xref: /netbsd-src/sys/dev/ic/gem.c (revision b7ae68fde0d8ef1c03714e8bbb1ee7c6118ea93b)
1 /*	$NetBSD: gem.c,v 1.48 2006/09/24 03:53:08 jmcneill Exp $ */
2 
3 /*
4  *
5  * Copyright (C) 2001 Eduardo Horvath.
6  * All rights reserved.
7  *
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  */
31 
32 /*
33  * Driver for Sun GEM ethernet controllers.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.48 2006/09/24 03:53:08 jmcneill Exp $");
38 
39 #include "opt_inet.h"
40 #include "bpfilter.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/mbuf.h>
46 #include <sys/syslog.h>
47 #include <sys/malloc.h>
48 #include <sys/kernel.h>
49 #include <sys/socket.h>
50 #include <sys/ioctl.h>
51 #include <sys/errno.h>
52 #include <sys/device.h>
53 
54 #include <machine/endian.h>
55 
56 #include <uvm/uvm_extern.h>
57 
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_ether.h>
62 
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/tcp.h>
69 #include <netinet/udp.h>
70 #endif
71 
72 #if NBPFILTER > 0
73 #include <net/bpf.h>
74 #endif
75 
76 #include <machine/bus.h>
77 #include <machine/intr.h>
78 
79 #include <dev/mii/mii.h>
80 #include <dev/mii/miivar.h>
81 #include <dev/mii/mii_bitbang.h>
82 
83 #include <dev/ic/gemreg.h>
84 #include <dev/ic/gemvar.h>
85 
86 #define TRIES	10000
87 
88 static void	gem_start(struct ifnet *);
89 static void	gem_stop(struct ifnet *, int);
90 int		gem_ioctl(struct ifnet *, u_long, caddr_t);
91 void		gem_tick(void *);
92 void		gem_watchdog(struct ifnet *);
93 void		gem_shutdown(void *);
94 int		gem_init(struct ifnet *);
95 void		gem_init_regs(struct gem_softc *sc);
96 static int	gem_ringsize(int sz);
97 static int	gem_meminit(struct gem_softc *);
98 void		gem_mifinit(struct gem_softc *);
99 static int	gem_bitwait(struct gem_softc *sc, int, u_int32_t, u_int32_t);
100 void		gem_reset(struct gem_softc *);
101 int		gem_reset_rx(struct gem_softc *sc);
102 int		gem_reset_tx(struct gem_softc *sc);
103 int		gem_disable_rx(struct gem_softc *sc);
104 int		gem_disable_tx(struct gem_softc *sc);
105 static void	gem_rxdrain(struct gem_softc *sc);
106 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
107 void		gem_setladrf(struct gem_softc *);
108 
109 /* MII methods & callbacks */
110 static int	gem_mii_readreg(struct device *, int, int);
111 static void	gem_mii_writereg(struct device *, int, int, int);
112 static void	gem_mii_statchg(struct device *);
113 
114 int		gem_mediachange(struct ifnet *);
115 void		gem_mediastatus(struct ifnet *, struct ifmediareq *);
116 
117 struct mbuf	*gem_get(struct gem_softc *, int, int);
118 int		gem_put(struct gem_softc *, int, struct mbuf *);
119 void		gem_read(struct gem_softc *, int, int);
120 int		gem_eint(struct gem_softc *, u_int);
121 int		gem_rint(struct gem_softc *);
122 int		gem_tint(struct gem_softc *);
123 void		gem_power(int, void *);
124 
125 #ifdef GEM_DEBUG
126 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
127 				printf x
128 #else
129 #define	DPRINTF(sc, x)	/* nothing */
130 #endif
131 
132 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
133 
134 
135 /*
136  * gem_attach:
137  *
138  *	Attach a Gem interface to the system.
139  */
140 void
141 gem_attach(sc, enaddr)
142 	struct gem_softc *sc;
143 	const uint8_t *enaddr;
144 {
145 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
146 	struct mii_data *mii = &sc->sc_mii;
147 	struct mii_softc *child;
148 	struct ifmedia_entry *ifm;
149 	int i, error;
150 	u_int32_t v;
151 	char *nullbuf;
152 
153 	/* Make sure the chip is stopped. */
154 	ifp->if_softc = sc;
155 	gem_reset(sc);
156 
157 	/*
158 	 * Allocate the control data structures, and create and load the
159 	 * DMA map for it. gem_control_data is 9216 bytes, we have space for
160 	 * the padding buffer in the bus_dmamem_alloc()'d memory.
161 	 */
162 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
163 	    sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
164 	    0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
165 		aprint_error(
166 		   "%s: unable to allocate control data, error = %d\n",
167 		    sc->sc_dev.dv_xname, error);
168 		goto fail_0;
169 	}
170 
171 /* XXX should map this in with correct endianness */
172 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
173 	    sizeof(struct gem_control_data), (caddr_t *)&sc->sc_control_data,
174 	    BUS_DMA_COHERENT)) != 0) {
175 		aprint_error("%s: unable to map control data, error = %d\n",
176 		    sc->sc_dev.dv_xname, error);
177 		goto fail_1;
178 	}
179 
180 	nullbuf =
181 	    (caddr_t)sc->sc_control_data + sizeof(struct gem_control_data);
182 
183 	if ((error = bus_dmamap_create(sc->sc_dmatag,
184 	    sizeof(struct gem_control_data), 1,
185 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
186 		aprint_error("%s: unable to create control data DMA map, "
187 		    "error = %d\n", sc->sc_dev.dv_xname, error);
188 		goto fail_2;
189 	}
190 
191 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
192 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
193 	    0)) != 0) {
194 		aprint_error(
195 		    "%s: unable to load control data DMA map, error = %d\n",
196 		    sc->sc_dev.dv_xname, error);
197 		goto fail_3;
198 	}
199 
200 	memset(nullbuf, 0, ETHER_MIN_TX);
201 	if ((error = bus_dmamap_create(sc->sc_dmatag,
202 	    ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
203 		aprint_error("%s: unable to create padding DMA map, "
204 		    "error = %d\n", sc->sc_dev.dv_xname, error);
205 		goto fail_4;
206 	}
207 
208 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
209 	    nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
210 		aprint_error(
211 		    "%s: unable to load padding DMA map, error = %d\n",
212 		    sc->sc_dev.dv_xname, error);
213 		goto fail_5;
214 	}
215 
216 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
217 	    BUS_DMASYNC_PREWRITE);
218 
219 	/*
220 	 * Initialize the transmit job descriptors.
221 	 */
222 	SIMPLEQ_INIT(&sc->sc_txfreeq);
223 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
224 
225 	/*
226 	 * Create the transmit buffer DMA maps.
227 	 */
228 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
229 		struct gem_txsoft *txs;
230 
231 		txs = &sc->sc_txsoft[i];
232 		txs->txs_mbuf = NULL;
233 		if ((error = bus_dmamap_create(sc->sc_dmatag,
234 		    ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
235 		    ETHER_MAX_LEN_JUMBO, 0, 0,
236 		    &txs->txs_dmamap)) != 0) {
237 			aprint_error("%s: unable to create tx DMA map %d, "
238 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
239 			goto fail_6;
240 		}
241 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
242 	}
243 
244 	/*
245 	 * Create the receive buffer DMA maps.
246 	 */
247 	for (i = 0; i < GEM_NRXDESC; i++) {
248 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
249 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
250 			aprint_error("%s: unable to create rx DMA map %d, "
251 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
252 			goto fail_7;
253 		}
254 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
255 	}
256 
257 	/*
258 	 * From this point forward, the attachment cannot fail.  A failure
259 	 * before this point releases all resources that may have been
260 	 * allocated.
261 	 */
262 
263 	/* Announce ourselves. */
264 	aprint_normal("%s: Ethernet address %s", sc->sc_dev.dv_xname,
265 	    ether_sprintf(enaddr));
266 
267 	/* Get RX FIFO size */
268 	sc->sc_rxfifosize = 64 *
269 	    bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_FIFO_SIZE);
270 	aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
271 
272 	/* Get TX FIFO size */
273 	v = bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_FIFO_SIZE);
274 	aprint_normal(", %uKB TX fifo\n", v / 16);
275 
276 	/* Initialize ifnet structure. */
277 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
278 	ifp->if_softc = sc;
279 	ifp->if_flags =
280 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
281 	sc->sc_if_flags = ifp->if_flags;
282 	ifp->if_capabilities |=
283 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
284 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
285 	ifp->if_start = gem_start;
286 	ifp->if_ioctl = gem_ioctl;
287 	ifp->if_watchdog = gem_watchdog;
288 	ifp->if_stop = gem_stop;
289 	ifp->if_init = gem_init;
290 	IFQ_SET_READY(&ifp->if_snd);
291 
292 	/* Initialize ifmedia structures and MII info */
293 	mii->mii_ifp = ifp;
294 	mii->mii_readreg = gem_mii_readreg;
295 	mii->mii_writereg = gem_mii_writereg;
296 	mii->mii_statchg = gem_mii_statchg;
297 
298 	ifmedia_init(&mii->mii_media, IFM_IMASK, gem_mediachange, gem_mediastatus);
299 
300 	gem_mifinit(sc);
301 
302 #if defined (PMAC_G5)
303 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
304 			1, MII_OFFSET_ANY, MIIF_FORCEANEG);
305 #else
306 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
307 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
308 #endif
309 
310 	child = LIST_FIRST(&mii->mii_phys);
311 	if (child == NULL) {
312 		/* No PHY attached */
313 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
314 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
315 	} else {
316 		/*
317 		 * Walk along the list of attached MII devices and
318 		 * establish an `MII instance' to `phy number'
319 		 * mapping. We'll use this mapping in media change
320 		 * requests to determine which phy to use to program
321 		 * the MIF configuration register.
322 		 */
323 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
324 			/*
325 			 * Note: we support just two PHYs: the built-in
326 			 * internal device and an external on the MII
327 			 * connector.
328 			 */
329 			if (child->mii_phy > 1 || child->mii_inst > 1) {
330 				aprint_error(
331 				    "%s: cannot accomodate MII device %s"
332 				       " at phy %d, instance %d\n",
333 				       sc->sc_dev.dv_xname,
334 				       child->mii_dev.dv_xname,
335 				       child->mii_phy, child->mii_inst);
336 				continue;
337 			}
338 
339 			sc->sc_phys[child->mii_inst] = child->mii_phy;
340 		}
341 
342 		/*
343 		 * Now select and activate the PHY we will use.
344 		 *
345 		 * The order of preference is External (MDI1),
346 		 * Internal (MDI0), Serial Link (no MII).
347 		 */
348 		if (sc->sc_phys[1]) {
349 #ifdef GEM_DEBUG
350 			aprint_debug("using external phy\n");
351 #endif
352 			sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
353 		} else {
354 #ifdef GEM_DEBUG
355 			aprint_debug("using internal phy\n");
356 #endif
357 			sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
358 		}
359 		bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG,
360 			sc->sc_mif_config);
361 
362 		/*
363 		 * XXX - we can really do the following ONLY if the
364 		 * phy indeed has the auto negotiation capability!!
365 		 */
366 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
367 	}
368 
369 	/*
370 	 * If we support GigE media, we support jumbo frames too.
371 	 * Unless we are Apple.
372 	 */
373 	TAILQ_FOREACH(ifm, &sc->sc_media.ifm_list, ifm_list) {
374 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
375 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
376 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
377 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
378 			if (sc->sc_variant != GEM_APPLE_GMAC)
379 				sc->sc_ethercom.ec_capabilities
380 				    |= ETHERCAP_JUMBO_MTU;
381 
382 			sc->sc_flags |= GEM_GIGABIT;
383 			break;
384 		}
385 	}
386 
387 	/* claim 802.1q capability */
388 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
389 
390 	/* Attach the interface. */
391 	if_attach(ifp);
392 	ether_ifattach(ifp, enaddr);
393 
394 	sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
395 	if (sc->sc_sh == NULL)
396 		panic("gem_config: can't establish shutdownhook");
397 
398 #if NRND > 0
399 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
400 			  RND_TYPE_NET, 0);
401 #endif
402 
403 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
404 	    NULL, sc->sc_dev.dv_xname, "interrupts");
405 #ifdef GEM_COUNTERS
406 	evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
407 	    &sc->sc_ev_intr, sc->sc_dev.dv_xname, "tx interrupts");
408 	evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
409 	    &sc->sc_ev_intr, sc->sc_dev.dv_xname, "rx interrupts");
410 	evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
411 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx ring full");
412 	evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
413 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx malloc failure");
414 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
415 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 0desc");
416 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
417 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 1desc");
418 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
419 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 2desc");
420 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
421 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 3desc");
422 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
423 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >3desc");
424 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
425 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >7desc");
426 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
427 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >15desc");
428 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
429 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >31desc");
430 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
431 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >63desc");
432 #endif
433 
434 #if notyet
435 	/*
436 	 * Add a suspend hook to make sure we come back up after a
437 	 * resume.
438 	 */
439 	sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
440 	    gem_power, sc);
441 	if (sc->sc_powerhook == NULL)
442 		aprint_error("%s: WARNING: unable to establish power hook\n",
443 		    sc->sc_dev.dv_xname);
444 #endif
445 
446 	callout_init(&sc->sc_tick_ch);
447 	return;
448 
449 	/*
450 	 * Free any resources we've allocated during the failed attach
451 	 * attempt.  Do this in reverse order and fall through.
452 	 */
453  fail_7:
454 	for (i = 0; i < GEM_NRXDESC; i++) {
455 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
456 			bus_dmamap_destroy(sc->sc_dmatag,
457 			    sc->sc_rxsoft[i].rxs_dmamap);
458 	}
459  fail_6:
460 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
461 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
462 			bus_dmamap_destroy(sc->sc_dmatag,
463 			    sc->sc_txsoft[i].txs_dmamap);
464 	}
465 	bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
466  fail_5:
467 	bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
468  fail_4:
469 	bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)nullbuf, ETHER_MIN_TX);
470  fail_3:
471 	bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
472  fail_2:
473 	bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sc_control_data,
474 	    sizeof(struct gem_control_data));
475  fail_1:
476 	bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
477  fail_0:
478 	return;
479 }
480 
481 
482 void
483 gem_tick(arg)
484 	void *arg;
485 {
486 	struct gem_softc *sc = arg;
487 	int s;
488 
489 	s = splnet();
490 	mii_tick(&sc->sc_mii);
491 	splx(s);
492 
493 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
494 
495 }
496 
497 static int
498 gem_bitwait(sc, r, clr, set)
499 	struct gem_softc *sc;
500 	int r;
501 	u_int32_t clr;
502 	u_int32_t set;
503 {
504 	int i;
505 	u_int32_t reg;
506 
507 	for (i = TRIES; i--; DELAY(100)) {
508 		reg = bus_space_read_4(sc->sc_bustag, sc->sc_h, r);
509 		if ((r & clr) == 0 && (r & set) == set)
510 			return (1);
511 	}
512 	return (0);
513 }
514 
515 void
516 gem_reset(sc)
517 	struct gem_softc *sc;
518 {
519 	bus_space_tag_t t = sc->sc_bustag;
520 	bus_space_handle_t h = sc->sc_h;
521 	int s;
522 
523 	s = splnet();
524 	DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
525 	gem_reset_rx(sc);
526 	gem_reset_tx(sc);
527 
528 	/* Do a full reset */
529 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
530 	if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
531 		printf("%s: cannot reset device\n", sc->sc_dev.dv_xname);
532 	splx(s);
533 }
534 
535 
536 /*
537  * gem_rxdrain:
538  *
539  *	Drain the receive queue.
540  */
541 static void
542 gem_rxdrain(struct gem_softc *sc)
543 {
544 	struct gem_rxsoft *rxs;
545 	int i;
546 
547 	for (i = 0; i < GEM_NRXDESC; i++) {
548 		rxs = &sc->sc_rxsoft[i];
549 		if (rxs->rxs_mbuf != NULL) {
550 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
551 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
552 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
553 			m_freem(rxs->rxs_mbuf);
554 			rxs->rxs_mbuf = NULL;
555 		}
556 	}
557 }
558 
559 /*
560  * Reset the whole thing.
561  */
562 static void
563 gem_stop(struct ifnet *ifp, int disable)
564 {
565 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
566 	struct gem_txsoft *txs;
567 
568 	DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
569 
570 	callout_stop(&sc->sc_tick_ch);
571 	mii_down(&sc->sc_mii);
572 
573 	/* XXX - Should we reset these instead? */
574 	gem_disable_rx(sc);
575 	gem_disable_tx(sc);
576 
577 	/*
578 	 * Release any queued transmit buffers.
579 	 */
580 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
581 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
582 		if (txs->txs_mbuf != NULL) {
583 			bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
584 			    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
585 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
586 			m_freem(txs->txs_mbuf);
587 			txs->txs_mbuf = NULL;
588 		}
589 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
590 	}
591 
592 	if (disable) {
593 		gem_rxdrain(sc);
594 	}
595 
596 	/*
597 	 * Mark the interface down and cancel the watchdog timer.
598 	 */
599 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
600 	sc->sc_if_flags = ifp->if_flags;
601 	ifp->if_timer = 0;
602 }
603 
604 
605 /*
606  * Reset the receiver
607  */
608 int
609 gem_reset_rx(struct gem_softc *sc)
610 {
611 	bus_space_tag_t t = sc->sc_bustag;
612 	bus_space_handle_t h = sc->sc_h;
613 
614 	/*
615 	 * Resetting while DMA is in progress can cause a bus hang, so we
616 	 * disable DMA first.
617 	 */
618 	gem_disable_rx(sc);
619 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
620 	/* Wait till it finishes */
621 	if (!gem_bitwait(sc, GEM_RX_CONFIG, 1, 0))
622 		printf("%s: cannot disable read dma\n", sc->sc_dev.dv_xname);
623 	/* Wait 5ms extra. */
624 	delay(5000);
625 
626 	/* Finally, reset the ERX */
627 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX);
628 	/* Wait till it finishes */
629 	if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_TX, 0)) {
630 		printf("%s: cannot reset receiver\n", sc->sc_dev.dv_xname);
631 		return (1);
632 	}
633 	return (0);
634 }
635 
636 
637 /*
638  * Reset the transmitter
639  */
640 int
641 gem_reset_tx(struct gem_softc *sc)
642 {
643 	bus_space_tag_t t = sc->sc_bustag;
644 	bus_space_handle_t h = sc->sc_h;
645 
646 	/*
647 	 * Resetting while DMA is in progress can cause a bus hang, so we
648 	 * disable DMA first.
649 	 */
650 	gem_disable_tx(sc);
651 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
652 	/* Wait till it finishes */
653 	if (!gem_bitwait(sc, GEM_TX_CONFIG, 1, 0))
654 		printf("%s: cannot disable read dma\n", sc->sc_dev.dv_xname);
655 	/* Wait 5ms extra. */
656 	delay(5000);
657 
658 	/* Finally, reset the ETX */
659 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX);
660 	/* Wait till it finishes */
661 	if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_TX, 0)) {
662 		printf("%s: cannot reset receiver\n",
663 			sc->sc_dev.dv_xname);
664 		return (1);
665 	}
666 	return (0);
667 }
668 
669 /*
670  * disable receiver.
671  */
672 int
673 gem_disable_rx(struct gem_softc *sc)
674 {
675 	bus_space_tag_t t = sc->sc_bustag;
676 	bus_space_handle_t h = sc->sc_h;
677 	u_int32_t cfg;
678 
679 	/* Flip the enable bit */
680 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
681 	cfg &= ~GEM_MAC_RX_ENABLE;
682 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
683 
684 	/* Wait for it to finish */
685 	return (gem_bitwait(sc, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
686 }
687 
688 /*
689  * disable transmitter.
690  */
691 int
692 gem_disable_tx(struct gem_softc *sc)
693 {
694 	bus_space_tag_t t = sc->sc_bustag;
695 	bus_space_handle_t h = sc->sc_h;
696 	u_int32_t cfg;
697 
698 	/* Flip the enable bit */
699 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
700 	cfg &= ~GEM_MAC_TX_ENABLE;
701 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
702 
703 	/* Wait for it to finish */
704 	return (gem_bitwait(sc, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
705 }
706 
707 /*
708  * Initialize interface.
709  */
710 int
711 gem_meminit(struct gem_softc *sc)
712 {
713 	struct gem_rxsoft *rxs;
714 	int i, error;
715 
716 	/*
717 	 * Initialize the transmit descriptor ring.
718 	 */
719 	memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
720 	for (i = 0; i < GEM_NTXDESC; i++) {
721 		sc->sc_txdescs[i].gd_flags = 0;
722 		sc->sc_txdescs[i].gd_addr = 0;
723 	}
724 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
725 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
726 	sc->sc_txfree = GEM_NTXDESC-1;
727 	sc->sc_txnext = 0;
728 	sc->sc_txwin = 0;
729 
730 	/*
731 	 * Initialize the receive descriptor and receive job
732 	 * descriptor rings.
733 	 */
734 	for (i = 0; i < GEM_NRXDESC; i++) {
735 		rxs = &sc->sc_rxsoft[i];
736 		if (rxs->rxs_mbuf == NULL) {
737 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
738 				printf("%s: unable to allocate or map rx "
739 				    "buffer %d, error = %d\n",
740 				    sc->sc_dev.dv_xname, i, error);
741 				/*
742 				 * XXX Should attempt to run with fewer receive
743 				 * XXX buffers instead of just failing.
744 				 */
745 				gem_rxdrain(sc);
746 				return (1);
747 			}
748 		} else
749 			GEM_INIT_RXDESC(sc, i);
750 	}
751 	sc->sc_rxptr = 0;
752 
753 	return (0);
754 }
755 
756 static int
757 gem_ringsize(int sz)
758 {
759 	switch (sz) {
760 	case 32:
761 		return GEM_RING_SZ_32;
762 	case 64:
763 		return GEM_RING_SZ_64;
764 	case 128:
765 		return GEM_RING_SZ_128;
766 	case 256:
767 		return GEM_RING_SZ_256;
768 	case 512:
769 		return GEM_RING_SZ_512;
770 	case 1024:
771 		return GEM_RING_SZ_1024;
772 	case 2048:
773 		return GEM_RING_SZ_2048;
774 	case 4096:
775 		return GEM_RING_SZ_4096;
776 	case 8192:
777 		return GEM_RING_SZ_8192;
778 	default:
779 		printf("gem: invalid Receive Descriptor ring size %d\n", sz);
780 		return GEM_RING_SZ_32;
781 	}
782 }
783 
784 /*
785  * Initialization of interface; set up initialization block
786  * and transmit/receive descriptor rings.
787  */
788 int
789 gem_init(struct ifnet *ifp)
790 {
791 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
792 	bus_space_tag_t t = sc->sc_bustag;
793 	bus_space_handle_t h = sc->sc_h;
794 	int s;
795 	u_int max_frame_size;
796 	u_int32_t v;
797 
798 	s = splnet();
799 
800 	DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
801 	/*
802 	 * Initialization sequence. The numbered steps below correspond
803 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
804 	 * Channel Engine manual (part of the PCIO manual).
805 	 * See also the STP2002-STQ document from Sun Microsystems.
806 	 */
807 
808 	/* step 1 & 2. Reset the Ethernet Channel */
809 	gem_stop(ifp, 0);
810 	gem_reset(sc);
811 	DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
812 
813 	/* Re-initialize the MIF */
814 	gem_mifinit(sc);
815 
816 	/* Call MI reset function if any */
817 	if (sc->sc_hwreset)
818 		(*sc->sc_hwreset)(sc);
819 
820 	/* step 3. Setup data structures in host memory */
821 	gem_meminit(sc);
822 
823 	/* step 4. TX MAC registers & counters */
824 	gem_init_regs(sc);
825 	max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
826 	max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
827 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
828 		max_frame_size += ETHER_VLAN_ENCAP_LEN;
829 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
830 	    max_frame_size|/* burst size */(0x2000<<16));
831 
832 	/* step 5. RX MAC registers & counters */
833 	gem_setladrf(sc);
834 
835 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
836 	/* NOTE: we use only 32-bit DMA addresses here. */
837 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
838 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
839 
840 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
841 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
842 
843 	/* step 8. Global Configuration & Interrupt Mask */
844 	bus_space_write_4(t, h, GEM_INTMASK,
845 		      ~(GEM_INTR_TX_INTME|
846 			GEM_INTR_TX_EMPTY|
847 			GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
848 			GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
849 			GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
850 			GEM_INTR_BERR));
851 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
852 			GEM_MAC_RX_DONE|GEM_MAC_RX_FRAME_CNT);
853 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
854 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
855 
856 	/* step 9. ETX Configuration: use mostly default values */
857 
858 	/* Enable DMA */
859 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
860 	bus_space_write_4(t, h, GEM_TX_CONFIG,
861 		v|GEM_TX_CONFIG_TXDMA_EN|
862 		((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
863 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
864 
865 	/* step 10. ERX Configuration */
866 
867 	/* Encode Receive Descriptor ring size: four possible values */
868 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
869 
870 	/* Set receive h/w checksum offset */
871 #ifdef INET
872 	v |= (ETHER_HDR_LEN + sizeof(struct ip) +
873 	      ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
874 	        ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
875 #endif
876 
877 	/* Enable DMA */
878 	bus_space_write_4(t, h, GEM_RX_CONFIG,
879 		v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
880 		(2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN);
881 
882 	/*
883 	 * The following value is for an OFF Threshold of about 3/4 full
884 	 * and an ON Threshold of 1/4 full.
885 	 */
886 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
887 	     (3 * sc->sc_rxfifosize / 256) |
888 	     (   (sc->sc_rxfifosize / 256) << 12));
889 	bus_space_write_4(t, h, GEM_RX_BLANKING, (6<<12)|6);
890 
891 	/* step 11. Configure Media */
892 	mii_mediachg(&sc->sc_mii);
893 
894 /* XXXX Serial link needs a whole different setup. */
895 
896 
897 	/* step 12. RX_MAC Configuration Register */
898 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
899 	v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
900 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
901 
902 	/* step 14. Issue Transmit Pending command */
903 
904 	/* Call MI initialization function if any */
905 	if (sc->sc_hwinit)
906 		(*sc->sc_hwinit)(sc);
907 
908 
909 	/* step 15.  Give the reciever a swift kick */
910 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
911 
912 	/* Start the one second timer. */
913 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
914 
915 	ifp->if_flags |= IFF_RUNNING;
916 	ifp->if_flags &= ~IFF_OACTIVE;
917 	ifp->if_timer = 0;
918 	sc->sc_if_flags = ifp->if_flags;
919 	splx(s);
920 
921 	return (0);
922 }
923 
924 void
925 gem_init_regs(struct gem_softc *sc)
926 {
927 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
928 	bus_space_tag_t t = sc->sc_bustag;
929 	bus_space_handle_t h = sc->sc_h;
930 	const u_char *laddr = LLADDR(ifp->if_sadl);
931 	u_int32_t v;
932 
933 	/* These regs are not cleared on reset */
934 	if (!sc->sc_inited) {
935 
936 		/* Wooo.  Magic values. */
937 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
938 		bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
939 		bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
940 
941 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
942 		/* Max frame and max burst size */
943 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
944 		     ETHER_MAX_LEN | (0x2000<<16));
945 
946 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
947 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
948 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
949 		/* Dunno.... */
950 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
951 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
952 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
953 
954 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
955 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
956 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
957 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
958 
959 		/* MAC control addr set to 01:80:c2:00:00:01 */
960 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
961 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
962 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
963 
964 		/* MAC filter addr set to 0:0:0:0:0:0 */
965 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
966 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
967 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
968 
969 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
970 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
971 
972 		sc->sc_inited = 1;
973 	}
974 
975 	/* Counters need to be zeroed */
976 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
977 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
978 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
979 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
980 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
981 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
982 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
983 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
984 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
985 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
986 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
987 
988 	/* Un-pause stuff */
989 #if 0
990 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
991 #else
992 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
993 #endif
994 
995 	/*
996 	 * Set the station address.
997 	 */
998 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
999 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1000 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1001 
1002 #if 0
1003 	if (sc->sc_variant != APPLE_GMAC)
1004 		return;
1005 #endif
1006 
1007 	/*
1008 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
1009 	 */
1010 	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1011 	v = GEM_MAC_XIF_TX_MII_ENA;
1012 	if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1013 		v |= GEM_MAC_XIF_FDPLX_LED;
1014 		if (sc->sc_flags & GEM_GIGABIT)
1015 			v |= GEM_MAC_XIF_GMII_MODE;
1016 	}
1017 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1018 }
1019 
1020 static void
1021 gem_start(ifp)
1022 	struct ifnet *ifp;
1023 {
1024 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
1025 	struct mbuf *m0, *m;
1026 	struct gem_txsoft *txs, *last_txs;
1027 	bus_dmamap_t dmamap;
1028 	int error, firsttx, nexttx, lasttx = -1, ofree, seg;
1029 	uint64_t flags = 0;
1030 
1031 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1032 		return;
1033 
1034 	/*
1035 	 * Remember the previous number of free descriptors and
1036 	 * the first descriptor we'll use.
1037 	 */
1038 	ofree = sc->sc_txfree;
1039 	firsttx = sc->sc_txnext;
1040 
1041 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1042 	    sc->sc_dev.dv_xname, ofree, firsttx));
1043 
1044 	/*
1045 	 * Loop through the send queue, setting up transmit descriptors
1046 	 * until we drain the queue, or use up all available transmit
1047 	 * descriptors.
1048 	 */
1049 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1050 	       sc->sc_txfree != 0) {
1051 		/*
1052 		 * Grab a packet off the queue.
1053 		 */
1054 		IFQ_POLL(&ifp->if_snd, m0);
1055 		if (m0 == NULL)
1056 			break;
1057 		m = NULL;
1058 
1059 		dmamap = txs->txs_dmamap;
1060 
1061 		/*
1062 		 * Load the DMA map.  If this fails, the packet either
1063 		 * didn't fit in the alloted number of segments, or we were
1064 		 * short on resources.  In this case, we'll copy and try
1065 		 * again.
1066 		 */
1067 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1068 		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
1069 		      (m0->m_pkthdr.len < ETHER_MIN_TX &&
1070 		       dmamap->dm_nsegs == GEM_NTXSEGS)) {
1071 			if (m0->m_pkthdr.len > MCLBYTES) {
1072 				printf("%s: unable to allocate jumbo Tx "
1073 				    "cluster\n", sc->sc_dev.dv_xname);
1074 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1075 				m_freem(m0);
1076 				continue;
1077 			}
1078 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1079 			if (m == NULL) {
1080 				printf("%s: unable to allocate Tx mbuf\n",
1081 				    sc->sc_dev.dv_xname);
1082 				break;
1083 			}
1084 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1085 			if (m0->m_pkthdr.len > MHLEN) {
1086 				MCLGET(m, M_DONTWAIT);
1087 				if ((m->m_flags & M_EXT) == 0) {
1088 					printf("%s: unable to allocate Tx "
1089 					    "cluster\n", sc->sc_dev.dv_xname);
1090 					m_freem(m);
1091 					break;
1092 				}
1093 			}
1094 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1095 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1096 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1097 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1098 			if (error) {
1099 				printf("%s: unable to load Tx buffer, "
1100 				    "error = %d\n", sc->sc_dev.dv_xname, error);
1101 				break;
1102 			}
1103 		}
1104 
1105 		/*
1106 		 * Ensure we have enough descriptors free to describe
1107 		 * the packet.
1108 		 */
1109 		if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1110 		     (sc->sc_txfree - 1) : sc->sc_txfree)) {
1111 			/*
1112 			 * Not enough free descriptors to transmit this
1113 			 * packet.  We haven't committed to anything yet,
1114 			 * so just unload the DMA map, put the packet
1115 			 * back on the queue, and punt.  Notify the upper
1116 			 * layer that there are no more slots left.
1117 			 *
1118 			 * XXX We could allocate an mbuf and copy, but
1119 			 * XXX it is worth it?
1120 			 */
1121 			ifp->if_flags |= IFF_OACTIVE;
1122 			sc->sc_if_flags = ifp->if_flags;
1123 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
1124 			if (m != NULL)
1125 				m_freem(m);
1126 			break;
1127 		}
1128 
1129 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1130 		if (m != NULL) {
1131 			m_freem(m0);
1132 			m0 = m;
1133 		}
1134 
1135 		/*
1136 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1137 		 */
1138 
1139 		/* Sync the DMA map. */
1140 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1141 		    BUS_DMASYNC_PREWRITE);
1142 
1143 		/*
1144 		 * Initialize the transmit descriptors.
1145 		 */
1146 		for (nexttx = sc->sc_txnext, seg = 0;
1147 		     seg < dmamap->dm_nsegs;
1148 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
1149 
1150 			/*
1151 			 * If this is the first descriptor we're
1152 			 * enqueueing, set the start of packet flag,
1153 			 * and the checksum stuff if we want the hardware
1154 			 * to do it.
1155 			 */
1156 			sc->sc_txdescs[nexttx].gd_addr =
1157 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1158 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1159 			if (nexttx == firsttx) {
1160 				flags |= GEM_TD_START_OF_PACKET;
1161 				if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1162 					sc->sc_txwin = 0;
1163 					flags |= GEM_TD_INTERRUPT_ME;
1164 				}
1165 
1166 #ifdef INET
1167 				/* h/w checksum */
1168 				if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 |
1169 				    M_CSUM_UDPv4) && m0->m_pkthdr.csum_flags &
1170 				    (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1171 					struct ether_header *eh;
1172 					uint16_t offset, start;
1173 
1174 					eh = mtod(m0, struct ether_header *);
1175 					switch (ntohs(eh->ether_type)) {
1176 					case ETHERTYPE_IP:
1177 						start = ETHER_HDR_LEN;
1178 						break;
1179 					case ETHERTYPE_VLAN:
1180 						start = ETHER_HDR_LEN +
1181 							ETHER_VLAN_ENCAP_LEN;
1182 						break;
1183 					default:
1184 						/* unsupported, drop it */
1185 						m_free(m0);
1186 						continue;
1187 					}
1188 					start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1189 					offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1190 					flags |= (start <<
1191 						  GEM_TD_CXSUM_STARTSHFT) |
1192 						 (offset <<
1193 						  GEM_TD_CXSUM_STUFFSHFT) |
1194 						 GEM_TD_CXSUM_ENABLE;
1195 				}
1196 #endif
1197 			}
1198 			if (seg == dmamap->dm_nsegs - 1) {
1199 				flags |= GEM_TD_END_OF_PACKET;
1200 			} else {
1201 				/* last flag set outside of loop */
1202 				sc->sc_txdescs[nexttx].gd_flags =
1203 					GEM_DMA_WRITE(sc, flags);
1204 			}
1205 			lasttx = nexttx;
1206 		}
1207 		if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1208 			/* add padding buffer at end of chain */
1209 			flags &= ~GEM_TD_END_OF_PACKET;
1210 			sc->sc_txdescs[lasttx].gd_flags =
1211 			    GEM_DMA_WRITE(sc, flags);
1212 
1213 			sc->sc_txdescs[nexttx].gd_addr =
1214 			    GEM_DMA_WRITE(sc,
1215 			    sc->sc_nulldmamap->dm_segs[0].ds_addr);
1216 			flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1217 			    GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1218 			lasttx = nexttx;
1219 			nexttx = GEM_NEXTTX(nexttx);
1220 			seg++;
1221 		}
1222 		sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1223 
1224 		KASSERT(lasttx != -1);
1225 
1226 		/*
1227 		 * Store a pointer to the packet so we can free it later,
1228 		 * and remember what txdirty will be once the packet is
1229 		 * done.
1230 		 */
1231 		txs->txs_mbuf = m0;
1232 		txs->txs_firstdesc = sc->sc_txnext;
1233 		txs->txs_lastdesc = lasttx;
1234 		txs->txs_ndescs = seg;
1235 
1236 #ifdef GEM_DEBUG
1237 		if (ifp->if_flags & IFF_DEBUG) {
1238 			printf("     gem_start %p transmit chain:\n", txs);
1239 			for (seg = sc->sc_txnext;; seg = GEM_NEXTTX(seg)) {
1240 				printf("descriptor %d:\t", seg);
1241 				printf("gd_flags:   0x%016llx\t", (long long)
1242 					GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_flags));
1243 				printf("gd_addr: 0x%016llx\n", (long long)
1244 					GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_addr));
1245 				if (seg == lasttx)
1246 					break;
1247 			}
1248 		}
1249 #endif
1250 
1251 		/* Sync the descriptors we're using. */
1252 		GEM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1253 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1254 
1255 		/* Advance the tx pointer. */
1256 		sc->sc_txfree -= txs->txs_ndescs;
1257 		sc->sc_txnext = nexttx;
1258 
1259 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1260 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1261 
1262 		last_txs = txs;
1263 
1264 #if NBPFILTER > 0
1265 		/*
1266 		 * Pass the packet to any BPF listeners.
1267 		 */
1268 		if (ifp->if_bpf)
1269 			bpf_mtap(ifp->if_bpf, m0);
1270 #endif /* NBPFILTER > 0 */
1271 	}
1272 
1273 	if (txs == NULL || sc->sc_txfree == 0) {
1274 		/* No more slots left; notify upper layer. */
1275 		ifp->if_flags |= IFF_OACTIVE;
1276 		sc->sc_if_flags = ifp->if_flags;
1277 	}
1278 
1279 	if (sc->sc_txfree != ofree) {
1280 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1281 		    sc->sc_dev.dv_xname, lasttx, firsttx));
1282 		/*
1283 		 * The entire packet chain is set up.
1284 		 * Kick the transmitter.
1285 		 */
1286 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1287 			sc->sc_dev.dv_xname, nexttx));
1288 		bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK,
1289 			sc->sc_txnext);
1290 
1291 		/* Set a watchdog timer in case the chip flakes out. */
1292 		ifp->if_timer = 5;
1293 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1294 			sc->sc_dev.dv_xname, ifp->if_timer));
1295 	}
1296 }
1297 
1298 /*
1299  * Transmit interrupt.
1300  */
1301 int
1302 gem_tint(sc)
1303 	struct gem_softc *sc;
1304 {
1305 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1306 	bus_space_tag_t t = sc->sc_bustag;
1307 	bus_space_handle_t mac = sc->sc_h;
1308 	struct gem_txsoft *txs;
1309 	int txlast;
1310 	int progress = 0;
1311 
1312 
1313 	DPRINTF(sc, ("%s: gem_tint\n", sc->sc_dev.dv_xname));
1314 
1315 	/*
1316 	 * Unload collision counters
1317 	 */
1318 	ifp->if_collisions +=
1319 		bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1320 		bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
1321 		bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1322 		bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1323 
1324 	/*
1325 	 * then clear the hardware counters.
1326 	 */
1327 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1328 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1329 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1330 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1331 
1332 	/*
1333 	 * Go through our Tx list and free mbufs for those
1334 	 * frames that have been transmitted.
1335 	 */
1336 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1337 		GEM_CDTXSYNC(sc, txs->txs_lastdesc,
1338 		    txs->txs_ndescs,
1339 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1340 
1341 #ifdef GEM_DEBUG
1342 		if (ifp->if_flags & IFF_DEBUG) {
1343 			int i;
1344 			printf("    txsoft %p transmit chain:\n", txs);
1345 			for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
1346 				printf("descriptor %d: ", i);
1347 				printf("gd_flags: 0x%016llx\t", (long long)
1348 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1349 				printf("gd_addr: 0x%016llx\n", (long long)
1350 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1351 				if (i == txs->txs_lastdesc)
1352 					break;
1353 			}
1354 		}
1355 #endif
1356 
1357 		/*
1358 		 * In theory, we could harveast some descriptors before
1359 		 * the ring is empty, but that's a bit complicated.
1360 		 *
1361 		 * GEM_TX_COMPLETION points to the last descriptor
1362 		 * processed +1.
1363 		 */
1364 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1365 		DPRINTF(sc,
1366 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1367 				txs->txs_lastdesc, txlast));
1368 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1369 			if ((txlast >= txs->txs_firstdesc) &&
1370 				(txlast <= txs->txs_lastdesc))
1371 				break;
1372 		} else {
1373 			/* Ick -- this command wraps */
1374 			if ((txlast >= txs->txs_firstdesc) ||
1375 				(txlast <= txs->txs_lastdesc))
1376 				break;
1377 		}
1378 
1379 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1380 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1381 
1382 		sc->sc_txfree += txs->txs_ndescs;
1383 
1384 		if (txs->txs_mbuf == NULL) {
1385 #ifdef DIAGNOSTIC
1386 				panic("gem_txintr: null mbuf");
1387 #endif
1388 		}
1389 
1390 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1391 		    0, txs->txs_dmamap->dm_mapsize,
1392 		    BUS_DMASYNC_POSTWRITE);
1393 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1394 		m_freem(txs->txs_mbuf);
1395 		txs->txs_mbuf = NULL;
1396 
1397 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1398 
1399 		ifp->if_opackets++;
1400 		progress = 1;
1401 	}
1402 
1403 #if 0
1404 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1405 		"GEM_TX_DATA_PTR %llx "
1406 		"GEM_TX_COMPLETION %x\n",
1407 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
1408 		((long long) bus_space_read_4(sc->sc_bustag, sc->sc_h,
1409 			GEM_TX_DATA_PTR_HI) << 32) |
1410 			     bus_space_read_4(sc->sc_bustag, sc->sc_h,
1411 			GEM_TX_DATA_PTR_LO),
1412 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION)));
1413 #endif
1414 
1415 	if (progress) {
1416 		if (sc->sc_txfree == GEM_NTXDESC - 1)
1417 			sc->sc_txwin = 0;
1418 
1419 		ifp->if_flags &= ~IFF_OACTIVE;
1420 		sc->sc_if_flags = ifp->if_flags;
1421 		gem_start(ifp);
1422 
1423 		if (SIMPLEQ_EMPTY(&sc->sc_txdirtyq))
1424 			ifp->if_timer = 0;
1425 	}
1426 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1427 		sc->sc_dev.dv_xname, ifp->if_timer));
1428 
1429 	return (1);
1430 }
1431 
1432 /*
1433  * Receive interrupt.
1434  */
1435 int
1436 gem_rint(sc)
1437 	struct gem_softc *sc;
1438 {
1439 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1440 	bus_space_tag_t t = sc->sc_bustag;
1441 	bus_space_handle_t h = sc->sc_h;
1442 	struct gem_rxsoft *rxs;
1443 	struct mbuf *m;
1444 	u_int64_t rxstat;
1445 	u_int32_t rxcomp;
1446 	int i, len, progress = 0;
1447 
1448 	DPRINTF(sc, ("%s: gem_rint\n", sc->sc_dev.dv_xname));
1449 
1450 	/*
1451 	 * Read the completion register once.  This limits
1452 	 * how long the following loop can execute.
1453 	 */
1454 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1455 
1456 	/*
1457 	 * XXXX Read the lastrx only once at the top for speed.
1458 	 */
1459 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1460 		sc->sc_rxptr, rxcomp));
1461 
1462 	/*
1463 	 * Go into the loop at least once.
1464 	 */
1465 	for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1466 	     i = GEM_NEXTRX(i)) {
1467 		rxs = &sc->sc_rxsoft[i];
1468 
1469 		GEM_CDRXSYNC(sc, i,
1470 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1471 
1472 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1473 
1474 		if (rxstat & GEM_RD_OWN) {
1475 			/*
1476 			 * We have processed all of the receive buffers.
1477 			 */
1478 			break;
1479 		}
1480 
1481 		progress++;
1482 		ifp->if_ipackets++;
1483 
1484 		if (rxstat & GEM_RD_BAD_CRC) {
1485 			ifp->if_ierrors++;
1486 			printf("%s: receive error: CRC error\n",
1487 				sc->sc_dev.dv_xname);
1488 			GEM_INIT_RXDESC(sc, i);
1489 			continue;
1490 		}
1491 
1492 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1493 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1494 #ifdef GEM_DEBUG
1495 		if (ifp->if_flags & IFF_DEBUG) {
1496 			printf("    rxsoft %p descriptor %d: ", rxs, i);
1497 			printf("gd_flags: 0x%016llx\t", (long long)
1498 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1499 			printf("gd_addr: 0x%016llx\n", (long long)
1500 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1501 		}
1502 #endif
1503 
1504 		/* No errors; receive the packet. */
1505 		len = GEM_RD_BUFLEN(rxstat);
1506 
1507 		/*
1508 		 * Allocate a new mbuf cluster.  If that fails, we are
1509 		 * out of memory, and must drop the packet and recycle
1510 		 * the buffer that's already attached to this descriptor.
1511 		 */
1512 		m = rxs->rxs_mbuf;
1513 		if (gem_add_rxbuf(sc, i) != 0) {
1514 			GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1515 			ifp->if_ierrors++;
1516 			GEM_INIT_RXDESC(sc, i);
1517 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1518 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1519 			continue;
1520 		}
1521 		m->m_data += 2; /* We're already off by two */
1522 
1523 		m->m_pkthdr.rcvif = ifp;
1524 		m->m_pkthdr.len = m->m_len = len;
1525 
1526 #if NBPFILTER > 0
1527 		/*
1528 		 * Pass this up to any BPF listeners, but only
1529 		 * pass it up the stack if its for us.
1530 		 */
1531 		if (ifp->if_bpf)
1532 			bpf_mtap(ifp->if_bpf, m);
1533 #endif /* NPBFILTER > 0 */
1534 
1535 #ifdef INET
1536 		/* hardware checksum */
1537 		if (ifp->if_csum_flags_rx & (M_CSUM_UDPv4 | M_CSUM_TCPv4)) {
1538 			struct ether_header *eh;
1539 			struct ip *ip;
1540 			struct udphdr *uh;
1541 			int32_t hlen, pktlen;
1542 
1543 			if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1544 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1545 					 ETHER_VLAN_ENCAP_LEN;
1546 				eh = (struct ether_header *) mtod(m, caddr_t) +
1547 					ETHER_VLAN_ENCAP_LEN;
1548 			} else {
1549 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1550 				eh = mtod(m, struct ether_header *);
1551 			}
1552 			if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1553 				goto swcsum;
1554 			ip = (struct ip *) ((caddr_t)eh + ETHER_HDR_LEN);
1555 
1556 			/* IPv4 only */
1557 			if (ip->ip_v != IPVERSION)
1558 				goto swcsum;
1559 
1560 			hlen = ip->ip_hl << 2;
1561 			if (hlen < sizeof(struct ip))
1562 				goto swcsum;
1563 
1564 			/*
1565 			 * bail if too short, has random trailing garbage,
1566 			 * truncated, fragment, or has ethernet pad.
1567 			 */
1568 			if ((ntohs(ip->ip_len) < hlen) ||
1569 			    (ntohs(ip->ip_len) != pktlen) ||
1570 			    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1571 				goto swcsum;
1572 
1573 			switch (ip->ip_p) {
1574 			case IPPROTO_TCP:
1575 				if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1576 					goto swcsum;
1577 				if (pktlen < (hlen + sizeof(struct tcphdr)))
1578 					goto swcsum;
1579 				m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1580 				break;
1581 			case IPPROTO_UDP:
1582 				if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
1583 					goto swcsum;
1584 				if (pktlen < (hlen + sizeof(struct udphdr)))
1585 					goto swcsum;
1586 				uh = (struct udphdr *)((caddr_t)ip + hlen);
1587 				/* no checksum */
1588 				if (uh->uh_sum == 0)
1589 					goto swcsum;
1590 				m->m_pkthdr.csum_flags = M_CSUM_UDPv4;
1591 				break;
1592 			default:
1593 				goto swcsum;
1594 			}
1595 
1596 			/* the uncomplemented sum is expected */
1597 			m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1598 
1599 			/* if the pkt had ip options, we have to deduct them */
1600 			if (hlen > sizeof(struct ip)) {
1601 				uint16_t *opts;
1602 				uint32_t optsum, temp;
1603 
1604 				optsum = 0;
1605 				temp = hlen - sizeof(struct ip);
1606 				opts = (uint16_t *) ((caddr_t) ip +
1607 					sizeof(struct ip));
1608 
1609 				while (temp > 1) {
1610 					optsum += ntohs(*opts++);
1611 					temp -= 2;
1612 				}
1613 				while (optsum >> 16)
1614 					optsum = (optsum >> 16) +
1615 						 (optsum & 0xffff);
1616 
1617 				/* Deduct ip opts sum from hwsum (rfc 1624). */
1618 				m->m_pkthdr.csum_data =
1619 					~((~m->m_pkthdr.csum_data) - ~optsum);
1620 
1621 				while (m->m_pkthdr.csum_data >> 16)
1622 					m->m_pkthdr.csum_data =
1623 						(m->m_pkthdr.csum_data >> 16) +
1624 						(m->m_pkthdr.csum_data &
1625 						 0xffff);
1626 			}
1627 
1628 			m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1629 						  M_CSUM_NO_PSEUDOHDR;
1630 		} else
1631 swcsum:
1632 			m->m_pkthdr.csum_flags = 0;
1633 #endif
1634 		/* Pass it on. */
1635 		(*ifp->if_input)(ifp, m);
1636 	}
1637 
1638 	if (progress) {
1639 		/* Update the receive pointer. */
1640 		if (i == sc->sc_rxptr) {
1641 			GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1642 #ifdef GEM_DEBUG
1643 			if (ifp->if_flags & IFF_DEBUG)
1644 				printf("%s: rint: ring wrap\n",
1645 				    sc->sc_dev.dv_xname);
1646 #endif
1647 		}
1648 		sc->sc_rxptr = i;
1649 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1650 	}
1651 #ifdef GEM_COUNTERS
1652 	if (progress <= 4) {
1653 		GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1654 	} else if (progress < 32) {
1655 		if (progress < 16)
1656 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1657 		else
1658 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1659 
1660 	} else {
1661 		if (progress < 64)
1662 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1663 		else
1664 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1665 	}
1666 #endif
1667 
1668 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1669 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1670 
1671 	return (1);
1672 }
1673 
1674 
1675 /*
1676  * gem_add_rxbuf:
1677  *
1678  *	Add a receive buffer to the indicated descriptor.
1679  */
1680 int
1681 gem_add_rxbuf(struct gem_softc *sc, int idx)
1682 {
1683 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1684 	struct mbuf *m;
1685 	int error;
1686 
1687 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1688 	if (m == NULL)
1689 		return (ENOBUFS);
1690 
1691 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1692 	MCLGET(m, M_DONTWAIT);
1693 	if ((m->m_flags & M_EXT) == 0) {
1694 		m_freem(m);
1695 		return (ENOBUFS);
1696 	}
1697 
1698 #ifdef GEM_DEBUG
1699 /* bzero the packet to check DMA */
1700 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
1701 #endif
1702 
1703 	if (rxs->rxs_mbuf != NULL)
1704 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
1705 
1706 	rxs->rxs_mbuf = m;
1707 
1708 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
1709 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1710 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1711 	if (error) {
1712 		printf("%s: can't load rx DMA map %d, error = %d\n",
1713 		    sc->sc_dev.dv_xname, idx, error);
1714 		panic("gem_add_rxbuf");	/* XXX */
1715 	}
1716 
1717 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1718 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1719 
1720 	GEM_INIT_RXDESC(sc, idx);
1721 
1722 	return (0);
1723 }
1724 
1725 
1726 int
1727 gem_eint(sc, status)
1728 	struct gem_softc *sc;
1729 	u_int status;
1730 {
1731 	char bits[128];
1732 
1733 	if ((status & GEM_INTR_MIF) != 0) {
1734 		printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
1735 		return (1);
1736 	}
1737 
1738 	printf("%s: status=%s\n", sc->sc_dev.dv_xname,
1739 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
1740 	return (1);
1741 }
1742 
1743 
1744 int
1745 gem_intr(v)
1746 	void *v;
1747 {
1748 	struct gem_softc *sc = (struct gem_softc *)v;
1749 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1750 	bus_space_tag_t t = sc->sc_bustag;
1751 	bus_space_handle_t seb = sc->sc_h;
1752 	u_int32_t status;
1753 	int r = 0;
1754 #ifdef GEM_DEBUG
1755 	char bits[128];
1756 #endif
1757 
1758 	sc->sc_ev_intr.ev_count++;
1759 
1760 	status = bus_space_read_4(t, seb, GEM_STATUS);
1761 	DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
1762 		sc->sc_dev.dv_xname, (status >> 19),
1763 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
1764 
1765 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
1766 		r |= gem_eint(sc, status);
1767 
1768 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
1769 		GEM_COUNTER_INCR(sc, sc_ev_txint);
1770 		r |= gem_tint(sc);
1771 	}
1772 
1773 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
1774 		GEM_COUNTER_INCR(sc, sc_ev_rxint);
1775 		r |= gem_rint(sc);
1776 	}
1777 
1778 	/* We should eventually do more than just print out error stats. */
1779 	if (status & GEM_INTR_TX_MAC) {
1780 		int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
1781 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
1782 			printf("%s: MAC tx fault, status %x\n",
1783 			    sc->sc_dev.dv_xname, txstat);
1784 		if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
1785 			gem_init(ifp);
1786 	}
1787 	if (status & GEM_INTR_RX_MAC) {
1788 		int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
1789 		if (rxstat & ~GEM_MAC_RX_DONE)
1790 			printf("%s: MAC rx fault, status %x\n",
1791 			    sc->sc_dev.dv_xname, rxstat);
1792 		/*
1793 		 * On some chip revisions GEM_MAC_RX_OVERFLOW happen often
1794 		 * due to a silicon bug so handle them silently.
1795 		 */
1796 		if (rxstat & GEM_MAC_RX_OVERFLOW)
1797 			gem_init(ifp);
1798 		else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
1799 			printf("%s: MAC rx fault, status %x\n",
1800 			    sc->sc_dev.dv_xname, rxstat);
1801 	}
1802 #if NRND > 0
1803 	rnd_add_uint32(&sc->rnd_source, status);
1804 #endif
1805 	return (r);
1806 }
1807 
1808 
1809 void
1810 gem_watchdog(ifp)
1811 	struct ifnet *ifp;
1812 {
1813 	struct gem_softc *sc = ifp->if_softc;
1814 
1815 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
1816 		"GEM_MAC_RX_CONFIG %x\n",
1817 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
1818 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
1819 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG)));
1820 
1821 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1822 	++ifp->if_oerrors;
1823 
1824 	/* Try to get more packets going. */
1825 	gem_start(ifp);
1826 }
1827 
1828 /*
1829  * Initialize the MII Management Interface
1830  */
1831 void
1832 gem_mifinit(sc)
1833 	struct gem_softc *sc;
1834 {
1835 	bus_space_tag_t t = sc->sc_bustag;
1836 	bus_space_handle_t mif = sc->sc_h;
1837 
1838 	/* Configure the MIF in frame mode */
1839 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1840 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
1841 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
1842 }
1843 
1844 /*
1845  * MII interface
1846  *
1847  * The GEM MII interface supports at least three different operating modes:
1848  *
1849  * Bitbang mode is implemented using data, clock and output enable registers.
1850  *
1851  * Frame mode is implemented by loading a complete frame into the frame
1852  * register and polling the valid bit for completion.
1853  *
1854  * Polling mode uses the frame register but completion is indicated by
1855  * an interrupt.
1856  *
1857  */
1858 static int
1859 gem_mii_readreg(self, phy, reg)
1860 	struct device *self;
1861 	int phy, reg;
1862 {
1863 	struct gem_softc *sc = (void *)self;
1864 	bus_space_tag_t t = sc->sc_bustag;
1865 	bus_space_handle_t mif = sc->sc_h;
1866 	int n;
1867 	u_int32_t v;
1868 
1869 #ifdef GEM_DEBUG1
1870 	if (sc->sc_debug)
1871 		printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
1872 #endif
1873 
1874 #if 0
1875 	/* Select the desired PHY in the MIF configuration register */
1876 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1877 	/* Clear PHY select bit */
1878 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
1879 	if (phy == GEM_PHYAD_EXTERNAL)
1880 		/* Set PHY select bit to get at external device */
1881 		v |= GEM_MIF_CONFIG_PHY_SEL;
1882 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1883 #endif
1884 
1885 	/* Construct the frame command */
1886 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
1887 		GEM_MIF_FRAME_READ;
1888 
1889 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1890 	for (n = 0; n < 100; n++) {
1891 		DELAY(1);
1892 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1893 		if (v & GEM_MIF_FRAME_TA0)
1894 			return (v & GEM_MIF_FRAME_DATA);
1895 	}
1896 
1897 	printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1898 	return (0);
1899 }
1900 
1901 static void
1902 gem_mii_writereg(self, phy, reg, val)
1903 	struct device *self;
1904 	int phy, reg, val;
1905 {
1906 	struct gem_softc *sc = (void *)self;
1907 	bus_space_tag_t t = sc->sc_bustag;
1908 	bus_space_handle_t mif = sc->sc_h;
1909 	int n;
1910 	u_int32_t v;
1911 
1912 #ifdef GEM_DEBUG1
1913 	if (sc->sc_debug)
1914 		printf("gem_mii_writereg: phy %d reg %d val %x\n",
1915 			phy, reg, val);
1916 #endif
1917 
1918 #if 0
1919 	/* Select the desired PHY in the MIF configuration register */
1920 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1921 	/* Clear PHY select bit */
1922 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
1923 	if (phy == GEM_PHYAD_EXTERNAL)
1924 		/* Set PHY select bit to get at external device */
1925 		v |= GEM_MIF_CONFIG_PHY_SEL;
1926 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1927 #endif
1928 	/* Construct the frame command */
1929 	v = GEM_MIF_FRAME_WRITE			|
1930 	    (phy << GEM_MIF_PHY_SHIFT)		|
1931 	    (reg << GEM_MIF_REG_SHIFT)		|
1932 	    (val & GEM_MIF_FRAME_DATA);
1933 
1934 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1935 	for (n = 0; n < 100; n++) {
1936 		DELAY(1);
1937 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1938 		if (v & GEM_MIF_FRAME_TA0)
1939 			return;
1940 	}
1941 
1942 	printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1943 }
1944 
1945 static void
1946 gem_mii_statchg(dev)
1947 	struct device *dev;
1948 {
1949 	struct gem_softc *sc = (void *)dev;
1950 #ifdef GEM_DEBUG
1951 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1952 #endif
1953 	bus_space_tag_t t = sc->sc_bustag;
1954 	bus_space_handle_t mac = sc->sc_h;
1955 	u_int32_t v;
1956 
1957 #ifdef GEM_DEBUG
1958 	if (sc->sc_debug)
1959 		printf("gem_mii_statchg: status change: phy = %d\n",
1960 			sc->sc_phys[instance]);
1961 #endif
1962 
1963 
1964 	/* Set tx full duplex options */
1965 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
1966 	delay(10000); /* reg must be cleared and delay before changing. */
1967 	v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
1968 		GEM_MAC_TX_ENABLE;
1969 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1970 		v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
1971 	}
1972 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
1973 
1974 	/* XIF Configuration */
1975  /* We should really calculate all this rather than rely on defaults */
1976 	v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
1977 	v = GEM_MAC_XIF_LINK_LED;
1978 	v |= GEM_MAC_XIF_TX_MII_ENA;
1979 
1980 	/* If an external transceiver is connected, enable its MII drivers */
1981 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
1982 	if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
1983 		/* External MII needs echo disable if half duplex. */
1984 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1985 			/* turn on full duplex LED */
1986 			v |= GEM_MAC_XIF_FDPLX_LED;
1987 		else
1988 	 		/* half duplex -- disable echo */
1989 		 	v |= GEM_MAC_XIF_ECHO_DISABL;
1990 
1991 		if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
1992 			v |= GEM_MAC_XIF_GMII_MODE;
1993 		else
1994 			v &= ~GEM_MAC_XIF_GMII_MODE;
1995 	} else
1996 		/* Internal MII needs buf enable */
1997 		v |= GEM_MAC_XIF_MII_BUF_ENA;
1998 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
1999 }
2000 
2001 int
2002 gem_mediachange(ifp)
2003 	struct ifnet *ifp;
2004 {
2005 	struct gem_softc *sc = ifp->if_softc;
2006 
2007 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
2008 		return (EINVAL);
2009 
2010 	return (mii_mediachg(&sc->sc_mii));
2011 }
2012 
2013 void
2014 gem_mediastatus(ifp, ifmr)
2015 	struct ifnet *ifp;
2016 	struct ifmediareq *ifmr;
2017 {
2018 	struct gem_softc *sc = ifp->if_softc;
2019 
2020 	if ((ifp->if_flags & IFF_UP) == 0)
2021 		return;
2022 
2023 	mii_pollstat(&sc->sc_mii);
2024 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
2025 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
2026 }
2027 
2028 /*
2029  * Process an ioctl request.
2030  */
2031 int
2032 gem_ioctl(ifp, cmd, data)
2033 	struct ifnet *ifp;
2034 	u_long cmd;
2035 	caddr_t data;
2036 {
2037 	struct gem_softc *sc = ifp->if_softc;
2038 	struct ifreq *ifr = (struct ifreq *)data;
2039 	int s, error = 0;
2040 
2041 	s = splnet();
2042 
2043 	switch (cmd) {
2044 	case SIOCGIFMEDIA:
2045 	case SIOCSIFMEDIA:
2046 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
2047 		break;
2048 	case SIOCSIFFLAGS:
2049 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
2050 		if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
2051 		    == (IFF_UP|IFF_RUNNING))
2052 		    && ((ifp->if_flags & (~RESETIGN))
2053 		    == (sc->sc_if_flags & (~RESETIGN)))) {
2054 			gem_setladrf(sc);
2055 			break;
2056 		}
2057 #undef RESETIGN
2058 		/*FALLTHROUGH*/
2059 	default:
2060 		error = ether_ioctl(ifp, cmd, data);
2061 		if (error == ENETRESET) {
2062 			/*
2063 			 * Multicast list has changed; set the hardware filter
2064 			 * accordingly.
2065 			 */
2066 			if (ifp->if_flags & IFF_RUNNING)
2067 				gem_setladrf(sc);
2068 			error = 0;
2069 		}
2070 		break;
2071 	}
2072 
2073 	/* Try to get things going again */
2074 	if (ifp->if_flags & IFF_UP)
2075 		gem_start(ifp);
2076 	splx(s);
2077 	return (error);
2078 }
2079 
2080 
2081 void
2082 gem_shutdown(arg)
2083 	void *arg;
2084 {
2085 	struct gem_softc *sc = (struct gem_softc *)arg;
2086 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2087 
2088 	gem_stop(ifp, 1);
2089 }
2090 
2091 /*
2092  * Set up the logical address filter.
2093  */
2094 void
2095 gem_setladrf(sc)
2096 	struct gem_softc *sc;
2097 {
2098 	struct ethercom *ec = &sc->sc_ethercom;
2099 	struct ifnet *ifp = &ec->ec_if;
2100 	struct ether_multi *enm;
2101 	struct ether_multistep step;
2102 	bus_space_tag_t t = sc->sc_bustag;
2103 	bus_space_handle_t h = sc->sc_h;
2104 	u_int32_t crc;
2105 	u_int32_t hash[16];
2106 	u_int32_t v;
2107 	int i;
2108 
2109 	/* Get current RX configuration */
2110 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2111 
2112 	/*
2113 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2114 	 * and hash filter.  Depending on the case, the right bit will be
2115 	 * enabled.
2116 	 */
2117 	v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
2118 	    GEM_MAC_RX_PROMISC_GRP);
2119 
2120 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
2121 		/* Turn on promiscuous mode */
2122 		v |= GEM_MAC_RX_PROMISCUOUS;
2123 		ifp->if_flags |= IFF_ALLMULTI;
2124 		goto chipit;
2125 	}
2126 
2127 	/*
2128 	 * Set up multicast address filter by passing all multicast addresses
2129 	 * through a crc generator, and then using the high order 8 bits as an
2130 	 * index into the 256 bit logical address filter.  The high order 4
2131 	 * bits selects the word, while the other 4 bits select the bit within
2132 	 * the word (where bit 0 is the MSB).
2133 	 */
2134 
2135 	/* Clear hash table */
2136 	memset(hash, 0, sizeof(hash));
2137 
2138 	ETHER_FIRST_MULTI(step, ec, enm);
2139 	while (enm != NULL) {
2140 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2141 			/*
2142 			 * We must listen to a range of multicast addresses.
2143 			 * For now, just accept all multicasts, rather than
2144 			 * trying to set only those filter bits needed to match
2145 			 * the range.  (At this time, the only use of address
2146 			 * ranges is for IP multicast routing, for which the
2147 			 * range is big enough to require all bits set.)
2148 			 * XXX use the addr filter for this
2149 			 */
2150 			ifp->if_flags |= IFF_ALLMULTI;
2151 			v |= GEM_MAC_RX_PROMISC_GRP;
2152 			goto chipit;
2153 		}
2154 
2155 		/* Get the LE CRC32 of the address */
2156 		crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2157 
2158 		/* Just want the 8 most significant bits. */
2159 		crc >>= 24;
2160 
2161 		/* Set the corresponding bit in the filter. */
2162 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
2163 
2164 		ETHER_NEXT_MULTI(step, enm);
2165 	}
2166 
2167 	v |= GEM_MAC_RX_HASH_FILTER;
2168 	ifp->if_flags &= ~IFF_ALLMULTI;
2169 
2170 	/* Now load the hash table into the chip (if we are using it) */
2171 	for (i = 0; i < 16; i++) {
2172 		bus_space_write_4(t, h,
2173 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2174 		    hash[i]);
2175 	}
2176 
2177 chipit:
2178 	sc->sc_if_flags = ifp->if_flags;
2179 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2180 }
2181 
2182 #if notyet
2183 
2184 /*
2185  * gem_power:
2186  *
2187  *	Power management (suspend/resume) hook.
2188  */
2189 void
2190 gem_power(why, arg)
2191 	int why;
2192 	void *arg;
2193 {
2194 	struct gem_softc *sc = arg;
2195 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2196 	int s;
2197 
2198 	s = splnet();
2199 	switch (why) {
2200 	case PWR_SUSPEND:
2201 	case PWR_STANDBY:
2202 		gem_stop(ifp, 1);
2203 		if (sc->sc_power != NULL)
2204 			(*sc->sc_power)(sc, why);
2205 		break;
2206 	case PWR_RESUME:
2207 		if (ifp->if_flags & IFF_UP) {
2208 			if (sc->sc_power != NULL)
2209 				(*sc->sc_power)(sc, why);
2210 			gem_init(ifp);
2211 		}
2212 		break;
2213 	case PWR_SOFTSUSPEND:
2214 	case PWR_SOFTSTANDBY:
2215 	case PWR_SOFTRESUME:
2216 		break;
2217 	}
2218 	splx(s);
2219 }
2220 #endif
2221