xref: /netbsd-src/sys/dev/ic/gem.c (revision 8a8f936f250a330d54f8a24ed0e92aadf9743a7b)
1 /*	$NetBSD: gem.c,v 1.3 2001/10/01 23:55:00 eeh Exp $ */
2 
3 /*
4  *
5  * Copyright (C) 2001 Eduardo Horvath.
6  * All rights reserved.
7  *
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  */
31 
32 /*
33  * Driver for Sun GEM ethernet controllers.
34  */
35 
36 #include "bpfilter.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/callout.h>
41 #include <sys/mbuf.h>
42 #include <sys/syslog.h>
43 #include <sys/malloc.h>
44 #include <sys/kernel.h>
45 #include <sys/socket.h>
46 #include <sys/ioctl.h>
47 #include <sys/errno.h>
48 #include <sys/device.h>
49 
50 #include <machine/endian.h>
51 
52 #include <uvm/uvm_extern.h>
53 
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/if_ether.h>
58 
59 #if NBPFILTER > 0
60 #include <net/bpf.h>
61 #endif
62 
63 #include <machine/bus.h>
64 #include <machine/intr.h>
65 
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68 #include <dev/mii/mii_bitbang.h>
69 
70 #include <dev/ic/gemreg.h>
71 #include <dev/ic/gemvar.h>
72 
73 #define TRIES	10000
74 
75 void		gem_start __P((struct ifnet *));
76 void		gem_stop __P((struct ifnet *, int));
77 int		gem_ioctl __P((struct ifnet *, u_long, caddr_t));
78 void		gem_tick __P((void *));
79 void		gem_watchdog __P((struct ifnet *));
80 void		gem_shutdown __P((void *));
81 int		gem_init __P((struct ifnet *));
82 void		gem_init_regs(struct gem_softc *sc);
83 static int	gem_ringsize(int sz);
84 int		gem_meminit __P((struct gem_softc *));
85 void		gem_mifinit __P((struct gem_softc *));
86 void		gem_reset __P((struct gem_softc *));
87 int		gem_reset_rx(struct gem_softc *sc);
88 int		gem_reset_tx(struct gem_softc *sc);
89 int		gem_disable_rx(struct gem_softc *sc);
90 int		gem_disable_tx(struct gem_softc *sc);
91 void		gem_rxdrain(struct gem_softc *sc);
92 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
93 void		gem_setladrf __P((struct gem_softc *));
94 
95 /* MII methods & callbacks */
96 static int	gem_mii_readreg __P((struct device *, int, int));
97 static void	gem_mii_writereg __P((struct device *, int, int, int));
98 static void	gem_mii_statchg __P((struct device *));
99 
100 int		gem_mediachange __P((struct ifnet *));
101 void		gem_mediastatus __P((struct ifnet *, struct ifmediareq *));
102 
103 struct mbuf	*gem_get __P((struct gem_softc *, int, int));
104 int		gem_put __P((struct gem_softc *, int, struct mbuf *));
105 void		gem_read __P((struct gem_softc *, int, int));
106 int		gem_eint __P((struct gem_softc *, u_int));
107 int		gem_rint __P((struct gem_softc *));
108 int		gem_tint __P((struct gem_softc *));
109 void		gem_power __P((int, void *));
110 
111 static int	ether_cmp __P((u_char *, u_char *));
112 
113 /* Default buffer copy routines */
114 void	gem_copytobuf_contig __P((struct gem_softc *, void *, int, int));
115 void	gem_copyfrombuf_contig __P((struct gem_softc *, void *, int, int));
116 void	gem_zerobuf_contig __P((struct gem_softc *, int, int));
117 
118 
119 #ifdef GEM_DEBUG
120 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
121 				printf x
122 #else
123 #define	DPRINTF(sc, x)	/* nothing */
124 #endif
125 
126 
127 /*
128  * gem_config:
129  *
130  *	Attach a Gem interface to the system.
131  */
132 void
133 gem_config(sc)
134 	struct gem_softc *sc;
135 {
136 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
137 	struct mii_data *mii = &sc->sc_mii;
138 	struct mii_softc *child;
139 	int i, error;
140 
141 	/* Make sure the chip is stopped. */
142 	ifp->if_softc = sc;
143 	gem_reset(sc);
144 
145 	/*
146 	 * Allocate the control data structures, and create and load the
147 	 * DMA map for it.
148 	 */
149 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
150 	    sizeof(struct gem_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
151 	    1, &sc->sc_cdnseg, 0)) != 0) {
152 		printf("%s: unable to allocate control data, error = %d\n",
153 		    sc->sc_dev.dv_xname, error);
154 		goto fail_0;
155 	}
156 
157 /* XXX should map this in with correct endianness */
158 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
159 	    sizeof(struct gem_control_data), (caddr_t *)&sc->sc_control_data,
160 	    BUS_DMA_COHERENT)) != 0) {
161 		printf("%s: unable to map control data, error = %d\n",
162 		    sc->sc_dev.dv_xname, error);
163 		goto fail_1;
164 	}
165 
166 	if ((error = bus_dmamap_create(sc->sc_dmatag,
167 	    sizeof(struct gem_control_data), 1,
168 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
169 		printf("%s: unable to create control data DMA map, "
170 		    "error = %d\n", sc->sc_dev.dv_xname, error);
171 		goto fail_2;
172 	}
173 
174 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
175 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
176 	    0)) != 0) {
177 		printf("%s: unable to load control data DMA map, error = %d\n",
178 		    sc->sc_dev.dv_xname, error);
179 		goto fail_3;
180 	}
181 
182 	/*
183 	 * Initialize the transmit job descriptors.
184 	 */
185 	SIMPLEQ_INIT(&sc->sc_txfreeq);
186 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
187 
188 	/*
189 	 * Create the transmit buffer DMA maps.
190 	 */
191 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
192 		struct gem_txsoft *txs;
193 
194 		txs = &sc->sc_txsoft[i];
195 		txs->txs_mbuf = NULL;
196 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
197 		    GEM_NTXSEGS, MCLBYTES, 0, 0,
198 		    &txs->txs_dmamap)) != 0) {
199 			printf("%s: unable to create tx DMA map %d, "
200 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
201 			goto fail_4;
202 		}
203 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
204 	}
205 
206 	/*
207 	 * Create the receive buffer DMA maps.
208 	 */
209 	for (i = 0; i < GEM_NRXDESC; i++) {
210 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
211 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
212 			printf("%s: unable to create rx DMA map %d, "
213 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
214 			goto fail_5;
215 		}
216 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
217 	}
218 
219 	/*
220 	 * From this point forward, the attachment cannot fail.  A failure
221 	 * before this point releases all resources that may have been
222 	 * allocated.
223 	 */
224 
225 	/* Announce ourselves. */
226 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
227 	    ether_sprintf(sc->sc_enaddr));
228 
229 	/* Initialize ifnet structure. */
230 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
231 	ifp->if_softc = sc;
232 	ifp->if_flags =
233 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
234 	ifp->if_start = gem_start;
235 	ifp->if_ioctl = gem_ioctl;
236 	ifp->if_watchdog = gem_watchdog;
237 	ifp->if_stop = gem_stop;
238 	ifp->if_init = gem_init;
239 	IFQ_SET_READY(&ifp->if_snd);
240 
241 	/* Initialize ifmedia structures and MII info */
242 	mii->mii_ifp = ifp;
243 	mii->mii_readreg = gem_mii_readreg;
244 	mii->mii_writereg = gem_mii_writereg;
245 	mii->mii_statchg = gem_mii_statchg;
246 
247 	ifmedia_init(&mii->mii_media, 0, gem_mediachange, gem_mediastatus);
248 
249 	gem_mifinit(sc);
250 
251 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
252 			MII_PHY_ANY, MII_OFFSET_ANY, 0);
253 
254 	child = LIST_FIRST(&mii->mii_phys);
255 	if (child == NULL) {
256 		/* No PHY attached */
257 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
258 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
259 	} else {
260 		/*
261 		 * Walk along the list of attached MII devices and
262 		 * establish an `MII instance' to `phy number'
263 		 * mapping. We'll use this mapping in media change
264 		 * requests to determine which phy to use to program
265 		 * the MIF configuration register.
266 		 */
267 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
268 			/*
269 			 * Note: we support just two PHYs: the built-in
270 			 * internal device and an external on the MII
271 			 * connector.
272 			 */
273 			if (child->mii_phy > 1 || child->mii_inst > 1) {
274 				printf("%s: cannot accomodate MII device %s"
275 				       " at phy %d, instance %d\n",
276 				       sc->sc_dev.dv_xname,
277 				       child->mii_dev.dv_xname,
278 				       child->mii_phy, child->mii_inst);
279 				continue;
280 			}
281 
282 			sc->sc_phys[child->mii_inst] = child->mii_phy;
283 		}
284 
285 		/*
286 		 * Now select and activate the PHY we will use.
287 		 *
288 		 * The order of preference is External (MDI1),
289 		 * Internal (MDI0), Serial Link (no MII).
290 		 */
291 		if (sc->sc_phys[1]) {
292 #ifdef DEBUG
293 			printf("using external phy\n");
294 #endif
295 			sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
296 		} else {
297 #ifdef DEBUG
298 			printf("using internal phy\n");
299 #endif
300 			sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
301 		}
302 		bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG,
303 			sc->sc_mif_config);
304 
305 		/*
306 		 * XXX - we can really do the following ONLY if the
307 		 * phy indeed has the auto negotiation capability!!
308 		 */
309 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
310 	}
311 
312 	/* claim 802.1q capability */
313 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
314 
315 	/* Attach the interface. */
316 	if_attach(ifp);
317 	ether_ifattach(ifp, sc->sc_enaddr);
318 
319 	sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
320 	if (sc->sc_sh == NULL)
321 		panic("gem_config: can't establish shutdownhook");
322 
323 #if NRND > 0
324 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
325 			  RND_TYPE_NET, 0);
326 #endif
327 
328 
329 #if notyet
330 	/*
331 	 * Add a suspend hook to make sure we come back up after a
332 	 * resume.
333 	 */
334 	sc->sc_powerhook = powerhook_establish(gem_power, sc);
335 	if (sc->sc_powerhook == NULL)
336 		printf("%s: WARNING: unable to establish power hook\n",
337 		    sc->sc_dev.dv_xname);
338 #endif
339 
340 	callout_init(&sc->sc_tick_ch);
341 	return;
342 
343 	/*
344 	 * Free any resources we've allocated during the failed attach
345 	 * attempt.  Do this in reverse order and fall through.
346 	 */
347  fail_5:
348 	for (i = 0; i < GEM_NRXDESC; i++) {
349 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
350 			bus_dmamap_destroy(sc->sc_dmatag,
351 			    sc->sc_rxsoft[i].rxs_dmamap);
352 	}
353  fail_4:
354 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
355 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
356 			bus_dmamap_destroy(sc->sc_dmatag,
357 			    sc->sc_txsoft[i].txs_dmamap);
358 	}
359 	bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
360  fail_3:
361 	bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
362  fail_2:
363 	bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sc_control_data,
364 	    sizeof(struct gem_control_data));
365  fail_1:
366 	bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
367  fail_0:
368 	return;
369 }
370 
371 
372 void
373 gem_tick(arg)
374 	void *arg;
375 {
376 	struct gem_softc *sc = arg;
377 	int s;
378 
379 	s = splnet();
380 	mii_tick(&sc->sc_mii);
381 	splx(s);
382 
383 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
384 
385 }
386 
387 void
388 gem_reset(sc)
389 	struct gem_softc *sc;
390 {
391 	bus_space_tag_t t = sc->sc_bustag;
392 	bus_space_handle_t h = sc->sc_h;
393 	int i;
394 	int s;
395 
396 	s = splnet();
397 	DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
398 	gem_reset_rx(sc);
399 	gem_reset_tx(sc);
400 
401 	/* Do a full reset */
402 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
403 	for (i=TRIES; i--; delay(100))
404 		if ((bus_space_read_4(t, h, GEM_RESET) &
405 			(GEM_RESET_RX|GEM_RESET_TX)) == 0)
406 			break;
407 	if ((bus_space_read_4(t, h, GEM_RESET) &
408 		(GEM_RESET_RX|GEM_RESET_TX)) != 0) {
409 		printf("%s: cannot reset device\n",
410 			sc->sc_dev.dv_xname);
411 	}
412 	splx(s);
413 }
414 
415 
416 /*
417  * gem_rxdrain:
418  *
419  *	Drain the receive queue.
420  */
421 void
422 gem_rxdrain(struct gem_softc *sc)
423 {
424 	struct gem_rxsoft *rxs;
425 	int i;
426 
427 	for (i = 0; i < GEM_NRXDESC; i++) {
428 		rxs = &sc->sc_rxsoft[i];
429 		if (rxs->rxs_mbuf != NULL) {
430 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
431 			m_freem(rxs->rxs_mbuf);
432 			rxs->rxs_mbuf = NULL;
433 		}
434 	}
435 }
436 
437 /*
438  * Reset the whole thing.
439  */
440 void
441 gem_stop(struct ifnet *ifp, int disable)
442 {
443 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
444 	struct gem_txsoft *txs;
445 
446 	DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
447 
448 	callout_stop(&sc->sc_tick_ch);
449 	mii_down(&sc->sc_mii);
450 
451 	/* XXX - Should we reset these instead? */
452 	gem_disable_rx(sc);
453 	gem_disable_rx(sc);
454 
455 	/*
456 	 * Release any queued transmit buffers.
457 	 */
458 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
459 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
460 		if (txs->txs_mbuf != NULL) {
461 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
462 			m_freem(txs->txs_mbuf);
463 			txs->txs_mbuf = NULL;
464 		}
465 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
466 	}
467 
468 	if (disable) {
469 		gem_rxdrain(sc);
470 	}
471 
472 	/*
473 	 * Mark the interface down and cancel the watchdog timer.
474 	 */
475 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
476 	ifp->if_timer = 0;
477 }
478 
479 
480 /*
481  * Reset the receiver
482  */
483 int
484 gem_reset_rx(struct gem_softc *sc)
485 {
486 	bus_space_tag_t t = sc->sc_bustag;
487 	bus_space_handle_t h = sc->sc_h;
488 	int i;
489 
490 
491 	/*
492 	 * Resetting while DMA is in progress can cause a bus hang, so we
493 	 * disable DMA first.
494 	 */
495 	gem_disable_rx(sc);
496 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
497 	/* Wait till it finishes */
498 	for (i=TRIES; i--; delay(100))
499 		if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) == 0)
500 			break;
501 	if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) != 0)
502 		printf("%s: cannot disable read dma\n",
503 			sc->sc_dev.dv_xname);
504 
505 	/* Wait 5ms extra. */
506 	delay(5000);
507 
508 	/* Finally, reset the ERX */
509 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX);
510 	/* Wait till it finishes */
511 	for (i=TRIES; i--; delay(100))
512 		if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) == 0)
513 			break;
514 	if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) != 0) {
515 		printf("%s: cannot reset receiver\n",
516 			sc->sc_dev.dv_xname);
517 		return (1);
518 	}
519 	return (0);
520 }
521 
522 
523 /*
524  * Reset the transmitter
525  */
526 int
527 gem_reset_tx(struct gem_softc *sc)
528 {
529 	bus_space_tag_t t = sc->sc_bustag;
530 	bus_space_handle_t h = sc->sc_h;
531 	int i;
532 
533 	/*
534 	 * Resetting while DMA is in progress can cause a bus hang, so we
535 	 * disable DMA first.
536 	 */
537 	gem_disable_tx(sc);
538 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
539 	/* Wait till it finishes */
540 	for (i=TRIES; i--; delay(100))
541 		if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) == 0)
542 			break;
543 	if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) != 0)
544 		printf("%s: cannot disable read dma\n",
545 			sc->sc_dev.dv_xname);
546 
547 	/* Wait 5ms extra. */
548 	delay(5000);
549 
550 	/* Finally, reset the ETX */
551 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX);
552 	/* Wait till it finishes */
553 	for (i=TRIES; i--; delay(100))
554 		if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) == 0)
555 			break;
556 	if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) != 0) {
557 		printf("%s: cannot reset receiver\n",
558 			sc->sc_dev.dv_xname);
559 		return (1);
560 	}
561 	return (0);
562 }
563 
564 /*
565  * disable receiver.
566  */
567 int
568 gem_disable_rx(struct gem_softc *sc)
569 {
570 	bus_space_tag_t t = sc->sc_bustag;
571 	bus_space_handle_t h = sc->sc_h;
572 	int i;
573 	u_int32_t cfg;
574 
575 	/* Flip the enable bit */
576 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
577 	cfg &= ~GEM_MAC_RX_ENABLE;
578 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
579 
580 	/* Wait for it to finish */
581 	for (i=TRIES; i--; delay(100))
582 		if ((bus_space_read_4(t, h, GEM_MAC_RX_CONFIG) &
583 			GEM_MAC_RX_ENABLE) == 0)
584 			return (0);
585 	return (1);
586 }
587 
588 /*
589  * disable transmitter.
590  */
591 int
592 gem_disable_tx(struct gem_softc *sc)
593 {
594 	bus_space_tag_t t = sc->sc_bustag;
595 	bus_space_handle_t h = sc->sc_h;
596 	int i;
597 	u_int32_t cfg;
598 
599 	/* Flip the enable bit */
600 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
601 	cfg &= ~GEM_MAC_TX_ENABLE;
602 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
603 
604 	/* Wait for it to finish */
605 	for (i=TRIES; i--; delay(100))
606 		if ((bus_space_read_4(t, h, GEM_MAC_TX_CONFIG) &
607 			GEM_MAC_TX_ENABLE) == 0)
608 			return (0);
609 	return (1);
610 }
611 
612 /*
613  * Initialize interface.
614  */
615 int
616 gem_meminit(struct gem_softc *sc)
617 {
618 	struct gem_rxsoft *rxs;
619 	int i, error;
620 
621 	/*
622 	 * Initialize the transmit descriptor ring.
623 	 */
624 	memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
625 	for (i = 0; i < GEM_NTXDESC; i++) {
626 		sc->sc_txdescs[i].gd_flags = 0;
627 		sc->sc_txdescs[i].gd_addr = 0;
628 	}
629 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
630 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
631 	sc->sc_txfree = GEM_NTXDESC;
632 	sc->sc_txnext = 0;
633 
634 	/*
635 	 * Initialize the receive descriptor and receive job
636 	 * descriptor rings.
637 	 */
638 	for (i = 0; i < GEM_NRXDESC; i++) {
639 		rxs = &sc->sc_rxsoft[i];
640 		if (rxs->rxs_mbuf == NULL) {
641 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
642 				printf("%s: unable to allocate or map rx "
643 				    "buffer %d, error = %d\n",
644 				    sc->sc_dev.dv_xname, i, error);
645 				/*
646 				 * XXX Should attempt to run with fewer receive
647 				 * XXX buffers instead of just failing.
648 				 */
649 				gem_rxdrain(sc);
650 				return (1);
651 			}
652 		} else
653 			GEM_INIT_RXDESC(sc, i);
654 	}
655 	sc->sc_rxptr = 0;
656 
657 	return (0);
658 }
659 
660 static int
661 gem_ringsize(int sz)
662 {
663 	int v;
664 
665 	switch (sz) {
666 	case 32:
667 		v = GEM_RING_SZ_32;
668 		break;
669 	case 64:
670 		v = GEM_RING_SZ_64;
671 		break;
672 	case 128:
673 		v = GEM_RING_SZ_128;
674 		break;
675 	case 256:
676 		v = GEM_RING_SZ_256;
677 		break;
678 	case 512:
679 		v = GEM_RING_SZ_512;
680 		break;
681 	case 1024:
682 		v = GEM_RING_SZ_1024;
683 		break;
684 	case 2048:
685 		v = GEM_RING_SZ_2048;
686 		break;
687 	case 4096:
688 		v = GEM_RING_SZ_4096;
689 		break;
690 	case 8192:
691 		v = GEM_RING_SZ_8192;
692 		break;
693 	default:
694 		printf("gem: invalid Receive Descriptor ring size\n");
695 		break;
696 	}
697 	return (v);
698 }
699 
700 /*
701  * Initialization of interface; set up initialization block
702  * and transmit/receive descriptor rings.
703  */
704 int
705 gem_init(struct ifnet *ifp)
706 {
707 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
708 	bus_space_tag_t t = sc->sc_bustag;
709 	bus_space_handle_t h = sc->sc_h;
710 	int s;
711 	u_int32_t v;
712 
713 	s = splnet();
714 
715 	DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
716 	/*
717 	 * Initialization sequence. The numbered steps below correspond
718 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
719 	 * Channel Engine manual (part of the PCIO manual).
720 	 * See also the STP2002-STQ document from Sun Microsystems.
721 	 */
722 
723 	/* step 1 & 2. Reset the Ethernet Channel */
724 	gem_stop(ifp, 0);
725 	gem_reset(sc);
726 	DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
727 
728 	/* Re-initialize the MIF */
729 	gem_mifinit(sc);
730 
731 	/* Call MI reset function if any */
732 	if (sc->sc_hwreset)
733 		(*sc->sc_hwreset)(sc);
734 
735 	/* step 3. Setup data structures in host memory */
736 	gem_meminit(sc);
737 
738 	/* step 4. TX MAC registers & counters */
739 	gem_init_regs(sc);
740 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
741 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
742 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN  + sizeof(struct ether_header):
743             ETHER_MAX_LEN + sizeof(struct ether_header)) | (0x2000<<16));
744 
745 	/* step 5. RX MAC registers & counters */
746 	gem_setladrf(sc);
747 
748 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
749 	bus_space_write_8(t, h, GEM_TX_RING_PTR,
750 		GEM_CDTXADDR(sc, 0));
751 	/* Yeeech.  The following has endianness issues. */
752 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI,
753 		(((uint64_t)GEM_CDRXADDR(sc, 0))>>32));
754 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO,
755 		GEM_CDRXADDR(sc, 0));
756 
757 	/* step 8. Global Configuration & Interrupt Mask */
758 	bus_space_write_4(t, h, GEM_INTMASK,
759 		      ~(GEM_INTR_TX_INTME|
760 			GEM_INTR_TX_EMPTY|
761 			GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
762 			GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
763 			GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
764 			GEM_INTR_BERR));
765 	bus_space_write_4(t, h, GEM_MAC_RX_MASK, 0); /* XXXX */
766 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
767 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
768 #if 0
769 	if (!sc->sc_pci) {
770 		/* Config SBus */
771 		switch (sc->sc_burst) {
772 		default:
773 			v = 0;
774 			break;
775 		case 16:
776 			v = GEM_SEB_CFG_BURST16;
777 			break;
778 		case 32:
779 			v = GEM_SEB_CFG_BURST32;
780 			break;
781 		case 64:
782 			v = GEM_SEB_CFG_BURST64;
783 			break;
784 		}
785 		bus_space_write_4(t, seb, GEM_SEBI_CFG,
786 			v|GE_SIOCFG_PARITY|GE_SIOCFG_BMODE64);
787 	}
788 #endif
789 	/* step 9. ETX Configuration: use mostly default values */
790 
791 	/* Enable DMA */
792 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
793 	bus_space_write_4(t, h, GEM_TX_CONFIG,
794 		v|GEM_TX_CONFIG_TXDMA_EN|
795 		((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
796 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
797 
798 	/* step 10. ERX Configuration */
799 
800 	/* Encode Receive Descriptor ring size: four possible values */
801 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
802 
803 	/* Enable DMA */
804 	bus_space_write_4(t, h, GEM_RX_CONFIG,
805 		v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
806 		(2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN|
807 		(0<<GEM_RX_CONFIG_CXM_START_SHFT));
808 	/*
809 	 * The following value is for an OFF Threshold of about 15.5 Kbytes
810 	 * and an ON Threshold of 4K bytes.
811 	 */
812 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH, 0xf8 | (0x40 << 12));
813 	bus_space_write_4(t, h, GEM_RX_BLANKING, (2<<12)|6);
814 
815 	/* step 11. Configure Media */
816 	gem_mii_statchg(&sc->sc_dev);
817 
818 /* XXXX Serial link needs a whole different setup. */
819 
820 
821 	/* step 12. RX_MAC Configuration Register */
822 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
823 	v |= GEM_MAC_RX_ENABLE;
824 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
825 
826 	/* step 14. Issue Transmit Pending command */
827 
828 	/* Call MI initialization function if any */
829 	if (sc->sc_hwinit)
830 		(*sc->sc_hwinit)(sc);
831 
832 
833 	/* step 15.  Give the reciever a swift kick */
834 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
835 
836 	/* Start the one second timer. */
837 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
838 
839 	ifp->if_flags |= IFF_RUNNING;
840 	ifp->if_flags &= ~IFF_OACTIVE;
841 	ifp->if_timer = 0;
842 	splx(s);
843 
844 	return (0);
845 }
846 
847 /*
848  * Compare two Ether/802 addresses for equality, inlined and unrolled for
849  * speed.
850  */
851 static __inline__ int
852 ether_cmp(a, b)
853 	u_char *a, *b;
854 {
855 
856 	if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
857 	    a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
858 		return (0);
859 	return (1);
860 }
861 
862 
863 void
864 gem_init_regs(struct gem_softc *sc)
865 {
866 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
867 	bus_space_tag_t t = sc->sc_bustag;
868 	bus_space_handle_t h = sc->sc_h;
869 
870 	/* These regs are not cleared on reset */
871 	sc->sc_inited = 0;
872 	if (!sc->sc_inited) {
873 
874 		/* Wooo.  Magic values. */
875 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
876 		bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
877 		bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
878 
879 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
880 		/* Max frame and max burst size */
881 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
882 			(ifp->if_mtu+18) | (0x2000<<16)/* Burst size */);
883 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
884 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
885 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
886 		/* Dunno.... */
887 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
888 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
889 			((sc->sc_enaddr[5]<<8)|sc->sc_enaddr[4])&0x3ff);
890 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
891 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
892 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
893 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
894 		/* MAC control addr set to 0:1:c2:0:1:80 */
895 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
896 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
897 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
898 
899 		/* MAC filter addr set to 0:0:0:0:0:0 */
900 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
901 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
902 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
903 
904 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
905 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
906 
907 		sc->sc_inited = 1;
908 	}
909 
910 	/* Counters need to be zeroed */
911 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
912 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
913 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
914 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
915 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
916 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
917 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
918 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
919 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
920 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
921 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
922 
923 	/* Un-pause stuff */
924 #if 0
925 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
926 #else
927 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
928 #endif
929 
930 	/*
931 	 * Set the station address.
932 	 */
933 	bus_space_write_4(t, h, GEM_MAC_ADDR0,
934 		(sc->sc_enaddr[4]<<8) | sc->sc_enaddr[5]);
935 	bus_space_write_4(t, h, GEM_MAC_ADDR1,
936 		(sc->sc_enaddr[2]<<8) | sc->sc_enaddr[3]);
937 	bus_space_write_4(t, h, GEM_MAC_ADDR2,
938 		(sc->sc_enaddr[0]<<8) | sc->sc_enaddr[1]);
939 
940 }
941 
942 
943 
944 void
945 gem_start(ifp)
946 	struct ifnet *ifp;
947 {
948 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
949 	struct mbuf *m0, *m;
950 	struct gem_txsoft *txs, *last_txs;
951 	bus_dmamap_t dmamap;
952 	int error, firsttx, nexttx, lasttx, ofree, seg;
953 
954 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
955 		return;
956 
957 	/*
958 	 * Remember the previous number of free descriptors and
959 	 * the first descriptor we'll use.
960 	 */
961 	ofree = sc->sc_txfree;
962 	firsttx = sc->sc_txnext;
963 
964 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
965 	    sc->sc_dev.dv_xname, ofree, firsttx));
966 
967 	/*
968 	 * Loop through the send queue, setting up transmit descriptors
969 	 * until we drain the queue, or use up all available transmit
970 	 * descriptors.
971 	 */
972 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
973 	       sc->sc_txfree != 0) {
974 		/*
975 		 * Grab a packet off the queue.
976 		 */
977 		IFQ_POLL(&ifp->if_snd, m0);
978 		if (m0 == NULL)
979 			break;
980 		m = NULL;
981 
982 		dmamap = txs->txs_dmamap;
983 
984 		/*
985 		 * Load the DMA map.  If this fails, the packet either
986 		 * didn't fit in the alloted number of segments, or we were
987 		 * short on resources.  In this case, we'll copy and try
988 		 * again.
989 		 */
990 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
991 		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
992 			MGETHDR(m, M_DONTWAIT, MT_DATA);
993 			if (m == NULL) {
994 				printf("%s: unable to allocate Tx mbuf\n",
995 				    sc->sc_dev.dv_xname);
996 				break;
997 			}
998 			if (m0->m_pkthdr.len > MHLEN) {
999 				MCLGET(m, M_DONTWAIT);
1000 				if ((m->m_flags & M_EXT) == 0) {
1001 					printf("%s: unable to allocate Tx "
1002 					    "cluster\n", sc->sc_dev.dv_xname);
1003 					m_freem(m);
1004 					break;
1005 				}
1006 			}
1007 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1008 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1009 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1010 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1011 			if (error) {
1012 				printf("%s: unable to load Tx buffer, "
1013 				    "error = %d\n", sc->sc_dev.dv_xname, error);
1014 				break;
1015 			}
1016 		}
1017 
1018 		/*
1019 		 * Ensure we have enough descriptors free to describe
1020 		 * the packet.
1021 		 */
1022 		if (dmamap->dm_nsegs > sc->sc_txfree) {
1023 			/*
1024 			 * Not enough free descriptors to transmit this
1025 			 * packet.  We haven't committed to anything yet,
1026 			 * so just unload the DMA map, put the packet
1027 			 * back on the queue, and punt.  Notify the upper
1028 			 * layer that there are no more slots left.
1029 			 *
1030 			 * XXX We could allocate an mbuf and copy, but
1031 			 * XXX it is worth it?
1032 			 */
1033 			ifp->if_flags |= IFF_OACTIVE;
1034 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
1035 			if (m != NULL)
1036 				m_freem(m);
1037 			break;
1038 		}
1039 
1040 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1041 		if (m != NULL) {
1042 			m_freem(m0);
1043 			m0 = m;
1044 		}
1045 
1046 		/*
1047 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1048 		 */
1049 
1050 		/* Sync the DMA map. */
1051 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1052 		    BUS_DMASYNC_PREWRITE);
1053 
1054 		/*
1055 		 * Initialize the transmit descriptors.
1056 		 */
1057 		for (nexttx = sc->sc_txnext, seg = 0;
1058 		     seg < dmamap->dm_nsegs;
1059 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
1060 			uint64_t flags;
1061 
1062 			/*
1063 			 * If this is the first descriptor we're
1064 			 * enqueueing, set the start of packet flag,
1065 			 * and the checksum stuff if we want the hardware
1066 			 * to do it.
1067 			 */
1068 			sc->sc_txdescs[nexttx].gd_addr =
1069 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1070 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1071 			if (nexttx == firsttx) {
1072 				flags |= GEM_TD_START_OF_PACKET;
1073 			}
1074 			if (seg == dmamap->dm_nsegs - 1) {
1075 				flags |= GEM_TD_END_OF_PACKET;
1076 			}
1077 			sc->sc_txdescs[nexttx].gd_flags =
1078 				GEM_DMA_WRITE(sc, flags);
1079 			lasttx = nexttx;
1080 		}
1081 
1082 #ifdef GEM_DEBUG
1083 		if (ifp->if_flags & IFF_DEBUG) {
1084 			printf("     gem_start %p transmit chain:\n", txs);
1085 			for (seg = sc->sc_txnext;; seg = GEM_NEXTTX(seg)) {
1086 				printf("descriptor %d:\t", seg);
1087 				printf("gd_flags:   0x%016llx\t", (long long)
1088 					GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_flags));
1089 				printf("gd_addr: 0x%016llx\n", (long long)
1090 					GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_addr));
1091 				if (seg == lasttx)
1092 					break;
1093 			}
1094 		}
1095 #endif
1096 
1097 		/* Sync the descriptors we're using. */
1098 		GEM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1099 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1100 
1101 		/*
1102 		 * Store a pointer to the packet so we can free it later,
1103 		 * and remember what txdirty will be once the packet is
1104 		 * done.
1105 		 */
1106 		txs->txs_mbuf = m0;
1107 		txs->txs_firstdesc = sc->sc_txnext;
1108 		txs->txs_lastdesc = lasttx;
1109 		txs->txs_ndescs = dmamap->dm_nsegs;
1110 
1111 		/* Advance the tx pointer. */
1112 		sc->sc_txfree -= dmamap->dm_nsegs;
1113 		sc->sc_txnext = nexttx;
1114 
1115 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
1116 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1117 
1118 		last_txs = txs;
1119 
1120 #if NBPFILTER > 0
1121 		/*
1122 		 * Pass the packet to any BPF listeners.
1123 		 */
1124 		if (ifp->if_bpf)
1125 			bpf_mtap(ifp->if_bpf, m0);
1126 #endif /* NBPFILTER > 0 */
1127 	}
1128 
1129 	if (txs == NULL || sc->sc_txfree == 0) {
1130 		/* No more slots left; notify upper layer. */
1131 		ifp->if_flags |= IFF_OACTIVE;
1132 	}
1133 
1134 	if (sc->sc_txfree != ofree) {
1135 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1136 		    sc->sc_dev.dv_xname, lasttx, firsttx));
1137 		/*
1138 		 * The entire packet chain is set up.
1139 		 * Kick the transmitter.
1140 		 */
1141 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1142 			sc->sc_dev.dv_xname, nexttx));
1143 		bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK,
1144 			sc->sc_txnext);
1145 
1146 		/* Set a watchdog timer in case the chip flakes out. */
1147 		ifp->if_timer = 5;
1148 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1149 			sc->sc_dev.dv_xname, ifp->if_timer));
1150 	}
1151 }
1152 
1153 /*
1154  * Transmit interrupt.
1155  */
1156 int
1157 gem_tint(sc)
1158 	struct gem_softc *sc;
1159 {
1160 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1161 	bus_space_tag_t t = sc->sc_bustag;
1162 	bus_space_handle_t mac = sc->sc_h;
1163 	struct gem_txsoft *txs;
1164 	int txlast;
1165 
1166 
1167 	DPRINTF(sc, ("%s: gem_tint\n", sc->sc_dev.dv_xname));
1168 
1169 	/*
1170 	 * Unload collision counters
1171 	 */
1172 	ifp->if_collisions +=
1173 		bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1174 		bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
1175 		bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1176 		bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1177 
1178 	/*
1179 	 * then clear the hardware counters.
1180 	 */
1181 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1182 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1183 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1184 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1185 
1186 	/*
1187 	 * Go through our Tx list and free mbufs for those
1188 	 * frames that have been transmitted.
1189 	 */
1190 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1191 		GEM_CDTXSYNC(sc, txs->txs_lastdesc,
1192 		    txs->txs_ndescs,
1193 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1194 
1195 #ifdef GEM_DEBUG
1196 		if (ifp->if_flags & IFF_DEBUG) {
1197 			int i;
1198 			printf("    txsoft %p transmit chain:\n", txs);
1199 			for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
1200 				printf("descriptor %d: ", i);
1201 				printf("gd_flags: 0x%016llx\t", (long long)
1202 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1203 				printf("gd_addr: 0x%016llx\n", (long long)
1204 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1205 				if (i == txs->txs_lastdesc)
1206 					break;
1207 			}
1208 		}
1209 #endif
1210 
1211 		/*
1212 		 * In theory, we could harveast some descriptors before
1213 		 * the ring is empty, but that's a bit complicated.
1214 		 *
1215 		 * GEM_TX_COMPLETION points to the last descriptor
1216 		 * processed +1.
1217 		 */
1218 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1219 		DPRINTF(sc,
1220 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1221 				txs->txs_lastdesc, txlast));
1222 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1223 			if ((txlast >= txs->txs_firstdesc) &&
1224 				(txlast <= txs->txs_lastdesc))
1225 				break;
1226 		} else {
1227 			/* Ick -- this command wraps */
1228 			if ((txlast >= txs->txs_firstdesc) ||
1229 				(txlast <= txs->txs_lastdesc))
1230 				break;
1231 		}
1232 
1233 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1234 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1235 
1236 		sc->sc_txfree += txs->txs_ndescs;
1237 
1238 		if (txs->txs_mbuf == NULL) {
1239 #ifdef DIAGNOSTIC
1240 				panic("gem_txintr: null mbuf");
1241 #endif
1242 		}
1243 
1244 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1245 		    0, txs->txs_dmamap->dm_mapsize,
1246 		    BUS_DMASYNC_POSTWRITE);
1247 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1248 		m_freem(txs->txs_mbuf);
1249 		txs->txs_mbuf = NULL;
1250 
1251 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1252 
1253 		ifp->if_opackets++;
1254 	}
1255 
1256 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1257 		"GEM_TX_DATA_PTR %llx "
1258 		"GEM_TX_COMPLETION %x\n",
1259 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
1260 		(long long)bus_space_read_8(sc->sc_bustag, sc->sc_h,
1261 			GEM_TX_DATA_PTR),
1262 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION)));
1263 
1264 	gem_start(ifp);
1265 
1266 	if (SIMPLEQ_FIRST(&sc->sc_txdirtyq) == NULL)
1267 		ifp->if_timer = 0;
1268 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1269 		sc->sc_dev.dv_xname, ifp->if_timer));
1270 
1271 	return (1);
1272 }
1273 
1274 /*
1275  * Receive interrupt.
1276  */
1277 int
1278 gem_rint(sc)
1279 	struct gem_softc *sc;
1280 {
1281 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1282 	bus_space_tag_t t = sc->sc_bustag;
1283 	bus_space_handle_t h = sc->sc_h;
1284 	struct ether_header *eh;
1285 	struct gem_rxsoft *rxs;
1286 	struct mbuf *m;
1287 	u_int64_t rxstat;
1288 	int i, len;
1289 
1290 	DPRINTF(sc, ("%s: gem_rint\n", sc->sc_dev.dv_xname));
1291 	/*
1292 	 * XXXX Read the lastrx only once at the top for speed.
1293 	 */
1294 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1295 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1296 	for (i = sc->sc_rxptr; i != bus_space_read_4(t, h, GEM_RX_COMPLETION);
1297 	     i = GEM_NEXTRX(i)) {
1298 		rxs = &sc->sc_rxsoft[i];
1299 
1300 		GEM_CDRXSYNC(sc, i,
1301 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1302 
1303 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1304 
1305 		if (rxstat & GEM_RD_OWN) {
1306 			printf("gem_rint: completed descriptor "
1307 				"still owned %d\n", i);
1308 			/*
1309 			 * We have processed all of the receive buffers.
1310 			 */
1311 			break;
1312 		}
1313 
1314 		if (rxstat & GEM_RD_BAD_CRC) {
1315 			printf("%s: receive error: CRC error\n",
1316 				sc->sc_dev.dv_xname);
1317 			GEM_INIT_RXDESC(sc, i);
1318 			continue;
1319 		}
1320 
1321 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1322 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1323 #ifdef GEM_DEBUG
1324 		if (ifp->if_flags & IFF_DEBUG) {
1325 			printf("    rxsoft %p descriptor %d: ", rxs, i);
1326 			printf("gd_flags: 0x%016llx\t", (long long)
1327 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1328 			printf("gd_addr: 0x%016llx\n", (long long)
1329 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1330 		}
1331 #endif
1332 
1333 		/*
1334 		 * No errors; receive the packet.  Note the Gem
1335 		 * includes the CRC with every packet.
1336 		 */
1337 		len = GEM_RD_BUFLEN(rxstat);
1338 
1339 		/*
1340 		 * Allocate a new mbuf cluster.  If that fails, we are
1341 		 * out of memory, and must drop the packet and recycle
1342 		 * the buffer that's already attached to this descriptor.
1343 		 */
1344 		m = rxs->rxs_mbuf;
1345 		if (gem_add_rxbuf(sc, i) != 0) {
1346 			ifp->if_ierrors++;
1347 			GEM_INIT_RXDESC(sc, i);
1348 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1349 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1350 			continue;
1351 		}
1352 		m->m_data += 2; /* We're already off by two */
1353 
1354 		ifp->if_ipackets++;
1355 		eh = mtod(m, struct ether_header *);
1356 		m->m_flags |= M_HASFCS;
1357 		m->m_pkthdr.rcvif = ifp;
1358 		m->m_pkthdr.len = m->m_len = len;
1359 
1360 #if NBPFILTER > 0
1361 		/*
1362 		 * Pass this up to any BPF listeners, but only
1363 		 * pass it up the stack if its for us.
1364 		 */
1365 		if (ifp->if_bpf)
1366 			bpf_mtap(ifp->if_bpf, m);
1367 #endif /* NPBFILTER > 0 */
1368 
1369 #if 0
1370 		/*
1371 		 * We sometimes have to run the 21140 in Hash-Only
1372 		 * mode.  If we're in that mode, and not in promiscuous
1373 		 * mode, and we have a unicast packet that isn't for
1374 		 * us, then drop it.
1375 		 */
1376 		if (sc->sc_filtmode == TDCTL_Tx_FT_HASHONLY &&
1377 		    (ifp->if_flags & IFF_PROMISC) == 0 &&
1378 		    ETHER_IS_MULTICAST(eh->ether_dhost) == 0 &&
1379 		    memcmp(LLADDR(ifp->if_sadl), eh->ether_dhost,
1380 			   ETHER_ADDR_LEN) != 0) {
1381 			m_freem(m);
1382 			continue;
1383 		}
1384 #endif
1385 
1386 		/* Pass it on. */
1387 		(*ifp->if_input)(ifp, m);
1388 	}
1389 
1390 	/* Update the receive pointer. */
1391 	sc->sc_rxptr = i;
1392 	bus_space_write_4(t, h, GEM_RX_KICK, i);
1393 
1394 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1395 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1396 
1397 	return (1);
1398 }
1399 
1400 
1401 /*
1402  * gem_add_rxbuf:
1403  *
1404  *	Add a receive buffer to the indicated descriptor.
1405  */
1406 int
1407 gem_add_rxbuf(struct gem_softc *sc, int idx)
1408 {
1409 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1410 	struct mbuf *m;
1411 	int error;
1412 
1413 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1414 	if (m == NULL)
1415 		return (ENOBUFS);
1416 
1417 	MCLGET(m, M_DONTWAIT);
1418 	if ((m->m_flags & M_EXT) == 0) {
1419 		m_freem(m);
1420 		return (ENOBUFS);
1421 	}
1422 
1423 #ifdef GEM_DEBUG
1424 /* bzero the packet to check dma */
1425 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
1426 #endif
1427 
1428 	if (rxs->rxs_mbuf != NULL)
1429 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
1430 
1431 	rxs->rxs_mbuf = m;
1432 
1433 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
1434 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1435 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1436 	if (error) {
1437 		printf("%s: can't load rx DMA map %d, error = %d\n",
1438 		    sc->sc_dev.dv_xname, idx, error);
1439 		panic("gem_add_rxbuf");	/* XXX */
1440 	}
1441 
1442 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1443 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1444 
1445 	GEM_INIT_RXDESC(sc, idx);
1446 
1447 	return (0);
1448 }
1449 
1450 
1451 int
1452 gem_eint(sc, status)
1453 	struct gem_softc *sc;
1454 	u_int status;
1455 {
1456 	char bits[128];
1457 
1458 	if ((status & GEM_INTR_MIF) != 0) {
1459 		printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
1460 		return (1);
1461 	}
1462 
1463 	printf("%s: status=%s\n", sc->sc_dev.dv_xname,
1464 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
1465 	return (1);
1466 }
1467 
1468 
1469 int
1470 gem_intr(v)
1471 	void *v;
1472 {
1473 	struct gem_softc *sc = (struct gem_softc *)v;
1474 	bus_space_tag_t t = sc->sc_bustag;
1475 	bus_space_handle_t seb = sc->sc_h;
1476 	u_int32_t status;
1477 	int r = 0;
1478 #ifdef GEM_DEBUG
1479 	char bits[128];
1480 #endif
1481 
1482 	status = bus_space_read_4(t, seb, GEM_STATUS);
1483 	DPRINTF(sc, ("%s: gem_intr: cplt %xstatus %s\n",
1484 		sc->sc_dev.dv_xname, (status>>19),
1485 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
1486 
1487 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
1488 		r |= gem_eint(sc, status);
1489 
1490 	if ((status &
1491 		(GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME))
1492 		!= 0)
1493 		r |= gem_tint(sc);
1494 
1495 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0)
1496 		r |= gem_rint(sc);
1497 
1498 	/* We should eventually do more than just print out error stats. */
1499 	if (status & GEM_INTR_TX_MAC) {
1500 		int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
1501 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
1502 			printf("MAC tx fault, status %x\n", txstat);
1503 	}
1504 	if (status & GEM_INTR_RX_MAC) {
1505 		int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
1506 		if (rxstat & ~GEM_MAC_RX_DONE)
1507 			printf("MAC rx fault, status %x\n", rxstat);
1508 	}
1509 	return (r);
1510 }
1511 
1512 
1513 void
1514 gem_watchdog(ifp)
1515 	struct ifnet *ifp;
1516 {
1517 	struct gem_softc *sc = ifp->if_softc;
1518 
1519 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
1520 		"GEM_MAC_RX_CONFIG %x\n",
1521 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
1522 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
1523 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG)));
1524 
1525 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1526 	++ifp->if_oerrors;
1527 
1528 	/* Try to get more packets going. */
1529 	gem_start(ifp);
1530 }
1531 
1532 /*
1533  * Initialize the MII Management Interface
1534  */
1535 void
1536 gem_mifinit(sc)
1537 	struct gem_softc *sc;
1538 {
1539 	bus_space_tag_t t = sc->sc_bustag;
1540 	bus_space_handle_t mif = sc->sc_h;
1541 
1542 	/* Configure the MIF in frame mode */
1543 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1544 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
1545 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
1546 }
1547 
1548 /*
1549  * MII interface
1550  *
1551  * The GEM MII interface supports at least three different operating modes:
1552  *
1553  * Bitbang mode is implemented using data, clock and output enable registers.
1554  *
1555  * Frame mode is implemented by loading a complete frame into the frame
1556  * register and polling the valid bit for completion.
1557  *
1558  * Polling mode uses the frame register but completion is indicated by
1559  * an interrupt.
1560  *
1561  */
1562 static int
1563 gem_mii_readreg(self, phy, reg)
1564 	struct device *self;
1565 	int phy, reg;
1566 {
1567 	struct gem_softc *sc = (void *)self;
1568 	bus_space_tag_t t = sc->sc_bustag;
1569 	bus_space_handle_t mif = sc->sc_h;
1570 	int n;
1571 	u_int32_t v;
1572 
1573 #ifdef GEM_DEBUG1
1574 	if (sc->sc_debug)
1575 		printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
1576 #endif
1577 
1578 #if 0
1579 	/* Select the desired PHY in the MIF configuration register */
1580 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1581 	/* Clear PHY select bit */
1582 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
1583 	if (phy == GEM_PHYAD_EXTERNAL)
1584 		/* Set PHY select bit to get at external device */
1585 		v |= GEM_MIF_CONFIG_PHY_SEL;
1586 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1587 #endif
1588 
1589 	/* Construct the frame command */
1590 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
1591 		GEM_MIF_FRAME_READ;
1592 
1593 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1594 	for (n = 0; n < 100; n++) {
1595 		DELAY(1);
1596 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1597 		if (v & GEM_MIF_FRAME_TA0)
1598 			return (v & GEM_MIF_FRAME_DATA);
1599 	}
1600 
1601 	printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1602 	return (0);
1603 }
1604 
1605 static void
1606 gem_mii_writereg(self, phy, reg, val)
1607 	struct device *self;
1608 	int phy, reg, val;
1609 {
1610 	struct gem_softc *sc = (void *)self;
1611 	bus_space_tag_t t = sc->sc_bustag;
1612 	bus_space_handle_t mif = sc->sc_h;
1613 	int n;
1614 	u_int32_t v;
1615 
1616 #ifdef GEM_DEBUG1
1617 	if (sc->sc_debug)
1618 		printf("gem_mii_writereg: phy %d reg %d val %x\n",
1619 			phy, reg, val);
1620 #endif
1621 
1622 #if 0
1623 	/* Select the desired PHY in the MIF configuration register */
1624 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1625 	/* Clear PHY select bit */
1626 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
1627 	if (phy == GEM_PHYAD_EXTERNAL)
1628 		/* Set PHY select bit to get at external device */
1629 		v |= GEM_MIF_CONFIG_PHY_SEL;
1630 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1631 #endif
1632 	/* Construct the frame command */
1633 	v = GEM_MIF_FRAME_WRITE			|
1634 	    (phy << GEM_MIF_PHY_SHIFT)		|
1635 	    (reg << GEM_MIF_REG_SHIFT)		|
1636 	    (val & GEM_MIF_FRAME_DATA);
1637 
1638 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1639 	for (n = 0; n < 100; n++) {
1640 		DELAY(1);
1641 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1642 		if (v & GEM_MIF_FRAME_TA0)
1643 			return;
1644 	}
1645 
1646 	printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1647 }
1648 
1649 static void
1650 gem_mii_statchg(dev)
1651 	struct device *dev;
1652 {
1653 	struct gem_softc *sc = (void *)dev;
1654 #ifdef GEM_DEBUG
1655 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1656 #endif
1657 	bus_space_tag_t t = sc->sc_bustag;
1658 	bus_space_handle_t mac = sc->sc_h;
1659 	u_int32_t v;
1660 
1661 #ifdef GEM_DEBUG
1662 	if (sc->sc_debug)
1663 		printf("gem_mii_statchg: status change: phy = %d\n",
1664 			sc->sc_phys[instance];);
1665 #endif
1666 
1667 
1668 	/* Set tx full duplex options */
1669 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
1670 	delay(10000); /* reg must be cleared and delay before changing. */
1671 	v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
1672 		GEM_MAC_TX_ENABLE;
1673 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1674 		v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
1675 	}
1676 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
1677 
1678 	/* XIF Configuration */
1679  /* We should really calculate all this rather than rely on defaults */
1680 	v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
1681 	v = GEM_MAC_XIF_LINK_LED;
1682 	v |= GEM_MAC_XIF_TX_MII_ENA;
1683 	/* If an external transceiver is connected, enable its MII drivers */
1684 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
1685 	if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
1686 		/* External MII needs echo disable if half duplex. */
1687 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1688 			/* turn on full duplex LED */
1689 			v |= GEM_MAC_XIF_FDPLX_LED;
1690  			else
1691 	 			/* half duplex -- disable echo */
1692 		 		v |= GEM_MAC_XIF_ECHO_DISABL;
1693 	} else
1694 		/* Internal MII needs buf enable */
1695 		v |= GEM_MAC_XIF_MII_BUF_ENA;
1696 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
1697 }
1698 
1699 int
1700 gem_mediachange(ifp)
1701 	struct ifnet *ifp;
1702 {
1703 	struct gem_softc *sc = ifp->if_softc;
1704 
1705 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1706 		return (EINVAL);
1707 
1708 	return (mii_mediachg(&sc->sc_mii));
1709 }
1710 
1711 void
1712 gem_mediastatus(ifp, ifmr)
1713 	struct ifnet *ifp;
1714 	struct ifmediareq *ifmr;
1715 {
1716 	struct gem_softc *sc = ifp->if_softc;
1717 
1718 	if ((ifp->if_flags & IFF_UP) == 0)
1719 		return;
1720 
1721 	mii_pollstat(&sc->sc_mii);
1722 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1723 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1724 }
1725 
1726 int gem_ioctldebug = 0;
1727 /*
1728  * Process an ioctl request.
1729  */
1730 int
1731 gem_ioctl(ifp, cmd, data)
1732 	struct ifnet *ifp;
1733 	u_long cmd;
1734 	caddr_t data;
1735 {
1736 	struct gem_softc *sc = ifp->if_softc;
1737 	struct ifreq *ifr = (struct ifreq *)data;
1738 	int s, error = 0;
1739 
1740 
1741 	switch (cmd) {
1742 	case SIOCGIFMEDIA:
1743 	case SIOCSIFMEDIA:
1744 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1745 		break;
1746 
1747 	default:
1748 		error = ether_ioctl(ifp, cmd, data);
1749 		if (error == ENETRESET) {
1750 			/*
1751 			 * Multicast list has changed; set the hardware filter
1752 			 * accordingly.
1753 			 */
1754 if (gem_ioctldebug) printf("reset1\n");
1755 			gem_init(ifp);
1756 			delay(50000);
1757 			error = 0;
1758 		}
1759 		break;
1760 	}
1761 
1762 	/* Try to get things going again */
1763 	if (ifp->if_flags & IFF_UP) {
1764 if (gem_ioctldebug) printf("start\n");
1765 		gem_start(ifp);
1766 	}
1767 	splx(s);
1768 	return (error);
1769 }
1770 
1771 
1772 void
1773 gem_shutdown(arg)
1774 	void *arg;
1775 {
1776 	struct gem_softc *sc = (struct gem_softc *)arg;
1777 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1778 
1779 	gem_stop(ifp, 1);
1780 }
1781 
1782 /*
1783  * Set up the logical address filter.
1784  */
1785 void
1786 gem_setladrf(sc)
1787 	struct gem_softc *sc;
1788 {
1789 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1790 	struct ether_multi *enm;
1791 	struct ether_multistep step;
1792 	struct ethercom *ec = &sc->sc_ethercom;
1793 	bus_space_tag_t t = sc->sc_bustag;
1794 	bus_space_handle_t h = sc->sc_h;
1795 	u_char *cp;
1796 	u_int32_t crc;
1797 	u_int32_t hash[16];
1798 	u_int32_t v;
1799 	int len;
1800 
1801 	/* Clear hash table */
1802 	memset(hash, 0, sizeof(hash));
1803 
1804 	/* Get current RX configuration */
1805 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1806 
1807 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
1808 		/* Turn on promiscuous mode; turn off the hash filter */
1809 		v |= GEM_MAC_RX_PROMISCUOUS;
1810 		v &= ~GEM_MAC_RX_HASH_FILTER;
1811 		ifp->if_flags |= IFF_ALLMULTI;
1812 		goto chipit;
1813 	}
1814 
1815 	/* Turn off promiscuous mode; turn on the hash filter */
1816 	v &= ~GEM_MAC_RX_PROMISCUOUS;
1817 	v |= GEM_MAC_RX_HASH_FILTER;
1818 
1819 	/*
1820 	 * Set up multicast address filter by passing all multicast addresses
1821 	 * through a crc generator, and then using the high order 6 bits as an
1822 	 * index into the 256 bit logical address filter.  The high order bit
1823 	 * selects the word, while the rest of the bits select the bit within
1824 	 * the word.
1825 	 */
1826 
1827 	ETHER_FIRST_MULTI(step, ec, enm);
1828 	while (enm != NULL) {
1829 		if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
1830 			/*
1831 			 * We must listen to a range of multicast addresses.
1832 			 * For now, just accept all multicasts, rather than
1833 			 * trying to set only those filter bits needed to match
1834 			 * the range.  (At this time, the only use of address
1835 			 * ranges is for IP multicast routing, for which the
1836 			 * range is big enough to require all bits set.)
1837 			 */
1838 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1839 			ifp->if_flags |= IFF_ALLMULTI;
1840 			goto chipit;
1841 		}
1842 
1843 		cp = enm->enm_addrlo;
1844 		crc = 0xffffffff;
1845 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1846 			int octet = *cp++;
1847 			int i;
1848 
1849 #define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
1850 			for (i = 0; i < 8; i++) {
1851 				if ((crc & 1) ^ (octet & 1)) {
1852 					crc >>= 1;
1853 					crc ^= MC_POLY_LE;
1854 				} else {
1855 					crc >>= 1;
1856 				}
1857 				octet >>= 1;
1858 			}
1859 		}
1860 		/* Just want the 8 most significant bits. */
1861 		crc >>= 24;
1862 
1863 		/* Set the corresponding bit in the filter. */
1864 		hash[crc >> 4] |= 1 << (crc & 0xf);
1865 
1866 		ETHER_NEXT_MULTI(step, enm);
1867 	}
1868 
1869 	ifp->if_flags &= ~IFF_ALLMULTI;
1870 
1871 chipit:
1872 	/* Now load the hash table into the chip */
1873 	bus_space_write_4(t, h, GEM_MAC_HASH0, hash[0]);
1874 	bus_space_write_4(t, h, GEM_MAC_HASH1, hash[1]);
1875 	bus_space_write_4(t, h, GEM_MAC_HASH2, hash[2]);
1876 	bus_space_write_4(t, h, GEM_MAC_HASH3, hash[3]);
1877 	bus_space_write_4(t, h, GEM_MAC_HASH4, hash[4]);
1878 	bus_space_write_4(t, h, GEM_MAC_HASH5, hash[5]);
1879 	bus_space_write_4(t, h, GEM_MAC_HASH6, hash[6]);
1880 	bus_space_write_4(t, h, GEM_MAC_HASH7, hash[7]);
1881 	bus_space_write_4(t, h, GEM_MAC_HASH8, hash[8]);
1882 	bus_space_write_4(t, h, GEM_MAC_HASH9, hash[9]);
1883 	bus_space_write_4(t, h, GEM_MAC_HASH10, hash[10]);
1884 	bus_space_write_4(t, h, GEM_MAC_HASH11, hash[11]);
1885 	bus_space_write_4(t, h, GEM_MAC_HASH12, hash[12]);
1886 	bus_space_write_4(t, h, GEM_MAC_HASH13, hash[13]);
1887 	bus_space_write_4(t, h, GEM_MAC_HASH14, hash[14]);
1888 	bus_space_write_4(t, h, GEM_MAC_HASH15, hash[15]);
1889 
1890 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1891 }
1892 
1893 #if notyet
1894 
1895 /*
1896  * gem_power:
1897  *
1898  *	Power management (suspend/resume) hook.
1899  */
1900 void
1901 gem_power(why, arg)
1902 	int why;
1903 	void *arg;
1904 {
1905 	struct gem_softc *sc = arg;
1906 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1907 	int s;
1908 
1909 	s = splnet();
1910 	switch (why) {
1911 	case PWR_SUSPEND:
1912 	case PWR_STANDBY:
1913 		gem_stop(ifp, 1);
1914 		if (sc->sc_power != NULL)
1915 			(*sc->sc_power)(sc, why);
1916 		break;
1917 	case PWR_RESUME:
1918 		if (ifp->if_flags & IFF_UP) {
1919 			if (sc->sc_power != NULL)
1920 				(*sc->sc_power)(sc, why);
1921 			gem_init(ifp);
1922 		}
1923 		break;
1924 	case PWR_SOFTSUSPEND:
1925 	case PWR_SOFTSTANDBY:
1926 	case PWR_SOFTRESUME:
1927 		break;
1928 	}
1929 	splx(s);
1930 }
1931 #endif
1932