 			phy, reg, val);
1910 #endif
1911 
1912 #if 0
1913 	/* Select the desired PHY in the MIF configuration register */
1914 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1915 	/* Clear PHY select bit */
1916 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
1917 	if (phy == GEM_PHYAD_EXTERNAL)
1918 		/* Set PHY select bit to get at external device */
1919 		v |= GEM_MIF_CONFIG_PHY_SEL;
1920 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1921 #endif
1922 	/* Construct the frame command */
1923 	v = GEM_MIF_FRAME_WRITE			|
1924 	    (phy << GEM_MIF_PHY_SHIFT)		|
1925 	    (reg << GEM_MIF_REG_SHIFT)		|
1926 	    (val & GEM_MIF_FRAME_DATA);
1927 
1928 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1929 	for (n = 0; n < 100; n++) {
1930 		DELAY(1);
1931 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1932 		if (v & GEM_MIF_FRAME_TA0)
1933 			return;
1934 	}
1935 
1936 	printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1937 }
1938 
1939 static void
1940 gem_mii_statchg(dev)
1941 	struct device *dev;
1942 {
1943 	struct gem_softc *sc = (void *)dev;
1944 #ifdef GEM_DEBUG
1945 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1946 #endif
1947 	bus_space_tag_t t = sc->sc_bustag;
1948 	bus_space_handle_t mac = sc->sc_h;
1949 	u_int32_t v;
1950 
1951 #ifdef GEM_DEBUG
1952 	if (sc->sc_debug)
1953 		printf("gem_mii_statchg: status change: phy = %d\n",
1954 			sc->sc_phys[instance]);
1955 #endif
1956 
1957 
1958 	/* Set tx full duplex options */
1959 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
1960 	delay(10000); /* reg must be cleared and delay before changing. */
1961 	v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
1962 		GEM_MAC_TX_ENABLE;
1963 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1964 		v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
1965 	}
1966 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
1967 
1968 	/* XIF Configuration */
1969  /* We should really calculate all this rather than rely on defaults */
1970 	v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
1971 	v = GEM_MAC_XIF_LINK_LED;
1972 	v |= GEM_MAC_XIF_TX_MII_ENA;
1973 
1974 	/* If an external transceiver is connected, enable its MII drivers */
1975 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
1976 	if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
1977 		/* External MII needs echo disable if half duplex. */
1978 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1979 			/* turn on full duplex LED */
1980 			v |= GEM_MAC_XIF_FDPLX_LED;
1981 		else
1982 	 		/* half duplex -- disable echo */
1983 		 	v |= GEM_MAC_XIF_ECHO_DISABL;
1984 
1985 		if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
1986 			v |= GEM_MAC_XIF_GMII_MODE;
1987 		else
1988 			v &= ~GEM_MAC_XIF_GMII_MODE;
1989 	} else
1990 		/* Internal MII needs buf enable */
1991 		v |= GEM_MAC_XIF_MII_BUF_ENA;
1992 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
1993 }
1994 
1995 int
1996 gem_mediachange(ifp)
1997 	struct ifnet *ifp;
1998 {
1999 	struct gem_softc *sc = ifp->if_softc;
2000 
2001 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
2002 		return (EINVAL);
2003 
2004 	return (mii_mediachg(&sc->sc_mii));
2005 }
2006 
2007 void
2008 gem_mediastatus(ifp, ifmr)
2009 	struct ifnet *ifp;
2010 	struct ifmediareq *ifmr;
2011 {
2012 	struct gem_softc *sc = ifp->if_softc;
2013 
2014 	if ((ifp->if_flags & IFF_UP) == 0)
2015 		return;
2016 
2017 	mii_pollstat(&sc->sc_mii);
2018 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
2019 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
2020 }
2021 
2022 /*
2023  * Process an ioctl request.
2024  */
2025 int
2026 gem_ioctl(ifp, cmd, data)
2027 	struct ifnet *ifp;
2028 	u_long cmd;
2029 	caddr_t data;
2030 {
2031 	struct gem_softc *sc = ifp->if_softc;
2032 	struct ifreq *ifr = (struct ifreq *)data;
2033 	int s, error = 0;
2034 
2035 	s = splnet();
2036 
2037 	switch (cmd) {
2038 	case SIOCGIFMEDIA:
2039 	case SIOCSIFMEDIA:
2040 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
2041 		break;
2042 	case SIOCSIFFLAGS:
2043 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
2044 		if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
2045 		    == (IFF_UP|IFF_RUNNING))
2046 		    && ((ifp->if_flags & (~RESETIGN))
2047 		    == (sc->sc_if_flags & (~RESETIGN)))) {
2048 			gem_setladrf(sc);
2049 			break;
2050 		}
2051 #undef RESETIGN
2052 		/*FALLTHROUGH*/
2053 	default:
2054 		error = ether_ioctl(ifp, cmd, data);
2055 		if (error == ENETRESET) {
2056 			/*
2057 			 * Multicast list has changed; set the hardware filter
2058 			 * accordingly.
2059 			 */
2060 			if (ifp->if_flags & IFF_RUNNING)
2061 				gem_setladrf(sc);
2062 			error = 0;
2063 		}
2064 		break;
2065 	}
2066 
2067 	/* Try to get things going again */
2068 	if (ifp->if_flags & IFF_UP)
2069 		gem_start(ifp);
2070 	splx(s);
2071 	return (error);
2072 }
2073 
2074 
2075 void
2076 gem_shutdown(arg)
2077 	void *arg;
2078 {
2079 	struct gem_softc *sc = (struct gem_softc *)arg;
2080 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2081 
2082 	gem_stop(ifp, 1);
2083 }
2084 
2085 /*
2086  * Set up the logical address filter.
2087  */
2088 void
2089 gem_setladrf(sc)
2090 	struct gem_softc *sc;
2091 {
2092 	struct ethercom *ec = &sc->sc_ethercom;
2093 	struct ifnet *ifp = &ec->ec_if;
2094 	struct ether_multi *enm;
2095 	struct ether_multistep step;
2096 	bus_space_tag_t t = sc->sc_bustag;
2097 	bus_space_handle_t h = sc->sc_h;
2098 	u_int32_t crc;
2099 	u_int32_t hash[16];
2100 	u_int32_t v;
2101 	int i;
2102 
2103 	/* Get current RX configuration */
2104 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2105 
2106 	/*
2107 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2108 	 * and hash filter.  Depending on the case, the right bit will be
2109 	 * enabled.
2110 	 */
2111 	v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
2112 	    GEM_MAC_RX_PROMISC_GRP);
2113 
2114 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
2115 		/* Turn on promiscuous mode */
2116 		v |= GEM_MAC_RX_PROMISCUOUS;
2117 		ifp->if_flags |= IFF_ALLMULTI;
2118 		goto chipit;
2119 	}
2120 
2121 	/*
2122 	 * Set up multicast address filter by passing all multicast addresses
2123 	 * through a crc generator, and then using the high order 8 bits as an
2124 	 * index into the 256 bit logical address filter.  The high order 4
2125 	 * bits selects the word, while the other 4 bits select the bit within
2126 	 * the word (where bit 0 is the MSB).
2127 	 */
2128 
2129 	/* Clear hash table */
2130 	memset(hash, 0, sizeof(hash));
2131 
2132 	ETHER_FIRST_MULTI(step, ec, enm);
2133 	while (enm != NULL) {
2134 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2135 			/*
2136 			 * We must listen to a range of multicast addresses.
2137 			 * For now, just accept all multicasts, rather than
2138 			 * trying to set only those filter bits needed to match
2139 			 * the range.  (At this time, the only use of address
2140 			 * ranges is for IP multicast routing, for which the
2141 			 * range is big enough to require all bits set.)
2142 			 * XXX use the addr filter for this
2143 			 */
2144 			ifp->if_flags |= IFF_ALLMULTI;
2145 			v |= GEM_MAC_RX_PROMISC_GRP;
2146 			goto chipit;
2147 		}
2148 
2149 		/* Get the LE CRC32 of the address */
2150 		crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2151 
2152 		/* Just want the 8 most significant bits. */
2153 		crc >>= 24;
2154 
2155 		/* Set the corresponding bit in the filter. */
2156 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
2157 
2158 		ETHER_NEXT_MULTI(step, enm);
2159 	}
2160 
2161 	v |= GEM_MAC_RX_HASH_FILTER;
2162 	ifp->if_flags &= ~IFF_ALLMULTI;
2163 
2164 	/* Now load the hash table into the chip (if we are using it) */
2165 	for (i = 0; i < 16; i++) {
2166 		bus_space_write_4(t, h,
2167 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2168 		    hash[i]);
2169 	}
2170 
2171 chipit:
2172 	sc->sc_if_flags = ifp->if_flags;
2173 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2174 }
2175 
2176 #if notyet
2177 
2178 /*
2179  * gem_power:
2180  *
2181  *	Power management (suspend/resume) hook.
2182  */
2183 void
2184 gem_power(why, arg)
2185 	int why;
2186 	void *arg;
2187 {
2188 	struct gem_softc *sc = arg;
2189 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2190 	int s;
2191 
2192 	s = splnet();
2193 	switch (why) {
2194 	case PWR_SUSPEND:
2195 	case PWR_STANDBY:
2196 		gem_stop(ifp, 1);
2197 		if (sc->sc_power != NULL)
2198 			(*sc->sc_power)(sc, why);
2199 		break;
2200 	case PWR_RESUME:
2201 		if (ifp->if_flags & IFF_UP) {
2202 			if (sc->sc_power != NULL)
2203 				(*sc->sc_power)(sc, why);
2204 			gem_init(ifp);
2205 		}
2206 		break;
2207 	case PWR_SOFTSUSPEND:
2208 	case PWR_SOFTSTANDBY:
2209 	case PWR_SOFTRESUME:
2210 		break;
2211 	}
2212 	splx(s);
2213 }
2214 #endif
2215