xref: /netbsd-src/sys/dev/ic/gem.c (revision 53b02e147d4ed531c0d2a5ca9b3e8026ba3e99b5)
1 /*	$NetBSD: gem.c,v 1.134 2021/03/10 18:26:16 christos Exp $ */
2 
3 /*
4  *
5  * Copyright (C) 2001 Eduardo Horvath.
6  * Copyright (c) 2001-2003 Thomas Moestl
7  * All rights reserved.
8  *
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  */
32 
33 /*
34  * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
35  * See `GEM Gigabit Ethernet ASIC Specification'
36  *   http://www.sun.com/processors/manuals/ge.pdf
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.134 2021/03/10 18:26:16 christos Exp $");
41 
42 #include "opt_inet.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/callout.h>
47 #include <sys/mbuf.h>
48 #include <sys/syslog.h>
49 #include <sys/malloc.h>
50 #include <sys/kernel.h>
51 #include <sys/socket.h>
52 #include <sys/ioctl.h>
53 #include <sys/errno.h>
54 #include <sys/device.h>
55 
56 #include <machine/endian.h>
57 
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_ether.h>
62 
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/tcp.h>
69 #include <netinet/udp.h>
70 #endif
71 
72 #include <net/bpf.h>
73 
74 #include <sys/bus.h>
75 #include <sys/intr.h>
76 
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79 #include <dev/mii/mii_bitbang.h>
80 
81 #include <dev/ic/gemreg.h>
82 #include <dev/ic/gemvar.h>
83 
84 #define TRIES	10000
85 
86 static void	gem_inten(struct gem_softc *);
87 static void	gem_start(struct ifnet *);
88 static void	gem_stop(struct ifnet *, int);
89 int		gem_ioctl(struct ifnet *, u_long, void *);
90 void		gem_tick(void *);
91 void		gem_watchdog(struct ifnet *);
92 void		gem_rx_watchdog(void *);
93 void		gem_pcs_start(struct gem_softc *sc);
94 void		gem_pcs_stop(struct gem_softc *sc, int);
95 int		gem_init(struct ifnet *);
96 void		gem_init_regs(struct gem_softc *sc);
97 static int	gem_ringsize(int sz);
98 static int	gem_meminit(struct gem_softc *);
99 void		gem_mifinit(struct gem_softc *);
100 static int	gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
101 		    uint32_t, uint32_t);
102 void		gem_reset(struct gem_softc *);
103 int		gem_reset_rx(struct gem_softc *sc);
104 static void	gem_reset_rxdma(struct gem_softc *sc);
105 static void	gem_rx_common(struct gem_softc *sc);
106 int		gem_reset_tx(struct gem_softc *sc);
107 int		gem_disable_rx(struct gem_softc *sc);
108 int		gem_disable_tx(struct gem_softc *sc);
109 static void	gem_rxdrain(struct gem_softc *sc);
110 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
111 void		gem_setladrf(struct gem_softc *);
112 
113 /* MII methods & callbacks */
114 static int	gem_mii_readreg(device_t, int, int, uint16_t *);
115 static int	gem_mii_writereg(device_t, int, int, uint16_t);
116 static void	gem_mii_statchg(struct ifnet *);
117 
118 static int	gem_ifflags_cb(struct ethercom *);
119 
120 void		gem_statuschange(struct gem_softc *);
121 
122 int		gem_ser_mediachange(struct ifnet *);
123 void		gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
124 
125 static void	gem_partial_detach(struct gem_softc *, enum gem_attach_stage);
126 
127 struct mbuf	*gem_get(struct gem_softc *, int, int);
128 int		gem_put(struct gem_softc *, int, struct mbuf *);
129 void		gem_read(struct gem_softc *, int, int);
130 int		gem_pint(struct gem_softc *);
131 int		gem_eint(struct gem_softc *, u_int);
132 int		gem_rint(struct gem_softc *);
133 int		gem_tint(struct gem_softc *);
134 void		gem_power(int, void *);
135 
136 #ifdef GEM_DEBUG
137 static void gem_txsoft_print(const struct gem_softc *, int, int);
138 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
139 				printf x
140 #else
141 #define	DPRINTF(sc, x)	/* nothing */
142 #endif
143 
144 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
145 
146 int
147 gem_detach(struct gem_softc *sc, int flags)
148 {
149 	int i;
150 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
151 	bus_space_tag_t t = sc->sc_bustag;
152 	bus_space_handle_t h = sc->sc_h1;
153 
154 	/*
155 	 * Free any resources we've allocated during the attach.
156 	 * Do this in reverse order and fall through.
157 	 */
158 	switch (sc->sc_att_stage) {
159 	case GEM_ATT_BACKEND_2:
160 	case GEM_ATT_BACKEND_1:
161 	case GEM_ATT_FINISHED:
162 		bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
163 		gem_stop(&sc->sc_ethercom.ec_if, 1);
164 
165 #ifdef GEM_COUNTERS
166 		for (i = __arraycount(sc->sc_ev_rxhist); --i >= 0; )
167 			evcnt_detach(&sc->sc_ev_rxhist[i]);
168 		evcnt_detach(&sc->sc_ev_rxnobuf);
169 		evcnt_detach(&sc->sc_ev_rxfull);
170 		evcnt_detach(&sc->sc_ev_rxint);
171 		evcnt_detach(&sc->sc_ev_txint);
172 		evcnt_detach(&sc->sc_ev_rxoverflow);
173 #endif
174 		evcnt_detach(&sc->sc_ev_intr);
175 
176 		rnd_detach_source(&sc->rnd_source);
177 		ether_ifdetach(ifp);
178 		if_detach(ifp);
179 
180 		callout_destroy(&sc->sc_tick_ch);
181 		callout_destroy(&sc->sc_rx_watchdog);
182 
183 		/*FALLTHROUGH*/
184 	case GEM_ATT_MII:
185 		sc->sc_att_stage = GEM_ATT_MII;
186 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
187 		ifmedia_fini(&sc->sc_mii.mii_media);
188 
189 		/*FALLTHROUGH*/
190 	case GEM_ATT_7:
191 		for (i = 0; i < GEM_NRXDESC; i++) {
192 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
193 				bus_dmamap_destroy(sc->sc_dmatag,
194 				    sc->sc_rxsoft[i].rxs_dmamap);
195 		}
196 		/*FALLTHROUGH*/
197 	case GEM_ATT_6:
198 		for (i = 0; i < GEM_TXQUEUELEN; i++) {
199 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
200 				bus_dmamap_destroy(sc->sc_dmatag,
201 				    sc->sc_txsoft[i].txs_dmamap);
202 		}
203 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
204 		/*FALLTHROUGH*/
205 	case GEM_ATT_5:
206 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_nulldmamap);
207 		/*FALLTHROUGH*/
208 	case GEM_ATT_4:
209 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
210 		/*FALLTHROUGH*/
211 	case GEM_ATT_3:
212 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
213 		/*FALLTHROUGH*/
214 	case GEM_ATT_2:
215 		bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
216 		    sizeof(struct gem_control_data));
217 		/*FALLTHROUGH*/
218 	case GEM_ATT_1:
219 		bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
220 		/*FALLTHROUGH*/
221 	case GEM_ATT_0:
222 		sc->sc_att_stage = GEM_ATT_0;
223 		/*FALLTHROUGH*/
224 	case GEM_ATT_BACKEND_0:
225 		break;
226 	}
227 	return 0;
228 }
229 
230 static void
231 gem_partial_detach(struct gem_softc *sc, enum gem_attach_stage stage)
232 {
233 	cfattach_t ca = device_cfattach(sc->sc_dev);
234 
235 	sc->sc_att_stage = stage;
236 	(*ca->ca_detach)(sc->sc_dev, 0);
237 }
238 
239 /*
240  * gem_attach:
241  *
242  *	Attach a Gem interface to the system.
243  */
244 void
245 gem_attach(struct gem_softc *sc, const uint8_t *enaddr)
246 {
247 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
248 	struct mii_data *mii = &sc->sc_mii;
249 	bus_space_tag_t t = sc->sc_bustag;
250 	bus_space_handle_t h = sc->sc_h1;
251 	struct ifmedia_entry *ife;
252 	int i, error, phyaddr;
253 	uint32_t v;
254 	char *nullbuf;
255 
256 	/* Make sure the chip is stopped. */
257 	ifp->if_softc = sc;
258 	gem_reset(sc);
259 
260 	/*
261 	 * Allocate the control data structures, and create and load the
262 	 * DMA map for it. gem_control_data is 9216 bytes, we have space for
263 	 * the padding buffer in the bus_dmamem_alloc()'d memory.
264 	 */
265 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
266 	    sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
267 	    0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
268 		aprint_error_dev(sc->sc_dev,
269 		   "unable to allocate control data, error = %d\n",
270 		    error);
271 		gem_partial_detach(sc, GEM_ATT_0);
272 		return;
273 	}
274 
275 	/* XXX should map this in with correct endianness */
276 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
277 	    sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
278 	    BUS_DMA_COHERENT)) != 0) {
279 		aprint_error_dev(sc->sc_dev,
280 		    "unable to map control data, error = %d\n", error);
281 		gem_partial_detach(sc, GEM_ATT_1);
282 		return;
283 	}
284 
285 	nullbuf =
286 	    (char *)sc->sc_control_data + sizeof(struct gem_control_data);
287 
288 	if ((error = bus_dmamap_create(sc->sc_dmatag,
289 	    sizeof(struct gem_control_data), 1,
290 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
291 		aprint_error_dev(sc->sc_dev,
292 		    "unable to create control data DMA map, error = %d\n",
293 		    error);
294 		gem_partial_detach(sc, GEM_ATT_2);
295 		return;
296 	}
297 
298 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
299 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
300 	    0)) != 0) {
301 		aprint_error_dev(sc->sc_dev,
302 		    "unable to load control data DMA map, error = %d\n",
303 		    error);
304 		gem_partial_detach(sc, GEM_ATT_3);
305 		return;
306 	}
307 
308 	memset(nullbuf, 0, ETHER_MIN_TX);
309 	if ((error = bus_dmamap_create(sc->sc_dmatag,
310 	    ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
311 		aprint_error_dev(sc->sc_dev,
312 		    "unable to create padding DMA map, error = %d\n", error);
313 		gem_partial_detach(sc, GEM_ATT_4);
314 		return;
315 	}
316 
317 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
318 	    nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
319 		aprint_error_dev(sc->sc_dev,
320 		    "unable to load padding DMA map, error = %d\n", error);
321 		gem_partial_detach(sc, GEM_ATT_5);
322 		return;
323 	}
324 
325 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
326 	    BUS_DMASYNC_PREWRITE);
327 
328 	/*
329 	 * Initialize the transmit job descriptors.
330 	 */
331 	SIMPLEQ_INIT(&sc->sc_txfreeq);
332 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
333 
334 	/*
335 	 * Create the transmit buffer DMA maps.
336 	 */
337 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
338 		struct gem_txsoft *txs;
339 
340 		txs = &sc->sc_txsoft[i];
341 		txs->txs_mbuf = NULL;
342 		if ((error = bus_dmamap_create(sc->sc_dmatag,
343 		    ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
344 		    ETHER_MAX_LEN_JUMBO, 0, 0,
345 		    &txs->txs_dmamap)) != 0) {
346 			aprint_error_dev(sc->sc_dev,
347 			    "unable to create tx DMA map %d, error = %d\n",
348 			    i, error);
349 			gem_partial_detach(sc, GEM_ATT_6);
350 			return;
351 		}
352 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
353 	}
354 
355 	/*
356 	 * Create the receive buffer DMA maps.
357 	 */
358 	for (i = 0; i < GEM_NRXDESC; i++) {
359 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
360 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
361 			aprint_error_dev(sc->sc_dev,
362 			    "unable to create rx DMA map %d, error = %d\n",
363 			    i, error);
364 			gem_partial_detach(sc, GEM_ATT_7);
365 			return;
366 		}
367 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
368 	}
369 
370 	/* Initialize ifmedia structures and MII info */
371 	mii->mii_ifp = ifp;
372 	mii->mii_readreg = gem_mii_readreg;
373 	mii->mii_writereg = gem_mii_writereg;
374 	mii->mii_statchg = gem_mii_statchg;
375 
376 	sc->sc_ethercom.ec_mii = mii;
377 
378 	/*
379 	 * Initialization based  on `GEM Gigabit Ethernet ASIC Specification'
380 	 * Section 3.2.1 `Initialization Sequence'.
381 	 * However, we can't assume SERDES or Serialink if neither
382 	 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
383 	 * being set, as both are set on Sun X1141A (with SERDES).  So,
384 	 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
385 	 * Also, for variants that report 2 PHY's, we prefer the external
386 	 * PHY over the internal PHY, so we look for that first.
387 	 */
388 	gem_mifinit(sc);
389 
390 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
391 		ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
392 		    ether_mediastatus);
393 		/* Look for external PHY */
394 		if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
395 			sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
396 			bus_space_write_4(t, h, GEM_MIF_CONFIG,
397 			    sc->sc_mif_config);
398 			switch (sc->sc_variant) {
399 			case GEM_SUN_ERI:
400 				phyaddr = GEM_PHYAD_EXTERNAL;
401 				break;
402 			default:
403 				phyaddr = MII_PHY_ANY;
404 				break;
405 			}
406 			mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
407 			    MII_OFFSET_ANY, MIIF_FORCEANEG);
408 		}
409 #ifdef GEM_DEBUG
410 		  else
411 			aprint_debug_dev(sc->sc_dev, "using external PHY\n");
412 #endif
413 		/* Look for internal PHY if no external PHY was found */
414 		if (LIST_EMPTY(&mii->mii_phys) &&
415 		    ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI0) ||
416 		     (sc->sc_variant == GEM_APPLE_K2_GMAC))) {
417 			sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
418 			bus_space_write_4(t, h, GEM_MIF_CONFIG,
419 			    sc->sc_mif_config);
420 			switch (sc->sc_variant) {
421 			case GEM_SUN_ERI:
422 			case GEM_APPLE_K2_GMAC:
423 				phyaddr = GEM_PHYAD_INTERNAL;
424 				break;
425 			case GEM_APPLE_GMAC:
426 				phyaddr = GEM_PHYAD_EXTERNAL;
427 				break;
428 			default:
429 				phyaddr = MII_PHY_ANY;
430 				break;
431 			}
432 			mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
433 			    MII_OFFSET_ANY, MIIF_FORCEANEG);
434 #ifdef GEM_DEBUG
435 			if (!LIST_EMPTY(&mii->mii_phys))
436 				aprint_debug_dev(sc->sc_dev,
437 				    "using internal PHY\n");
438 #endif
439 		}
440 		if (LIST_EMPTY(&mii->mii_phys)) {
441 				/* No PHY attached */
442 				aprint_error_dev(sc->sc_dev,
443 				    "PHY probe failed\n");
444 				gem_partial_detach(sc, GEM_ATT_MII);
445 				return;
446 		} else {
447 			struct mii_softc *child;
448 
449 			/*
450 			 * Walk along the list of attached MII devices and
451 			 * establish an `MII instance' to `PHY number'
452 			 * mapping.
453 			 */
454 			LIST_FOREACH(child, &mii->mii_phys, mii_list) {
455 				/*
456 				 * Note: we support just one PHY: the internal
457 				 * or external MII is already selected for us
458 				 * by the GEM_MIF_CONFIG  register.
459 				 */
460 				if (child->mii_phy > 1 || child->mii_inst > 0) {
461 					aprint_error_dev(sc->sc_dev,
462 					    "cannot accommodate MII device"
463 					    " %s at PHY %d, instance %d\n",
464 					       device_xname(child->mii_dev),
465 					       child->mii_phy, child->mii_inst);
466 					continue;
467 				}
468 				sc->sc_phys[child->mii_inst] = child->mii_phy;
469 			}
470 
471 			if (sc->sc_variant != GEM_SUN_ERI)
472 				bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
473 				    GEM_MII_DATAPATH_MII);
474 
475 			/*
476 			 * XXX - we can really do the following ONLY if the
477 			 * PHY indeed has the auto negotiation capability!!
478 			 */
479 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
480 		}
481 	} else {
482 		ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
483 		    gem_ser_mediastatus);
484 		/* SERDES or Serialink */
485 		if (sc->sc_flags & GEM_SERDES) {
486 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
487 			    GEM_MII_DATAPATH_SERDES);
488 		} else {
489 			sc->sc_flags |= GEM_SERIAL;
490 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
491 			    GEM_MII_DATAPATH_SERIAL);
492 		}
493 
494 		aprint_normal_dev(sc->sc_dev, "using external PCS %s: ",
495 		    sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
496 
497 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_AUTO, 0, NULL);
498 		/* Check for FDX and HDX capabilities */
499 		sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
500 		if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
501 			ifmedia_add(&mii->mii_media, IFM_ETHER |
502 			    IFM_1000_SX | IFM_MANUAL | IFM_FDX, 0, NULL);
503 			aprint_normal("1000baseSX-FDX, ");
504 		}
505 		if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
506 			ifmedia_add(&mii->mii_media, IFM_ETHER |
507 			    IFM_1000_SX | IFM_MANUAL | IFM_HDX, 0, NULL);
508 			aprint_normal("1000baseSX-HDX, ");
509 		}
510 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
511 		sc->sc_mii_media = IFM_AUTO;
512 		aprint_normal("auto\n");
513 
514 		gem_pcs_stop(sc, 1);
515 	}
516 
517 	/*
518 	 * From this point forward, the attachment cannot fail.  A failure
519 	 * before this point releases all resources that may have been
520 	 * allocated.
521 	 */
522 
523 	/* Announce ourselves. */
524 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s",
525 	    ether_sprintf(enaddr));
526 
527 	/* Get RX FIFO size */
528 	sc->sc_rxfifosize = 64 *
529 	    bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
530 	aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
531 
532 	/* Get TX FIFO size */
533 	v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
534 	aprint_normal(", %uKB TX fifo\n", v / 16);
535 
536 	/* Initialize ifnet structure. */
537 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
538 	ifp->if_softc = sc;
539 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
540 	sc->sc_if_flags = ifp->if_flags;
541 #if 0
542 	/*
543 	 * The GEM hardware supports basic TCP checksum offloading only.
544 	 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
545 	 * have bugs in the receive checksum, so don't enable it for now.
546 	 */
547 	if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
548 	    (GEM_IS_APPLE(sc) &&
549 	    (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
550 		ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
551 #endif
552 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
553 	ifp->if_start = gem_start;
554 	ifp->if_ioctl = gem_ioctl;
555 	ifp->if_watchdog = gem_watchdog;
556 	ifp->if_stop = gem_stop;
557 	ifp->if_init = gem_init;
558 	IFQ_SET_READY(&ifp->if_snd);
559 
560 	/*
561 	 * If we support GigE media, we support jumbo frames too.
562 	 * Unless we are Apple.
563 	 */
564 	TAILQ_FOREACH(ife, &mii->mii_media.ifm_list, ifm_list) {
565 		if (IFM_SUBTYPE(ife->ifm_media) == IFM_1000_T ||
566 		    IFM_SUBTYPE(ife->ifm_media) == IFM_1000_SX ||
567 		    IFM_SUBTYPE(ife->ifm_media) == IFM_1000_LX ||
568 		    IFM_SUBTYPE(ife->ifm_media) == IFM_1000_CX) {
569 			if (!GEM_IS_APPLE(sc))
570 				sc->sc_ethercom.ec_capabilities
571 				    |= ETHERCAP_JUMBO_MTU;
572 			sc->sc_flags |= GEM_GIGABIT;
573 			break;
574 		}
575 	}
576 
577 	/* claim 802.1q capability */
578 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
579 
580 	/* Attach the interface. */
581 	if_attach(ifp);
582 	if_deferred_start_init(ifp, NULL);
583 	ether_ifattach(ifp, enaddr);
584 	ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
585 
586 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
587 			  RND_TYPE_NET, RND_FLAG_DEFAULT);
588 
589 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
590 	    NULL, device_xname(sc->sc_dev), "interrupts");
591 #ifdef GEM_COUNTERS
592 	evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
593 	    &sc->sc_ev_intr, device_xname(sc->sc_dev), "tx interrupts");
594 	evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
595 	    &sc->sc_ev_intr, device_xname(sc->sc_dev), "rx interrupts");
596 	evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
597 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx ring full");
598 	evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
599 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx malloc failure");
600 	evcnt_attach_dynamic(&sc->sc_ev_rxoverflow, EVCNT_TYPE_INTR,
601 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx overflow");
602 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
603 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 0desc");
604 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
605 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 1desc");
606 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
607 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 2desc");
608 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
609 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 3desc");
610 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
611 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >3desc");
612 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
613 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >7desc");
614 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
615 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >15desc");
616 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
617 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >31desc");
618 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
619 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >63desc");
620 #endif
621 
622 	callout_init(&sc->sc_tick_ch, 0);
623 	callout_setfunc(&sc->sc_tick_ch, gem_tick, sc);
624 
625 	callout_init(&sc->sc_rx_watchdog, 0);
626 	callout_setfunc(&sc->sc_rx_watchdog, gem_rx_watchdog, sc);
627 
628 	sc->sc_att_stage = GEM_ATT_FINISHED;
629 
630 	return;
631 }
632 
633 void
634 gem_tick(void *arg)
635 {
636 	struct gem_softc *sc = arg;
637 	int s;
638 
639 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
640 		/*
641 		 * We have to reset everything if we failed to get a
642 		 * PCS interrupt.  Restarting the callout is handled
643 		 * in gem_pcs_start().
644 		 */
645 		gem_init(&sc->sc_ethercom.ec_if);
646 	} else {
647 		s = splnet();
648 		mii_tick(&sc->sc_mii);
649 		splx(s);
650 		callout_schedule(&sc->sc_tick_ch, hz);
651 	}
652 }
653 
654 static int
655 gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, uint32_t clr,
656     uint32_t set)
657 {
658 	int i;
659 	uint32_t reg;
660 
661 	for (i = TRIES; i--; DELAY(100)) {
662 		reg = bus_space_read_4(sc->sc_bustag, h, r);
663 		if ((reg & clr) == 0 && (reg & set) == set)
664 			return (1);
665 	}
666 	return (0);
667 }
668 
669 void
670 gem_reset(struct gem_softc *sc)
671 {
672 	bus_space_tag_t t = sc->sc_bustag;
673 	bus_space_handle_t h = sc->sc_h2;
674 	int s;
675 
676 	s = splnet();
677 	DPRINTF(sc, ("%s: gem_reset\n", device_xname(sc->sc_dev)));
678 	gem_reset_rx(sc);
679 	gem_reset_tx(sc);
680 
681 	/* Do a full reset */
682 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX);
683 	if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
684 		aprint_error_dev(sc->sc_dev, "cannot reset device\n");
685 	splx(s);
686 }
687 
688 
689 /*
690  * gem_rxdrain:
691  *
692  *	Drain the receive queue.
693  */
694 static void
695 gem_rxdrain(struct gem_softc *sc)
696 {
697 	struct gem_rxsoft *rxs;
698 	int i;
699 
700 	for (i = 0; i < GEM_NRXDESC; i++) {
701 		rxs = &sc->sc_rxsoft[i];
702 		if (rxs->rxs_mbuf != NULL) {
703 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
704 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
705 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
706 			m_freem(rxs->rxs_mbuf);
707 			rxs->rxs_mbuf = NULL;
708 		}
709 	}
710 }
711 
712 /*
713  * Reset the whole thing.
714  */
715 static void
716 gem_stop(struct ifnet *ifp, int disable)
717 {
718 	struct gem_softc *sc = ifp->if_softc;
719 	struct gem_txsoft *txs;
720 
721 	DPRINTF(sc, ("%s: gem_stop\n", device_xname(sc->sc_dev)));
722 
723 	callout_halt(&sc->sc_tick_ch, NULL);
724 	callout_halt(&sc->sc_rx_watchdog, NULL);
725 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
726 		gem_pcs_stop(sc, disable);
727 	else
728 		mii_down(&sc->sc_mii);
729 
730 	/* XXX - Should we reset these instead? */
731 	gem_disable_tx(sc);
732 	gem_disable_rx(sc);
733 
734 	/*
735 	 * Release any queued transmit buffers.
736 	 */
737 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
738 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
739 		if (txs->txs_mbuf != NULL) {
740 			bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
741 			    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
742 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
743 			m_freem(txs->txs_mbuf);
744 			txs->txs_mbuf = NULL;
745 		}
746 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
747 	}
748 
749 	/*
750 	 * Mark the interface down and cancel the watchdog timer.
751 	 */
752 	ifp->if_flags &= ~IFF_RUNNING;
753 	sc->sc_if_flags = ifp->if_flags;
754 	ifp->if_timer = 0;
755 
756 	if (disable)
757 		gem_rxdrain(sc);
758 }
759 
760 
761 /*
762  * Reset the receiver
763  */
764 int
765 gem_reset_rx(struct gem_softc *sc)
766 {
767 	bus_space_tag_t t = sc->sc_bustag;
768 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
769 
770 	/*
771 	 * Resetting while DMA is in progress can cause a bus hang, so we
772 	 * disable DMA first.
773 	 */
774 	gem_disable_rx(sc);
775 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
776 	bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
777 	/* Wait till it finishes */
778 	if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
779 		aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
780 	/* Wait 5ms extra. */
781 	delay(5000);
782 
783 	/* Finally, reset the ERX */
784 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
785 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
786 	/* Wait till it finishes */
787 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
788 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
789 		return (1);
790 	}
791 	return (0);
792 }
793 
794 
795 /*
796  * Reset the receiver DMA engine.
797  *
798  * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
799  * etc in order to reset the receiver DMA engine only and not do a full
800  * reset which amongst others also downs the link and clears the FIFOs.
801  */
802 static void
803 gem_reset_rxdma(struct gem_softc *sc)
804 {
805 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
806 	bus_space_tag_t t = sc->sc_bustag;
807 	bus_space_handle_t h = sc->sc_h1;
808 	int i;
809 
810 	if (gem_reset_rx(sc) != 0) {
811 		gem_init(ifp);
812 		return;
813 	}
814 	for (i = 0; i < GEM_NRXDESC; i++)
815 		if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
816 			GEM_UPDATE_RXDESC(sc, i);
817 	sc->sc_rxptr = 0;
818 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
819 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
820 
821 	/* Reprogram Descriptor Ring Base Addresses */
822 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI,
823 	    ((uint64_t)GEM_CDRXADDR(sc, 0)) >> 32);
824 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
825 
826 	/* Redo ERX Configuration */
827 	gem_rx_common(sc);
828 
829 	/* Give the receiver a swift kick */
830 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
831 }
832 
833 /*
834  * Common RX configuration for gem_init() and gem_reset_rxdma().
835  */
836 static void
837 gem_rx_common(struct gem_softc *sc)
838 {
839 	bus_space_tag_t t = sc->sc_bustag;
840 	bus_space_handle_t h = sc->sc_h1;
841 	uint32_t v;
842 
843 	/* Encode Receive Descriptor ring size: four possible values */
844 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
845 
846 	/* Set receive h/w checksum offset */
847 #ifdef INET
848 	v |= (ETHER_HDR_LEN + sizeof(struct ip) +
849 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
850 	    ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
851 #endif
852 
853 	/* Enable RX DMA */
854 	bus_space_write_4(t, h, GEM_RX_CONFIG,
855 	    v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
856 	    (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
857 
858 	/*
859 	 * The following value is for an OFF Threshold of about 3/4 full
860 	 * and an ON Threshold of 1/4 full.
861 	 */
862 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
863 	    (3 * sc->sc_rxfifosize / 256) |
864 	    ((sc->sc_rxfifosize / 256) << 12));
865 	bus_space_write_4(t, h, GEM_RX_BLANKING,
866 	    (6 << GEM_RX_BLANKING_TIME_SHIFT) | 8);
867 }
868 
869 /*
870  * Reset the transmitter
871  */
872 int
873 gem_reset_tx(struct gem_softc *sc)
874 {
875 	bus_space_tag_t t = sc->sc_bustag;
876 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
877 
878 	/*
879 	 * Resetting while DMA is in progress can cause a bus hang, so we
880 	 * disable DMA first.
881 	 */
882 	gem_disable_tx(sc);
883 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
884 	bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
885 	/* Wait till it finishes */
886 	if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
887 		aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
888 	/* Wait 5ms extra. */
889 	delay(5000);
890 
891 	/* Finally, reset the ETX */
892 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
893 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
894 	/* Wait till it finishes */
895 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
896 		aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
897 		return (1);
898 	}
899 	return (0);
900 }
901 
902 /*
903  * disable receiver.
904  */
905 int
906 gem_disable_rx(struct gem_softc *sc)
907 {
908 	bus_space_tag_t t = sc->sc_bustag;
909 	bus_space_handle_t h = sc->sc_h1;
910 	uint32_t cfg;
911 
912 	/* Flip the enable bit */
913 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
914 	cfg &= ~GEM_MAC_RX_ENABLE;
915 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
916 	bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
917 	/* Wait for it to finish */
918 	return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
919 }
920 
921 /*
922  * disable transmitter.
923  */
924 int
925 gem_disable_tx(struct gem_softc *sc)
926 {
927 	bus_space_tag_t t = sc->sc_bustag;
928 	bus_space_handle_t h = sc->sc_h1;
929 	uint32_t cfg;
930 
931 	/* Flip the enable bit */
932 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
933 	cfg &= ~GEM_MAC_TX_ENABLE;
934 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
935 	bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
936 	/* Wait for it to finish */
937 	return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
938 }
939 
940 /*
941  * Initialize interface.
942  */
943 int
944 gem_meminit(struct gem_softc *sc)
945 {
946 	struct gem_rxsoft *rxs;
947 	int i, error;
948 
949 	/*
950 	 * Initialize the transmit descriptor ring.
951 	 */
952 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
953 	for (i = 0; i < GEM_NTXDESC; i++) {
954 		sc->sc_txdescs[i].gd_flags = 0;
955 		sc->sc_txdescs[i].gd_addr = 0;
956 	}
957 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
958 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
959 	sc->sc_txfree = GEM_NTXDESC-1;
960 	sc->sc_txnext = 0;
961 	sc->sc_txwin = 0;
962 
963 	/*
964 	 * Initialize the receive descriptor and receive job
965 	 * descriptor rings.
966 	 */
967 	for (i = 0; i < GEM_NRXDESC; i++) {
968 		rxs = &sc->sc_rxsoft[i];
969 		if (rxs->rxs_mbuf == NULL) {
970 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
971 				aprint_error_dev(sc->sc_dev,
972 				    "unable to allocate or map rx "
973 				    "buffer %d, error = %d\n",
974 				    i, error);
975 				/*
976 				 * XXX Should attempt to run with fewer receive
977 				 * XXX buffers instead of just failing.
978 				 */
979 				gem_rxdrain(sc);
980 				return (1);
981 			}
982 		} else
983 			GEM_INIT_RXDESC(sc, i);
984 	}
985 	sc->sc_rxptr = 0;
986 	sc->sc_meminited = 1;
987 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
988 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
989 
990 	return (0);
991 }
992 
993 static int
994 gem_ringsize(int sz)
995 {
996 	switch (sz) {
997 	case 32:
998 		return GEM_RING_SZ_32;
999 	case 64:
1000 		return GEM_RING_SZ_64;
1001 	case 128:
1002 		return GEM_RING_SZ_128;
1003 	case 256:
1004 		return GEM_RING_SZ_256;
1005 	case 512:
1006 		return GEM_RING_SZ_512;
1007 	case 1024:
1008 		return GEM_RING_SZ_1024;
1009 	case 2048:
1010 		return GEM_RING_SZ_2048;
1011 	case 4096:
1012 		return GEM_RING_SZ_4096;
1013 	case 8192:
1014 		return GEM_RING_SZ_8192;
1015 	default:
1016 		printf("gem: invalid Receive Descriptor ring size %d\n", sz);
1017 		return GEM_RING_SZ_32;
1018 	}
1019 }
1020 
1021 
1022 /*
1023  * Start PCS
1024  */
1025 void
1026 gem_pcs_start(struct gem_softc *sc)
1027 {
1028 	bus_space_tag_t t = sc->sc_bustag;
1029 	bus_space_handle_t h = sc->sc_h1;
1030 	uint32_t v;
1031 
1032 #ifdef GEM_DEBUG
1033 	aprint_debug_dev(sc->sc_dev, "gem_pcs_start()\n");
1034 #endif
1035 
1036 	/*
1037 	 * Set up.  We must disable the MII before modifying the
1038 	 * GEM_MII_ANAR register
1039 	 */
1040 	if (sc->sc_flags & GEM_SERDES) {
1041 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1042 		    GEM_MII_DATAPATH_SERDES);
1043 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1044 		    GEM_MII_SLINK_LOOPBACK);
1045 	} else {
1046 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1047 		    GEM_MII_DATAPATH_SERIAL);
1048 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
1049 	}
1050 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1051 	v = bus_space_read_4(t, h, GEM_MII_ANAR);
1052 	v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
1053 	if (IFM_SUBTYPE(sc->sc_mii_media) == IFM_AUTO)
1054 		v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
1055 	else if ((IFM_OPTIONS(sc->sc_mii_media) & IFM_FDX) != 0) {
1056 		v |= GEM_MII_ANEG_FUL_DUPLX;
1057 		v &= ~GEM_MII_ANEG_HLF_DUPLX;
1058 	} else if ((IFM_OPTIONS(sc->sc_mii_media) & IFM_HDX) != 0) {
1059 		v &= ~GEM_MII_ANEG_FUL_DUPLX;
1060 		v |= GEM_MII_ANEG_HLF_DUPLX;
1061 	}
1062 
1063 	/* Configure link. */
1064 	bus_space_write_4(t, h, GEM_MII_ANAR, v);
1065 	bus_space_write_4(t, h, GEM_MII_CONTROL,
1066 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1067 	bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
1068 	gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
1069 
1070 	/* Start the 10 second timer */
1071 	callout_schedule(&sc->sc_tick_ch, hz * 10);
1072 }
1073 
1074 /*
1075  * Stop PCS
1076  */
1077 void
1078 gem_pcs_stop(struct gem_softc *sc, int disable)
1079 {
1080 	bus_space_tag_t t = sc->sc_bustag;
1081 	bus_space_handle_t h = sc->sc_h1;
1082 
1083 #ifdef GEM_DEBUG
1084 	aprint_debug_dev(sc->sc_dev, "gem_pcs_stop()\n");
1085 #endif
1086 
1087 	/* Tell link partner that we're going away */
1088 	bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
1089 
1090 	/*
1091 	 * Disable PCS MII.  The documentation suggests that setting
1092 	 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
1093 	 * negotiation will shut down the link.  However, it appears
1094 	 * that we also need to unset the datapath mode.
1095 	 */
1096 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1097 	bus_space_write_4(t, h, GEM_MII_CONTROL,
1098 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1099 	bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
1100 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1101 
1102 	if (disable) {
1103 		if (sc->sc_flags & GEM_SERDES)
1104 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1105 				GEM_MII_SLINK_POWER_OFF);
1106 		else
1107 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1108 			    GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
1109 	}
1110 
1111 	sc->sc_flags &= ~GEM_LINK;
1112 	sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
1113 	sc->sc_mii.mii_media_status = IFM_AVALID;
1114 }
1115 
1116 
1117 /*
1118  * Initialization of interface; set up initialization block
1119  * and transmit/receive descriptor rings.
1120  */
1121 int
1122 gem_init(struct ifnet *ifp)
1123 {
1124 	struct gem_softc *sc = ifp->if_softc;
1125 	bus_space_tag_t t = sc->sc_bustag;
1126 	bus_space_handle_t h = sc->sc_h1;
1127 	int rc = 0, s;
1128 	u_int max_frame_size;
1129 	uint32_t v;
1130 
1131 	s = splnet();
1132 
1133 	DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(sc->sc_dev)));
1134 	/*
1135 	 * Initialization sequence. The numbered steps below correspond
1136 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1137 	 * Channel Engine manual (part of the PCIO manual).
1138 	 * See also the STP2002-STQ document from Sun Microsystems.
1139 	 */
1140 
1141 	/* step 1 & 2. Reset the Ethernet Channel */
1142 	gem_stop(ifp, 0);
1143 	gem_reset(sc);
1144 	DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(sc->sc_dev)));
1145 
1146 	/* Re-initialize the MIF */
1147 	gem_mifinit(sc);
1148 
1149 	/* Set up correct datapath for non-SERDES/Serialink */
1150 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1151 	    sc->sc_variant != GEM_SUN_ERI)
1152 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1153 		    GEM_MII_DATAPATH_MII);
1154 
1155 	/* Call MI reset function if any */
1156 	if (sc->sc_hwreset)
1157 		(*sc->sc_hwreset)(sc);
1158 
1159 	/* step 3. Setup data structures in host memory */
1160 	if (gem_meminit(sc) != 0) {
1161 		splx(s);
1162 		return 1;
1163 	}
1164 
1165 	/* step 4. TX MAC registers & counters */
1166 	gem_init_regs(sc);
1167 	max_frame_size = uimax(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
1168 	max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
1169 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1170 		max_frame_size += ETHER_VLAN_ENCAP_LEN;
1171 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1172 	    max_frame_size|/* burst size */(0x2000<<16));
1173 
1174 	/* step 5. RX MAC registers & counters */
1175 	gem_setladrf(sc);
1176 
1177 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
1178 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI,
1179 	    ((uint64_t)GEM_CDTXADDR(sc, 0)) >> 32);
1180 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
1181 
1182 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI,
1183 	    ((uint64_t)GEM_CDRXADDR(sc, 0)) >> 32);
1184 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
1185 
1186 	/* step 8. Global Configuration & Interrupt Mask */
1187 	gem_inten(sc);
1188 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
1189 			GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
1190 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
1191 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
1192 	    GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
1193 
1194 	/* step 9. ETX Configuration: use mostly default values */
1195 
1196 	/* Enable TX DMA */
1197 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
1198 	bus_space_write_4(t, h, GEM_TX_CONFIG,
1199 	    v | GEM_TX_CONFIG_TXDMA_EN |
1200 	    (((sc->sc_flags & GEM_GIGABIT ? 0x4FF : 0x100) << 10) &
1201 	    GEM_TX_CONFIG_TXFIFO_TH));
1202 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
1203 
1204 	/* step 10. ERX Configuration */
1205 	gem_rx_common(sc);
1206 
1207 	/* step 11. Configure Media */
1208 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1209 	    (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
1210 		goto out;
1211 
1212 	/* step 12. RX_MAC Configuration Register */
1213 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1214 	v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
1215 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1216 
1217 	/* step 14. Issue Transmit Pending command */
1218 
1219 	/* Call MI initialization function if any */
1220 	if (sc->sc_hwinit)
1221 		(*sc->sc_hwinit)(sc);
1222 
1223 	/* step 15.  Give the receiver a swift kick */
1224 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
1225 
1226 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1227 		/* Configure PCS */
1228 		gem_pcs_start(sc);
1229 	else
1230 		/* Start the one second timer. */
1231 		callout_schedule(&sc->sc_tick_ch, hz);
1232 
1233 	sc->sc_flags &= ~GEM_LINK;
1234 	ifp->if_flags |= IFF_RUNNING;
1235 	ifp->if_timer = 0;
1236 	sc->sc_if_flags = ifp->if_flags;
1237 out:
1238 	splx(s);
1239 
1240 	return (0);
1241 }
1242 
1243 void
1244 gem_init_regs(struct gem_softc *sc)
1245 {
1246 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1247 	bus_space_tag_t t = sc->sc_bustag;
1248 	bus_space_handle_t h = sc->sc_h1;
1249 	const u_char *laddr = CLLADDR(ifp->if_sadl);
1250 	uint32_t v;
1251 
1252 	/* These regs are not cleared on reset */
1253 	if (!sc->sc_inited) {
1254 
1255 		/* Load recommended values */
1256 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
1257 		bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
1258 		bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
1259 
1260 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1261 		/* Max frame and max burst size */
1262 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1263 		    ETHER_MAX_LEN | (0x2000<<16));
1264 
1265 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
1266 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
1267 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1268 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1269 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1270 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1271 
1272 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
1273 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1274 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1275 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1276 
1277 		/* MAC control addr set to 01:80:c2:00:00:01 */
1278 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1279 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1280 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1281 
1282 		/* MAC filter addr set to 0:0:0:0:0:0 */
1283 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1284 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1285 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1286 
1287 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1288 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1289 
1290 		sc->sc_inited = 1;
1291 	}
1292 
1293 	/* Counters need to be zeroed */
1294 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1295 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1296 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1297 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1298 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1299 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1300 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1301 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1302 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1303 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1304 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1305 
1306 	/* Set XOFF PAUSE time. */
1307 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1308 
1309 	/*
1310 	 * Set the internal arbitration to "infinite" bursts of the
1311 	 * maximum length of 31 * 64 bytes so DMA transfers aren't
1312 	 * split up in cache line size chunks. This greatly improves
1313 	 * especially RX performance.
1314 	 * Enable silicon bug workarounds for the Apple variants.
1315 	 */
1316 	bus_space_write_4(t, h, GEM_CONFIG,
1317 	    GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
1318 	    ((sc->sc_flags & GEM_PCI) ?
1319 	    GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
1320 	    GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
1321 
1322 	/*
1323 	 * Set the station address.
1324 	 */
1325 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1326 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1327 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1328 
1329 	/*
1330 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
1331 	 */
1332 	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1333 	v = GEM_MAC_XIF_TX_MII_ENA;
1334 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
1335 		if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1336 			v |= GEM_MAC_XIF_FDPLX_LED;
1337 				if (sc->sc_flags & GEM_GIGABIT)
1338 					v |= GEM_MAC_XIF_GMII_MODE;
1339 		}
1340 	} else {
1341 		v |= GEM_MAC_XIF_GMII_MODE;
1342 	}
1343 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1344 }
1345 
1346 #ifdef GEM_DEBUG
1347 static void
1348 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
1349 {
1350 	int i;
1351 
1352 	for (i = firstdesc;; i = GEM_NEXTTX(i)) {
1353 		printf("descriptor %d:\t", i);
1354 		printf("gd_flags:   0x%016" PRIx64 "\t",
1355 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1356 		printf("gd_addr: 0x%016" PRIx64 "\n",
1357 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1358 		if (i == lastdesc)
1359 			break;
1360 	}
1361 }
1362 #endif
1363 
1364 static void
1365 gem_start(struct ifnet *ifp)
1366 {
1367 	struct gem_softc *sc = ifp->if_softc;
1368 	struct mbuf *m0, *m;
1369 	struct gem_txsoft *txs;
1370 	bus_dmamap_t dmamap;
1371 	int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
1372 #ifdef GEM_DEBUG
1373 	int otxnext;
1374 #endif
1375 	uint64_t flags = 0;
1376 
1377 	if ((ifp->if_flags & IFF_RUNNING) != IFF_RUNNING)
1378 		return;
1379 
1380 	/*
1381 	 * Remember the previous number of free descriptors and
1382 	 * the first descriptor we'll use.
1383 	 */
1384 	ofree = sc->sc_txfree;
1385 #ifdef GEM_DEBUG
1386 	otxnext = sc->sc_txnext;
1387 #endif
1388 
1389 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1390 	    device_xname(sc->sc_dev), ofree, otxnext));
1391 
1392 	/*
1393 	 * Loop through the send queue, setting up transmit descriptors
1394 	 * until we drain the queue, or use up all available transmit
1395 	 * descriptors.
1396 	 */
1397 #ifdef INET
1398 next:
1399 #endif
1400 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1401 	    sc->sc_txfree != 0) {
1402 		/*
1403 		 * Grab a packet off the queue.
1404 		 */
1405 		IFQ_POLL(&ifp->if_snd, m0);
1406 		if (m0 == NULL)
1407 			break;
1408 		m = NULL;
1409 
1410 		dmamap = txs->txs_dmamap;
1411 
1412 		/*
1413 		 * Load the DMA map.  If this fails, the packet either
1414 		 * didn't fit in the alloted number of segments, or we were
1415 		 * short on resources.  In this case, we'll copy and try
1416 		 * again.
1417 		 */
1418 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1419 		      BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0 ||
1420 		      (m0->m_pkthdr.len < ETHER_MIN_TX &&
1421 		       dmamap->dm_nsegs == GEM_NTXSEGS)) {
1422 			if (m0->m_pkthdr.len > MCLBYTES) {
1423 				aprint_error_dev(sc->sc_dev,
1424 				    "unable to allocate jumbo Tx cluster\n");
1425 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1426 				m_freem(m0);
1427 				continue;
1428 			}
1429 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1430 			if (m == NULL) {
1431 				aprint_error_dev(sc->sc_dev,
1432 				    "unable to allocate Tx mbuf\n");
1433 				break;
1434 			}
1435 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1436 			if (m0->m_pkthdr.len > MHLEN) {
1437 				MCLGET(m, M_DONTWAIT);
1438 				if ((m->m_flags & M_EXT) == 0) {
1439 					aprint_error_dev(sc->sc_dev,
1440 					    "unable to allocate Tx cluster\n");
1441 					m_freem(m);
1442 					break;
1443 				}
1444 			}
1445 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1446 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1447 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1448 			    m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1449 			if (error) {
1450 				aprint_error_dev(sc->sc_dev,
1451 				    "unable to load Tx buffer, error = %d\n",
1452 				    error);
1453 				break;
1454 			}
1455 		}
1456 
1457 		/*
1458 		 * Ensure we have enough descriptors free to describe
1459 		 * the packet.
1460 		 */
1461 		if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1462 		     (sc->sc_txfree - 1) : sc->sc_txfree)) {
1463 			/*
1464 			 * Not enough free descriptors to transmit this
1465 			 * packet.
1466 			 */
1467 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
1468 			if (m != NULL)
1469 				m_freem(m);
1470 			break;
1471 		}
1472 
1473 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1474 		if (m != NULL) {
1475 			m_freem(m0);
1476 			m0 = m;
1477 		}
1478 
1479 		/*
1480 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1481 		 */
1482 
1483 		/* Sync the DMA map. */
1484 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1485 		    BUS_DMASYNC_PREWRITE);
1486 
1487 		/*
1488 		 * Initialize the transmit descriptors.
1489 		 */
1490 		firsttx = sc->sc_txnext;
1491 		for (nexttx = firsttx, seg = 0;
1492 		     seg < dmamap->dm_nsegs;
1493 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
1494 
1495 			/*
1496 			 * If this is the first descriptor we're
1497 			 * enqueueing, set the start of packet flag,
1498 			 * and the checksum stuff if we want the hardware
1499 			 * to do it.
1500 			 */
1501 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1502 			if (nexttx == firsttx) {
1503 				flags |= GEM_TD_START_OF_PACKET;
1504 #ifdef INET
1505 				/* h/w checksum */
1506 				if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
1507 				    m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1508 					struct ether_header *eh;
1509 					uint16_t offset, start;
1510 
1511 					eh = mtod(m0, struct ether_header *);
1512 					switch (ntohs(eh->ether_type)) {
1513 					case ETHERTYPE_IP:
1514 						start = ETHER_HDR_LEN;
1515 						break;
1516 					case ETHERTYPE_VLAN:
1517 						start = ETHER_HDR_LEN +
1518 							ETHER_VLAN_ENCAP_LEN;
1519 						break;
1520 					default:
1521 						/* unsupported, drop it */
1522 						bus_dmamap_unload(sc->sc_dmatag,
1523 							dmamap);
1524 						m_freem(m0);
1525 						goto next;
1526 					}
1527 					start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1528 					offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1529 					flags |= (start <<
1530 						  GEM_TD_CXSUM_STARTSHFT) |
1531 						 (offset <<
1532 						  GEM_TD_CXSUM_STUFFSHFT) |
1533 						 GEM_TD_CXSUM_ENABLE;
1534 				}
1535 #endif
1536 				if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1537 					sc->sc_txwin = 0;
1538 					flags |= GEM_TD_INTERRUPT_ME;
1539 				}
1540 			}
1541 			sc->sc_txdescs[nexttx].gd_addr =
1542 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1543 			if (seg == dmamap->dm_nsegs - 1) {
1544 				flags |= GEM_TD_END_OF_PACKET;
1545 			} else {
1546 				/* last flag set outside of loop */
1547 				sc->sc_txdescs[nexttx].gd_flags =
1548 					GEM_DMA_WRITE(sc, flags);
1549 			}
1550 			lasttx = nexttx;
1551 		}
1552 		if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1553 			/* add padding buffer at end of chain */
1554 			flags &= ~GEM_TD_END_OF_PACKET;
1555 			sc->sc_txdescs[lasttx].gd_flags =
1556 			    GEM_DMA_WRITE(sc, flags);
1557 
1558 			sc->sc_txdescs[nexttx].gd_addr =
1559 			    GEM_DMA_WRITE(sc,
1560 			    sc->sc_nulldmamap->dm_segs[0].ds_addr);
1561 			flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1562 			    GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1563 			lasttx = nexttx;
1564 			nexttx = GEM_NEXTTX(nexttx);
1565 			seg++;
1566 		}
1567 		sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1568 
1569 		KASSERT(lasttx != -1);
1570 
1571 		/*
1572 		 * Store a pointer to the packet so we can free it later,
1573 		 * and remember what txdirty will be once the packet is
1574 		 * done.
1575 		 */
1576 		txs->txs_mbuf = m0;
1577 		txs->txs_firstdesc = sc->sc_txnext;
1578 		txs->txs_lastdesc = lasttx;
1579 		txs->txs_ndescs = seg;
1580 
1581 #ifdef GEM_DEBUG
1582 		if (ifp->if_flags & IFF_DEBUG) {
1583 			printf("     gem_start %p transmit chain:\n", txs);
1584 			gem_txsoft_print(sc, txs->txs_firstdesc,
1585 			    txs->txs_lastdesc);
1586 		}
1587 #endif
1588 
1589 		/* Sync the descriptors we're using. */
1590 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1591 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1592 
1593 		/* Advance the tx pointer. */
1594 		sc->sc_txfree -= txs->txs_ndescs;
1595 		sc->sc_txnext = nexttx;
1596 
1597 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1598 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1599 
1600 		/*
1601 		 * Pass the packet to any BPF listeners.
1602 		 */
1603 		bpf_mtap(ifp, m0, BPF_D_OUT);
1604 	}
1605 
1606 	if (sc->sc_txfree != ofree) {
1607 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1608 		    device_xname(sc->sc_dev), lasttx, otxnext));
1609 		/*
1610 		 * The entire packet chain is set up.
1611 		 * Kick the transmitter.
1612 		 */
1613 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1614 			device_xname(sc->sc_dev), nexttx));
1615 		bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
1616 			sc->sc_txnext);
1617 
1618 		/* Set a watchdog timer in case the chip flakes out. */
1619 		ifp->if_timer = 5;
1620 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1621 			device_xname(sc->sc_dev), ifp->if_timer));
1622 	}
1623 }
1624 
1625 /*
1626  * Transmit interrupt.
1627  */
1628 int
1629 gem_tint(struct gem_softc *sc)
1630 {
1631 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1632 	bus_space_tag_t t = sc->sc_bustag;
1633 	bus_space_handle_t mac = sc->sc_h1;
1634 	struct gem_txsoft *txs;
1635 	int txlast;
1636 	int progress = 0;
1637 	uint32_t v;
1638 
1639 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1640 
1641 	DPRINTF(sc, ("%s: gem_tint\n", device_xname(sc->sc_dev)));
1642 
1643 	/* Unload collision counters ... */
1644 	v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1645 	    bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1646 	if_statadd_ref(nsr, if_collisions, v +
1647 	    bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1648 	    bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT));
1649 	if_statadd_ref(nsr, if_oerrors, v);
1650 
1651 	/* ... then clear the hardware counters. */
1652 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1653 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1654 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1655 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1656 
1657 	/*
1658 	 * Go through our Tx list and free mbufs for those
1659 	 * frames that have been transmitted.
1660 	 */
1661 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1662 		/*
1663 		 * In theory, we could harvest some descriptors before
1664 		 * the ring is empty, but that's a bit complicated.
1665 		 *
1666 		 * GEM_TX_COMPLETION points to the last descriptor
1667 		 * processed +1.
1668 		 *
1669 		 * Let's assume that the NIC writes back to the Tx
1670 		 * descriptors before it updates the completion
1671 		 * register.  If the NIC has posted writes to the
1672 		 * Tx descriptors, PCI ordering requires that the
1673 		 * posted writes flush to RAM before the register-read
1674 		 * finishes.  So let's read the completion register,
1675 		 * before syncing the descriptors, so that we
1676 		 * examine Tx descriptors that are at least as
1677 		 * current as the completion register.
1678 		 */
1679 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1680 		DPRINTF(sc,
1681 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1682 				txs->txs_lastdesc, txlast));
1683 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1684 			if (txlast >= txs->txs_firstdesc &&
1685 			    txlast <= txs->txs_lastdesc)
1686 				break;
1687 		} else if (txlast >= txs->txs_firstdesc ||
1688 			   txlast <= txs->txs_lastdesc)
1689 			break;
1690 
1691 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1692 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1693 
1694 #ifdef GEM_DEBUG	/* XXX DMA synchronization? */
1695 		if (ifp->if_flags & IFF_DEBUG) {
1696 			printf("    txsoft %p transmit chain:\n", txs);
1697 			gem_txsoft_print(sc, txs->txs_firstdesc,
1698 			    txs->txs_lastdesc);
1699 		}
1700 #endif
1701 
1702 
1703 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1704 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1705 
1706 		sc->sc_txfree += txs->txs_ndescs;
1707 
1708 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1709 		    0, txs->txs_dmamap->dm_mapsize,
1710 		    BUS_DMASYNC_POSTWRITE);
1711 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1712 		if (txs->txs_mbuf != NULL) {
1713 			m_freem(txs->txs_mbuf);
1714 			txs->txs_mbuf = NULL;
1715 		}
1716 
1717 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1718 
1719 		if_statinc_ref(nsr, if_opackets);
1720 		progress = 1;
1721 	}
1722 
1723 	IF_STAT_PUTREF(ifp);
1724 
1725 #if 0
1726 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1727 		"GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
1728 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
1729 		((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1730 			GEM_TX_DATA_PTR_HI) << 32) |
1731 			     bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1732 			GEM_TX_DATA_PTR_LO),
1733 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
1734 #endif
1735 
1736 	if (progress) {
1737 		if (sc->sc_txfree == GEM_NTXDESC - 1)
1738 			sc->sc_txwin = 0;
1739 
1740 		ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
1741 		if_schedule_deferred_start(ifp);
1742 	}
1743 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1744 		device_xname(sc->sc_dev), ifp->if_timer));
1745 
1746 	return (1);
1747 }
1748 
1749 /*
1750  * Receive interrupt.
1751  */
1752 int
1753 gem_rint(struct gem_softc *sc)
1754 {
1755 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1756 	bus_space_tag_t t = sc->sc_bustag;
1757 	bus_space_handle_t h = sc->sc_h1;
1758 	struct gem_rxsoft *rxs;
1759 	struct mbuf *m;
1760 	uint64_t rxstat;
1761 	uint32_t rxcomp;
1762 	int i, len, progress = 0;
1763 
1764 	DPRINTF(sc, ("%s: gem_rint\n", device_xname(sc->sc_dev)));
1765 
1766 	/*
1767 	 * Ignore spurious interrupt that sometimes occurs before
1768 	 * we are set up when we network boot.
1769 	 */
1770 	if (!sc->sc_meminited)
1771 		return 1;
1772 
1773 	/*
1774 	 * Read the completion register once.  This limits
1775 	 * how long the following loop can execute.
1776 	 */
1777 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1778 
1779 	/*
1780 	 * XXX Read the lastrx only once at the top for speed.
1781 	 */
1782 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1783 		sc->sc_rxptr, rxcomp));
1784 
1785 	/*
1786 	 * Go into the loop at least once.
1787 	 */
1788 	for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1789 	     i = GEM_NEXTRX(i)) {
1790 		rxs = &sc->sc_rxsoft[i];
1791 
1792 		GEM_CDRXSYNC(sc, i,
1793 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1794 
1795 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1796 
1797 		if (rxstat & GEM_RD_OWN) {
1798 			GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1799 			/*
1800 			 * We have processed all of the receive buffers.
1801 			 */
1802 			break;
1803 		}
1804 
1805 		progress++;
1806 
1807 		if (rxstat & GEM_RD_BAD_CRC) {
1808 			if_statinc(ifp, if_ierrors);
1809 			DPRINTF(sc, ("%s: receive error: CRC error\n",
1810 			    device_xname(sc->sc_dev)));
1811 			GEM_INIT_RXDESC(sc, i);
1812 			continue;
1813 		}
1814 
1815 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1816 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1817 #ifdef GEM_DEBUG
1818 		if (ifp->if_flags & IFF_DEBUG) {
1819 			printf("    rxsoft %p descriptor %d: ", rxs, i);
1820 			printf("gd_flags: 0x%016llx\t", (long long)
1821 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1822 			printf("gd_addr: 0x%016llx\n", (long long)
1823 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1824 		}
1825 #endif
1826 
1827 		/* No errors; receive the packet. */
1828 		len = GEM_RD_BUFLEN(rxstat);
1829 
1830 		/*
1831 		 * Allocate a new mbuf cluster.  If that fails, we are
1832 		 * out of memory, and must drop the packet and recycle
1833 		 * the buffer that's already attached to this descriptor.
1834 		 */
1835 		m = rxs->rxs_mbuf;
1836 		if (gem_add_rxbuf(sc, i) != 0) {
1837 			GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1838 			if_statinc(ifp, if_ierrors);
1839 			aprint_error_dev(sc->sc_dev,
1840 			    "receive error: RX no buffer space\n");
1841 			GEM_INIT_RXDESC(sc, i);
1842 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1843 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1844 			continue;
1845 		}
1846 		m->m_data += 2; /* We're already off by two */
1847 
1848 		m_set_rcvif(m, ifp);
1849 		m->m_pkthdr.len = m->m_len = len;
1850 
1851 #ifdef INET
1852 		/* hardware checksum */
1853 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1854 			struct ether_header *eh;
1855 			struct ip *ip;
1856 			int32_t hlen, pktlen;
1857 
1858 			if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1859 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1860 					 ETHER_VLAN_ENCAP_LEN;
1861 				eh = (struct ether_header *) (mtod(m, char *) +
1862 					ETHER_VLAN_ENCAP_LEN);
1863 			} else {
1864 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1865 				eh = mtod(m, struct ether_header *);
1866 			}
1867 			if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1868 				goto swcsum;
1869 			ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
1870 
1871 			/* IPv4 only */
1872 			if (ip->ip_v != IPVERSION)
1873 				goto swcsum;
1874 
1875 			hlen = ip->ip_hl << 2;
1876 			if (hlen < sizeof(struct ip))
1877 				goto swcsum;
1878 
1879 			/*
1880 			 * bail if too short, has random trailing garbage,
1881 			 * truncated, fragment, or has ethernet pad.
1882 			 */
1883 			if ((ntohs(ip->ip_len) < hlen) ||
1884 			    (ntohs(ip->ip_len) != pktlen) ||
1885 			    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1886 				goto swcsum;
1887 
1888 			switch (ip->ip_p) {
1889 			case IPPROTO_TCP:
1890 				if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1891 					goto swcsum;
1892 				if (pktlen < (hlen + sizeof(struct tcphdr)))
1893 					goto swcsum;
1894 				m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1895 				break;
1896 			case IPPROTO_UDP:
1897 				/* FALLTHROUGH */
1898 			default:
1899 				goto swcsum;
1900 			}
1901 
1902 			/* the uncomplemented sum is expected */
1903 			m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1904 
1905 			/* if the pkt had ip options, we have to deduct them */
1906 			if (hlen > sizeof(struct ip)) {
1907 				uint16_t *opts;
1908 				uint32_t optsum, temp;
1909 
1910 				optsum = 0;
1911 				temp = hlen - sizeof(struct ip);
1912 				opts = (uint16_t *) ((char *) ip +
1913 					sizeof(struct ip));
1914 
1915 				while (temp > 1) {
1916 					optsum += ntohs(*opts++);
1917 					temp -= 2;
1918 				}
1919 				while (optsum >> 16)
1920 					optsum = (optsum >> 16) +
1921 						 (optsum & 0xffff);
1922 
1923 				/* Deduct ip opts sum from hwsum. */
1924 				m->m_pkthdr.csum_data += (uint16_t)~optsum;
1925 
1926 				while (m->m_pkthdr.csum_data >> 16)
1927 					m->m_pkthdr.csum_data =
1928 						(m->m_pkthdr.csum_data >> 16) +
1929 						(m->m_pkthdr.csum_data &
1930 						 0xffff);
1931 			}
1932 
1933 			m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1934 						  M_CSUM_NO_PSEUDOHDR;
1935 		} else
1936 swcsum:
1937 			m->m_pkthdr.csum_flags = 0;
1938 #endif
1939 		/* Pass it on. */
1940 		if_percpuq_enqueue(ifp->if_percpuq, m);
1941 	}
1942 
1943 	if (progress) {
1944 		/* Update the receive pointer. */
1945 		if (i == sc->sc_rxptr) {
1946 			GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1947 #ifdef GEM_DEBUG
1948 			if (ifp->if_flags & IFF_DEBUG)
1949 				printf("%s: rint: ring wrap\n",
1950 				    device_xname(sc->sc_dev));
1951 #endif
1952 		}
1953 		sc->sc_rxptr = i;
1954 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1955 	}
1956 #ifdef GEM_COUNTERS
1957 	if (progress <= 4) {
1958 		GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1959 	} else if (progress < 32) {
1960 		if (progress < 16)
1961 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1962 		else
1963 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1964 
1965 	} else {
1966 		if (progress < 64)
1967 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1968 		else
1969 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1970 	}
1971 #endif
1972 
1973 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1974 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1975 
1976 	/* Read error counters ... */
1977 	if_statadd(ifp, if_ierrors,
1978 	    bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
1979 	    bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
1980 	    bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
1981 	    bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL));
1982 
1983 	/* ... then clear the hardware counters. */
1984 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1985 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1986 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1987 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1988 
1989 	return (1);
1990 }
1991 
1992 
1993 /*
1994  * gem_add_rxbuf:
1995  *
1996  *	Add a receive buffer to the indicated descriptor.
1997  */
1998 int
1999 gem_add_rxbuf(struct gem_softc *sc, int idx)
2000 {
2001 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
2002 	struct mbuf *m;
2003 	int error;
2004 
2005 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2006 	if (m == NULL)
2007 		return (ENOBUFS);
2008 
2009 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2010 	MCLGET(m, M_DONTWAIT);
2011 	if ((m->m_flags & M_EXT) == 0) {
2012 		m_freem(m);
2013 		return (ENOBUFS);
2014 	}
2015 
2016 #ifdef GEM_DEBUG
2017 /* bzero the packet to check DMA */
2018 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
2019 #endif
2020 
2021 	if (rxs->rxs_mbuf != NULL)
2022 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
2023 
2024 	rxs->rxs_mbuf = m;
2025 
2026 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
2027 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2028 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
2029 	if (error) {
2030 		aprint_error_dev(sc->sc_dev,
2031 		    "can't load rx DMA map %d, error = %d\n", idx, error);
2032 		panic("gem_add_rxbuf");	/* XXX */
2033 	}
2034 
2035 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
2036 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2037 
2038 	GEM_INIT_RXDESC(sc, idx);
2039 
2040 	return (0);
2041 }
2042 
2043 
2044 int
2045 gem_eint(struct gem_softc *sc, u_int status)
2046 {
2047 	char bits[128];
2048 	uint32_t r, v;
2049 
2050 	if ((status & GEM_INTR_MIF) != 0) {
2051 		printf("%s: XXXlink status changed\n", device_xname(sc->sc_dev));
2052 		return (1);
2053 	}
2054 
2055 	if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
2056 		gem_reset_rxdma(sc);
2057 		return (1);
2058 	}
2059 
2060 	if (status & GEM_INTR_BERR) {
2061 		if (sc->sc_flags & GEM_PCI)
2062 			r = GEM_ERROR_STATUS;
2063 		else
2064 			r = GEM_SBUS_ERROR_STATUS;
2065 		bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2066 		v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2067 		aprint_error_dev(sc->sc_dev, "bus error interrupt: 0x%02x\n",
2068 		    v);
2069 		return (1);
2070 	}
2071 	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2072 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
2073 
2074 	return (1);
2075 }
2076 
2077 
2078 /*
2079  * PCS interrupts.
2080  * We should receive these when the link status changes, but sometimes
2081  * we don't receive them for link up.  We compensate for this in the
2082  * gem_tick() callout.
2083  */
2084 int
2085 gem_pint(struct gem_softc *sc)
2086 {
2087 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2088 	bus_space_tag_t t = sc->sc_bustag;
2089 	bus_space_handle_t h = sc->sc_h1;
2090 	uint32_t v, v2;
2091 
2092 	/*
2093 	 * Clear the PCS interrupt from GEM_STATUS.  The PCS register is
2094 	 * latched, so we have to read it twice.  There is only one bit in
2095 	 * use, so the value is meaningless.
2096 	 */
2097 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2098 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2099 
2100 	if ((ifp->if_flags & IFF_UP) == 0)
2101 		return 1;
2102 
2103 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
2104 		return 1;
2105 
2106 	v = bus_space_read_4(t, h, GEM_MII_STATUS);
2107 	/* If we see remote fault, our link partner is probably going away */
2108 	if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
2109 		gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
2110 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
2111 	/* Otherwise, we may need to wait after auto-negotiation completes */
2112 	} else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
2113 	    GEM_MII_STATUS_ANEG_CPT) {
2114 		gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
2115 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
2116 	}
2117 	if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
2118 		if (sc->sc_flags & GEM_LINK) {
2119 			return 1;
2120 		}
2121 		callout_stop(&sc->sc_tick_ch);
2122 		v = bus_space_read_4(t, h, GEM_MII_ANAR);
2123 		v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
2124 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
2125 		sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
2126 		v &= v2;
2127 		if (v & GEM_MII_ANEG_FUL_DUPLX) {
2128 			sc->sc_mii.mii_media_active |= IFM_FDX;
2129 #ifdef GEM_DEBUG
2130 			aprint_debug_dev(sc->sc_dev, "link up: full duplex\n");
2131 #endif
2132 		} else if (v & GEM_MII_ANEG_HLF_DUPLX) {
2133 			sc->sc_mii.mii_media_active |= IFM_HDX;
2134 #ifdef GEM_DEBUG
2135 			aprint_debug_dev(sc->sc_dev, "link up: half duplex\n");
2136 #endif
2137 		} else {
2138 #ifdef GEM_DEBUG
2139 			aprint_debug_dev(sc->sc_dev, "duplex mismatch\n");
2140 #endif
2141 		}
2142 		gem_statuschange(sc);
2143 	} else {
2144 		if ((sc->sc_flags & GEM_LINK) == 0) {
2145 			return 1;
2146 		}
2147 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
2148 		sc->sc_mii.mii_media_status = IFM_AVALID;
2149 #ifdef GEM_DEBUG
2150 			aprint_debug_dev(sc->sc_dev, "link down\n");
2151 #endif
2152 		gem_statuschange(sc);
2153 
2154 		/* Start the 10 second timer */
2155 		callout_schedule(&sc->sc_tick_ch, hz * 10);
2156 	}
2157 	return 1;
2158 }
2159 
2160 
2161 
2162 int
2163 gem_intr(void *v)
2164 {
2165 	struct gem_softc *sc = v;
2166 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2167 	bus_space_tag_t t = sc->sc_bustag;
2168 	bus_space_handle_t h = sc->sc_h1;
2169 	uint32_t status;
2170 	int r = 0;
2171 #ifdef GEM_DEBUG
2172 	char bits[128];
2173 #endif
2174 
2175 	/* XXX We should probably mask out interrupts until we're done */
2176 
2177 	sc->sc_ev_intr.ev_count++;
2178 
2179 	status = bus_space_read_4(t, h, GEM_STATUS);
2180 #ifdef GEM_DEBUG
2181 	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2182 #endif
2183 	DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
2184 		device_xname(sc->sc_dev), (status >> 19), bits));
2185 
2186 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
2187 		r |= gem_eint(sc, status);
2188 
2189 	/* We don't bother with GEM_INTR_TX_DONE */
2190 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
2191 		GEM_COUNTER_INCR(sc, sc_ev_txint);
2192 		r |= gem_tint(sc);
2193 	}
2194 
2195 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
2196 		GEM_COUNTER_INCR(sc, sc_ev_rxint);
2197 		r |= gem_rint(sc);
2198 	}
2199 
2200 	/* We should eventually do more than just print out error stats. */
2201 	if (status & GEM_INTR_TX_MAC) {
2202 		int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
2203 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
2204 			printf("%s: MAC tx fault, status %x\n",
2205 			    device_xname(sc->sc_dev), txstat);
2206 		if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
2207 			gem_init(ifp);
2208 	}
2209 	if (status & GEM_INTR_RX_MAC) {
2210 		int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
2211 		/*
2212 		 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
2213 		 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
2214 		 * silicon bug so handle them silently.  So if we detect
2215 		 * an RX FIFO overflow, we fire off a timer, and check
2216 		 * whether we're still making progress by looking at the
2217 		 * RX FIFO write and read pointers.
2218 		 */
2219 		if (rxstat & GEM_MAC_RX_OVERFLOW) {
2220 			if_statinc(ifp, if_ierrors);
2221 			GEM_COUNTER_INCR(sc, sc_ev_rxoverflow);
2222 #ifdef GEM_DEBUG
2223 			aprint_error_dev(sc->sc_dev,
2224 			    "receive error: RX overflow sc->rxptr %d, complete %d\n", sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION));
2225 #endif
2226 			sc->sc_rx_fifo_wr_ptr =
2227 				bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2228 			sc->sc_rx_fifo_rd_ptr =
2229 				bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2230 			callout_schedule(&sc->sc_rx_watchdog, 400);
2231 		} else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
2232 			printf("%s: MAC rx fault, status 0x%02x\n",
2233 			    device_xname(sc->sc_dev), rxstat);
2234 	}
2235 	if (status & GEM_INTR_PCS) {
2236 		r |= gem_pint(sc);
2237 	}
2238 
2239 /* Do we need to do anything with these?
2240 	if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
2241 		status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
2242 		if ((status2 & GEM_MAC_PAUSED) != 0)
2243 			aprintf_debug_dev(sc->sc_dev, "PAUSE received (%d slots)\n",
2244 			    GEM_MAC_PAUSE_TIME(status2));
2245 		if ((status2 & GEM_MAC_PAUSE) != 0)
2246 			aprintf_debug_dev(sc->sc_dev, "transited to PAUSE state\n");
2247 		if ((status2 & GEM_MAC_RESUME) != 0)
2248 			aprintf_debug_dev(sc->sc_dev, "transited to non-PAUSE state\n");
2249 	}
2250 	if ((status & GEM_INTR_MIF) != 0)
2251 		aprintf_debug_dev(sc->sc_dev, "MIF interrupt\n");
2252 */
2253 	rnd_add_uint32(&sc->rnd_source, status);
2254 	return (r);
2255 }
2256 
2257 void
2258 gem_rx_watchdog(void *arg)
2259 {
2260 	struct gem_softc *sc = arg;
2261 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2262 	bus_space_tag_t t = sc->sc_bustag;
2263 	bus_space_handle_t h = sc->sc_h1;
2264 	uint32_t rx_fifo_wr_ptr;
2265 	uint32_t rx_fifo_rd_ptr;
2266 	uint32_t state;
2267 
2268 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
2269 		aprint_error_dev(sc->sc_dev, "receiver not running\n");
2270 		return;
2271 	}
2272 
2273 	rx_fifo_wr_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2274 	rx_fifo_rd_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2275 	state = bus_space_read_4(t, h, GEM_MAC_MAC_STATE);
2276 	if ((state & GEM_MAC_STATE_OVERFLOW) == GEM_MAC_STATE_OVERFLOW &&
2277 	    ((rx_fifo_wr_ptr == rx_fifo_rd_ptr) ||
2278 	     ((sc->sc_rx_fifo_wr_ptr == rx_fifo_wr_ptr) &&
2279 	      (sc->sc_rx_fifo_rd_ptr == rx_fifo_rd_ptr))))
2280 	{
2281 		/*
2282 		 * The RX state machine is still in overflow state and
2283 		 * the RX FIFO write and read pointers seem to be
2284 		 * stuck.  Whack the chip over the head to get things
2285 		 * going again.
2286 		 */
2287 		aprint_error_dev(sc->sc_dev,
2288 		    "receiver stuck in overflow, resetting\n");
2289 		gem_init(ifp);
2290 	} else {
2291 		int needreset = 1;
2292 		if ((state & GEM_MAC_STATE_OVERFLOW) != GEM_MAC_STATE_OVERFLOW) {
2293 			DPRINTF(sc,
2294 			    ("%s: rx_watchdog: not in overflow state: 0x%x\n",
2295 			    device_xname(sc->sc_dev), state));
2296 		}
2297 		if (rx_fifo_wr_ptr != rx_fifo_rd_ptr) {
2298 			DPRINTF(sc,
2299 			    ("%s: rx_watchdog: wr & rd ptr different\n",
2300 			    device_xname(sc->sc_dev)));
2301 			needreset = 0;
2302 		}
2303 		if (sc->sc_rx_fifo_wr_ptr != rx_fifo_wr_ptr) {
2304 			DPRINTF(sc, ("%s: rx_watchdog: wr pointer != saved\n",
2305 			    device_xname(sc->sc_dev)));
2306 			needreset = 0;
2307 		}
2308 		if (sc->sc_rx_fifo_rd_ptr != rx_fifo_rd_ptr) {
2309 			DPRINTF(sc, ("%s: rx_watchdog: rd pointer != saved\n",
2310 			    device_xname(sc->sc_dev)));
2311 			needreset = 0;
2312 		}
2313 		if (needreset) {
2314 			aprint_error_dev(sc->sc_dev,
2315 			    "rx_watchdog: resetting anyway\n");
2316 			gem_init(ifp);
2317 		}
2318 	}
2319 }
2320 
2321 void
2322 gem_watchdog(struct ifnet *ifp)
2323 {
2324 	struct gem_softc *sc = ifp->if_softc;
2325 
2326 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
2327 		"GEM_MAC_RX_CONFIG %x\n",
2328 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
2329 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
2330 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
2331 
2332 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
2333 	if_statinc(ifp, if_oerrors);
2334 
2335 	/* Try to get more packets going. */
2336 	gem_init(ifp);
2337 	gem_start(ifp);
2338 }
2339 
2340 /*
2341  * Initialize the MII Management Interface
2342  */
2343 void
2344 gem_mifinit(struct gem_softc *sc)
2345 {
2346 	bus_space_tag_t t = sc->sc_bustag;
2347 	bus_space_handle_t mif = sc->sc_h1;
2348 
2349 	/* Configure the MIF in frame mode */
2350 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
2351 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
2352 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
2353 }
2354 
2355 /*
2356  * MII interface
2357  *
2358  * The GEM MII interface supports at least three different operating modes:
2359  *
2360  * Bitbang mode is implemented using data, clock and output enable registers.
2361  *
2362  * Frame mode is implemented by loading a complete frame into the frame
2363  * register and polling the valid bit for completion.
2364  *
2365  * Polling mode uses the frame register but completion is indicated by
2366  * an interrupt.
2367  *
2368  */
2369 static int
2370 gem_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
2371 {
2372 	struct gem_softc *sc = device_private(self);
2373 	bus_space_tag_t t = sc->sc_bustag;
2374 	bus_space_handle_t mif = sc->sc_h1;
2375 	int n;
2376 	uint32_t v;
2377 
2378 #ifdef GEM_DEBUG1
2379 	if (sc->sc_debug)
2380 		printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
2381 #endif
2382 
2383 	/* Construct the frame command */
2384 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
2385 		GEM_MIF_FRAME_READ;
2386 
2387 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2388 	for (n = 0; n < 100; n++) {
2389 		DELAY(1);
2390 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2391 		if (v & GEM_MIF_FRAME_TA0) {
2392 			*val = v & GEM_MIF_FRAME_DATA;
2393 			return 0;
2394 		}
2395 	}
2396 
2397 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
2398 	return ETIMEDOUT;
2399 }
2400 
2401 static int
2402 gem_mii_writereg(device_t self, int phy, int reg, uint16_t val)
2403 {
2404 	struct gem_softc *sc = device_private(self);
2405 	bus_space_tag_t t = sc->sc_bustag;
2406 	bus_space_handle_t mif = sc->sc_h1;
2407 	int n;
2408 	uint32_t v;
2409 
2410 #ifdef GEM_DEBUG1
2411 	if (sc->sc_debug)
2412 		printf("gem_mii_writereg: PHY %d reg %d val %x\n",
2413 			phy, reg, val);
2414 #endif
2415 
2416 	/* Construct the frame command */
2417 	v = GEM_MIF_FRAME_WRITE			|
2418 	    (phy << GEM_MIF_PHY_SHIFT)		|
2419 	    (reg << GEM_MIF_REG_SHIFT)		|
2420 	    (val & GEM_MIF_FRAME_DATA);
2421 
2422 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2423 	for (n = 0; n < 100; n++) {
2424 		DELAY(1);
2425 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2426 		if (v & GEM_MIF_FRAME_TA0)
2427 			return 0;
2428 	}
2429 
2430 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
2431 	return ETIMEDOUT;
2432 }
2433 
2434 static void
2435 gem_mii_statchg(struct ifnet *ifp)
2436 {
2437 	struct gem_softc *sc = ifp->if_softc;
2438 #ifdef GEM_DEBUG
2439 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
2440 #endif
2441 
2442 #ifdef GEM_DEBUG
2443 	if (sc->sc_debug)
2444 		printf("gem_mii_statchg: status change: phy = %d\n",
2445 			sc->sc_phys[instance]);
2446 #endif
2447 	gem_statuschange(sc);
2448 }
2449 
2450 /*
2451  * Common status change for gem_mii_statchg() and gem_pint()
2452  */
2453 void
2454 gem_statuschange(struct gem_softc* sc)
2455 {
2456 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2457 	bus_space_tag_t t = sc->sc_bustag;
2458 	bus_space_handle_t mac = sc->sc_h1;
2459 	int gigabit;
2460 	uint32_t rxcfg, txcfg, v;
2461 
2462 	if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
2463 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
2464 		sc->sc_flags |= GEM_LINK;
2465 	else
2466 		sc->sc_flags &= ~GEM_LINK;
2467 
2468 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2469 		gigabit = 1;
2470 	else
2471 		gigabit = 0;
2472 
2473 	/*
2474 	 * The configuration done here corresponds to the steps F) and
2475 	 * G) and as far as enabling of RX and TX MAC goes also step H)
2476 	 * of the initialization sequence outlined in section 3.2.1 of
2477 	 * the GEM Gigabit Ethernet ASIC Specification.
2478 	 */
2479 
2480 	rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
2481 	rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
2482 	txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
2483 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2484 		txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
2485 	else if (gigabit) {
2486 		rxcfg |= GEM_MAC_RX_CARR_EXTEND;
2487 		txcfg |= GEM_MAC_RX_CARR_EXTEND;
2488 	}
2489 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
2490 	bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
2491 	    BUS_SPACE_BARRIER_WRITE);
2492 	if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
2493 		aprint_normal_dev(sc->sc_dev, "cannot disable TX MAC\n");
2494 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
2495 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
2496 	bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
2497 	    BUS_SPACE_BARRIER_WRITE);
2498 	if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
2499 		aprint_normal_dev(sc->sc_dev, "cannot disable RX MAC\n");
2500 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
2501 
2502 	v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
2503 	    ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
2504 	bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
2505 
2506 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
2507 	    gigabit != 0)
2508 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2509 		    GEM_MAC_SLOT_TIME_CARR_EXTEND);
2510 	else
2511 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2512 		    GEM_MAC_SLOT_TIME_NORMAL);
2513 
2514 	/* XIF Configuration */
2515 	if (sc->sc_flags & GEM_LINK)
2516 		v = GEM_MAC_XIF_LINK_LED;
2517 	else
2518 		v = 0;
2519 	v |= GEM_MAC_XIF_TX_MII_ENA;
2520 
2521 	/* If an external transceiver is connected, enable its MII drivers */
2522 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
2523 	if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
2524 		if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
2525 			if (gigabit)
2526 				v |= GEM_MAC_XIF_GMII_MODE;
2527 			else
2528 				v &= ~GEM_MAC_XIF_GMII_MODE;
2529 		} else
2530 			/* Internal MII needs buf enable */
2531 			v |= GEM_MAC_XIF_MII_BUF_ENA;
2532 		/* MII needs echo disable if half duplex. */
2533 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2534 			/* turn on full duplex LED */
2535 			v |= GEM_MAC_XIF_FDPLX_LED;
2536 		else
2537 			/* half duplex -- disable echo */
2538 			v |= GEM_MAC_XIF_ECHO_DISABL;
2539 	} else {
2540 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2541 			v |= GEM_MAC_XIF_FDPLX_LED;
2542 		v |= GEM_MAC_XIF_GMII_MODE;
2543 	}
2544 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
2545 
2546 	if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2547 	    (sc->sc_flags & GEM_LINK) != 0) {
2548 		bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
2549 		    txcfg | GEM_MAC_TX_ENABLE);
2550 		bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
2551 		    rxcfg | GEM_MAC_RX_ENABLE);
2552 	}
2553 }
2554 
2555 int
2556 gem_ser_mediachange(struct ifnet *ifp)
2557 {
2558 	struct gem_softc *sc = ifp->if_softc;
2559 	u_int s, t;
2560 
2561 	if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
2562 		return EINVAL;
2563 
2564 	s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
2565 	if (s == IFM_AUTO) {
2566 		if (sc->sc_mii_media != s) {
2567 #ifdef GEM_DEBUG
2568 			aprint_debug_dev(sc->sc_dev, "setting media to auto\n");
2569 #endif
2570 			sc->sc_mii_media = s;
2571 			if (ifp->if_flags & IFF_UP) {
2572 				gem_pcs_stop(sc, 0);
2573 				gem_pcs_start(sc);
2574 			}
2575 		}
2576 		return 0;
2577 	}
2578 	if (s == IFM_1000_SX) {
2579 		t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media)
2580 		    & (IFM_FDX | IFM_HDX);
2581 		if ((sc->sc_mii_media & (IFM_FDX | IFM_HDX)) != t) {
2582 			sc->sc_mii_media &= ~(IFM_FDX | IFM_HDX);
2583 			sc->sc_mii_media |= t;
2584 #ifdef GEM_DEBUG
2585 			aprint_debug_dev(sc->sc_dev,
2586 			    "setting media to 1000baseSX-%s\n",
2587 			    t == IFM_FDX ? "FDX" : "HDX");
2588 #endif
2589 			if (ifp->if_flags & IFF_UP) {
2590 				gem_pcs_stop(sc, 0);
2591 				gem_pcs_start(sc);
2592 			}
2593 		}
2594 		return 0;
2595 	}
2596 	return EINVAL;
2597 }
2598 
2599 void
2600 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2601 {
2602 	struct gem_softc *sc = ifp->if_softc;
2603 
2604 	if ((ifp->if_flags & IFF_UP) == 0)
2605 		return;
2606 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
2607 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
2608 }
2609 
2610 static int
2611 gem_ifflags_cb(struct ethercom *ec)
2612 {
2613 	struct ifnet *ifp = &ec->ec_if;
2614 	struct gem_softc *sc = ifp->if_softc;
2615 	u_short change = ifp->if_flags ^ sc->sc_if_flags;
2616 
2617 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
2618 		return ENETRESET;
2619 	else if ((change & IFF_PROMISC) != 0)
2620 		gem_setladrf(sc);
2621 	return 0;
2622 }
2623 
2624 /*
2625  * Process an ioctl request.
2626  */
2627 int
2628 gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
2629 {
2630 	struct gem_softc *sc = ifp->if_softc;
2631 	int s, error = 0;
2632 
2633 	s = splnet();
2634 
2635 	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2636 		error = 0;
2637 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2638 			;
2639 		else if (ifp->if_flags & IFF_RUNNING) {
2640 			/*
2641 			 * Multicast list has changed; set the hardware filter
2642 			 * accordingly.
2643 			 */
2644 			gem_setladrf(sc);
2645 		}
2646 	}
2647 
2648 	/* Try to get things going again */
2649 	if (ifp->if_flags & IFF_UP)
2650 		gem_start(ifp);
2651 	splx(s);
2652 	return (error);
2653 }
2654 
2655 static void
2656 gem_inten(struct gem_softc *sc)
2657 {
2658 	bus_space_tag_t t = sc->sc_bustag;
2659 	bus_space_handle_t h = sc->sc_h1;
2660 	uint32_t v;
2661 
2662 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
2663 		v = GEM_INTR_PCS;
2664 	else
2665 		v = GEM_INTR_MIF;
2666 	bus_space_write_4(t, h, GEM_INTMASK,
2667 		      ~(GEM_INTR_TX_INTME |
2668 			GEM_INTR_TX_EMPTY |
2669 			GEM_INTR_TX_MAC |
2670 			GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF |
2671 			GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL |
2672 			GEM_INTR_BERR | v));
2673 }
2674 
2675 bool
2676 gem_resume(device_t self, const pmf_qual_t *qual)
2677 {
2678 	struct gem_softc *sc = device_private(self);
2679 
2680 	gem_inten(sc);
2681 
2682 	return true;
2683 }
2684 
2685 bool
2686 gem_suspend(device_t self, const pmf_qual_t *qual)
2687 {
2688 	struct gem_softc *sc = device_private(self);
2689 	bus_space_tag_t t = sc->sc_bustag;
2690 	bus_space_handle_t h = sc->sc_h1;
2691 
2692 	bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
2693 
2694 	return true;
2695 }
2696 
2697 bool
2698 gem_shutdown(device_t self, int howto)
2699 {
2700 	struct gem_softc *sc = device_private(self);
2701 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2702 
2703 	gem_stop(ifp, 1);
2704 
2705 	return true;
2706 }
2707 
2708 /*
2709  * Set up the logical address filter.
2710  */
2711 void
2712 gem_setladrf(struct gem_softc *sc)
2713 {
2714 	struct ethercom *ec = &sc->sc_ethercom;
2715 	struct ifnet *ifp = &ec->ec_if;
2716 	struct ether_multi *enm;
2717 	struct ether_multistep step;
2718 	bus_space_tag_t t = sc->sc_bustag;
2719 	bus_space_handle_t h = sc->sc_h1;
2720 	uint32_t crc;
2721 	uint32_t hash[16];
2722 	uint32_t v;
2723 	int i;
2724 
2725 	/* Get current RX configuration */
2726 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2727 
2728 	/*
2729 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2730 	 * and hash filter.  Depending on the case, the right bit will be
2731 	 * enabled.
2732 	 */
2733 	v &= ~(GEM_MAC_RX_PROMISCUOUS | GEM_MAC_RX_HASH_FILTER |
2734 	    GEM_MAC_RX_PROMISC_GRP);
2735 
2736 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
2737 		/* Turn on promiscuous mode */
2738 		v |= GEM_MAC_RX_PROMISCUOUS;
2739 		ifp->if_flags |= IFF_ALLMULTI;
2740 		goto chipit;
2741 	}
2742 
2743 	/*
2744 	 * Set up multicast address filter by passing all multicast addresses
2745 	 * through a crc generator, and then using the high order 8 bits as an
2746 	 * index into the 256 bit logical address filter.  The high order 4
2747 	 * bits selects the word, while the other 4 bits select the bit within
2748 	 * the word (where bit 0 is the MSB).
2749 	 */
2750 
2751 	/* Clear hash table */
2752 	memset(hash, 0, sizeof(hash));
2753 
2754 	ETHER_LOCK(ec);
2755 	ETHER_FIRST_MULTI(step, ec, enm);
2756 	while (enm != NULL) {
2757 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2758 			/*
2759 			 * We must listen to a range of multicast addresses.
2760 			 * For now, just accept all multicasts, rather than
2761 			 * trying to set only those filter bits needed to match
2762 			 * the range.  (At this time, the only use of address
2763 			 * ranges is for IP multicast routing, for which the
2764 			 * range is big enough to require all bits set.)
2765 			 * XXX should use the address filters for this
2766 			 */
2767 			ifp->if_flags |= IFF_ALLMULTI;
2768 			v |= GEM_MAC_RX_PROMISC_GRP;
2769 			ETHER_UNLOCK(ec);
2770 			goto chipit;
2771 		}
2772 
2773 		/* Get the LE CRC32 of the address */
2774 		crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2775 
2776 		/* Just want the 8 most significant bits. */
2777 		crc >>= 24;
2778 
2779 		/* Set the corresponding bit in the filter. */
2780 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
2781 
2782 		ETHER_NEXT_MULTI(step, enm);
2783 	}
2784 	ETHER_UNLOCK(ec);
2785 
2786 	v |= GEM_MAC_RX_HASH_FILTER;
2787 	ifp->if_flags &= ~IFF_ALLMULTI;
2788 
2789 	/* Now load the hash table into the chip (if we are using it) */
2790 	for (i = 0; i < 16; i++) {
2791 		bus_space_write_4(t, h,
2792 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2793 		    hash[i]);
2794 	}
2795 
2796 chipit:
2797 	sc->sc_if_flags = ifp->if_flags;
2798 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2799 }
2800