xref: /netbsd-src/sys/dev/ic/gem.c (revision aa73cae19608873cc4d1f712c4a0f8f8435f1ffa)
1 /*	$NetBSD: gem.c,v 1.37 2005/02/27 00:27:01 perry Exp $ */
2 
3 /*
4  *
5  * Copyright (C) 2001 Eduardo Horvath.
6  * All rights reserved.
7  *
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  */
31 
32 /*
33  * Driver for Sun GEM ethernet controllers.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.37 2005/02/27 00:27:01 perry Exp $");
38 
39 #include "opt_inet.h"
40 #include "bpfilter.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/mbuf.h>
46 #include <sys/syslog.h>
47 #include <sys/malloc.h>
48 #include <sys/kernel.h>
49 #include <sys/socket.h>
50 #include <sys/ioctl.h>
51 #include <sys/errno.h>
52 #include <sys/device.h>
53 
54 #include <machine/endian.h>
55 
56 #include <uvm/uvm_extern.h>
57 
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_ether.h>
62 
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/tcp.h>
69 #include <netinet/udp.h>
70 #endif
71 
72 #if NBPFILTER > 0
73 #include <net/bpf.h>
74 #endif
75 
76 #include <machine/bus.h>
77 #include <machine/intr.h>
78 
79 #include <dev/mii/mii.h>
80 #include <dev/mii/miivar.h>
81 #include <dev/mii/mii_bitbang.h>
82 
83 #include <dev/ic/gemreg.h>
84 #include <dev/ic/gemvar.h>
85 
86 #define TRIES	10000
87 
88 void		gem_start(struct ifnet *);
89 void		gem_stop(struct ifnet *, int);
90 int		gem_ioctl(struct ifnet *, u_long, caddr_t);
91 void		gem_tick(void *);
92 void		gem_watchdog(struct ifnet *);
93 void		gem_shutdown(void *);
94 int		gem_init(struct ifnet *);
95 void		gem_init_regs(struct gem_softc *sc);
96 static int	gem_ringsize(int sz);
97 int		gem_meminit(struct gem_softc *);
98 void		gem_mifinit(struct gem_softc *);
99 void		gem_reset(struct gem_softc *);
100 int		gem_reset_rx(struct gem_softc *sc);
101 int		gem_reset_tx(struct gem_softc *sc);
102 int		gem_disable_rx(struct gem_softc *sc);
103 int		gem_disable_tx(struct gem_softc *sc);
104 void		gem_rxdrain(struct gem_softc *sc);
105 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
106 void		gem_setladrf(struct gem_softc *);
107 
108 /* MII methods & callbacks */
109 static int	gem_mii_readreg(struct device *, int, int);
110 static void	gem_mii_writereg(struct device *, int, int, int);
111 static void	gem_mii_statchg(struct device *);
112 
113 int		gem_mediachange(struct ifnet *);
114 void		gem_mediastatus(struct ifnet *, struct ifmediareq *);
115 
116 struct mbuf	*gem_get(struct gem_softc *, int, int);
117 int		gem_put(struct gem_softc *, int, struct mbuf *);
118 void		gem_read(struct gem_softc *, int, int);
119 int		gem_eint(struct gem_softc *, u_int);
120 int		gem_rint(struct gem_softc *);
121 int		gem_tint(struct gem_softc *);
122 void		gem_power(int, void *);
123 
124 #ifdef GEM_DEBUG
125 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
126 				printf x
127 #else
128 #define	DPRINTF(sc, x)	/* nothing */
129 #endif
130 
131 
132 /*
133  * gem_attach:
134  *
135  *	Attach a Gem interface to the system.
136  */
137 void
138 gem_attach(sc, enaddr)
139 	struct gem_softc *sc;
140 	const uint8_t *enaddr;
141 {
142 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
143 	struct mii_data *mii = &sc->sc_mii;
144 	struct mii_softc *child;
145 	struct ifmedia_entry *ifm;
146 	int i, error;
147 	u_int32_t v;
148 
149 	/* Make sure the chip is stopped. */
150 	ifp->if_softc = sc;
151 	gem_reset(sc);
152 
153 	/*
154 	 * Allocate the control data structures, and create and load the
155 	 * DMA map for it.
156 	 */
157 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
158 	    sizeof(struct gem_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
159 	    1, &sc->sc_cdnseg, 0)) != 0) {
160 		aprint_error(
161 		   "%s: unable to allocate control data, error = %d\n",
162 		    sc->sc_dev.dv_xname, error);
163 		goto fail_0;
164 	}
165 
166 /* XXX should map this in with correct endianness */
167 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
168 	    sizeof(struct gem_control_data), (caddr_t *)&sc->sc_control_data,
169 	    BUS_DMA_COHERENT)) != 0) {
170 		aprint_error("%s: unable to map control data, error = %d\n",
171 		    sc->sc_dev.dv_xname, error);
172 		goto fail_1;
173 	}
174 
175 	if ((error = bus_dmamap_create(sc->sc_dmatag,
176 	    sizeof(struct gem_control_data), 1,
177 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
178 		aprint_error("%s: unable to create control data DMA map, "
179 		    "error = %d\n", sc->sc_dev.dv_xname, error);
180 		goto fail_2;
181 	}
182 
183 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
184 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
185 	    0)) != 0) {
186 		aprint_error(
187 		    "%s: unable to load control data DMA map, error = %d\n",
188 		    sc->sc_dev.dv_xname, error);
189 		goto fail_3;
190 	}
191 
192 	/*
193 	 * Initialize the transmit job descriptors.
194 	 */
195 	SIMPLEQ_INIT(&sc->sc_txfreeq);
196 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
197 
198 	/*
199 	 * Create the transmit buffer DMA maps.
200 	 */
201 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
202 		struct gem_txsoft *txs;
203 
204 		txs = &sc->sc_txsoft[i];
205 		txs->txs_mbuf = NULL;
206 		if ((error = bus_dmamap_create(sc->sc_dmatag,
207 		    ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
208 		    ETHER_MAX_LEN_JUMBO, 0, 0,
209 		    &txs->txs_dmamap)) != 0) {
210 			aprint_error("%s: unable to create tx DMA map %d, "
211 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
212 			goto fail_4;
213 		}
214 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
215 	}
216 
217 	/*
218 	 * Create the receive buffer DMA maps.
219 	 */
220 	for (i = 0; i < GEM_NRXDESC; i++) {
221 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
222 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
223 			aprint_error("%s: unable to create rx DMA map %d, "
224 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
225 			goto fail_5;
226 		}
227 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
228 	}
229 
230 	/*
231 	 * From this point forward, the attachment cannot fail.  A failure
232 	 * before this point releases all resources that may have been
233 	 * allocated.
234 	 */
235 
236 	/* Announce ourselves. */
237 	aprint_normal("%s: Ethernet address %s", sc->sc_dev.dv_xname,
238 	    ether_sprintf(enaddr));
239 
240 	/* Get RX FIFO size */
241 	sc->sc_rxfifosize = 64 *
242 	    bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_FIFO_SIZE);
243 	aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
244 
245 	/* Get TX FIFO size */
246 	v = bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_FIFO_SIZE);
247 	aprint_normal(", %uKB TX fifo\n", v / 16);
248 
249 	/* Initialize ifnet structure. */
250 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
251 	ifp->if_softc = sc;
252 	ifp->if_flags =
253 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
254 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx
255 				| IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
256 	ifp->if_start = gem_start;
257 	ifp->if_ioctl = gem_ioctl;
258 	ifp->if_watchdog = gem_watchdog;
259 	ifp->if_stop = gem_stop;
260 	ifp->if_init = gem_init;
261 	IFQ_SET_READY(&ifp->if_snd);
262 
263 	/* Initialize ifmedia structures and MII info */
264 	mii->mii_ifp = ifp;
265 	mii->mii_readreg = gem_mii_readreg;
266 	mii->mii_writereg = gem_mii_writereg;
267 	mii->mii_statchg = gem_mii_statchg;
268 
269 	ifmedia_init(&mii->mii_media, IFM_IMASK, gem_mediachange, gem_mediastatus);
270 
271 	gem_mifinit(sc);
272 
273 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
274 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
275 
276 	child = LIST_FIRST(&mii->mii_phys);
277 	if (child == NULL) {
278 		/* No PHY attached */
279 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
280 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
281 	} else {
282 		/*
283 		 * Walk along the list of attached MII devices and
284 		 * establish an `MII instance' to `phy number'
285 		 * mapping. We'll use this mapping in media change
286 		 * requests to determine which phy to use to program
287 		 * the MIF configuration register.
288 		 */
289 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
290 			/*
291 			 * Note: we support just two PHYs: the built-in
292 			 * internal device and an external on the MII
293 			 * connector.
294 			 */
295 			if (child->mii_phy > 1 || child->mii_inst > 1) {
296 				aprint_error(
297 				    "%s: cannot accomodate MII device %s"
298 				       " at phy %d, instance %d\n",
299 				       sc->sc_dev.dv_xname,
300 				       child->mii_dev.dv_xname,
301 				       child->mii_phy, child->mii_inst);
302 				continue;
303 			}
304 
305 			sc->sc_phys[child->mii_inst] = child->mii_phy;
306 		}
307 
308 		/*
309 		 * Now select and activate the PHY we will use.
310 		 *
311 		 * The order of preference is External (MDI1),
312 		 * Internal (MDI0), Serial Link (no MII).
313 		 */
314 		if (sc->sc_phys[1]) {
315 #ifdef DEBUG
316 			aprint_debug("using external phy\n");
317 #endif
318 			sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
319 		} else {
320 #ifdef DEBUG
321 			aprint_debug("using internal phy\n");
322 #endif
323 			sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
324 		}
325 		bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG,
326 			sc->sc_mif_config);
327 
328 		/*
329 		 * XXX - we can really do the following ONLY if the
330 		 * phy indeed has the auto negotiation capability!!
331 		 */
332 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
333 	}
334 
335 	/*
336 	 * If we support GigE media, we support jumbo frames too.
337 	 * Unless we are Apple.
338 	 */
339 	TAILQ_FOREACH(ifm, &sc->sc_media.ifm_list, ifm_list) {
340 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
341 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
342 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
343 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
344 			if (sc->sc_variant != GEM_APPLE_GMAC)
345 				sc->sc_ethercom.ec_capabilities
346 				    |= ETHERCAP_JUMBO_MTU;
347 
348 			sc->sc_flags |= GEM_GIGABIT;
349 			break;
350 		}
351 	}
352 
353 	/* claim 802.1q capability */
354 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
355 
356 	/* Attach the interface. */
357 	if_attach(ifp);
358 	ether_ifattach(ifp, enaddr);
359 
360 	sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
361 	if (sc->sc_sh == NULL)
362 		panic("gem_config: can't establish shutdownhook");
363 
364 #if NRND > 0
365 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
366 			  RND_TYPE_NET, 0);
367 #endif
368 
369 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
370 	    NULL, sc->sc_dev.dv_xname, "interrupts");
371 #ifdef GEM_COUNTERS
372 	evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
373 	    &sc->sc_ev_intr, sc->sc_dev.dv_xname, "tx interrupts");
374 	evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
375 	    &sc->sc_ev_intr, sc->sc_dev.dv_xname, "rx interrupts");
376 	evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
377 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx ring full");
378 	evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
379 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx malloc failure");
380 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
381 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 0desc");
382 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
383 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 1desc");
384 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
385 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 2desc");
386 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
387 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 3desc");
388 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
389 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >3desc");
390 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
391 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >7desc");
392 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
393 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >15desc");
394 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
395 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >31desc");
396 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
397 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >63desc");
398 #endif
399 
400 #if notyet
401 	/*
402 	 * Add a suspend hook to make sure we come back up after a
403 	 * resume.
404 	 */
405 	sc->sc_powerhook = powerhook_establish(gem_power, sc);
406 	if (sc->sc_powerhook == NULL)
407 		aprint_error("%s: WARNING: unable to establish power hook\n",
408 		    sc->sc_dev.dv_xname);
409 #endif
410 
411 	callout_init(&sc->sc_tick_ch);
412 	return;
413 
414 	/*
415 	 * Free any resources we've allocated during the failed attach
416 	 * attempt.  Do this in reverse order and fall through.
417 	 */
418  fail_5:
419 	for (i = 0; i < GEM_NRXDESC; i++) {
420 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
421 			bus_dmamap_destroy(sc->sc_dmatag,
422 			    sc->sc_rxsoft[i].rxs_dmamap);
423 	}
424  fail_4:
425 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
426 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
427 			bus_dmamap_destroy(sc->sc_dmatag,
428 			    sc->sc_txsoft[i].txs_dmamap);
429 	}
430 	bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
431  fail_3:
432 	bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
433  fail_2:
434 	bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sc_control_data,
435 	    sizeof(struct gem_control_data));
436  fail_1:
437 	bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
438  fail_0:
439 	return;
440 }
441 
442 
443 void
444 gem_tick(arg)
445 	void *arg;
446 {
447 	struct gem_softc *sc = arg;
448 	int s;
449 
450 	s = splnet();
451 	mii_tick(&sc->sc_mii);
452 	splx(s);
453 
454 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
455 
456 }
457 
458 void
459 gem_reset(sc)
460 	struct gem_softc *sc;
461 {
462 	bus_space_tag_t t = sc->sc_bustag;
463 	bus_space_handle_t h = sc->sc_h;
464 	int i;
465 	int s;
466 
467 	s = splnet();
468 	DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
469 	gem_reset_rx(sc);
470 	gem_reset_tx(sc);
471 
472 	/* Do a full reset */
473 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
474 	for (i=TRIES; i--; delay(100))
475 		if ((bus_space_read_4(t, h, GEM_RESET) &
476 			(GEM_RESET_RX|GEM_RESET_TX)) == 0)
477 			break;
478 	if ((bus_space_read_4(t, h, GEM_RESET) &
479 		(GEM_RESET_RX|GEM_RESET_TX)) != 0) {
480 		printf("%s: cannot reset device\n",
481 			sc->sc_dev.dv_xname);
482 	}
483 	splx(s);
484 }
485 
486 
487 /*
488  * gem_rxdrain:
489  *
490  *	Drain the receive queue.
491  */
492 void
493 gem_rxdrain(struct gem_softc *sc)
494 {
495 	struct gem_rxsoft *rxs;
496 	int i;
497 
498 	for (i = 0; i < GEM_NRXDESC; i++) {
499 		rxs = &sc->sc_rxsoft[i];
500 		if (rxs->rxs_mbuf != NULL) {
501 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
502 			m_freem(rxs->rxs_mbuf);
503 			rxs->rxs_mbuf = NULL;
504 		}
505 	}
506 }
507 
508 /*
509  * Reset the whole thing.
510  */
511 void
512 gem_stop(struct ifnet *ifp, int disable)
513 {
514 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
515 	struct gem_txsoft *txs;
516 
517 	DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
518 
519 	callout_stop(&sc->sc_tick_ch);
520 	mii_down(&sc->sc_mii);
521 
522 	/* XXX - Should we reset these instead? */
523 	gem_disable_rx(sc);
524 	gem_disable_tx(sc);
525 
526 	/*
527 	 * Release any queued transmit buffers.
528 	 */
529 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
530 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
531 		if (txs->txs_mbuf != NULL) {
532 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
533 			m_freem(txs->txs_mbuf);
534 			txs->txs_mbuf = NULL;
535 		}
536 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
537 	}
538 
539 	if (disable) {
540 		gem_rxdrain(sc);
541 	}
542 
543 	/*
544 	 * Mark the interface down and cancel the watchdog timer.
545 	 */
546 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
547 	ifp->if_timer = 0;
548 }
549 
550 
551 /*
552  * Reset the receiver
553  */
554 int
555 gem_reset_rx(struct gem_softc *sc)
556 {
557 	bus_space_tag_t t = sc->sc_bustag;
558 	bus_space_handle_t h = sc->sc_h;
559 	int i;
560 
561 
562 	/*
563 	 * Resetting while DMA is in progress can cause a bus hang, so we
564 	 * disable DMA first.
565 	 */
566 	gem_disable_rx(sc);
567 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
568 	/* Wait till it finishes */
569 	for (i=TRIES; i--; delay(100))
570 		if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) == 0)
571 			break;
572 	if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) != 0)
573 		printf("%s: cannot disable read DMA\n",
574 			sc->sc_dev.dv_xname);
575 
576 	/* Wait 5ms extra. */
577 	delay(5000);
578 
579 	/* Finally, reset the ERX */
580 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX);
581 	/* Wait till it finishes */
582 	for (i=TRIES; i--; delay(100))
583 		if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) == 0)
584 			break;
585 	if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) != 0) {
586 		printf("%s: cannot reset receiver\n",
587 			sc->sc_dev.dv_xname);
588 		return (1);
589 	}
590 	return (0);
591 }
592 
593 
594 /*
595  * Reset the transmitter
596  */
597 int
598 gem_reset_tx(struct gem_softc *sc)
599 {
600 	bus_space_tag_t t = sc->sc_bustag;
601 	bus_space_handle_t h = sc->sc_h;
602 	int i;
603 
604 	/*
605 	 * Resetting while DMA is in progress can cause a bus hang, so we
606 	 * disable DMA first.
607 	 */
608 	gem_disable_tx(sc);
609 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
610 	/* Wait till it finishes */
611 	for (i=TRIES; i--; delay(100))
612 		if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) == 0)
613 			break;
614 	if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) != 0)
615 		printf("%s: cannot disable read DMA\n",
616 			sc->sc_dev.dv_xname);
617 
618 	/* Wait 5ms extra. */
619 	delay(5000);
620 
621 	/* Finally, reset the ETX */
622 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX);
623 	/* Wait till it finishes */
624 	for (i=TRIES; i--; delay(100))
625 		if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) == 0)
626 			break;
627 	if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) != 0) {
628 		printf("%s: cannot reset receiver\n",
629 			sc->sc_dev.dv_xname);
630 		return (1);
631 	}
632 	return (0);
633 }
634 
635 /*
636  * disable receiver.
637  */
638 int
639 gem_disable_rx(struct gem_softc *sc)
640 {
641 	bus_space_tag_t t = sc->sc_bustag;
642 	bus_space_handle_t h = sc->sc_h;
643 	int i;
644 	u_int32_t cfg;
645 
646 	/* Flip the enable bit */
647 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
648 	cfg &= ~GEM_MAC_RX_ENABLE;
649 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
650 
651 	/* Wait for it to finish */
652 	for (i=TRIES; i--; delay(100))
653 		if ((bus_space_read_4(t, h, GEM_MAC_RX_CONFIG) &
654 			GEM_MAC_RX_ENABLE) == 0)
655 			return (0);
656 	return (1);
657 }
658 
659 /*
660  * disable transmitter.
661  */
662 int
663 gem_disable_tx(struct gem_softc *sc)
664 {
665 	bus_space_tag_t t = sc->sc_bustag;
666 	bus_space_handle_t h = sc->sc_h;
667 	int i;
668 	u_int32_t cfg;
669 
670 	/* Flip the enable bit */
671 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
672 	cfg &= ~GEM_MAC_TX_ENABLE;
673 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
674 
675 	/* Wait for it to finish */
676 	for (i=TRIES; i--; delay(100))
677 		if ((bus_space_read_4(t, h, GEM_MAC_TX_CONFIG) &
678 			GEM_MAC_TX_ENABLE) == 0)
679 			return (0);
680 	return (1);
681 }
682 
683 /*
684  * Initialize interface.
685  */
686 int
687 gem_meminit(struct gem_softc *sc)
688 {
689 	struct gem_rxsoft *rxs;
690 	int i, error;
691 
692 	/*
693 	 * Initialize the transmit descriptor ring.
694 	 */
695 	memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
696 	for (i = 0; i < GEM_NTXDESC; i++) {
697 		sc->sc_txdescs[i].gd_flags = 0;
698 		sc->sc_txdescs[i].gd_addr = 0;
699 	}
700 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
701 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
702 	sc->sc_txfree = GEM_NTXDESC-1;
703 	sc->sc_txnext = 0;
704 	sc->sc_txwin = 0;
705 
706 	/*
707 	 * Initialize the receive descriptor and receive job
708 	 * descriptor rings.
709 	 */
710 	for (i = 0; i < GEM_NRXDESC; i++) {
711 		rxs = &sc->sc_rxsoft[i];
712 		if (rxs->rxs_mbuf == NULL) {
713 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
714 				printf("%s: unable to allocate or map rx "
715 				    "buffer %d, error = %d\n",
716 				    sc->sc_dev.dv_xname, i, error);
717 				/*
718 				 * XXX Should attempt to run with fewer receive
719 				 * XXX buffers instead of just failing.
720 				 */
721 				gem_rxdrain(sc);
722 				return (1);
723 			}
724 		} else
725 			GEM_INIT_RXDESC(sc, i);
726 	}
727 	sc->sc_rxptr = 0;
728 
729 	return (0);
730 }
731 
732 static int
733 gem_ringsize(int sz)
734 {
735 	switch (sz) {
736 	case 32:
737 		return GEM_RING_SZ_32;
738 	case 64:
739 		return GEM_RING_SZ_64;
740 	case 128:
741 		return GEM_RING_SZ_128;
742 	case 256:
743 		return GEM_RING_SZ_256;
744 	case 512:
745 		return GEM_RING_SZ_512;
746 	case 1024:
747 		return GEM_RING_SZ_1024;
748 	case 2048:
749 		return GEM_RING_SZ_2048;
750 	case 4096:
751 		return GEM_RING_SZ_4096;
752 	case 8192:
753 		return GEM_RING_SZ_8192;
754 	default:
755 		printf("gem: invalid Receive Descriptor ring size %d\n", sz);
756 		return GEM_RING_SZ_32;
757 	}
758 }
759 
760 /*
761  * Initialization of interface; set up initialization block
762  * and transmit/receive descriptor rings.
763  */
764 int
765 gem_init(struct ifnet *ifp)
766 {
767 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
768 	bus_space_tag_t t = sc->sc_bustag;
769 	bus_space_handle_t h = sc->sc_h;
770 	int s;
771 	u_int max_frame_size;
772 	u_int32_t v;
773 
774 	s = splnet();
775 
776 	DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
777 	/*
778 	 * Initialization sequence. The numbered steps below correspond
779 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
780 	 * Channel Engine manual (part of the PCIO manual).
781 	 * See also the STP2002-STQ document from Sun Microsystems.
782 	 */
783 
784 	/* step 1 & 2. Reset the Ethernet Channel */
785 	gem_stop(ifp, 0);
786 	gem_reset(sc);
787 	DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
788 
789 	/* Re-initialize the MIF */
790 	gem_mifinit(sc);
791 
792 	/* Call MI reset function if any */
793 	if (sc->sc_hwreset)
794 		(*sc->sc_hwreset)(sc);
795 
796 	/* step 3. Setup data structures in host memory */
797 	gem_meminit(sc);
798 
799 	/* step 4. TX MAC registers & counters */
800 	gem_init_regs(sc);
801 	max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
802 	max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
803 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
804 		max_frame_size += ETHER_VLAN_ENCAP_LEN;
805 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
806 	    max_frame_size|/* burst size */(0x2000<<16));
807 
808 	/* step 5. RX MAC registers & counters */
809 	gem_setladrf(sc);
810 
811 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
812 	/* NOTE: we use only 32-bit DMA addresses here. */
813 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
814 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
815 
816 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
817 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
818 
819 	/* step 8. Global Configuration & Interrupt Mask */
820 	bus_space_write_4(t, h, GEM_INTMASK,
821 		      ~(GEM_INTR_TX_INTME|
822 			GEM_INTR_TX_EMPTY|
823 			GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
824 			GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
825 			GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
826 			GEM_INTR_BERR));
827 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
828 			GEM_MAC_RX_DONE|GEM_MAC_RX_FRAME_CNT);
829 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
830 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
831 
832 	/* step 9. ETX Configuration: use mostly default values */
833 
834 	/* Enable DMA */
835 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
836 	bus_space_write_4(t, h, GEM_TX_CONFIG,
837 		v|GEM_TX_CONFIG_TXDMA_EN|
838 		((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
839 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
840 
841 	/* step 10. ERX Configuration */
842 
843 	/* Encode Receive Descriptor ring size: four possible values */
844 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
845 
846 	/* Set receive h/w checksum offset */
847 #ifdef INET
848 	v |= (ETHER_HDR_LEN + sizeof(struct ip) +
849 	      ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
850 	        ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
851 #endif
852 
853 	/* Enable DMA */
854 	bus_space_write_4(t, h, GEM_RX_CONFIG,
855 		v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
856 		(2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN);
857 
858 	/*
859 	 * The following value is for an OFF Threshold of about 3/4 full
860 	 * and an ON Threshold of 1/4 full.
861 	 */
862 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
863 	     (3 * sc->sc_rxfifosize / 256) |
864 	     (   (sc->sc_rxfifosize / 256) << 12));
865 	bus_space_write_4(t, h, GEM_RX_BLANKING, (6<<12)|6);
866 
867 	/* step 11. Configure Media */
868 	mii_mediachg(&sc->sc_mii);
869 
870 /* XXXX Serial link needs a whole different setup. */
871 
872 
873 	/* step 12. RX_MAC Configuration Register */
874 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
875 	v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
876 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
877 
878 	/* step 14. Issue Transmit Pending command */
879 
880 	/* Call MI initialization function if any */
881 	if (sc->sc_hwinit)
882 		(*sc->sc_hwinit)(sc);
883 
884 
885 	/* step 15.  Give the reciever a swift kick */
886 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
887 
888 	/* Start the one second timer. */
889 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
890 
891 	ifp->if_flags |= IFF_RUNNING;
892 	ifp->if_flags &= ~IFF_OACTIVE;
893 	ifp->if_timer = 0;
894 	splx(s);
895 
896 	return (0);
897 }
898 
899 void
900 gem_init_regs(struct gem_softc *sc)
901 {
902 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
903 	bus_space_tag_t t = sc->sc_bustag;
904 	bus_space_handle_t h = sc->sc_h;
905 	const u_char *laddr = LLADDR(ifp->if_sadl);
906 	u_int32_t v;
907 
908 	/* These regs are not cleared on reset */
909 	if (!sc->sc_inited) {
910 
911 		/* Wooo.  Magic values. */
912 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
913 		bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
914 		bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
915 
916 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
917 		/* Max frame and max burst size */
918 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
919 		     ETHER_MAX_LEN | (0x2000<<16));
920 
921 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
922 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
923 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
924 		/* Dunno.... */
925 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
926 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
927 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
928 
929 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
930 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
931 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
932 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
933 
934 		/* MAC control addr set to 01:80:c2:00:00:01 */
935 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
936 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
937 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
938 
939 		/* MAC filter addr set to 0:0:0:0:0:0 */
940 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
941 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
942 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
943 
944 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
945 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
946 
947 		sc->sc_inited = 1;
948 	}
949 
950 	/* Counters need to be zeroed */
951 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
952 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
953 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
954 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
955 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
956 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
957 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
958 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
959 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
960 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
961 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
962 
963 	/* Un-pause stuff */
964 #if 0
965 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
966 #else
967 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
968 #endif
969 
970 	/*
971 	 * Set the station address.
972 	 */
973 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
974 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
975 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
976 
977 #if 0
978 	if (sc->sc_variant != APPLE_GMAC)
979 		return;
980 #endif
981 
982 	/*
983 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
984 	 */
985 	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
986 	v = GEM_MAC_XIF_TX_MII_ENA;
987 	if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
988 		v |= GEM_MAC_XIF_FDPLX_LED;
989 		if (sc->sc_flags & GEM_GIGABIT)
990 			v |= GEM_MAC_XIF_GMII_MODE;
991 	}
992 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
993 }
994 
995 void
996 gem_start(ifp)
997 	struct ifnet *ifp;
998 {
999 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
1000 	struct mbuf *m0, *m;
1001 	struct gem_txsoft *txs, *last_txs;
1002 	bus_dmamap_t dmamap;
1003 	int error, firsttx, nexttx, lasttx = -1, ofree, seg;
1004 
1005 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1006 		return;
1007 
1008 	/*
1009 	 * Remember the previous number of free descriptors and
1010 	 * the first descriptor we'll use.
1011 	 */
1012 	ofree = sc->sc_txfree;
1013 	firsttx = sc->sc_txnext;
1014 
1015 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1016 	    sc->sc_dev.dv_xname, ofree, firsttx));
1017 
1018 	/*
1019 	 * Loop through the send queue, setting up transmit descriptors
1020 	 * until we drain the queue, or use up all available transmit
1021 	 * descriptors.
1022 	 */
1023 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1024 	       sc->sc_txfree != 0) {
1025 		/*
1026 		 * Grab a packet off the queue.
1027 		 */
1028 		IFQ_POLL(&ifp->if_snd, m0);
1029 		if (m0 == NULL)
1030 			break;
1031 		m = NULL;
1032 
1033 		dmamap = txs->txs_dmamap;
1034 
1035 		/*
1036 		 * Load the DMA map.  If this fails, the packet either
1037 		 * didn't fit in the alloted number of segments, or we were
1038 		 * short on resources.  In this case, we'll copy and try
1039 		 * again.
1040 		 */
1041 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1042 		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1043 			if (m0->m_pkthdr.len > MCLBYTES) {
1044 				printf("%s: unable to allocate jumbo Tx "
1045 				    "cluster\n", sc->sc_dev.dv_xname);
1046 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1047 				m_freem(m0);
1048 				continue;
1049 			}
1050 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1051 			if (m == NULL) {
1052 				printf("%s: unable to allocate Tx mbuf\n",
1053 				    sc->sc_dev.dv_xname);
1054 				break;
1055 			}
1056 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1057 			if (m0->m_pkthdr.len > MHLEN) {
1058 				MCLGET(m, M_DONTWAIT);
1059 				if ((m->m_flags & M_EXT) == 0) {
1060 					printf("%s: unable to allocate Tx "
1061 					    "cluster\n", sc->sc_dev.dv_xname);
1062 					m_freem(m);
1063 					break;
1064 				}
1065 			}
1066 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1067 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1068 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1069 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1070 			if (error) {
1071 				printf("%s: unable to load Tx buffer, "
1072 				    "error = %d\n", sc->sc_dev.dv_xname, error);
1073 				break;
1074 			}
1075 		}
1076 
1077 		/*
1078 		 * Ensure we have enough descriptors free to describe
1079 		 * the packet.
1080 		 */
1081 		if (dmamap->dm_nsegs > sc->sc_txfree) {
1082 			/*
1083 			 * Not enough free descriptors to transmit this
1084 			 * packet.  We haven't committed to anything yet,
1085 			 * so just unload the DMA map, put the packet
1086 			 * back on the queue, and punt.  Notify the upper
1087 			 * layer that there are no more slots left.
1088 			 *
1089 			 * XXX We could allocate an mbuf and copy, but
1090 			 * XXX it is worth it?
1091 			 */
1092 			ifp->if_flags |= IFF_OACTIVE;
1093 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
1094 			if (m != NULL)
1095 				m_freem(m);
1096 			break;
1097 		}
1098 
1099 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1100 		if (m != NULL) {
1101 			m_freem(m0);
1102 			m0 = m;
1103 		}
1104 
1105 		/*
1106 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1107 		 */
1108 
1109 		/* Sync the DMA map. */
1110 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1111 		    BUS_DMASYNC_PREWRITE);
1112 
1113 		/*
1114 		 * Initialize the transmit descriptors.
1115 		 */
1116 		for (nexttx = sc->sc_txnext, seg = 0;
1117 		     seg < dmamap->dm_nsegs;
1118 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
1119 			uint64_t flags;
1120 
1121 			/*
1122 			 * If this is the first descriptor we're
1123 			 * enqueueing, set the start of packet flag,
1124 			 * and the checksum stuff if we want the hardware
1125 			 * to do it.
1126 			 */
1127 			sc->sc_txdescs[nexttx].gd_addr =
1128 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1129 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1130 			if (nexttx == firsttx) {
1131 				flags |= GEM_TD_START_OF_PACKET;
1132 				if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1133 					sc->sc_txwin = 0;
1134 					flags |= GEM_TD_INTERRUPT_ME;
1135 				}
1136 
1137 #ifdef INET
1138 				/* h/w checksum */
1139 				if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 |
1140 				    M_CSUM_UDPv4) && m0->m_pkthdr.csum_flags &
1141 				    (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1142 					struct ether_header *eh;
1143 					uint16_t offset, start;
1144 
1145 					eh = mtod(m0, struct ether_header *);
1146 					switch (ntohs(eh->ether_type)) {
1147 					case ETHERTYPE_IP:
1148 						start = ETHER_HDR_LEN;
1149 						break;
1150 					case ETHERTYPE_VLAN:
1151 						start = ETHER_HDR_LEN +
1152 							ETHER_VLAN_ENCAP_LEN;
1153 						break;
1154 					default:
1155 						/* unsupported, drop it */
1156 						m_free(m0);
1157 						continue;
1158 					}
1159 					start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1160 					offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1161 					flags |= (start <<
1162 						  GEM_TD_CXSUM_STARTSHFT) |
1163 						 (offset <<
1164 						  GEM_TD_CXSUM_STUFFSHFT) |
1165 						 GEM_TD_CXSUM_ENABLE;
1166 				}
1167 #endif
1168 			}
1169 			if (seg == dmamap->dm_nsegs - 1) {
1170 				flags |= GEM_TD_END_OF_PACKET;
1171 			}
1172 			sc->sc_txdescs[nexttx].gd_flags =
1173 				GEM_DMA_WRITE(sc, flags);
1174 			lasttx = nexttx;
1175 		}
1176 
1177 		KASSERT(lasttx != -1);
1178 
1179 #ifdef GEM_DEBUG
1180 		if (ifp->if_flags & IFF_DEBUG) {
1181 			printf("     gem_start %p transmit chain:\n", txs);
1182 			for (seg = sc->sc_txnext;; seg = GEM_NEXTTX(seg)) {
1183 				printf("descriptor %d:\t", seg);
1184 				printf("gd_flags:   0x%016llx\t", (long long)
1185 					GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_flags));
1186 				printf("gd_addr: 0x%016llx\n", (long long)
1187 					GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_addr));
1188 				if (seg == lasttx)
1189 					break;
1190 			}
1191 		}
1192 #endif
1193 
1194 		/* Sync the descriptors we're using. */
1195 		GEM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1196 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1197 
1198 		/*
1199 		 * Store a pointer to the packet so we can free it later,
1200 		 * and remember what txdirty will be once the packet is
1201 		 * done.
1202 		 */
1203 		txs->txs_mbuf = m0;
1204 		txs->txs_firstdesc = sc->sc_txnext;
1205 		txs->txs_lastdesc = lasttx;
1206 		txs->txs_ndescs = dmamap->dm_nsegs;
1207 
1208 		/* Advance the tx pointer. */
1209 		sc->sc_txfree -= dmamap->dm_nsegs;
1210 		sc->sc_txnext = nexttx;
1211 
1212 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1213 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1214 
1215 		last_txs = txs;
1216 
1217 #if NBPFILTER > 0
1218 		/*
1219 		 * Pass the packet to any BPF listeners.
1220 		 */
1221 		if (ifp->if_bpf)
1222 			bpf_mtap(ifp->if_bpf, m0);
1223 #endif /* NBPFILTER > 0 */
1224 	}
1225 
1226 	if (txs == NULL || sc->sc_txfree == 0) {
1227 		/* No more slots left; notify upper layer. */
1228 		ifp->if_flags |= IFF_OACTIVE;
1229 	}
1230 
1231 	if (sc->sc_txfree != ofree) {
1232 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1233 		    sc->sc_dev.dv_xname, lasttx, firsttx));
1234 		/*
1235 		 * The entire packet chain is set up.
1236 		 * Kick the transmitter.
1237 		 */
1238 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1239 			sc->sc_dev.dv_xname, nexttx));
1240 		bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK,
1241 			sc->sc_txnext);
1242 
1243 		/* Set a watchdog timer in case the chip flakes out. */
1244 		ifp->if_timer = 5;
1245 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1246 			sc->sc_dev.dv_xname, ifp->if_timer));
1247 	}
1248 }
1249 
1250 /*
1251  * Transmit interrupt.
1252  */
1253 int
1254 gem_tint(sc)
1255 	struct gem_softc *sc;
1256 {
1257 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1258 	bus_space_tag_t t = sc->sc_bustag;
1259 	bus_space_handle_t mac = sc->sc_h;
1260 	struct gem_txsoft *txs;
1261 	int txlast;
1262 	int progress = 0;
1263 
1264 
1265 	DPRINTF(sc, ("%s: gem_tint\n", sc->sc_dev.dv_xname));
1266 
1267 	/*
1268 	 * Unload collision counters
1269 	 */
1270 	ifp->if_collisions +=
1271 		bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1272 		bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
1273 		bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1274 		bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1275 
1276 	/*
1277 	 * then clear the hardware counters.
1278 	 */
1279 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1280 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1281 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1282 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1283 
1284 	/*
1285 	 * Go through our Tx list and free mbufs for those
1286 	 * frames that have been transmitted.
1287 	 */
1288 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1289 		GEM_CDTXSYNC(sc, txs->txs_lastdesc,
1290 		    txs->txs_ndescs,
1291 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1292 
1293 #ifdef GEM_DEBUG
1294 		if (ifp->if_flags & IFF_DEBUG) {
1295 			int i;
1296 			printf("    txsoft %p transmit chain:\n", txs);
1297 			for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
1298 				printf("descriptor %d: ", i);
1299 				printf("gd_flags: 0x%016llx\t", (long long)
1300 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1301 				printf("gd_addr: 0x%016llx\n", (long long)
1302 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1303 				if (i == txs->txs_lastdesc)
1304 					break;
1305 			}
1306 		}
1307 #endif
1308 
1309 		/*
1310 		 * In theory, we could harveast some descriptors before
1311 		 * the ring is empty, but that's a bit complicated.
1312 		 *
1313 		 * GEM_TX_COMPLETION points to the last descriptor
1314 		 * processed +1.
1315 		 */
1316 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1317 		DPRINTF(sc,
1318 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1319 				txs->txs_lastdesc, txlast));
1320 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1321 			if ((txlast >= txs->txs_firstdesc) &&
1322 				(txlast <= txs->txs_lastdesc))
1323 				break;
1324 		} else {
1325 			/* Ick -- this command wraps */
1326 			if ((txlast >= txs->txs_firstdesc) ||
1327 				(txlast <= txs->txs_lastdesc))
1328 				break;
1329 		}
1330 
1331 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1332 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1333 
1334 		sc->sc_txfree += txs->txs_ndescs;
1335 
1336 		if (txs->txs_mbuf == NULL) {
1337 #ifdef DIAGNOSTIC
1338 				panic("gem_txintr: null mbuf");
1339 #endif
1340 		}
1341 
1342 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1343 		    0, txs->txs_dmamap->dm_mapsize,
1344 		    BUS_DMASYNC_POSTWRITE);
1345 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1346 		m_freem(txs->txs_mbuf);
1347 		txs->txs_mbuf = NULL;
1348 
1349 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1350 
1351 		ifp->if_opackets++;
1352 		progress = 1;
1353 	}
1354 
1355 #if 0
1356 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1357 		"GEM_TX_DATA_PTR %llx "
1358 		"GEM_TX_COMPLETION %x\n",
1359 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
1360 		((long long) bus_space_read_4(sc->sc_bustag, sc->sc_h,
1361 			GEM_TX_DATA_PTR_HI) << 32) |
1362 			     bus_space_read_4(sc->sc_bustag, sc->sc_h,
1363 			GEM_TX_DATA_PTR_LO),
1364 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION)));
1365 #endif
1366 
1367 	if (progress) {
1368 		if (sc->sc_txfree == GEM_NTXDESC - 1)
1369 			sc->sc_txwin = 0;
1370 
1371 		ifp->if_flags &= ~IFF_OACTIVE;
1372 		gem_start(ifp);
1373 
1374 		if (SIMPLEQ_EMPTY(&sc->sc_txdirtyq))
1375 			ifp->if_timer = 0;
1376 	}
1377 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1378 		sc->sc_dev.dv_xname, ifp->if_timer));
1379 
1380 	return (1);
1381 }
1382 
1383 /*
1384  * Receive interrupt.
1385  */
1386 int
1387 gem_rint(sc)
1388 	struct gem_softc *sc;
1389 {
1390 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1391 	bus_space_tag_t t = sc->sc_bustag;
1392 	bus_space_handle_t h = sc->sc_h;
1393 	struct gem_rxsoft *rxs;
1394 	struct mbuf *m;
1395 	u_int64_t rxstat;
1396 	u_int32_t rxcomp;
1397 	int i, len, progress = 0;
1398 
1399 	DPRINTF(sc, ("%s: gem_rint\n", sc->sc_dev.dv_xname));
1400 
1401 	/*
1402 	 * Read the completion register once.  This limits
1403 	 * how long the following loop can execute.
1404 	 */
1405 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1406 
1407 	/*
1408 	 * XXXX Read the lastrx only once at the top for speed.
1409 	 */
1410 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1411 		sc->sc_rxptr, rxcomp));
1412 
1413 	/*
1414 	 * Go into the loop at least once.
1415 	 */
1416 	for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1417 	     i = GEM_NEXTRX(i)) {
1418 		rxs = &sc->sc_rxsoft[i];
1419 
1420 		GEM_CDRXSYNC(sc, i,
1421 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1422 
1423 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1424 
1425 		if (rxstat & GEM_RD_OWN) {
1426 			/*
1427 			 * We have processed all of the receive buffers.
1428 			 */
1429 			break;
1430 		}
1431 
1432 		progress++;
1433 		ifp->if_ipackets++;
1434 
1435 		if (rxstat & GEM_RD_BAD_CRC) {
1436 			ifp->if_ierrors++;
1437 			printf("%s: receive error: CRC error\n",
1438 				sc->sc_dev.dv_xname);
1439 			GEM_INIT_RXDESC(sc, i);
1440 			continue;
1441 		}
1442 
1443 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1444 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1445 #ifdef GEM_DEBUG
1446 		if (ifp->if_flags & IFF_DEBUG) {
1447 			printf("    rxsoft %p descriptor %d: ", rxs, i);
1448 			printf("gd_flags: 0x%016llx\t", (long long)
1449 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1450 			printf("gd_addr: 0x%016llx\n", (long long)
1451 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1452 		}
1453 #endif
1454 
1455 		/* No errors; receive the packet. */
1456 		len = GEM_RD_BUFLEN(rxstat);
1457 
1458 		/*
1459 		 * Allocate a new mbuf cluster.  If that fails, we are
1460 		 * out of memory, and must drop the packet and recycle
1461 		 * the buffer that's already attached to this descriptor.
1462 		 */
1463 		m = rxs->rxs_mbuf;
1464 		if (gem_add_rxbuf(sc, i) != 0) {
1465 			GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1466 			ifp->if_ierrors++;
1467 			GEM_INIT_RXDESC(sc, i);
1468 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1469 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1470 			continue;
1471 		}
1472 		m->m_data += 2; /* We're already off by two */
1473 
1474 		m->m_pkthdr.rcvif = ifp;
1475 		m->m_pkthdr.len = m->m_len = len;
1476 
1477 #if NBPFILTER > 0
1478 		/*
1479 		 * Pass this up to any BPF listeners, but only
1480 		 * pass it up the stack if its for us.
1481 		 */
1482 		if (ifp->if_bpf)
1483 			bpf_mtap(ifp->if_bpf, m);
1484 #endif /* NPBFILTER > 0 */
1485 
1486 #ifdef INET
1487 		/* hardware checksum */
1488 		if (ifp->if_csum_flags_rx & (M_CSUM_UDPv4 | M_CSUM_TCPv4)) {
1489 			struct ether_header *eh;
1490 			struct ip *ip;
1491 			struct udphdr *uh;
1492 			int32_t hlen, pktlen;
1493 
1494 			if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1495 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1496 					 ETHER_VLAN_ENCAP_LEN;
1497 				eh = (struct ether_header *) mtod(m, caddr_t) +
1498 					ETHER_VLAN_ENCAP_LEN;
1499 			} else {
1500 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1501 				eh = mtod(m, struct ether_header *);
1502 			}
1503 			if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1504 				goto swcsum;
1505 			ip = (struct ip *) ((caddr_t)eh + ETHER_HDR_LEN);
1506 
1507 			/* IPv4 only */
1508 			if (ip->ip_v != IPVERSION)
1509 				goto swcsum;
1510 
1511 			hlen = ip->ip_hl << 2;
1512 			if (hlen < sizeof(struct ip))
1513 				goto swcsum;
1514 
1515 			/* too short, truncated, fragment */
1516 			if ((ntohs(ip->ip_len) < hlen) ||
1517 			    (ntohs(ip->ip_len) > pktlen) ||
1518 			    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1519 				goto swcsum;
1520 
1521 			switch (ip->ip_p) {
1522 			case IPPROTO_TCP:
1523 				if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1524 					goto swcsum;
1525 				if (pktlen < (hlen + sizeof(struct tcphdr)))
1526 					goto swcsum;
1527 				m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1528 				break;
1529 			case IPPROTO_UDP:
1530 				if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
1531 					goto swcsum;
1532 				if (pktlen < (hlen + sizeof(struct udphdr)))
1533 					goto swcsum;
1534 				uh = (struct udphdr *)((caddr_t)ip + hlen);
1535 				/* no checksum */
1536 				if (uh->uh_sum == 0)
1537 					goto swcsum;
1538 				m->m_pkthdr.csum_flags = M_CSUM_UDPv4;
1539 				break;
1540 			default:
1541 				goto swcsum;
1542 			}
1543 
1544 			/* the uncomplemented sum is expected */
1545 			m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1546 
1547 			/* if the pkt had ip options, we have to deduct them */
1548 			if (hlen > sizeof(struct ip)) {
1549 				uint16_t *opts;
1550 				uint32_t optsum, temp;
1551 
1552 				optsum = 0;
1553 				temp = hlen - sizeof(struct ip);
1554 				opts = (uint16_t *) ((caddr_t) ip +
1555 					sizeof(struct ip));
1556 
1557 				while (temp > 1) {
1558 					optsum += ntohs(*opts++);
1559 					temp -= 2;
1560 				}
1561 				while (optsum >> 16)
1562 					optsum = (optsum >> 16) +
1563 						 (optsum & 0xffff);
1564 
1565 				/* Deduct ip opts sum from hwsum (rfc 1624). */
1566 				m->m_pkthdr.csum_data =
1567 					~((~m->m_pkthdr.csum_data) - ~optsum);
1568 
1569 				while (m->m_pkthdr.csum_data >> 16)
1570 					m->m_pkthdr.csum_data =
1571 						(m->m_pkthdr.csum_data >> 16) +
1572 						(m->m_pkthdr.csum_data &
1573 						 0xffff);
1574 			}
1575 
1576 			m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1577 						  M_CSUM_NO_PSEUDOHDR;
1578 		} else
1579 swcsum:
1580 			m->m_pkthdr.csum_flags = 0;
1581 #endif
1582 		/* Pass it on. */
1583 		(*ifp->if_input)(ifp, m);
1584 	}
1585 
1586 	if (progress) {
1587 		/* Update the receive pointer. */
1588 		if (i == sc->sc_rxptr) {
1589 			GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1590 #ifdef GEM_DEBUG
1591 			if (ifp->if_flags & IFF_DEBUG)
1592 				printf("%s: rint: ring wrap\n",
1593 				    sc->sc_dev.dv_xname);
1594 #endif
1595 		}
1596 		sc->sc_rxptr = i;
1597 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1598 	}
1599 #ifdef GEM_COUNTERS
1600 	if (progress <= 4) {
1601 		GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1602 	} else if (progress < 32) {
1603 		if (progress < 16)
1604 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1605 		else
1606 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1607 
1608 	} else {
1609 		if (progress < 64)
1610 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1611 		else
1612 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1613 	}
1614 #endif
1615 
1616 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1617 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1618 
1619 	return (1);
1620 }
1621 
1622 
1623 /*
1624  * gem_add_rxbuf:
1625  *
1626  *	Add a receive buffer to the indicated descriptor.
1627  */
1628 int
1629 gem_add_rxbuf(struct gem_softc *sc, int idx)
1630 {
1631 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1632 	struct mbuf *m;
1633 	int error;
1634 
1635 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1636 	if (m == NULL)
1637 		return (ENOBUFS);
1638 
1639 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1640 	MCLGET(m, M_DONTWAIT);
1641 	if ((m->m_flags & M_EXT) == 0) {
1642 		m_freem(m);
1643 		return (ENOBUFS);
1644 	}
1645 
1646 #ifdef GEM_DEBUG
1647 /* bzero the packet to check DMA */
1648 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
1649 #endif
1650 
1651 	if (rxs->rxs_mbuf != NULL)
1652 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
1653 
1654 	rxs->rxs_mbuf = m;
1655 
1656 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
1657 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1658 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1659 	if (error) {
1660 		printf("%s: can't load rx DMA map %d, error = %d\n",
1661 		    sc->sc_dev.dv_xname, idx, error);
1662 		panic("gem_add_rxbuf");	/* XXX */
1663 	}
1664 
1665 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1666 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1667 
1668 	GEM_INIT_RXDESC(sc, idx);
1669 
1670 	return (0);
1671 }
1672 
1673 
1674 int
1675 gem_eint(sc, status)
1676 	struct gem_softc *sc;
1677 	u_int status;
1678 {
1679 	char bits[128];
1680 
1681 	if ((status & GEM_INTR_MIF) != 0) {
1682 		printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
1683 		return (1);
1684 	}
1685 
1686 	printf("%s: status=%s\n", sc->sc_dev.dv_xname,
1687 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
1688 	return (1);
1689 }
1690 
1691 
1692 int
1693 gem_intr(v)
1694 	void *v;
1695 {
1696 	struct gem_softc *sc = (struct gem_softc *)v;
1697 	bus_space_tag_t t = sc->sc_bustag;
1698 	bus_space_handle_t seb = sc->sc_h;
1699 	u_int32_t status;
1700 	int r = 0;
1701 #ifdef GEM_DEBUG
1702 	char bits[128];
1703 #endif
1704 
1705 	sc->sc_ev_intr.ev_count++;
1706 
1707 	status = bus_space_read_4(t, seb, GEM_STATUS);
1708 	DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
1709 		sc->sc_dev.dv_xname, (status >> 19),
1710 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
1711 
1712 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
1713 		r |= gem_eint(sc, status);
1714 
1715 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
1716 		GEM_COUNTER_INCR(sc, sc_ev_txint);
1717 		r |= gem_tint(sc);
1718 	}
1719 
1720 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
1721 		GEM_COUNTER_INCR(sc, sc_ev_rxint);
1722 		r |= gem_rint(sc);
1723 	}
1724 
1725 	/* We should eventually do more than just print out error stats. */
1726 	if (status & GEM_INTR_TX_MAC) {
1727 		int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
1728 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
1729 			printf("%s: MAC tx fault, status %x\n",
1730 			    sc->sc_dev.dv_xname, txstat);
1731 	}
1732 	if (status & GEM_INTR_RX_MAC) {
1733 		int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
1734 		if (rxstat & ~GEM_MAC_RX_DONE)
1735 			printf("%s: MAC rx fault, status %x\n",
1736 			    sc->sc_dev.dv_xname, rxstat);
1737 	}
1738 	return (r);
1739 }
1740 
1741 
1742 void
1743 gem_watchdog(ifp)
1744 	struct ifnet *ifp;
1745 {
1746 	struct gem_softc *sc = ifp->if_softc;
1747 
1748 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
1749 		"GEM_MAC_RX_CONFIG %x\n",
1750 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
1751 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
1752 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG)));
1753 
1754 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1755 	++ifp->if_oerrors;
1756 
1757 	/* Try to get more packets going. */
1758 	gem_start(ifp);
1759 }
1760 
1761 /*
1762  * Initialize the MII Management Interface
1763  */
1764 void
1765 gem_mifinit(sc)
1766 	struct gem_softc *sc;
1767 {
1768 	bus_space_tag_t t = sc->sc_bustag;
1769 	bus_space_handle_t mif = sc->sc_h;
1770 
1771 	/* Configure the MIF in frame mode */
1772 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1773 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
1774 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
1775 }
1776 
1777 /*
1778  * MII interface
1779  *
1780  * The GEM MII interface supports at least three different operating modes:
1781  *
1782  * Bitbang mode is implemented using data, clock and output enable registers.
1783  *
1784  * Frame mode is implemented by loading a complete frame into the frame
1785  * register and polling the valid bit for completion.
1786  *
1787  * Polling mode uses the frame register but completion is indicated by
1788  * an interrupt.
1789  *
1790  */
1791 static int
1792 gem_mii_readreg(self, phy, reg)
1793 	struct device *self;
1794 	int phy, reg;
1795 {
1796 	struct gem_softc *sc = (void *)self;
1797 	bus_space_tag_t t = sc->sc_bustag;
1798 	bus_space_handle_t mif = sc->sc_h;
1799 	int n;
1800 	u_int32_t v;
1801 
1802 #ifdef GEM_DEBUG1
1803 	if (sc->sc_debug)
1804 		printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
1805 #endif
1806 
1807 #if 0
1808 	/* Select the desired PHY in the MIF configuration register */
1809 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1810 	/* Clear PHY select bit */
1811 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
1812 	if (phy == GEM_PHYAD_EXTERNAL)
1813 		/* Set PHY select bit to get at external device */
1814 		v |= GEM_MIF_CONFIG_PHY_SEL;
1815 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1816 #endif
1817 
1818 	/* Construct the frame command */
1819 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
1820 		GEM_MIF_FRAME_READ;
1821 
1822 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1823 	for (n = 0; n < 100; n++) {
1824 		DELAY(1);
1825 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1826 		if (v & GEM_MIF_FRAME_TA0)
1827 			return (v & GEM_MIF_FRAME_DATA);
1828 	}
1829 
1830 	printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1831 	return (0);
1832 }
1833 
1834 static void
1835 gem_mii_writereg(self, phy, reg, val)
1836 	struct device *self;
1837 	int phy, reg, val;
1838 {
1839 	struct gem_softc *sc = (void *)self;
1840 	bus_space_tag_t t = sc->sc_bustag;
1841 	bus_space_handle_t mif = sc->sc_h;
1842 	int n;
1843 	u_int32_t v;
1844 
1845 #ifdef GEM_DEBUG1
1846 	if (sc->sc_debug)
1847 		printf("gem_mii_writereg: phy %d reg %d val %x\n",
1848 			phy, reg, val);
1849 #endif
1850 
1851 #if 0
1852 	/* Select the desired PHY in the MIF configuration register */
1853 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1854 	/* Clear PHY select bit */
1855 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
1856 	if (phy == GEM_PHYAD_EXTERNAL)
1857 		/* Set PHY select bit to get at external device */
1858 		v |= GEM_MIF_CONFIG_PHY_SEL;
1859 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1860 #endif
1861 	/* Construct the frame command */
1862 	v = GEM_MIF_FRAME_WRITE			|
1863 	    (phy << GEM_MIF_PHY_SHIFT)		|
1864 	    (reg << GEM_MIF_REG_SHIFT)		|
1865 	    (val & GEM_MIF_FRAME_DATA);
1866 
1867 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1868 	for (n = 0; n < 100; n++) {
1869 		DELAY(1);
1870 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1871 		if (v & GEM_MIF_FRAME_TA0)
1872 			return;
1873 	}
1874 
1875 	printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1876 }
1877 
1878 static void
1879 gem_mii_statchg(dev)
1880 	struct device *dev;
1881 {
1882 	struct gem_softc *sc = (void *)dev;
1883 #ifdef GEM_DEBUG
1884 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1885 #endif
1886 	bus_space_tag_t t = sc->sc_bustag;
1887 	bus_space_handle_t mac = sc->sc_h;
1888 	u_int32_t v;
1889 
1890 #ifdef GEM_DEBUG
1891 	if (sc->sc_debug)
1892 		printf("gem_mii_statchg: status change: phy = %d\n",
1893 			sc->sc_phys[instance]);
1894 #endif
1895 
1896 
1897 	/* Set tx full duplex options */
1898 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
1899 	delay(10000); /* reg must be cleared and delay before changing. */
1900 	v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
1901 		GEM_MAC_TX_ENABLE;
1902 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1903 		v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
1904 	}
1905 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
1906 
1907 	/* XIF Configuration */
1908  /* We should really calculate all this rather than rely on defaults */
1909 	v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
1910 	v = GEM_MAC_XIF_LINK_LED;
1911 	v |= GEM_MAC_XIF_TX_MII_ENA;
1912 
1913 	/* If an external transceiver is connected, enable its MII drivers */
1914 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
1915 	if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
1916 		/* External MII needs echo disable if half duplex. */
1917 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1918 			/* turn on full duplex LED */
1919 			v |= GEM_MAC_XIF_FDPLX_LED;
1920 		else
1921 	 		/* half duplex -- disable echo */
1922 		 	v |= GEM_MAC_XIF_ECHO_DISABL;
1923 
1924 		if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
1925 			v |= GEM_MAC_XIF_GMII_MODE;
1926 		else
1927 			v &= ~GEM_MAC_XIF_GMII_MODE;
1928 	} else
1929 		/* Internal MII needs buf enable */
1930 		v |= GEM_MAC_XIF_MII_BUF_ENA;
1931 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
1932 }
1933 
1934 int
1935 gem_mediachange(ifp)
1936 	struct ifnet *ifp;
1937 {
1938 	struct gem_softc *sc = ifp->if_softc;
1939 
1940 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1941 		return (EINVAL);
1942 
1943 	return (mii_mediachg(&sc->sc_mii));
1944 }
1945 
1946 void
1947 gem_mediastatus(ifp, ifmr)
1948 	struct ifnet *ifp;
1949 	struct ifmediareq *ifmr;
1950 {
1951 	struct gem_softc *sc = ifp->if_softc;
1952 
1953 	if ((ifp->if_flags & IFF_UP) == 0)
1954 		return;
1955 
1956 	mii_pollstat(&sc->sc_mii);
1957 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1958 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1959 }
1960 
1961 int gem_ioctldebug = 0;
1962 /*
1963  * Process an ioctl request.
1964  */
1965 int
1966 gem_ioctl(ifp, cmd, data)
1967 	struct ifnet *ifp;
1968 	u_long cmd;
1969 	caddr_t data;
1970 {
1971 	struct gem_softc *sc = ifp->if_softc;
1972 	struct ifreq *ifr = (struct ifreq *)data;
1973 	int s, error = 0;
1974 
1975 	s = splnet();
1976 
1977 	switch (cmd) {
1978 	case SIOCGIFMEDIA:
1979 	case SIOCSIFMEDIA:
1980 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1981 		break;
1982 
1983 	default:
1984 		error = ether_ioctl(ifp, cmd, data);
1985 		if (error == ENETRESET) {
1986 			/*
1987 			 * Multicast list has changed; set the hardware filter
1988 			 * accordingly.
1989 			 */
1990 			if (ifp->if_flags & IFF_RUNNING) {
1991 if (gem_ioctldebug) printf("reset1\n");
1992 				gem_init(ifp);
1993 				delay(50000);
1994 			}
1995 			error = 0;
1996 		}
1997 		break;
1998 	}
1999 
2000 	/* Try to get things going again */
2001 	if (ifp->if_flags & IFF_UP) {
2002 if (gem_ioctldebug) printf("start\n");
2003 		gem_start(ifp);
2004 	}
2005 	splx(s);
2006 	return (error);
2007 }
2008 
2009 
2010 void
2011 gem_shutdown(arg)
2012 	void *arg;
2013 {
2014 	struct gem_softc *sc = (struct gem_softc *)arg;
2015 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2016 
2017 	gem_stop(ifp, 1);
2018 }
2019 
2020 /*
2021  * Set up the logical address filter.
2022  */
2023 void
2024 gem_setladrf(sc)
2025 	struct gem_softc *sc;
2026 {
2027 	struct ethercom *ec = &sc->sc_ethercom;
2028 	struct ifnet *ifp = &ec->ec_if;
2029 	struct ether_multi *enm;
2030 	struct ether_multistep step;
2031 	bus_space_tag_t t = sc->sc_bustag;
2032 	bus_space_handle_t h = sc->sc_h;
2033 	u_int32_t crc;
2034 	u_int32_t hash[16];
2035 	u_int32_t v;
2036 	int i;
2037 
2038 	/* Get current RX configuration */
2039 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2040 
2041 	/*
2042 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2043 	 * and hash filter.  Depending on the case, the right bit will be
2044 	 * enabled.
2045 	 */
2046 	v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
2047 	    GEM_MAC_RX_PROMISC_GRP);
2048 
2049 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
2050 		/* Turn on promiscuous mode */
2051 		v |= GEM_MAC_RX_PROMISCUOUS;
2052 		ifp->if_flags |= IFF_ALLMULTI;
2053 		goto chipit;
2054 	}
2055 
2056 	/*
2057 	 * Set up multicast address filter by passing all multicast addresses
2058 	 * through a crc generator, and then using the high order 8 bits as an
2059 	 * index into the 256 bit logical address filter.  The high order 4
2060 	 * bits select the word, while the other 4 bits select the bit within
2061 	 * the word (where bit 0 is the MSB).
2062 	 */
2063 
2064 	/* Clear hash table */
2065 	memset(hash, 0, sizeof(hash));
2066 
2067 	ETHER_FIRST_MULTI(step, ec, enm);
2068 	while (enm != NULL) {
2069 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2070 			/*
2071 			 * We must listen to a range of multicast addresses.
2072 			 * For now, just accept all multicasts, rather than
2073 			 * trying to set only those filter bits needed to match
2074 			 * the range.  (At this time, the only use of address
2075 			 * ranges is for IP multicast routing, for which the
2076 			 * range is big enough to require all bits set.)
2077 			 * XXX use the addr filter for this
2078 			 */
2079 			ifp->if_flags |= IFF_ALLMULTI;
2080 			v |= GEM_MAC_RX_PROMISC_GRP;
2081 			goto chipit;
2082 		}
2083 
2084 		/* Get the LE CRC32 of the address */
2085 		crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2086 
2087 		/* Just want the 8 most significant bits. */
2088 		crc >>= 24;
2089 
2090 		/* Set the corresponding bit in the filter. */
2091 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
2092 
2093 		ETHER_NEXT_MULTI(step, enm);
2094 	}
2095 
2096 	v |= GEM_MAC_RX_HASH_FILTER;
2097 	ifp->if_flags &= ~IFF_ALLMULTI;
2098 
2099 	/* Now load the hash table into the chip (if we are using it) */
2100 	for (i = 0; i < 16; i++) {
2101 		bus_space_write_4(t, h,
2102 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2103 		    hash[i]);
2104 	}
2105 
2106 chipit:
2107 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2108 }
2109 
2110 #if notyet
2111 
2112 /*
2113  * gem_power:
2114  *
2115  *	Power management (suspend/resume) hook.
2116  */
2117 void
2118 gem_power(why, arg)
2119 	int why;
2120 	void *arg;
2121 {
2122 	struct gem_softc *sc = arg;
2123 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2124 	int s;
2125 
2126 	s = splnet();
2127 	switch (why) {
2128 	case PWR_SUSPEND:
2129 	case PWR_STANDBY:
2130 		gem_stop(ifp, 1);
2131 		if (sc->sc_power != NULL)
2132 			(*sc->sc_power)(sc, why);
2133 		break;
2134 	case PWR_RESUME:
2135 		if (ifp->if_flags & IFF_UP) {
2136 			if (sc->sc_power != NULL)
2137 				(*sc->sc_power)(sc, why);
2138 			gem_init(ifp);
2139 		}
2140 		break;
2141 	case PWR_SOFTSUSPEND:
2142 	case PWR_SOFTSTANDBY:
2143 	case PWR_SOFTRESUME:
2144 		break;
2145 	}
2146 	splx(s);
2147 }
2148 #endif
2149