xref: /netbsd-src/sys/dev/ic/gem.c (revision c2f76ff004a2cb67efe5b12d97bd3ef7fe89e18d)
1 /*	$NetBSD: gem.c,v 1.96 2010/11/13 13:52:01 uebayasi Exp $ */
2 
3 /*
4  *
5  * Copyright (C) 2001 Eduardo Horvath.
6  * Copyright (c) 2001-2003 Thomas Moestl
7  * All rights reserved.
8  *
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  */
32 
33 /*
34  * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
35  * See `GEM Gigabit Ethernet ASIC Specification'
36  *   http://www.sun.com/processors/manuals/ge.pdf
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.96 2010/11/13 13:52:01 uebayasi Exp $");
41 
42 #include "opt_inet.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/callout.h>
47 #include <sys/mbuf.h>
48 #include <sys/syslog.h>
49 #include <sys/malloc.h>
50 #include <sys/kernel.h>
51 #include <sys/socket.h>
52 #include <sys/ioctl.h>
53 #include <sys/errno.h>
54 #include <sys/device.h>
55 
56 #include <machine/endian.h>
57 
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_ether.h>
62 
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/tcp.h>
69 #include <netinet/udp.h>
70 #endif
71 
72 #include <net/bpf.h>
73 
74 #include <sys/bus.h>
75 #include <sys/intr.h>
76 
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79 #include <dev/mii/mii_bitbang.h>
80 
81 #include <dev/ic/gemreg.h>
82 #include <dev/ic/gemvar.h>
83 
84 #define TRIES	10000
85 
86 static void	gem_inten(struct gem_softc *);
87 static void	gem_start(struct ifnet *);
88 static void	gem_stop(struct ifnet *, int);
89 int		gem_ioctl(struct ifnet *, u_long, void *);
90 void		gem_tick(void *);
91 void		gem_watchdog(struct ifnet *);
92 void		gem_pcs_start(struct gem_softc *sc);
93 void		gem_pcs_stop(struct gem_softc *sc, int);
94 int		gem_init(struct ifnet *);
95 void		gem_init_regs(struct gem_softc *sc);
96 static int	gem_ringsize(int sz);
97 static int	gem_meminit(struct gem_softc *);
98 void		gem_mifinit(struct gem_softc *);
99 static int	gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
100 		    u_int32_t, u_int32_t);
101 void		gem_reset(struct gem_softc *);
102 int		gem_reset_rx(struct gem_softc *sc);
103 static void	gem_reset_rxdma(struct gem_softc *sc);
104 static void	gem_rx_common(struct gem_softc *sc);
105 int		gem_reset_tx(struct gem_softc *sc);
106 int		gem_disable_rx(struct gem_softc *sc);
107 int		gem_disable_tx(struct gem_softc *sc);
108 static void	gem_rxdrain(struct gem_softc *sc);
109 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
110 void		gem_setladrf(struct gem_softc *);
111 
112 /* MII methods & callbacks */
113 static int	gem_mii_readreg(device_t, int, int);
114 static void	gem_mii_writereg(device_t, int, int, int);
115 static void	gem_mii_statchg(device_t);
116 
117 static int	gem_ifflags_cb(struct ethercom *);
118 
119 void		gem_statuschange(struct gem_softc *);
120 
121 int		gem_ser_mediachange(struct ifnet *);
122 void		gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
123 
124 static void	gem_partial_detach(struct gem_softc *, enum gem_attach_stage);
125 
126 struct mbuf	*gem_get(struct gem_softc *, int, int);
127 int		gem_put(struct gem_softc *, int, struct mbuf *);
128 void		gem_read(struct gem_softc *, int, int);
129 int		gem_pint(struct gem_softc *);
130 int		gem_eint(struct gem_softc *, u_int);
131 int		gem_rint(struct gem_softc *);
132 int		gem_tint(struct gem_softc *);
133 void		gem_power(int, void *);
134 
135 #ifdef GEM_DEBUG
136 static void gem_txsoft_print(const struct gem_softc *, int, int);
137 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
138 				printf x
139 #else
140 #define	DPRINTF(sc, x)	/* nothing */
141 #endif
142 
143 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
144 
145 int
146 gem_detach(struct gem_softc *sc, int flags)
147 {
148 	int i;
149 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
150 	bus_space_tag_t t = sc->sc_bustag;
151 	bus_space_handle_t h = sc->sc_h1;
152 
153 	/*
154 	 * Free any resources we've allocated during the attach.
155 	 * Do this in reverse order and fall through.
156 	 */
157 	switch (sc->sc_att_stage) {
158 	case GEM_ATT_BACKEND_2:
159 	case GEM_ATT_BACKEND_1:
160 	case GEM_ATT_FINISHED:
161 		bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
162 		gem_stop(&sc->sc_ethercom.ec_if, 1);
163 
164 #ifdef GEM_COUNTERS
165 		for (i = __arraycount(sc->sc_ev_rxhist); --i >= 0; )
166 			evcnt_detach(&sc->sc_ev_rxhist[i]);
167 		evcnt_detach(&sc->sc_ev_rxnobuf);
168 		evcnt_detach(&sc->sc_ev_rxfull);
169 		evcnt_detach(&sc->sc_ev_rxint);
170 		evcnt_detach(&sc->sc_ev_txint);
171 #endif
172 		evcnt_detach(&sc->sc_ev_intr);
173 
174 #if NRND > 0
175 		rnd_detach_source(&sc->rnd_source);
176 #endif
177 		ether_ifdetach(ifp);
178 		if_detach(ifp);
179 		ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
180 
181 		callout_destroy(&sc->sc_tick_ch);
182 
183 		/*FALLTHROUGH*/
184 	case GEM_ATT_MII:
185 		sc->sc_att_stage = GEM_ATT_MII;
186 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
187 		/*FALLTHROUGH*/
188 	case GEM_ATT_7:
189 		for (i = 0; i < GEM_NRXDESC; i++) {
190 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
191 				bus_dmamap_destroy(sc->sc_dmatag,
192 				    sc->sc_rxsoft[i].rxs_dmamap);
193 		}
194 		/*FALLTHROUGH*/
195 	case GEM_ATT_6:
196 		for (i = 0; i < GEM_TXQUEUELEN; i++) {
197 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
198 				bus_dmamap_destroy(sc->sc_dmatag,
199 				    sc->sc_txsoft[i].txs_dmamap);
200 		}
201 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
202 		/*FALLTHROUGH*/
203 	case GEM_ATT_5:
204 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_nulldmamap);
205 		/*FALLTHROUGH*/
206 	case GEM_ATT_4:
207 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
208 		/*FALLTHROUGH*/
209 	case GEM_ATT_3:
210 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
211 		/*FALLTHROUGH*/
212 	case GEM_ATT_2:
213 		bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
214 		    sizeof(struct gem_control_data));
215 		/*FALLTHROUGH*/
216 	case GEM_ATT_1:
217 		bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
218 		/*FALLTHROUGH*/
219 	case GEM_ATT_0:
220 		sc->sc_att_stage = GEM_ATT_0;
221 		/*FALLTHROUGH*/
222 	case GEM_ATT_BACKEND_0:
223 		break;
224 	}
225 	return 0;
226 }
227 
228 static void
229 gem_partial_detach(struct gem_softc *sc, enum gem_attach_stage stage)
230 {
231 	cfattach_t ca = device_cfattach(sc->sc_dev);
232 
233 	sc->sc_att_stage = stage;
234 	(*ca->ca_detach)(sc->sc_dev, 0);
235 }
236 
237 /*
238  * gem_attach:
239  *
240  *	Attach a Gem interface to the system.
241  */
242 void
243 gem_attach(struct gem_softc *sc, const uint8_t *enaddr)
244 {
245 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
246 	struct mii_data *mii = &sc->sc_mii;
247 	bus_space_tag_t t = sc->sc_bustag;
248 	bus_space_handle_t h = sc->sc_h1;
249 	struct ifmedia_entry *ifm;
250 	int i, error, phyaddr;
251 	u_int32_t v;
252 	char *nullbuf;
253 
254 	/* Make sure the chip is stopped. */
255 	ifp->if_softc = sc;
256 	gem_reset(sc);
257 
258 	/*
259 	 * Allocate the control data structures, and create and load the
260 	 * DMA map for it. gem_control_data is 9216 bytes, we have space for
261 	 * the padding buffer in the bus_dmamem_alloc()'d memory.
262 	 */
263 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
264 	    sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
265 	    0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
266 		aprint_error_dev(sc->sc_dev,
267 		   "unable to allocate control data, error = %d\n",
268 		    error);
269 		gem_partial_detach(sc, GEM_ATT_0);
270 		return;
271 	}
272 
273 	/* XXX should map this in with correct endianness */
274 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
275 	    sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
276 	    BUS_DMA_COHERENT)) != 0) {
277 		aprint_error_dev(sc->sc_dev,
278 		    "unable to map control data, error = %d\n", error);
279 		gem_partial_detach(sc, GEM_ATT_1);
280 		return;
281 	}
282 
283 	nullbuf =
284 	    (char *)sc->sc_control_data + sizeof(struct gem_control_data);
285 
286 	if ((error = bus_dmamap_create(sc->sc_dmatag,
287 	    sizeof(struct gem_control_data), 1,
288 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
289 		aprint_error_dev(sc->sc_dev,
290 		    "unable to create control data DMA map, error = %d\n",
291 		    error);
292 		gem_partial_detach(sc, GEM_ATT_2);
293 		return;
294 	}
295 
296 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
297 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
298 	    0)) != 0) {
299 		aprint_error_dev(sc->sc_dev,
300 		    "unable to load control data DMA map, error = %d\n",
301 		    error);
302 		gem_partial_detach(sc, GEM_ATT_3);
303 		return;
304 	}
305 
306 	memset(nullbuf, 0, ETHER_MIN_TX);
307 	if ((error = bus_dmamap_create(sc->sc_dmatag,
308 	    ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
309 		aprint_error_dev(sc->sc_dev,
310 		    "unable to create padding DMA map, error = %d\n", error);
311 		gem_partial_detach(sc, GEM_ATT_4);
312 		return;
313 	}
314 
315 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
316 	    nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
317 		aprint_error_dev(sc->sc_dev,
318 		    "unable to load padding DMA map, error = %d\n", error);
319 		gem_partial_detach(sc, GEM_ATT_5);
320 		return;
321 	}
322 
323 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
324 	    BUS_DMASYNC_PREWRITE);
325 
326 	/*
327 	 * Initialize the transmit job descriptors.
328 	 */
329 	SIMPLEQ_INIT(&sc->sc_txfreeq);
330 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
331 
332 	/*
333 	 * Create the transmit buffer DMA maps.
334 	 */
335 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
336 		struct gem_txsoft *txs;
337 
338 		txs = &sc->sc_txsoft[i];
339 		txs->txs_mbuf = NULL;
340 		if ((error = bus_dmamap_create(sc->sc_dmatag,
341 		    ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
342 		    ETHER_MAX_LEN_JUMBO, 0, 0,
343 		    &txs->txs_dmamap)) != 0) {
344 			aprint_error_dev(sc->sc_dev,
345 			    "unable to create tx DMA map %d, error = %d\n",
346 			    i, error);
347 			gem_partial_detach(sc, GEM_ATT_6);
348 			return;
349 		}
350 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
351 	}
352 
353 	/*
354 	 * Create the receive buffer DMA maps.
355 	 */
356 	for (i = 0; i < GEM_NRXDESC; i++) {
357 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
358 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
359 			aprint_error_dev(sc->sc_dev,
360 			    "unable to create rx DMA map %d, error = %d\n",
361 			    i, error);
362 			gem_partial_detach(sc, GEM_ATT_7);
363 			return;
364 		}
365 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
366 	}
367 
368 	/* Initialize ifmedia structures and MII info */
369 	mii->mii_ifp = ifp;
370 	mii->mii_readreg = gem_mii_readreg;
371 	mii->mii_writereg = gem_mii_writereg;
372 	mii->mii_statchg = gem_mii_statchg;
373 
374 	sc->sc_ethercom.ec_mii = mii;
375 
376 	/*
377 	 * Initialization based  on `GEM Gigabit Ethernet ASIC Specification'
378 	 * Section 3.2.1 `Initialization Sequence'.
379 	 * However, we can't assume SERDES or Serialink if neither
380 	 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
381 	 * being set, as both are set on Sun X1141A (with SERDES).  So,
382 	 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
383 	 * Also, for variants that report 2 PHY's, we prefer the external
384 	 * PHY over the internal PHY, so we look for that first.
385 	 */
386 	gem_mifinit(sc);
387 
388 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
389 		ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
390 		    ether_mediastatus);
391 		/* Look for external PHY */
392 		if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
393 			sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
394 			bus_space_write_4(t, h, GEM_MIF_CONFIG,
395 			    sc->sc_mif_config);
396 			switch (sc->sc_variant) {
397 			case GEM_SUN_ERI:
398 				phyaddr = GEM_PHYAD_EXTERNAL;
399 				break;
400 			default:
401 				phyaddr = MII_PHY_ANY;
402 				break;
403 			}
404 			mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
405 			    MII_OFFSET_ANY, MIIF_FORCEANEG);
406 		}
407 #ifdef GEM_DEBUG
408 		  else
409 			aprint_debug_dev(sc->sc_dev, "using external PHY\n");
410 #endif
411 		/* Look for internal PHY if no external PHY was found */
412 		if (LIST_EMPTY(&mii->mii_phys) &&
413 		    sc->sc_mif_config & GEM_MIF_CONFIG_MDI0) {
414 			sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
415 			bus_space_write_4(t, h, GEM_MIF_CONFIG,
416 			    sc->sc_mif_config);
417 			switch (sc->sc_variant) {
418 			case GEM_SUN_ERI:
419 			case GEM_APPLE_K2_GMAC:
420 				phyaddr = GEM_PHYAD_INTERNAL;
421 				break;
422 			case GEM_APPLE_GMAC:
423 				phyaddr = GEM_PHYAD_EXTERNAL;
424 				break;
425 			default:
426 				phyaddr = MII_PHY_ANY;
427 				break;
428 			}
429 			mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
430 			    MII_OFFSET_ANY, MIIF_FORCEANEG);
431 #ifdef GEM_DEBUG
432 			if (!LIST_EMPTY(&mii->mii_phys))
433 				aprint_debug_dev(sc->sc_dev,
434 				    "using internal PHY\n");
435 #endif
436 		}
437 		if (LIST_EMPTY(&mii->mii_phys)) {
438 				/* No PHY attached */
439 				aprint_error_dev(sc->sc_dev,
440 				    "PHY probe failed\n");
441 				gem_partial_detach(sc, GEM_ATT_MII);
442 				return;
443 		} else {
444 			struct mii_softc *child;
445 
446 			/*
447 			 * Walk along the list of attached MII devices and
448 			 * establish an `MII instance' to `PHY number'
449 			 * mapping.
450 			 */
451 			LIST_FOREACH(child, &mii->mii_phys, mii_list) {
452 				/*
453 				 * Note: we support just one PHY: the internal
454 				 * or external MII is already selected for us
455 				 * by the GEM_MIF_CONFIG  register.
456 				 */
457 				if (child->mii_phy > 1 || child->mii_inst > 0) {
458 					aprint_error_dev(sc->sc_dev,
459 					    "cannot accommodate MII device"
460 					    " %s at PHY %d, instance %d\n",
461 					       device_xname(child->mii_dev),
462 					       child->mii_phy, child->mii_inst);
463 					continue;
464 				}
465 				sc->sc_phys[child->mii_inst] = child->mii_phy;
466 			}
467 
468 			if (sc->sc_variant != GEM_SUN_ERI)
469 				bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
470 				    GEM_MII_DATAPATH_MII);
471 
472 			/*
473 			 * XXX - we can really do the following ONLY if the
474 			 * PHY indeed has the auto negotiation capability!!
475 			 */
476 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
477 		}
478 	} else {
479 		ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
480 		    gem_ser_mediastatus);
481 		/* SERDES or Serialink */
482 		if (sc->sc_flags & GEM_SERDES) {
483 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
484 			    GEM_MII_DATAPATH_SERDES);
485 		} else {
486 			sc->sc_flags |= GEM_SERIAL;
487 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
488 			    GEM_MII_DATAPATH_SERIAL);
489 		}
490 
491 		aprint_normal_dev(sc->sc_dev, "using external PCS %s: ",
492 		    sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
493 
494 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0, NULL);
495 		/* Check for FDX and HDX capabilities */
496 		sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
497 		if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
498 			ifmedia_add(&sc->sc_mii.mii_media,
499 			    IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_FDX, 0, NULL);
500 			aprint_normal("1000baseSX-FDX, ");
501 		}
502 		if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
503 			ifmedia_add(&sc->sc_mii.mii_media,
504 			    IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_HDX, 0, NULL);
505 			aprint_normal("1000baseSX-HDX, ");
506 		}
507 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
508 		sc->sc_mii_media = IFM_AUTO;
509 		aprint_normal("auto\n");
510 
511 		gem_pcs_stop(sc, 1);
512 	}
513 
514 	/*
515 	 * From this point forward, the attachment cannot fail.  A failure
516 	 * before this point releases all resources that may have been
517 	 * allocated.
518 	 */
519 
520 	/* Announce ourselves. */
521 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s",
522 	    ether_sprintf(enaddr));
523 
524 	/* Get RX FIFO size */
525 	sc->sc_rxfifosize = 64 *
526 	    bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
527 	aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
528 
529 	/* Get TX FIFO size */
530 	v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
531 	aprint_normal(", %uKB TX fifo\n", v / 16);
532 
533 	/* Initialize ifnet structure. */
534 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
535 	ifp->if_softc = sc;
536 	ifp->if_flags =
537 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
538 	sc->sc_if_flags = ifp->if_flags;
539 #if 0
540 	/*
541 	 * The GEM hardware supports basic TCP checksum offloading only.
542 	 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
543 	 * have bugs in the receive checksum, so don't enable it for now.
544 	 */
545 	if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
546 	    (GEM_IS_APPLE(sc) &&
547 	    (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
548 		ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
549 #endif
550 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
551 	ifp->if_start = gem_start;
552 	ifp->if_ioctl = gem_ioctl;
553 	ifp->if_watchdog = gem_watchdog;
554 	ifp->if_stop = gem_stop;
555 	ifp->if_init = gem_init;
556 	IFQ_SET_READY(&ifp->if_snd);
557 
558 	/*
559 	 * If we support GigE media, we support jumbo frames too.
560 	 * Unless we are Apple.
561 	 */
562 	TAILQ_FOREACH(ifm, &sc->sc_mii.mii_media.ifm_list, ifm_list) {
563 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
564 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
565 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
566 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
567 			if (!GEM_IS_APPLE(sc))
568 				sc->sc_ethercom.ec_capabilities
569 				    |= ETHERCAP_JUMBO_MTU;
570 			sc->sc_flags |= GEM_GIGABIT;
571 			break;
572 		}
573 	}
574 
575 	/* claim 802.1q capability */
576 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
577 
578 	/* Attach the interface. */
579 	if_attach(ifp);
580 	ether_ifattach(ifp, enaddr);
581 	ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
582 
583 #if NRND > 0
584 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
585 			  RND_TYPE_NET, 0);
586 #endif
587 
588 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
589 	    NULL, device_xname(sc->sc_dev), "interrupts");
590 #ifdef GEM_COUNTERS
591 	evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
592 	    &sc->sc_ev_intr, device_xname(sc->sc_dev), "tx interrupts");
593 	evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
594 	    &sc->sc_ev_intr, device_xname(sc->sc_dev), "rx interrupts");
595 	evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
596 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx ring full");
597 	evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
598 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx malloc failure");
599 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
600 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 0desc");
601 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
602 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 1desc");
603 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
604 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 2desc");
605 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
606 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 3desc");
607 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
608 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >3desc");
609 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
610 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >7desc");
611 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
612 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >15desc");
613 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
614 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >31desc");
615 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
616 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >63desc");
617 #endif
618 
619 	callout_init(&sc->sc_tick_ch, 0);
620 
621 	sc->sc_att_stage = GEM_ATT_FINISHED;
622 
623 	return;
624 }
625 
626 void
627 gem_tick(void *arg)
628 {
629 	struct gem_softc *sc = arg;
630 	int s;
631 
632 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
633 		/*
634 		 * We have to reset everything if we failed to get a
635 		 * PCS interrupt.  Restarting the callout is handled
636 		 * in gem_pcs_start().
637 		 */
638 		gem_init(&sc->sc_ethercom.ec_if);
639 	} else {
640 		s = splnet();
641 		mii_tick(&sc->sc_mii);
642 		splx(s);
643 		callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
644 	}
645 }
646 
647 static int
648 gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, u_int32_t clr, u_int32_t set)
649 {
650 	int i;
651 	u_int32_t reg;
652 
653 	for (i = TRIES; i--; DELAY(100)) {
654 		reg = bus_space_read_4(sc->sc_bustag, h, r);
655 		if ((reg & clr) == 0 && (reg & set) == set)
656 			return (1);
657 	}
658 	return (0);
659 }
660 
661 void
662 gem_reset(struct gem_softc *sc)
663 {
664 	bus_space_tag_t t = sc->sc_bustag;
665 	bus_space_handle_t h = sc->sc_h2;
666 	int s;
667 
668 	s = splnet();
669 	DPRINTF(sc, ("%s: gem_reset\n", device_xname(sc->sc_dev)));
670 	gem_reset_rx(sc);
671 	gem_reset_tx(sc);
672 
673 	/* Do a full reset */
674 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
675 	if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
676 		aprint_error_dev(sc->sc_dev, "cannot reset device\n");
677 	splx(s);
678 }
679 
680 
681 /*
682  * gem_rxdrain:
683  *
684  *	Drain the receive queue.
685  */
686 static void
687 gem_rxdrain(struct gem_softc *sc)
688 {
689 	struct gem_rxsoft *rxs;
690 	int i;
691 
692 	for (i = 0; i < GEM_NRXDESC; i++) {
693 		rxs = &sc->sc_rxsoft[i];
694 		if (rxs->rxs_mbuf != NULL) {
695 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
696 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
697 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
698 			m_freem(rxs->rxs_mbuf);
699 			rxs->rxs_mbuf = NULL;
700 		}
701 	}
702 }
703 
704 /*
705  * Reset the whole thing.
706  */
707 static void
708 gem_stop(struct ifnet *ifp, int disable)
709 {
710 	struct gem_softc *sc = ifp->if_softc;
711 	struct gem_txsoft *txs;
712 
713 	DPRINTF(sc, ("%s: gem_stop\n", device_xname(sc->sc_dev)));
714 
715 	callout_halt(&sc->sc_tick_ch, NULL);
716 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
717 		gem_pcs_stop(sc, disable);
718 	else
719 		mii_down(&sc->sc_mii);
720 
721 	/* XXX - Should we reset these instead? */
722 	gem_disable_tx(sc);
723 	gem_disable_rx(sc);
724 
725 	/*
726 	 * Release any queued transmit buffers.
727 	 */
728 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
729 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
730 		if (txs->txs_mbuf != NULL) {
731 			bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
732 			    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
733 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
734 			m_freem(txs->txs_mbuf);
735 			txs->txs_mbuf = NULL;
736 		}
737 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
738 	}
739 
740 	/*
741 	 * Mark the interface down and cancel the watchdog timer.
742 	 */
743 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
744 	sc->sc_if_flags = ifp->if_flags;
745 	ifp->if_timer = 0;
746 
747 	if (disable)
748 		gem_rxdrain(sc);
749 }
750 
751 
752 /*
753  * Reset the receiver
754  */
755 int
756 gem_reset_rx(struct gem_softc *sc)
757 {
758 	bus_space_tag_t t = sc->sc_bustag;
759 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
760 
761 	/*
762 	 * Resetting while DMA is in progress can cause a bus hang, so we
763 	 * disable DMA first.
764 	 */
765 	gem_disable_rx(sc);
766 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
767 	bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
768 	/* Wait till it finishes */
769 	if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
770 		aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
771 
772 	/* Finally, reset the ERX */
773 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
774 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
775 	/* Wait till it finishes */
776 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
777 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
778 		return (1);
779 	}
780 	return (0);
781 }
782 
783 
784 /*
785  * Reset the receiver DMA engine.
786  *
787  * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
788  * etc in order to reset the receiver DMA engine only and not do a full
789  * reset which amongst others also downs the link and clears the FIFOs.
790  */
791 static void
792 gem_reset_rxdma(struct gem_softc *sc)
793 {
794 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
795 	bus_space_tag_t t = sc->sc_bustag;
796 	bus_space_handle_t h = sc->sc_h1;
797 	int i;
798 
799 	if (gem_reset_rx(sc) != 0) {
800 		gem_init(ifp);
801 		return;
802 	}
803 	for (i = 0; i < GEM_NRXDESC; i++)
804 		if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
805 			GEM_UPDATE_RXDESC(sc, i);
806 	sc->sc_rxptr = 0;
807 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
808 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
809 
810 	/* Reprogram Descriptor Ring Base Addresses */
811 	/* NOTE: we use only 32-bit DMA addresses here. */
812 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
813 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
814 
815 	/* Redo ERX Configuration */
816 	gem_rx_common(sc);
817 
818 	/* Give the reciever a swift kick */
819 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
820 }
821 
822 /*
823  * Common RX configuration for gem_init() and gem_reset_rxdma().
824  */
825 static void
826 gem_rx_common(struct gem_softc *sc)
827 {
828 	bus_space_tag_t t = sc->sc_bustag;
829 	bus_space_handle_t h = sc->sc_h1;
830 	u_int32_t v;
831 
832 	/* Encode Receive Descriptor ring size: four possible values */
833 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
834 
835 	/* Set receive h/w checksum offset */
836 #ifdef INET
837 	v |= (ETHER_HDR_LEN + sizeof(struct ip) +
838 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
839 	    ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
840 #endif
841 
842 	/* Enable RX DMA */
843 	bus_space_write_4(t, h, GEM_RX_CONFIG,
844 	    v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
845 	    (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
846 
847 	/*
848 	 * The following value is for an OFF Threshold of about 3/4 full
849 	 * and an ON Threshold of 1/4 full.
850 	 */
851 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
852 	    (3 * sc->sc_rxfifosize / 256) |
853 	    ((sc->sc_rxfifosize / 256) << 12));
854 	bus_space_write_4(t, h, GEM_RX_BLANKING,
855 	    (6 << GEM_RX_BLANKING_TIME_SHIFT) | 6);
856 }
857 
858 /*
859  * Reset the transmitter
860  */
861 int
862 gem_reset_tx(struct gem_softc *sc)
863 {
864 	bus_space_tag_t t = sc->sc_bustag;
865 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
866 
867 	/*
868 	 * Resetting while DMA is in progress can cause a bus hang, so we
869 	 * disable DMA first.
870 	 */
871 	gem_disable_tx(sc);
872 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
873 	bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
874 	/* Wait till it finishes */
875 	if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
876 		aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
877 	/* Wait 5ms extra. */
878 	delay(5000);
879 
880 	/* Finally, reset the ETX */
881 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
882 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
883 	/* Wait till it finishes */
884 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
885 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
886 		return (1);
887 	}
888 	return (0);
889 }
890 
891 /*
892  * disable receiver.
893  */
894 int
895 gem_disable_rx(struct gem_softc *sc)
896 {
897 	bus_space_tag_t t = sc->sc_bustag;
898 	bus_space_handle_t h = sc->sc_h1;
899 	u_int32_t cfg;
900 
901 	/* Flip the enable bit */
902 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
903 	cfg &= ~GEM_MAC_RX_ENABLE;
904 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
905 	bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
906 	/* Wait for it to finish */
907 	return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
908 }
909 
910 /*
911  * disable transmitter.
912  */
913 int
914 gem_disable_tx(struct gem_softc *sc)
915 {
916 	bus_space_tag_t t = sc->sc_bustag;
917 	bus_space_handle_t h = sc->sc_h1;
918 	u_int32_t cfg;
919 
920 	/* Flip the enable bit */
921 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
922 	cfg &= ~GEM_MAC_TX_ENABLE;
923 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
924 	bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
925 	/* Wait for it to finish */
926 	return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
927 }
928 
929 /*
930  * Initialize interface.
931  */
932 int
933 gem_meminit(struct gem_softc *sc)
934 {
935 	struct gem_rxsoft *rxs;
936 	int i, error;
937 
938 	/*
939 	 * Initialize the transmit descriptor ring.
940 	 */
941 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
942 	for (i = 0; i < GEM_NTXDESC; i++) {
943 		sc->sc_txdescs[i].gd_flags = 0;
944 		sc->sc_txdescs[i].gd_addr = 0;
945 	}
946 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
947 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
948 	sc->sc_txfree = GEM_NTXDESC-1;
949 	sc->sc_txnext = 0;
950 	sc->sc_txwin = 0;
951 
952 	/*
953 	 * Initialize the receive descriptor and receive job
954 	 * descriptor rings.
955 	 */
956 	for (i = 0; i < GEM_NRXDESC; i++) {
957 		rxs = &sc->sc_rxsoft[i];
958 		if (rxs->rxs_mbuf == NULL) {
959 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
960 				aprint_error_dev(sc->sc_dev,
961 				    "unable to allocate or map rx "
962 				    "buffer %d, error = %d\n",
963 				    i, error);
964 				/*
965 				 * XXX Should attempt to run with fewer receive
966 				 * XXX buffers instead of just failing.
967 				 */
968 				gem_rxdrain(sc);
969 				return (1);
970 			}
971 		} else
972 			GEM_INIT_RXDESC(sc, i);
973 	}
974 	sc->sc_rxptr = 0;
975 	sc->sc_meminited = 1;
976 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
977 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
978 
979 	return (0);
980 }
981 
982 static int
983 gem_ringsize(int sz)
984 {
985 	switch (sz) {
986 	case 32:
987 		return GEM_RING_SZ_32;
988 	case 64:
989 		return GEM_RING_SZ_64;
990 	case 128:
991 		return GEM_RING_SZ_128;
992 	case 256:
993 		return GEM_RING_SZ_256;
994 	case 512:
995 		return GEM_RING_SZ_512;
996 	case 1024:
997 		return GEM_RING_SZ_1024;
998 	case 2048:
999 		return GEM_RING_SZ_2048;
1000 	case 4096:
1001 		return GEM_RING_SZ_4096;
1002 	case 8192:
1003 		return GEM_RING_SZ_8192;
1004 	default:
1005 		printf("gem: invalid Receive Descriptor ring size %d\n", sz);
1006 		return GEM_RING_SZ_32;
1007 	}
1008 }
1009 
1010 
1011 /*
1012  * Start PCS
1013  */
1014 void
1015 gem_pcs_start(struct gem_softc *sc)
1016 {
1017 	bus_space_tag_t t = sc->sc_bustag;
1018 	bus_space_handle_t h = sc->sc_h1;
1019 	uint32_t v;
1020 
1021 #ifdef GEM_DEBUG
1022 	aprint_debug_dev(sc->sc_dev, "gem_pcs_start()\n");
1023 #endif
1024 
1025 	/*
1026 	 * Set up.  We must disable the MII before modifying the
1027 	 * GEM_MII_ANAR register
1028 	 */
1029 	if (sc->sc_flags & GEM_SERDES) {
1030 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1031 		    GEM_MII_DATAPATH_SERDES);
1032 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1033 		    GEM_MII_SLINK_LOOPBACK);
1034 	} else {
1035 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1036 		    GEM_MII_DATAPATH_SERIAL);
1037 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
1038 	}
1039 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1040 	v = bus_space_read_4(t, h, GEM_MII_ANAR);
1041 	v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
1042 	if (sc->sc_mii_media == IFM_AUTO)
1043 		v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
1044 	else if (sc->sc_mii_media == IFM_FDX) {
1045 		v |= GEM_MII_ANEG_FUL_DUPLX;
1046 		v &= ~GEM_MII_ANEG_HLF_DUPLX;
1047 	} else if (sc->sc_mii_media == IFM_HDX) {
1048 		v &= ~GEM_MII_ANEG_FUL_DUPLX;
1049 		v |= GEM_MII_ANEG_HLF_DUPLX;
1050 	}
1051 
1052 	/* Configure link. */
1053 	bus_space_write_4(t, h, GEM_MII_ANAR, v);
1054 	bus_space_write_4(t, h, GEM_MII_CONTROL,
1055 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1056 	bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
1057 	gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
1058 
1059 	/* Start the 10 second timer */
1060 	callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
1061 }
1062 
1063 /*
1064  * Stop PCS
1065  */
1066 void
1067 gem_pcs_stop(struct gem_softc *sc, int disable)
1068 {
1069 	bus_space_tag_t t = sc->sc_bustag;
1070 	bus_space_handle_t h = sc->sc_h1;
1071 
1072 #ifdef GEM_DEBUG
1073 	aprint_debug_dev(sc->sc_dev, "gem_pcs_stop()\n");
1074 #endif
1075 
1076 	/* Tell link partner that we're going away */
1077 	bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
1078 
1079 	/*
1080 	 * Disable PCS MII.  The documentation suggests that setting
1081 	 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
1082 	 * negotiation will shut down the link.  However, it appears
1083 	 * that we also need to unset the datapath mode.
1084 	 */
1085 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1086 	bus_space_write_4(t, h, GEM_MII_CONTROL,
1087 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1088 	bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
1089 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1090 
1091 	if (disable) {
1092 		if (sc->sc_flags & GEM_SERDES)
1093 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1094 				GEM_MII_SLINK_POWER_OFF);
1095 		else
1096 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1097 			    GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
1098 	}
1099 
1100 	sc->sc_flags &= ~GEM_LINK;
1101 	sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
1102 	sc->sc_mii.mii_media_status = IFM_AVALID;
1103 }
1104 
1105 
1106 /*
1107  * Initialization of interface; set up initialization block
1108  * and transmit/receive descriptor rings.
1109  */
1110 int
1111 gem_init(struct ifnet *ifp)
1112 {
1113 	struct gem_softc *sc = ifp->if_softc;
1114 	bus_space_tag_t t = sc->sc_bustag;
1115 	bus_space_handle_t h = sc->sc_h1;
1116 	int rc = 0, s;
1117 	u_int max_frame_size;
1118 	u_int32_t v;
1119 
1120 	s = splnet();
1121 
1122 	DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(sc->sc_dev)));
1123 	/*
1124 	 * Initialization sequence. The numbered steps below correspond
1125 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1126 	 * Channel Engine manual (part of the PCIO manual).
1127 	 * See also the STP2002-STQ document from Sun Microsystems.
1128 	 */
1129 
1130 	/* step 1 & 2. Reset the Ethernet Channel */
1131 	gem_stop(ifp, 0);
1132 	gem_reset(sc);
1133 	DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(sc->sc_dev)));
1134 
1135 	/* Re-initialize the MIF */
1136 	gem_mifinit(sc);
1137 
1138 	/* Set up correct datapath for non-SERDES/Serialink */
1139 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1140 	    sc->sc_variant != GEM_SUN_ERI)
1141 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1142 		    GEM_MII_DATAPATH_MII);
1143 
1144 	/* Call MI reset function if any */
1145 	if (sc->sc_hwreset)
1146 		(*sc->sc_hwreset)(sc);
1147 
1148 	/* step 3. Setup data structures in host memory */
1149 	if (gem_meminit(sc) != 0)
1150 		return 1;
1151 
1152 	/* step 4. TX MAC registers & counters */
1153 	gem_init_regs(sc);
1154 	max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
1155 	max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
1156 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1157 		max_frame_size += ETHER_VLAN_ENCAP_LEN;
1158 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1159 	    max_frame_size|/* burst size */(0x2000<<16));
1160 
1161 	/* step 5. RX MAC registers & counters */
1162 	gem_setladrf(sc);
1163 
1164 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
1165 	/* NOTE: we use only 32-bit DMA addresses here. */
1166 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
1167 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
1168 
1169 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
1170 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
1171 
1172 	/* step 8. Global Configuration & Interrupt Mask */
1173 	gem_inten(sc);
1174 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
1175 			GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
1176 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
1177 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
1178 	    GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
1179 
1180 	/* step 9. ETX Configuration: use mostly default values */
1181 
1182 	/* Enable TX DMA */
1183 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
1184 	bus_space_write_4(t, h, GEM_TX_CONFIG,
1185 	    v | GEM_TX_CONFIG_TXDMA_EN |
1186 	    (((sc->sc_flags & GEM_GIGABIT ? 0x4FF : 0x100) << 10) &
1187 	    GEM_TX_CONFIG_TXFIFO_TH));
1188 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
1189 
1190 	/* step 10. ERX Configuration */
1191 	gem_rx_common(sc);
1192 
1193 	/* step 11. Configure Media */
1194 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1195 	    (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
1196 		goto out;
1197 
1198 	/* step 12. RX_MAC Configuration Register */
1199 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1200 	v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
1201 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1202 
1203 	/* step 14. Issue Transmit Pending command */
1204 
1205 	/* Call MI initialization function if any */
1206 	if (sc->sc_hwinit)
1207 		(*sc->sc_hwinit)(sc);
1208 
1209 
1210 	/* step 15.  Give the reciever a swift kick */
1211 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
1212 
1213 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1214 		/* Configure PCS */
1215 		gem_pcs_start(sc);
1216 	else
1217 		/* Start the one second timer. */
1218 		callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
1219 
1220 	sc->sc_flags &= ~GEM_LINK;
1221 	ifp->if_flags |= IFF_RUNNING;
1222 	ifp->if_flags &= ~IFF_OACTIVE;
1223 	ifp->if_timer = 0;
1224 	sc->sc_if_flags = ifp->if_flags;
1225 out:
1226 	splx(s);
1227 
1228 	return (0);
1229 }
1230 
1231 void
1232 gem_init_regs(struct gem_softc *sc)
1233 {
1234 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1235 	bus_space_tag_t t = sc->sc_bustag;
1236 	bus_space_handle_t h = sc->sc_h1;
1237 	const u_char *laddr = CLLADDR(ifp->if_sadl);
1238 	u_int32_t v;
1239 
1240 	/* These regs are not cleared on reset */
1241 	if (!sc->sc_inited) {
1242 
1243 		/* Load recommended values */
1244 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
1245 		bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
1246 		bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
1247 
1248 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1249 		/* Max frame and max burst size */
1250 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1251 		    ETHER_MAX_LEN | (0x2000<<16));
1252 
1253 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
1254 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
1255 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1256 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1257 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1258 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1259 
1260 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
1261 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1262 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1263 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1264 
1265 		/* MAC control addr set to 01:80:c2:00:00:01 */
1266 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1267 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1268 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1269 
1270 		/* MAC filter addr set to 0:0:0:0:0:0 */
1271 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1272 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1273 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1274 
1275 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1276 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1277 
1278 		sc->sc_inited = 1;
1279 	}
1280 
1281 	/* Counters need to be zeroed */
1282 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1283 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1284 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1285 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1286 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1287 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1288 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1289 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1290 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1291 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1292 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1293 
1294 	/* Set XOFF PAUSE time. */
1295 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1296 
1297 	/*
1298 	 * Set the internal arbitration to "infinite" bursts of the
1299 	 * maximum length of 31 * 64 bytes so DMA transfers aren't
1300 	 * split up in cache line size chunks. This greatly improves
1301 	 * especially RX performance.
1302 	 * Enable silicon bug workarounds for the Apple variants.
1303 	 */
1304 	bus_space_write_4(t, h, GEM_CONFIG,
1305 	    GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
1306 	    ((sc->sc_flags & GEM_PCI) ?
1307 	    GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
1308 	    GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
1309 
1310 	/*
1311 	 * Set the station address.
1312 	 */
1313 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1314 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1315 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1316 
1317 	/*
1318 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
1319 	 */
1320 	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1321 	v = GEM_MAC_XIF_TX_MII_ENA;
1322 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)  {
1323 		if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1324 			v |= GEM_MAC_XIF_FDPLX_LED;
1325 				if (sc->sc_flags & GEM_GIGABIT)
1326 					v |= GEM_MAC_XIF_GMII_MODE;
1327 		}
1328 	} else {
1329 		v |= GEM_MAC_XIF_GMII_MODE;
1330 	}
1331 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1332 }
1333 
1334 #ifdef GEM_DEBUG
1335 static void
1336 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
1337 {
1338 	int i;
1339 
1340 	for (i = firstdesc;; i = GEM_NEXTTX(i)) {
1341 		printf("descriptor %d:\t", i);
1342 		printf("gd_flags:   0x%016" PRIx64 "\t",
1343 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1344 		printf("gd_addr: 0x%016" PRIx64 "\n",
1345 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1346 		if (i == lastdesc)
1347 			break;
1348 	}
1349 }
1350 #endif
1351 
1352 static void
1353 gem_start(struct ifnet *ifp)
1354 {
1355 	struct gem_softc *sc = ifp->if_softc;
1356 	struct mbuf *m0, *m;
1357 	struct gem_txsoft *txs;
1358 	bus_dmamap_t dmamap;
1359 	int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
1360 	uint64_t flags = 0;
1361 
1362 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1363 		return;
1364 
1365 	/*
1366 	 * Remember the previous number of free descriptors and
1367 	 * the first descriptor we'll use.
1368 	 */
1369 	ofree = sc->sc_txfree;
1370 	firsttx = sc->sc_txnext;
1371 
1372 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1373 	    device_xname(sc->sc_dev), ofree, firsttx));
1374 
1375 	/*
1376 	 * Loop through the send queue, setting up transmit descriptors
1377 	 * until we drain the queue, or use up all available transmit
1378 	 * descriptors.
1379 	 */
1380 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1381 	    sc->sc_txfree != 0) {
1382 		/*
1383 		 * Grab a packet off the queue.
1384 		 */
1385 		IFQ_POLL(&ifp->if_snd, m0);
1386 		if (m0 == NULL)
1387 			break;
1388 		m = NULL;
1389 
1390 		dmamap = txs->txs_dmamap;
1391 
1392 		/*
1393 		 * Load the DMA map.  If this fails, the packet either
1394 		 * didn't fit in the alloted number of segments, or we were
1395 		 * short on resources.  In this case, we'll copy and try
1396 		 * again.
1397 		 */
1398 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1399 		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
1400 		      (m0->m_pkthdr.len < ETHER_MIN_TX &&
1401 		       dmamap->dm_nsegs == GEM_NTXSEGS)) {
1402 			if (m0->m_pkthdr.len > MCLBYTES) {
1403 				aprint_error_dev(sc->sc_dev,
1404 				    "unable to allocate jumbo Tx cluster\n");
1405 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1406 				m_freem(m0);
1407 				continue;
1408 			}
1409 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1410 			if (m == NULL) {
1411 				aprint_error_dev(sc->sc_dev,
1412 				    "unable to allocate Tx mbuf\n");
1413 				break;
1414 			}
1415 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1416 			if (m0->m_pkthdr.len > MHLEN) {
1417 				MCLGET(m, M_DONTWAIT);
1418 				if ((m->m_flags & M_EXT) == 0) {
1419 					aprint_error_dev(sc->sc_dev,
1420 					    "unable to allocate Tx cluster\n");
1421 					m_freem(m);
1422 					break;
1423 				}
1424 			}
1425 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1426 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1427 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1428 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1429 			if (error) {
1430 				aprint_error_dev(sc->sc_dev,
1431 				    "unable to load Tx buffer, error = %d\n",
1432 				    error);
1433 				break;
1434 			}
1435 		}
1436 
1437 		/*
1438 		 * Ensure we have enough descriptors free to describe
1439 		 * the packet.
1440 		 */
1441 		if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1442 		     (sc->sc_txfree - 1) : sc->sc_txfree)) {
1443 			/*
1444 			 * Not enough free descriptors to transmit this
1445 			 * packet.  We haven't committed to anything yet,
1446 			 * so just unload the DMA map, put the packet
1447 			 * back on the queue, and punt.  Notify the upper
1448 			 * layer that there are no more slots left.
1449 			 *
1450 			 * XXX We could allocate an mbuf and copy, but
1451 			 * XXX it is worth it?
1452 			 */
1453 			ifp->if_flags |= IFF_OACTIVE;
1454 			sc->sc_if_flags = ifp->if_flags;
1455 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
1456 			if (m != NULL)
1457 				m_freem(m);
1458 			break;
1459 		}
1460 
1461 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1462 		if (m != NULL) {
1463 			m_freem(m0);
1464 			m0 = m;
1465 		}
1466 
1467 		/*
1468 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1469 		 */
1470 
1471 		/* Sync the DMA map. */
1472 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1473 		    BUS_DMASYNC_PREWRITE);
1474 
1475 		/*
1476 		 * Initialize the transmit descriptors.
1477 		 */
1478 		for (nexttx = sc->sc_txnext, seg = 0;
1479 		     seg < dmamap->dm_nsegs;
1480 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
1481 
1482 			/*
1483 			 * If this is the first descriptor we're
1484 			 * enqueueing, set the start of packet flag,
1485 			 * and the checksum stuff if we want the hardware
1486 			 * to do it.
1487 			 */
1488 			sc->sc_txdescs[nexttx].gd_addr =
1489 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1490 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1491 			if (nexttx == firsttx) {
1492 				flags |= GEM_TD_START_OF_PACKET;
1493 				if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1494 					sc->sc_txwin = 0;
1495 					flags |= GEM_TD_INTERRUPT_ME;
1496 				}
1497 
1498 #ifdef INET
1499 				/* h/w checksum */
1500 				if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
1501 				    m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1502 					struct ether_header *eh;
1503 					uint16_t offset, start;
1504 
1505 					eh = mtod(m0, struct ether_header *);
1506 					switch (ntohs(eh->ether_type)) {
1507 					case ETHERTYPE_IP:
1508 						start = ETHER_HDR_LEN;
1509 						break;
1510 					case ETHERTYPE_VLAN:
1511 						start = ETHER_HDR_LEN +
1512 							ETHER_VLAN_ENCAP_LEN;
1513 						break;
1514 					default:
1515 						/* unsupported, drop it */
1516 						m_free(m0);
1517 						continue;
1518 					}
1519 					start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1520 					offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1521 					flags |= (start <<
1522 						  GEM_TD_CXSUM_STARTSHFT) |
1523 						 (offset <<
1524 						  GEM_TD_CXSUM_STUFFSHFT) |
1525 						 GEM_TD_CXSUM_ENABLE;
1526 				}
1527 #endif
1528 			}
1529 			if (seg == dmamap->dm_nsegs - 1) {
1530 				flags |= GEM_TD_END_OF_PACKET;
1531 			} else {
1532 				/* last flag set outside of loop */
1533 				sc->sc_txdescs[nexttx].gd_flags =
1534 					GEM_DMA_WRITE(sc, flags);
1535 			}
1536 			lasttx = nexttx;
1537 		}
1538 		if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1539 			/* add padding buffer at end of chain */
1540 			flags &= ~GEM_TD_END_OF_PACKET;
1541 			sc->sc_txdescs[lasttx].gd_flags =
1542 			    GEM_DMA_WRITE(sc, flags);
1543 
1544 			sc->sc_txdescs[nexttx].gd_addr =
1545 			    GEM_DMA_WRITE(sc,
1546 			    sc->sc_nulldmamap->dm_segs[0].ds_addr);
1547 			flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1548 			    GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1549 			lasttx = nexttx;
1550 			nexttx = GEM_NEXTTX(nexttx);
1551 			seg++;
1552 		}
1553 		sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1554 
1555 		KASSERT(lasttx != -1);
1556 
1557 		/*
1558 		 * Store a pointer to the packet so we can free it later,
1559 		 * and remember what txdirty will be once the packet is
1560 		 * done.
1561 		 */
1562 		txs->txs_mbuf = m0;
1563 		txs->txs_firstdesc = sc->sc_txnext;
1564 		txs->txs_lastdesc = lasttx;
1565 		txs->txs_ndescs = seg;
1566 
1567 #ifdef GEM_DEBUG
1568 		if (ifp->if_flags & IFF_DEBUG) {
1569 			printf("     gem_start %p transmit chain:\n", txs);
1570 			gem_txsoft_print(sc, txs->txs_firstdesc,
1571 			    txs->txs_lastdesc);
1572 		}
1573 #endif
1574 
1575 		/* Sync the descriptors we're using. */
1576 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1577 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1578 
1579 		/* Advance the tx pointer. */
1580 		sc->sc_txfree -= txs->txs_ndescs;
1581 		sc->sc_txnext = nexttx;
1582 
1583 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1584 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1585 
1586 		/*
1587 		 * Pass the packet to any BPF listeners.
1588 		 */
1589 		bpf_mtap(ifp, m0);
1590 	}
1591 
1592 	if (txs == NULL || sc->sc_txfree == 0) {
1593 		/* No more slots left; notify upper layer. */
1594 		ifp->if_flags |= IFF_OACTIVE;
1595 		sc->sc_if_flags = ifp->if_flags;
1596 	}
1597 
1598 	if (sc->sc_txfree != ofree) {
1599 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1600 		    device_xname(sc->sc_dev), lasttx, firsttx));
1601 		/*
1602 		 * The entire packet chain is set up.
1603 		 * Kick the transmitter.
1604 		 */
1605 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1606 			device_xname(sc->sc_dev), nexttx));
1607 		bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
1608 			sc->sc_txnext);
1609 
1610 		/* Set a watchdog timer in case the chip flakes out. */
1611 		ifp->if_timer = 5;
1612 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1613 			device_xname(sc->sc_dev), ifp->if_timer));
1614 	}
1615 }
1616 
1617 /*
1618  * Transmit interrupt.
1619  */
1620 int
1621 gem_tint(struct gem_softc *sc)
1622 {
1623 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1624 	bus_space_tag_t t = sc->sc_bustag;
1625 	bus_space_handle_t mac = sc->sc_h1;
1626 	struct gem_txsoft *txs;
1627 	int txlast;
1628 	int progress = 0;
1629 	u_int32_t v;
1630 
1631 	DPRINTF(sc, ("%s: gem_tint\n", device_xname(sc->sc_dev)));
1632 
1633 	/* Unload collision counters ... */
1634 	v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1635 	    bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1636 	ifp->if_collisions += v +
1637 	    bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1638 	    bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT);
1639 	ifp->if_oerrors += v;
1640 
1641 	/* ... then clear the hardware counters. */
1642 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1643 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1644 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1645 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1646 
1647 	/*
1648 	 * Go through our Tx list and free mbufs for those
1649 	 * frames that have been transmitted.
1650 	 */
1651 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1652 		/*
1653 		 * In theory, we could harvest some descriptors before
1654 		 * the ring is empty, but that's a bit complicated.
1655 		 *
1656 		 * GEM_TX_COMPLETION points to the last descriptor
1657 		 * processed +1.
1658 		 *
1659 		 * Let's assume that the NIC writes back to the Tx
1660 		 * descriptors before it updates the completion
1661 		 * register.  If the NIC has posted writes to the
1662 		 * Tx descriptors, PCI ordering requires that the
1663 		 * posted writes flush to RAM before the register-read
1664 		 * finishes.  So let's read the completion register,
1665 		 * before syncing the descriptors, so that we
1666 		 * examine Tx descriptors that are at least as
1667 		 * current as the completion register.
1668 		 */
1669 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1670 		DPRINTF(sc,
1671 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1672 				txs->txs_lastdesc, txlast));
1673 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1674 			if (txlast >= txs->txs_firstdesc &&
1675 			    txlast <= txs->txs_lastdesc)
1676 				break;
1677 		} else if (txlast >= txs->txs_firstdesc ||
1678 			   txlast <= txs->txs_lastdesc)
1679 			break;
1680 
1681 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1682 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1683 
1684 #ifdef GEM_DEBUG	/* XXX DMA synchronization? */
1685 		if (ifp->if_flags & IFF_DEBUG) {
1686 			printf("    txsoft %p transmit chain:\n", txs);
1687 			gem_txsoft_print(sc, txs->txs_firstdesc,
1688 			    txs->txs_lastdesc);
1689 		}
1690 #endif
1691 
1692 
1693 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1694 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1695 
1696 		sc->sc_txfree += txs->txs_ndescs;
1697 
1698 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1699 		    0, txs->txs_dmamap->dm_mapsize,
1700 		    BUS_DMASYNC_POSTWRITE);
1701 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1702 		if (txs->txs_mbuf != NULL) {
1703 			m_freem(txs->txs_mbuf);
1704 			txs->txs_mbuf = NULL;
1705 		}
1706 
1707 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1708 
1709 		ifp->if_opackets++;
1710 		progress = 1;
1711 	}
1712 
1713 #if 0
1714 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1715 		"GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
1716 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
1717 		((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1718 			GEM_TX_DATA_PTR_HI) << 32) |
1719 			     bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1720 			GEM_TX_DATA_PTR_LO),
1721 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
1722 #endif
1723 
1724 	if (progress) {
1725 		if (sc->sc_txfree == GEM_NTXDESC - 1)
1726 			sc->sc_txwin = 0;
1727 
1728 		/* Freed some descriptors, so reset IFF_OACTIVE and restart. */
1729 		ifp->if_flags &= ~IFF_OACTIVE;
1730 		sc->sc_if_flags = ifp->if_flags;
1731 		ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
1732 		gem_start(ifp);
1733 	}
1734 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1735 		device_xname(sc->sc_dev), ifp->if_timer));
1736 
1737 	return (1);
1738 }
1739 
1740 /*
1741  * Receive interrupt.
1742  */
1743 int
1744 gem_rint(struct gem_softc *sc)
1745 {
1746 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1747 	bus_space_tag_t t = sc->sc_bustag;
1748 	bus_space_handle_t h = sc->sc_h1;
1749 	struct gem_rxsoft *rxs;
1750 	struct mbuf *m;
1751 	u_int64_t rxstat;
1752 	u_int32_t rxcomp;
1753 	int i, len, progress = 0;
1754 
1755 	DPRINTF(sc, ("%s: gem_rint\n", device_xname(sc->sc_dev)));
1756 
1757 	/*
1758 	 * Ignore spurious interrupt that sometimes occurs before
1759 	 * we are set up when we network boot.
1760 	 */
1761 	if (!sc->sc_meminited)
1762 		return 1;
1763 
1764 	/*
1765 	 * Read the completion register once.  This limits
1766 	 * how long the following loop can execute.
1767 	 */
1768 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1769 
1770 	/*
1771 	 * XXX Read the lastrx only once at the top for speed.
1772 	 */
1773 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1774 		sc->sc_rxptr, rxcomp));
1775 
1776 	/*
1777 	 * Go into the loop at least once.
1778 	 */
1779 	for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1780 	     i = GEM_NEXTRX(i)) {
1781 		rxs = &sc->sc_rxsoft[i];
1782 
1783 		GEM_CDRXSYNC(sc, i,
1784 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1785 
1786 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1787 
1788 		if (rxstat & GEM_RD_OWN) {
1789 			GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1790 			/*
1791 			 * We have processed all of the receive buffers.
1792 			 */
1793 			break;
1794 		}
1795 
1796 		progress++;
1797 		ifp->if_ipackets++;
1798 
1799 		if (rxstat & GEM_RD_BAD_CRC) {
1800 			ifp->if_ierrors++;
1801 			aprint_error_dev(sc->sc_dev,
1802 			    "receive error: CRC error\n");
1803 			GEM_INIT_RXDESC(sc, i);
1804 			continue;
1805 		}
1806 
1807 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1808 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1809 #ifdef GEM_DEBUG
1810 		if (ifp->if_flags & IFF_DEBUG) {
1811 			printf("    rxsoft %p descriptor %d: ", rxs, i);
1812 			printf("gd_flags: 0x%016llx\t", (long long)
1813 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1814 			printf("gd_addr: 0x%016llx\n", (long long)
1815 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1816 		}
1817 #endif
1818 
1819 		/* No errors; receive the packet. */
1820 		len = GEM_RD_BUFLEN(rxstat);
1821 
1822 		/*
1823 		 * Allocate a new mbuf cluster.  If that fails, we are
1824 		 * out of memory, and must drop the packet and recycle
1825 		 * the buffer that's already attached to this descriptor.
1826 		 */
1827 		m = rxs->rxs_mbuf;
1828 		if (gem_add_rxbuf(sc, i) != 0) {
1829 			GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1830 			ifp->if_ierrors++;
1831 			GEM_INIT_RXDESC(sc, i);
1832 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1833 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1834 			continue;
1835 		}
1836 		m->m_data += 2; /* We're already off by two */
1837 
1838 		m->m_pkthdr.rcvif = ifp;
1839 		m->m_pkthdr.len = m->m_len = len;
1840 
1841 		/*
1842 		 * Pass this up to any BPF listeners, but only
1843 		 * pass it up the stack if it's for us.
1844 		 */
1845 		bpf_mtap(ifp, m);
1846 
1847 #ifdef INET
1848 		/* hardware checksum */
1849 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1850 			struct ether_header *eh;
1851 			struct ip *ip;
1852 			int32_t hlen, pktlen;
1853 
1854 			if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1855 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1856 					 ETHER_VLAN_ENCAP_LEN;
1857 				eh = (struct ether_header *) (mtod(m, char *) +
1858 					ETHER_VLAN_ENCAP_LEN);
1859 			} else {
1860 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1861 				eh = mtod(m, struct ether_header *);
1862 			}
1863 			if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1864 				goto swcsum;
1865 			ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
1866 
1867 			/* IPv4 only */
1868 			if (ip->ip_v != IPVERSION)
1869 				goto swcsum;
1870 
1871 			hlen = ip->ip_hl << 2;
1872 			if (hlen < sizeof(struct ip))
1873 				goto swcsum;
1874 
1875 			/*
1876 			 * bail if too short, has random trailing garbage,
1877 			 * truncated, fragment, or has ethernet pad.
1878 			 */
1879 			if ((ntohs(ip->ip_len) < hlen) ||
1880 			    (ntohs(ip->ip_len) != pktlen) ||
1881 			    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1882 				goto swcsum;
1883 
1884 			switch (ip->ip_p) {
1885 			case IPPROTO_TCP:
1886 				if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1887 					goto swcsum;
1888 				if (pktlen < (hlen + sizeof(struct tcphdr)))
1889 					goto swcsum;
1890 				m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1891 				break;
1892 			case IPPROTO_UDP:
1893 				/* FALLTHROUGH */
1894 			default:
1895 				goto swcsum;
1896 			}
1897 
1898 			/* the uncomplemented sum is expected */
1899 			m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1900 
1901 			/* if the pkt had ip options, we have to deduct them */
1902 			if (hlen > sizeof(struct ip)) {
1903 				uint16_t *opts;
1904 				uint32_t optsum, temp;
1905 
1906 				optsum = 0;
1907 				temp = hlen - sizeof(struct ip);
1908 				opts = (uint16_t *) ((char *) ip +
1909 					sizeof(struct ip));
1910 
1911 				while (temp > 1) {
1912 					optsum += ntohs(*opts++);
1913 					temp -= 2;
1914 				}
1915 				while (optsum >> 16)
1916 					optsum = (optsum >> 16) +
1917 						 (optsum & 0xffff);
1918 
1919 				/* Deduct ip opts sum from hwsum. */
1920 				m->m_pkthdr.csum_data += (uint16_t)~optsum;
1921 
1922 				while (m->m_pkthdr.csum_data >> 16)
1923 					m->m_pkthdr.csum_data =
1924 						(m->m_pkthdr.csum_data >> 16) +
1925 						(m->m_pkthdr.csum_data &
1926 						 0xffff);
1927 			}
1928 
1929 			m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1930 						  M_CSUM_NO_PSEUDOHDR;
1931 		} else
1932 swcsum:
1933 			m->m_pkthdr.csum_flags = 0;
1934 #endif
1935 		/* Pass it on. */
1936 		(*ifp->if_input)(ifp, m);
1937 	}
1938 
1939 	if (progress) {
1940 		/* Update the receive pointer. */
1941 		if (i == sc->sc_rxptr) {
1942 			GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1943 #ifdef GEM_DEBUG
1944 			if (ifp->if_flags & IFF_DEBUG)
1945 				printf("%s: rint: ring wrap\n",
1946 				    device_xname(sc->sc_dev));
1947 #endif
1948 		}
1949 		sc->sc_rxptr = i;
1950 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1951 	}
1952 #ifdef GEM_COUNTERS
1953 	if (progress <= 4) {
1954 		GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1955 	} else if (progress < 32) {
1956 		if (progress < 16)
1957 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1958 		else
1959 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1960 
1961 	} else {
1962 		if (progress < 64)
1963 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1964 		else
1965 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1966 	}
1967 #endif
1968 
1969 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1970 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1971 
1972 	/* Read error counters ... */
1973 	ifp->if_ierrors +=
1974 	    bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
1975 	    bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
1976 	    bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
1977 	    bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL);
1978 
1979 	/* ... then clear the hardware counters. */
1980 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1981 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1982 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1983 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1984 
1985 	return (1);
1986 }
1987 
1988 
1989 /*
1990  * gem_add_rxbuf:
1991  *
1992  *	Add a receive buffer to the indicated descriptor.
1993  */
1994 int
1995 gem_add_rxbuf(struct gem_softc *sc, int idx)
1996 {
1997 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1998 	struct mbuf *m;
1999 	int error;
2000 
2001 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2002 	if (m == NULL)
2003 		return (ENOBUFS);
2004 
2005 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2006 	MCLGET(m, M_DONTWAIT);
2007 	if ((m->m_flags & M_EXT) == 0) {
2008 		m_freem(m);
2009 		return (ENOBUFS);
2010 	}
2011 
2012 #ifdef GEM_DEBUG
2013 /* bzero the packet to check DMA */
2014 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
2015 #endif
2016 
2017 	if (rxs->rxs_mbuf != NULL)
2018 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
2019 
2020 	rxs->rxs_mbuf = m;
2021 
2022 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
2023 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2024 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2025 	if (error) {
2026 		aprint_error_dev(sc->sc_dev,
2027 		    "can't load rx DMA map %d, error = %d\n", idx, error);
2028 		panic("gem_add_rxbuf");	/* XXX */
2029 	}
2030 
2031 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
2032 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2033 
2034 	GEM_INIT_RXDESC(sc, idx);
2035 
2036 	return (0);
2037 }
2038 
2039 
2040 int
2041 gem_eint(struct gem_softc *sc, u_int status)
2042 {
2043 	char bits[128];
2044 	u_int32_t r, v;
2045 
2046 	if ((status & GEM_INTR_MIF) != 0) {
2047 		printf("%s: XXXlink status changed\n", device_xname(sc->sc_dev));
2048 		return (1);
2049 	}
2050 
2051 	if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
2052 		gem_reset_rxdma(sc);
2053 		return (1);
2054 	}
2055 
2056 	if (status & GEM_INTR_BERR) {
2057 		if (sc->sc_flags & GEM_PCI)
2058 			r = GEM_ERROR_STATUS;
2059 		else
2060 			r = GEM_SBUS_ERROR_STATUS;
2061 		bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2062 		v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2063 		aprint_error_dev(sc->sc_dev, "bus error interrupt: 0x%02x\n",
2064 		    v);
2065 		return (1);
2066 	}
2067 	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2068 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
2069 
2070 	return (1);
2071 }
2072 
2073 
2074 /*
2075  * PCS interrupts.
2076  * We should receive these when the link status changes, but sometimes
2077  * we don't receive them for link up.  We compensate for this in the
2078  * gem_tick() callout.
2079  */
2080 int
2081 gem_pint(struct gem_softc *sc)
2082 {
2083 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2084 	bus_space_tag_t t = sc->sc_bustag;
2085 	bus_space_handle_t h = sc->sc_h1;
2086 	u_int32_t v, v2;
2087 
2088 	/*
2089 	 * Clear the PCS interrupt from GEM_STATUS.  The PCS register is
2090 	 * latched, so we have to read it twice.  There is only one bit in
2091 	 * use, so the value is meaningless.
2092 	 */
2093 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2094 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2095 
2096 	if ((ifp->if_flags & IFF_UP) == 0)
2097 		return 1;
2098 
2099 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
2100 		return 1;
2101 
2102 	v = bus_space_read_4(t, h, GEM_MII_STATUS);
2103 	/* If we see remote fault, our link partner is probably going away */
2104 	if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
2105 		gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
2106 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
2107 	/* Otherwise, we may need to wait after auto-negotiation completes */
2108 	} else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
2109 	    GEM_MII_STATUS_ANEG_CPT) {
2110 		gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
2111 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
2112 	}
2113 	if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
2114 		if (sc->sc_flags & GEM_LINK) {
2115 			return 1;
2116 		}
2117 		callout_stop(&sc->sc_tick_ch);
2118 		v = bus_space_read_4(t, h, GEM_MII_ANAR);
2119 		v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
2120 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
2121 		sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
2122 		v &= v2;
2123 		if (v & GEM_MII_ANEG_FUL_DUPLX) {
2124 			sc->sc_mii.mii_media_active |= IFM_FDX;
2125 #ifdef GEM_DEBUG
2126 			aprint_debug_dev(sc->sc_dev, "link up: full duplex\n");
2127 #endif
2128 		} else if (v & GEM_MII_ANEG_HLF_DUPLX) {
2129 			sc->sc_mii.mii_media_active |= IFM_HDX;
2130 #ifdef GEM_DEBUG
2131 			aprint_debug_dev(sc->sc_dev, "link up: half duplex\n");
2132 #endif
2133 		} else {
2134 #ifdef GEM_DEBUG
2135 			aprint_debug_dev(sc->sc_dev, "duplex mismatch\n");
2136 #endif
2137 		}
2138 		gem_statuschange(sc);
2139 	} else {
2140 		if ((sc->sc_flags & GEM_LINK) == 0) {
2141 			return 1;
2142 		}
2143 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
2144 		sc->sc_mii.mii_media_status = IFM_AVALID;
2145 #ifdef GEM_DEBUG
2146 			aprint_debug_dev(sc->sc_dev, "link down\n");
2147 #endif
2148 		gem_statuschange(sc);
2149 
2150 		/* Start the 10 second timer */
2151 		callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
2152 	}
2153 	return 1;
2154 }
2155 
2156 
2157 
2158 int
2159 gem_intr(void *v)
2160 {
2161 	struct gem_softc *sc = v;
2162 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2163 	bus_space_tag_t t = sc->sc_bustag;
2164 	bus_space_handle_t h = sc->sc_h1;
2165 	u_int32_t status;
2166 	int r = 0;
2167 #ifdef GEM_DEBUG
2168 	char bits[128];
2169 #endif
2170 
2171 	/* XXX We should probably mask out interrupts until we're done */
2172 
2173 	sc->sc_ev_intr.ev_count++;
2174 
2175 	status = bus_space_read_4(t, h, GEM_STATUS);
2176 #ifdef GEM_DEBUG
2177 	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2178 #endif
2179 	DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
2180 		device_xname(sc->sc_dev), (status >> 19), bits));
2181 
2182 
2183 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
2184 		r |= gem_eint(sc, status);
2185 
2186 	/* We don't bother with GEM_INTR_TX_DONE */
2187 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
2188 		GEM_COUNTER_INCR(sc, sc_ev_txint);
2189 		r |= gem_tint(sc);
2190 	}
2191 
2192 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
2193 		GEM_COUNTER_INCR(sc, sc_ev_rxint);
2194 		r |= gem_rint(sc);
2195 	}
2196 
2197 	/* We should eventually do more than just print out error stats. */
2198 	if (status & GEM_INTR_TX_MAC) {
2199 		int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
2200 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
2201 			printf("%s: MAC tx fault, status %x\n",
2202 			    device_xname(sc->sc_dev), txstat);
2203 		if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
2204 			gem_init(ifp);
2205 	}
2206 	if (status & GEM_INTR_RX_MAC) {
2207 		int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
2208 		/*
2209 		 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
2210 		 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
2211 		 * silicon bug so handle them silently. Moreover, it's
2212 		 * likely that the receiver has hung so we reset it.
2213 		 */
2214 		if (rxstat & GEM_MAC_RX_OVERFLOW) {
2215 			ifp->if_ierrors++;
2216 			gem_reset_rxdma(sc);
2217 		} else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
2218 			printf("%s: MAC rx fault, status 0x%02x\n",
2219 			    device_xname(sc->sc_dev), rxstat);
2220 	}
2221 	if (status & GEM_INTR_PCS) {
2222 		r |= gem_pint(sc);
2223 	}
2224 
2225 /* Do we need to do anything with these?
2226 	if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
2227 		status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
2228 		if ((status2 & GEM_MAC_PAUSED) != 0)
2229 			aprintf_debug_dev(sc->sc_dev, "PAUSE received (%d slots)\n",
2230 			    GEM_MAC_PAUSE_TIME(status2));
2231 		if ((status2 & GEM_MAC_PAUSE) != 0)
2232 			aprintf_debug_dev(sc->sc_dev, "transited to PAUSE state\n");
2233 		if ((status2 & GEM_MAC_RESUME) != 0)
2234 			aprintf_debug_dev(sc->sc_dev, "transited to non-PAUSE state\n");
2235 	}
2236 	if ((status & GEM_INTR_MIF) != 0)
2237 		aprintf_debug_dev(sc->sc_dev, "MIF interrupt\n");
2238 */
2239 #if NRND > 0
2240 	rnd_add_uint32(&sc->rnd_source, status);
2241 #endif
2242 	return (r);
2243 }
2244 
2245 
2246 void
2247 gem_watchdog(struct ifnet *ifp)
2248 {
2249 	struct gem_softc *sc = ifp->if_softc;
2250 
2251 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
2252 		"GEM_MAC_RX_CONFIG %x\n",
2253 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
2254 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
2255 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
2256 
2257 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
2258 	++ifp->if_oerrors;
2259 
2260 	/* Try to get more packets going. */
2261 	gem_start(ifp);
2262 }
2263 
2264 /*
2265  * Initialize the MII Management Interface
2266  */
2267 void
2268 gem_mifinit(struct gem_softc *sc)
2269 {
2270 	bus_space_tag_t t = sc->sc_bustag;
2271 	bus_space_handle_t mif = sc->sc_h1;
2272 
2273 	/* Configure the MIF in frame mode */
2274 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
2275 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
2276 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
2277 }
2278 
2279 /*
2280  * MII interface
2281  *
2282  * The GEM MII interface supports at least three different operating modes:
2283  *
2284  * Bitbang mode is implemented using data, clock and output enable registers.
2285  *
2286  * Frame mode is implemented by loading a complete frame into the frame
2287  * register and polling the valid bit for completion.
2288  *
2289  * Polling mode uses the frame register but completion is indicated by
2290  * an interrupt.
2291  *
2292  */
2293 static int
2294 gem_mii_readreg(device_t self, int phy, int reg)
2295 {
2296 	struct gem_softc *sc = device_private(self);
2297 	bus_space_tag_t t = sc->sc_bustag;
2298 	bus_space_handle_t mif = sc->sc_h1;
2299 	int n;
2300 	u_int32_t v;
2301 
2302 #ifdef GEM_DEBUG1
2303 	if (sc->sc_debug)
2304 		printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
2305 #endif
2306 
2307 	/* Construct the frame command */
2308 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
2309 		GEM_MIF_FRAME_READ;
2310 
2311 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2312 	for (n = 0; n < 100; n++) {
2313 		DELAY(1);
2314 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2315 		if (v & GEM_MIF_FRAME_TA0)
2316 			return (v & GEM_MIF_FRAME_DATA);
2317 	}
2318 
2319 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
2320 	return (0);
2321 }
2322 
2323 static void
2324 gem_mii_writereg(device_t self, int phy, int reg, int val)
2325 {
2326 	struct gem_softc *sc = device_private(self);
2327 	bus_space_tag_t t = sc->sc_bustag;
2328 	bus_space_handle_t mif = sc->sc_h1;
2329 	int n;
2330 	u_int32_t v;
2331 
2332 #ifdef GEM_DEBUG1
2333 	if (sc->sc_debug)
2334 		printf("gem_mii_writereg: PHY %d reg %d val %x\n",
2335 			phy, reg, val);
2336 #endif
2337 
2338 	/* Construct the frame command */
2339 	v = GEM_MIF_FRAME_WRITE			|
2340 	    (phy << GEM_MIF_PHY_SHIFT)		|
2341 	    (reg << GEM_MIF_REG_SHIFT)		|
2342 	    (val & GEM_MIF_FRAME_DATA);
2343 
2344 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2345 	for (n = 0; n < 100; n++) {
2346 		DELAY(1);
2347 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2348 		if (v & GEM_MIF_FRAME_TA0)
2349 			return;
2350 	}
2351 
2352 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
2353 }
2354 
2355 static void
2356 gem_mii_statchg(device_t self)
2357 {
2358 	struct gem_softc *sc = device_private(self);
2359 #ifdef GEM_DEBUG
2360 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
2361 #endif
2362 
2363 #ifdef GEM_DEBUG
2364 	if (sc->sc_debug)
2365 		printf("gem_mii_statchg: status change: phy = %d\n",
2366 			sc->sc_phys[instance]);
2367 #endif
2368 	gem_statuschange(sc);
2369 }
2370 
2371 /*
2372  * Common status change for gem_mii_statchg() and gem_pint()
2373  */
2374 void
2375 gem_statuschange(struct gem_softc* sc)
2376 {
2377 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2378 	bus_space_tag_t t = sc->sc_bustag;
2379 	bus_space_handle_t mac = sc->sc_h1;
2380 	int gigabit;
2381 	u_int32_t rxcfg, txcfg, v;
2382 
2383 	if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
2384 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
2385 		sc->sc_flags |= GEM_LINK;
2386 	else
2387 		sc->sc_flags &= ~GEM_LINK;
2388 
2389 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2390 		gigabit = 1;
2391 	else
2392 		gigabit = 0;
2393 
2394 	/*
2395 	 * The configuration done here corresponds to the steps F) and
2396 	 * G) and as far as enabling of RX and TX MAC goes also step H)
2397 	 * of the initialization sequence outlined in section 3.2.1 of
2398 	 * the GEM Gigabit Ethernet ASIC Specification.
2399 	 */
2400 
2401 	rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
2402 	rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
2403 	txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
2404 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2405 		txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
2406 	else if (gigabit) {
2407 		rxcfg |= GEM_MAC_RX_CARR_EXTEND;
2408 		txcfg |= GEM_MAC_RX_CARR_EXTEND;
2409 	}
2410 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
2411 	bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
2412 	    BUS_SPACE_BARRIER_WRITE);
2413 	if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
2414 		aprint_normal_dev(sc->sc_dev, "cannot disable TX MAC\n");
2415 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
2416 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
2417 	bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
2418 	    BUS_SPACE_BARRIER_WRITE);
2419 	if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
2420 		aprint_normal_dev(sc->sc_dev, "cannot disable RX MAC\n");
2421 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
2422 
2423 	v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
2424 	    ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
2425 	bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
2426 
2427 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
2428 	    gigabit != 0)
2429 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2430 		    GEM_MAC_SLOT_TIME_CARR_EXTEND);
2431 	else
2432 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2433 		    GEM_MAC_SLOT_TIME_NORMAL);
2434 
2435 	/* XIF Configuration */
2436 	if (sc->sc_flags & GEM_LINK)
2437 		v = GEM_MAC_XIF_LINK_LED;
2438 	else
2439 		v = 0;
2440 	v |= GEM_MAC_XIF_TX_MII_ENA;
2441 
2442 	/* If an external transceiver is connected, enable its MII drivers */
2443 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
2444 	if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
2445 		if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
2446 			/* External MII needs echo disable if half duplex. */
2447 			if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) &
2448 			    IFM_FDX) != 0)
2449 				/* turn on full duplex LED */
2450 				v |= GEM_MAC_XIF_FDPLX_LED;
2451 			else
2452 				/* half duplex -- disable echo */
2453 				v |= GEM_MAC_XIF_ECHO_DISABL;
2454 			if (gigabit)
2455 				v |= GEM_MAC_XIF_GMII_MODE;
2456 			else
2457 				v &= ~GEM_MAC_XIF_GMII_MODE;
2458 		} else
2459 			/* Internal MII needs buf enable */
2460 			v |= GEM_MAC_XIF_MII_BUF_ENA;
2461 	} else {
2462 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2463 			v |= GEM_MAC_XIF_FDPLX_LED;
2464 		v |= GEM_MAC_XIF_GMII_MODE;
2465 	}
2466 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
2467 
2468 	if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2469 	    (sc->sc_flags & GEM_LINK) != 0) {
2470 		bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
2471 		    txcfg | GEM_MAC_TX_ENABLE);
2472 		bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
2473 		    rxcfg | GEM_MAC_RX_ENABLE);
2474 	}
2475 }
2476 
2477 int
2478 gem_ser_mediachange(struct ifnet *ifp)
2479 {
2480 	struct gem_softc *sc = ifp->if_softc;
2481 	u_int s, t;
2482 
2483 	if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
2484 		return EINVAL;
2485 
2486 	s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
2487 	if (s == IFM_AUTO) {
2488 		if (sc->sc_mii_media != s) {
2489 #ifdef GEM_DEBUG
2490 			aprint_debug_dev(sc->sc_dev, "setting media to auto\n");
2491 #endif
2492 			sc->sc_mii_media = s;
2493 			if (ifp->if_flags & IFF_UP) {
2494 				gem_pcs_stop(sc, 0);
2495 				gem_pcs_start(sc);
2496 			}
2497 		}
2498 		return 0;
2499 	}
2500 	if (s == IFM_1000_SX) {
2501 		t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media);
2502 		if (t == IFM_FDX || t == IFM_HDX) {
2503 			if (sc->sc_mii_media != t) {
2504 				sc->sc_mii_media = t;
2505 #ifdef GEM_DEBUG
2506 				aprint_debug_dev(sc->sc_dev,
2507 				    "setting media to 1000baseSX-%s\n",
2508 				    t == IFM_FDX ? "FDX" : "HDX");
2509 #endif
2510 				if (ifp->if_flags & IFF_UP) {
2511 					gem_pcs_stop(sc, 0);
2512 					gem_pcs_start(sc);
2513 				}
2514 			}
2515 			return 0;
2516 		}
2517 	}
2518 	return EINVAL;
2519 }
2520 
2521 void
2522 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2523 {
2524 	struct gem_softc *sc = ifp->if_softc;
2525 
2526 	if ((ifp->if_flags & IFF_UP) == 0)
2527 		return;
2528 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
2529 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
2530 }
2531 
2532 static int
2533 gem_ifflags_cb(struct ethercom *ec)
2534 {
2535 	struct ifnet *ifp = &ec->ec_if;
2536 	struct gem_softc *sc = ifp->if_softc;
2537 	int change = ifp->if_flags ^ sc->sc_if_flags;
2538 
2539 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
2540 		return ENETRESET;
2541 	else if ((change & IFF_PROMISC) != 0)
2542 		gem_setladrf(sc);
2543 	return 0;
2544 }
2545 
2546 /*
2547  * Process an ioctl request.
2548  */
2549 int
2550 gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
2551 {
2552 	struct gem_softc *sc = ifp->if_softc;
2553 	int s, error = 0;
2554 
2555 	s = splnet();
2556 
2557 	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2558 		error = 0;
2559 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2560 			;
2561 		else if (ifp->if_flags & IFF_RUNNING) {
2562 			/*
2563 			 * Multicast list has changed; set the hardware filter
2564 			 * accordingly.
2565 			 */
2566 			gem_setladrf(sc);
2567 		}
2568 	}
2569 
2570 	/* Try to get things going again */
2571 	if (ifp->if_flags & IFF_UP)
2572 		gem_start(ifp);
2573 	splx(s);
2574 	return (error);
2575 }
2576 
2577 static void
2578 gem_inten(struct gem_softc *sc)
2579 {
2580 	bus_space_tag_t t = sc->sc_bustag;
2581 	bus_space_handle_t h = sc->sc_h1;
2582 	uint32_t v;
2583 
2584 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
2585 		v = GEM_INTR_PCS;
2586 	else
2587 		v = GEM_INTR_MIF;
2588 	bus_space_write_4(t, h, GEM_INTMASK,
2589 		      ~(GEM_INTR_TX_INTME |
2590 			GEM_INTR_TX_EMPTY |
2591 			GEM_INTR_TX_MAC |
2592 			GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF|
2593 			GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL|
2594 			GEM_INTR_BERR | v));
2595 }
2596 
2597 bool
2598 gem_resume(device_t self, const pmf_qual_t *qual)
2599 {
2600 	struct gem_softc *sc = device_private(self);
2601 
2602 	gem_inten(sc);
2603 
2604 	return true;
2605 }
2606 
2607 bool
2608 gem_suspend(device_t self, const pmf_qual_t *qual)
2609 {
2610 	struct gem_softc *sc = device_private(self);
2611 	bus_space_tag_t t = sc->sc_bustag;
2612 	bus_space_handle_t h = sc->sc_h1;
2613 
2614 	bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
2615 
2616 	return true;
2617 }
2618 
2619 bool
2620 gem_shutdown(device_t self, int howto)
2621 {
2622 	struct gem_softc *sc = device_private(self);
2623 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2624 
2625 	gem_stop(ifp, 1);
2626 
2627 	return true;
2628 }
2629 
2630 /*
2631  * Set up the logical address filter.
2632  */
2633 void
2634 gem_setladrf(struct gem_softc *sc)
2635 {
2636 	struct ethercom *ec = &sc->sc_ethercom;
2637 	struct ifnet *ifp = &ec->ec_if;
2638 	struct ether_multi *enm;
2639 	struct ether_multistep step;
2640 	bus_space_tag_t t = sc->sc_bustag;
2641 	bus_space_handle_t h = sc->sc_h1;
2642 	u_int32_t crc;
2643 	u_int32_t hash[16];
2644 	u_int32_t v;
2645 	int i;
2646 
2647 	/* Get current RX configuration */
2648 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2649 
2650 	/*
2651 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2652 	 * and hash filter.  Depending on the case, the right bit will be
2653 	 * enabled.
2654 	 */
2655 	v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
2656 	    GEM_MAC_RX_PROMISC_GRP);
2657 
2658 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
2659 		/* Turn on promiscuous mode */
2660 		v |= GEM_MAC_RX_PROMISCUOUS;
2661 		ifp->if_flags |= IFF_ALLMULTI;
2662 		goto chipit;
2663 	}
2664 
2665 	/*
2666 	 * Set up multicast address filter by passing all multicast addresses
2667 	 * through a crc generator, and then using the high order 8 bits as an
2668 	 * index into the 256 bit logical address filter.  The high order 4
2669 	 * bits selects the word, while the other 4 bits select the bit within
2670 	 * the word (where bit 0 is the MSB).
2671 	 */
2672 
2673 	/* Clear hash table */
2674 	memset(hash, 0, sizeof(hash));
2675 
2676 	ETHER_FIRST_MULTI(step, ec, enm);
2677 	while (enm != NULL) {
2678 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2679 			/*
2680 			 * We must listen to a range of multicast addresses.
2681 			 * For now, just accept all multicasts, rather than
2682 			 * trying to set only those filter bits needed to match
2683 			 * the range.  (At this time, the only use of address
2684 			 * ranges is for IP multicast routing, for which the
2685 			 * range is big enough to require all bits set.)
2686 			 * XXX should use the address filters for this
2687 			 */
2688 			ifp->if_flags |= IFF_ALLMULTI;
2689 			v |= GEM_MAC_RX_PROMISC_GRP;
2690 			goto chipit;
2691 		}
2692 
2693 		/* Get the LE CRC32 of the address */
2694 		crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2695 
2696 		/* Just want the 8 most significant bits. */
2697 		crc >>= 24;
2698 
2699 		/* Set the corresponding bit in the filter. */
2700 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
2701 
2702 		ETHER_NEXT_MULTI(step, enm);
2703 	}
2704 
2705 	v |= GEM_MAC_RX_HASH_FILTER;
2706 	ifp->if_flags &= ~IFF_ALLMULTI;
2707 
2708 	/* Now load the hash table into the chip (if we are using it) */
2709 	for (i = 0; i < 16; i++) {
2710 		bus_space_write_4(t, h,
2711 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2712 		    hash[i]);
2713 	}
2714 
2715 chipit:
2716 	sc->sc_if_flags = ifp->if_flags;
2717 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2718 }
2719