xref: /netbsd-src/sys/dev/ic/gem.c (revision 4d342c046e3288fb5a1edcd33cfec48c41c80664)
1 /*	$NetBSD: gem.c,v 1.132 2020/09/15 08:33:40 mrg Exp $ */
2 
3 /*
4  *
5  * Copyright (C) 2001 Eduardo Horvath.
6  * Copyright (c) 2001-2003 Thomas Moestl
7  * All rights reserved.
8  *
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  */
32 
33 /*
34  * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
35  * See `GEM Gigabit Ethernet ASIC Specification'
36  *   http://www.sun.com/processors/manuals/ge.pdf
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.132 2020/09/15 08:33:40 mrg Exp $");
41 
42 #include "opt_inet.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/callout.h>
47 #include <sys/mbuf.h>
48 #include <sys/syslog.h>
49 #include <sys/malloc.h>
50 #include <sys/kernel.h>
51 #include <sys/socket.h>
52 #include <sys/ioctl.h>
53 #include <sys/errno.h>
54 #include <sys/device.h>
55 
56 #include <machine/endian.h>
57 
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_ether.h>
62 
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/tcp.h>
69 #include <netinet/udp.h>
70 #endif
71 
72 #include <net/bpf.h>
73 
74 #include <sys/bus.h>
75 #include <sys/intr.h>
76 
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79 #include <dev/mii/mii_bitbang.h>
80 
81 #include <dev/ic/gemreg.h>
82 #include <dev/ic/gemvar.h>
83 
84 #define TRIES	10000
85 
86 static void	gem_inten(struct gem_softc *);
87 static void	gem_start(struct ifnet *);
88 static void	gem_stop(struct ifnet *, int);
89 int		gem_ioctl(struct ifnet *, u_long, void *);
90 void		gem_tick(void *);
91 void		gem_watchdog(struct ifnet *);
92 void		gem_rx_watchdog(void *);
93 void		gem_pcs_start(struct gem_softc *sc);
94 void		gem_pcs_stop(struct gem_softc *sc, int);
95 int		gem_init(struct ifnet *);
96 void		gem_init_regs(struct gem_softc *sc);
97 static int	gem_ringsize(int sz);
98 static int	gem_meminit(struct gem_softc *);
99 void		gem_mifinit(struct gem_softc *);
100 static int	gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
101 		    uint32_t, uint32_t);
102 void		gem_reset(struct gem_softc *);
103 int		gem_reset_rx(struct gem_softc *sc);
104 static void	gem_reset_rxdma(struct gem_softc *sc);
105 static void	gem_rx_common(struct gem_softc *sc);
106 int		gem_reset_tx(struct gem_softc *sc);
107 int		gem_disable_rx(struct gem_softc *sc);
108 int		gem_disable_tx(struct gem_softc *sc);
109 static void	gem_rxdrain(struct gem_softc *sc);
110 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
111 void		gem_setladrf(struct gem_softc *);
112 
113 /* MII methods & callbacks */
114 static int	gem_mii_readreg(device_t, int, int, uint16_t *);
115 static int	gem_mii_writereg(device_t, int, int, uint16_t);
116 static void	gem_mii_statchg(struct ifnet *);
117 
118 static int	gem_ifflags_cb(struct ethercom *);
119 
120 void		gem_statuschange(struct gem_softc *);
121 
122 int		gem_ser_mediachange(struct ifnet *);
123 void		gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
124 
125 static void	gem_partial_detach(struct gem_softc *, enum gem_attach_stage);
126 
127 struct mbuf	*gem_get(struct gem_softc *, int, int);
128 int		gem_put(struct gem_softc *, int, struct mbuf *);
129 void		gem_read(struct gem_softc *, int, int);
130 int		gem_pint(struct gem_softc *);
131 int		gem_eint(struct gem_softc *, u_int);
132 int		gem_rint(struct gem_softc *);
133 int		gem_tint(struct gem_softc *);
134 void		gem_power(int, void *);
135 
136 #ifdef GEM_DEBUG
137 static void gem_txsoft_print(const struct gem_softc *, int, int);
138 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
139 				printf x
140 #else
141 #define	DPRINTF(sc, x)	/* nothing */
142 #endif
143 
144 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
145 
146 int
147 gem_detach(struct gem_softc *sc, int flags)
148 {
149 	int i;
150 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
151 	bus_space_tag_t t = sc->sc_bustag;
152 	bus_space_handle_t h = sc->sc_h1;
153 
154 	/*
155 	 * Free any resources we've allocated during the attach.
156 	 * Do this in reverse order and fall through.
157 	 */
158 	switch (sc->sc_att_stage) {
159 	case GEM_ATT_BACKEND_2:
160 	case GEM_ATT_BACKEND_1:
161 	case GEM_ATT_FINISHED:
162 		bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
163 		gem_stop(&sc->sc_ethercom.ec_if, 1);
164 
165 #ifdef GEM_COUNTERS
166 		for (i = __arraycount(sc->sc_ev_rxhist); --i >= 0; )
167 			evcnt_detach(&sc->sc_ev_rxhist[i]);
168 		evcnt_detach(&sc->sc_ev_rxnobuf);
169 		evcnt_detach(&sc->sc_ev_rxfull);
170 		evcnt_detach(&sc->sc_ev_rxint);
171 		evcnt_detach(&sc->sc_ev_txint);
172 #endif
173 		evcnt_detach(&sc->sc_ev_intr);
174 
175 		rnd_detach_source(&sc->rnd_source);
176 		ether_ifdetach(ifp);
177 		if_detach(ifp);
178 
179 		callout_destroy(&sc->sc_tick_ch);
180 		callout_destroy(&sc->sc_rx_watchdog);
181 
182 		/*FALLTHROUGH*/
183 	case GEM_ATT_MII:
184 		sc->sc_att_stage = GEM_ATT_MII;
185 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
186 		ifmedia_fini(&sc->sc_mii.mii_media);
187 
188 		/*FALLTHROUGH*/
189 	case GEM_ATT_7:
190 		for (i = 0; i < GEM_NRXDESC; i++) {
191 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
192 				bus_dmamap_destroy(sc->sc_dmatag,
193 				    sc->sc_rxsoft[i].rxs_dmamap);
194 		}
195 		/*FALLTHROUGH*/
196 	case GEM_ATT_6:
197 		for (i = 0; i < GEM_TXQUEUELEN; i++) {
198 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
199 				bus_dmamap_destroy(sc->sc_dmatag,
200 				    sc->sc_txsoft[i].txs_dmamap);
201 		}
202 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
203 		/*FALLTHROUGH*/
204 	case GEM_ATT_5:
205 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_nulldmamap);
206 		/*FALLTHROUGH*/
207 	case GEM_ATT_4:
208 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
209 		/*FALLTHROUGH*/
210 	case GEM_ATT_3:
211 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
212 		/*FALLTHROUGH*/
213 	case GEM_ATT_2:
214 		bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
215 		    sizeof(struct gem_control_data));
216 		/*FALLTHROUGH*/
217 	case GEM_ATT_1:
218 		bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
219 		/*FALLTHROUGH*/
220 	case GEM_ATT_0:
221 		sc->sc_att_stage = GEM_ATT_0;
222 		/*FALLTHROUGH*/
223 	case GEM_ATT_BACKEND_0:
224 		break;
225 	}
226 	return 0;
227 }
228 
229 static void
230 gem_partial_detach(struct gem_softc *sc, enum gem_attach_stage stage)
231 {
232 	cfattach_t ca = device_cfattach(sc->sc_dev);
233 
234 	sc->sc_att_stage = stage;
235 	(*ca->ca_detach)(sc->sc_dev, 0);
236 }
237 
238 /*
239  * gem_attach:
240  *
241  *	Attach a Gem interface to the system.
242  */
243 void
244 gem_attach(struct gem_softc *sc, const uint8_t *enaddr)
245 {
246 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
247 	struct mii_data *mii = &sc->sc_mii;
248 	bus_space_tag_t t = sc->sc_bustag;
249 	bus_space_handle_t h = sc->sc_h1;
250 	struct ifmedia_entry *ife;
251 	int i, error, phyaddr;
252 	uint32_t v;
253 	char *nullbuf;
254 
255 	/* Make sure the chip is stopped. */
256 	ifp->if_softc = sc;
257 	gem_reset(sc);
258 
259 	/*
260 	 * Allocate the control data structures, and create and load the
261 	 * DMA map for it. gem_control_data is 9216 bytes, we have space for
262 	 * the padding buffer in the bus_dmamem_alloc()'d memory.
263 	 */
264 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
265 	    sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
266 	    0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
267 		aprint_error_dev(sc->sc_dev,
268 		   "unable to allocate control data, error = %d\n",
269 		    error);
270 		gem_partial_detach(sc, GEM_ATT_0);
271 		return;
272 	}
273 
274 	/* XXX should map this in with correct endianness */
275 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
276 	    sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
277 	    BUS_DMA_COHERENT)) != 0) {
278 		aprint_error_dev(sc->sc_dev,
279 		    "unable to map control data, error = %d\n", error);
280 		gem_partial_detach(sc, GEM_ATT_1);
281 		return;
282 	}
283 
284 	nullbuf =
285 	    (char *)sc->sc_control_data + sizeof(struct gem_control_data);
286 
287 	if ((error = bus_dmamap_create(sc->sc_dmatag,
288 	    sizeof(struct gem_control_data), 1,
289 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
290 		aprint_error_dev(sc->sc_dev,
291 		    "unable to create control data DMA map, error = %d\n",
292 		    error);
293 		gem_partial_detach(sc, GEM_ATT_2);
294 		return;
295 	}
296 
297 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
298 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
299 	    0)) != 0) {
300 		aprint_error_dev(sc->sc_dev,
301 		    "unable to load control data DMA map, error = %d\n",
302 		    error);
303 		gem_partial_detach(sc, GEM_ATT_3);
304 		return;
305 	}
306 
307 	memset(nullbuf, 0, ETHER_MIN_TX);
308 	if ((error = bus_dmamap_create(sc->sc_dmatag,
309 	    ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
310 		aprint_error_dev(sc->sc_dev,
311 		    "unable to create padding DMA map, error = %d\n", error);
312 		gem_partial_detach(sc, GEM_ATT_4);
313 		return;
314 	}
315 
316 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
317 	    nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
318 		aprint_error_dev(sc->sc_dev,
319 		    "unable to load padding DMA map, error = %d\n", error);
320 		gem_partial_detach(sc, GEM_ATT_5);
321 		return;
322 	}
323 
324 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
325 	    BUS_DMASYNC_PREWRITE);
326 
327 	/*
328 	 * Initialize the transmit job descriptors.
329 	 */
330 	SIMPLEQ_INIT(&sc->sc_txfreeq);
331 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
332 
333 	/*
334 	 * Create the transmit buffer DMA maps.
335 	 */
336 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
337 		struct gem_txsoft *txs;
338 
339 		txs = &sc->sc_txsoft[i];
340 		txs->txs_mbuf = NULL;
341 		if ((error = bus_dmamap_create(sc->sc_dmatag,
342 		    ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
343 		    ETHER_MAX_LEN_JUMBO, 0, 0,
344 		    &txs->txs_dmamap)) != 0) {
345 			aprint_error_dev(sc->sc_dev,
346 			    "unable to create tx DMA map %d, error = %d\n",
347 			    i, error);
348 			gem_partial_detach(sc, GEM_ATT_6);
349 			return;
350 		}
351 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
352 	}
353 
354 	/*
355 	 * Create the receive buffer DMA maps.
356 	 */
357 	for (i = 0; i < GEM_NRXDESC; i++) {
358 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
359 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
360 			aprint_error_dev(sc->sc_dev,
361 			    "unable to create rx DMA map %d, error = %d\n",
362 			    i, error);
363 			gem_partial_detach(sc, GEM_ATT_7);
364 			return;
365 		}
366 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
367 	}
368 
369 	/* Initialize ifmedia structures and MII info */
370 	mii->mii_ifp = ifp;
371 	mii->mii_readreg = gem_mii_readreg;
372 	mii->mii_writereg = gem_mii_writereg;
373 	mii->mii_statchg = gem_mii_statchg;
374 
375 	sc->sc_ethercom.ec_mii = mii;
376 
377 	/*
378 	 * Initialization based  on `GEM Gigabit Ethernet ASIC Specification'
379 	 * Section 3.2.1 `Initialization Sequence'.
380 	 * However, we can't assume SERDES or Serialink if neither
381 	 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
382 	 * being set, as both are set on Sun X1141A (with SERDES).  So,
383 	 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
384 	 * Also, for variants that report 2 PHY's, we prefer the external
385 	 * PHY over the internal PHY, so we look for that first.
386 	 */
387 	gem_mifinit(sc);
388 
389 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
390 		ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
391 		    ether_mediastatus);
392 		/* Look for external PHY */
393 		if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
394 			sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
395 			bus_space_write_4(t, h, GEM_MIF_CONFIG,
396 			    sc->sc_mif_config);
397 			switch (sc->sc_variant) {
398 			case GEM_SUN_ERI:
399 				phyaddr = GEM_PHYAD_EXTERNAL;
400 				break;
401 			default:
402 				phyaddr = MII_PHY_ANY;
403 				break;
404 			}
405 			mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
406 			    MII_OFFSET_ANY, MIIF_FORCEANEG);
407 		}
408 #ifdef GEM_DEBUG
409 		  else
410 			aprint_debug_dev(sc->sc_dev, "using external PHY\n");
411 #endif
412 		/* Look for internal PHY if no external PHY was found */
413 		if (LIST_EMPTY(&mii->mii_phys) &&
414 		    ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI0) ||
415 		     (sc->sc_variant == GEM_APPLE_K2_GMAC))) {
416 			sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
417 			bus_space_write_4(t, h, GEM_MIF_CONFIG,
418 			    sc->sc_mif_config);
419 			switch (sc->sc_variant) {
420 			case GEM_SUN_ERI:
421 			case GEM_APPLE_K2_GMAC:
422 				phyaddr = GEM_PHYAD_INTERNAL;
423 				break;
424 			case GEM_APPLE_GMAC:
425 				phyaddr = GEM_PHYAD_EXTERNAL;
426 				break;
427 			default:
428 				phyaddr = MII_PHY_ANY;
429 				break;
430 			}
431 			mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
432 			    MII_OFFSET_ANY, MIIF_FORCEANEG);
433 #ifdef GEM_DEBUG
434 			if (!LIST_EMPTY(&mii->mii_phys))
435 				aprint_debug_dev(sc->sc_dev,
436 				    "using internal PHY\n");
437 #endif
438 		}
439 		if (LIST_EMPTY(&mii->mii_phys)) {
440 				/* No PHY attached */
441 				aprint_error_dev(sc->sc_dev,
442 				    "PHY probe failed\n");
443 				gem_partial_detach(sc, GEM_ATT_MII);
444 				return;
445 		} else {
446 			struct mii_softc *child;
447 
448 			/*
449 			 * Walk along the list of attached MII devices and
450 			 * establish an `MII instance' to `PHY number'
451 			 * mapping.
452 			 */
453 			LIST_FOREACH(child, &mii->mii_phys, mii_list) {
454 				/*
455 				 * Note: we support just one PHY: the internal
456 				 * or external MII is already selected for us
457 				 * by the GEM_MIF_CONFIG  register.
458 				 */
459 				if (child->mii_phy > 1 || child->mii_inst > 0) {
460 					aprint_error_dev(sc->sc_dev,
461 					    "cannot accommodate MII device"
462 					    " %s at PHY %d, instance %d\n",
463 					       device_xname(child->mii_dev),
464 					       child->mii_phy, child->mii_inst);
465 					continue;
466 				}
467 				sc->sc_phys[child->mii_inst] = child->mii_phy;
468 			}
469 
470 			if (sc->sc_variant != GEM_SUN_ERI)
471 				bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
472 				    GEM_MII_DATAPATH_MII);
473 
474 			/*
475 			 * XXX - we can really do the following ONLY if the
476 			 * PHY indeed has the auto negotiation capability!!
477 			 */
478 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
479 		}
480 	} else {
481 		ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
482 		    gem_ser_mediastatus);
483 		/* SERDES or Serialink */
484 		if (sc->sc_flags & GEM_SERDES) {
485 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
486 			    GEM_MII_DATAPATH_SERDES);
487 		} else {
488 			sc->sc_flags |= GEM_SERIAL;
489 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
490 			    GEM_MII_DATAPATH_SERIAL);
491 		}
492 
493 		aprint_normal_dev(sc->sc_dev, "using external PCS %s: ",
494 		    sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
495 
496 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_AUTO, 0, NULL);
497 		/* Check for FDX and HDX capabilities */
498 		sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
499 		if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
500 			ifmedia_add(&mii->mii_media, IFM_ETHER |
501 			    IFM_1000_SX | IFM_MANUAL | IFM_FDX, 0, NULL);
502 			aprint_normal("1000baseSX-FDX, ");
503 		}
504 		if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
505 			ifmedia_add(&mii->mii_media, IFM_ETHER |
506 			    IFM_1000_SX | IFM_MANUAL | IFM_HDX, 0, NULL);
507 			aprint_normal("1000baseSX-HDX, ");
508 		}
509 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
510 		sc->sc_mii_media = IFM_AUTO;
511 		aprint_normal("auto\n");
512 
513 		gem_pcs_stop(sc, 1);
514 	}
515 
516 	/*
517 	 * From this point forward, the attachment cannot fail.  A failure
518 	 * before this point releases all resources that may have been
519 	 * allocated.
520 	 */
521 
522 	/* Announce ourselves. */
523 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s",
524 	    ether_sprintf(enaddr));
525 
526 	/* Get RX FIFO size */
527 	sc->sc_rxfifosize = 64 *
528 	    bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
529 	aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
530 
531 	/* Get TX FIFO size */
532 	v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
533 	aprint_normal(", %uKB TX fifo\n", v / 16);
534 
535 	/* Initialize ifnet structure. */
536 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
537 	ifp->if_softc = sc;
538 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
539 	sc->sc_if_flags = ifp->if_flags;
540 #if 0
541 	/*
542 	 * The GEM hardware supports basic TCP checksum offloading only.
543 	 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
544 	 * have bugs in the receive checksum, so don't enable it for now.
545 	 */
546 	if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
547 	    (GEM_IS_APPLE(sc) &&
548 	    (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
549 		ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
550 #endif
551 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
552 	ifp->if_start = gem_start;
553 	ifp->if_ioctl = gem_ioctl;
554 	ifp->if_watchdog = gem_watchdog;
555 	ifp->if_stop = gem_stop;
556 	ifp->if_init = gem_init;
557 	IFQ_SET_READY(&ifp->if_snd);
558 
559 	/*
560 	 * If we support GigE media, we support jumbo frames too.
561 	 * Unless we are Apple.
562 	 */
563 	TAILQ_FOREACH(ife, &mii->mii_media.ifm_list, ifm_list) {
564 		if (IFM_SUBTYPE(ife->ifm_media) == IFM_1000_T ||
565 		    IFM_SUBTYPE(ife->ifm_media) == IFM_1000_SX ||
566 		    IFM_SUBTYPE(ife->ifm_media) == IFM_1000_LX ||
567 		    IFM_SUBTYPE(ife->ifm_media) == IFM_1000_CX) {
568 			if (!GEM_IS_APPLE(sc))
569 				sc->sc_ethercom.ec_capabilities
570 				    |= ETHERCAP_JUMBO_MTU;
571 			sc->sc_flags |= GEM_GIGABIT;
572 			break;
573 		}
574 	}
575 
576 	/* claim 802.1q capability */
577 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
578 
579 	/* Attach the interface. */
580 	if_attach(ifp);
581 	if_deferred_start_init(ifp, NULL);
582 	ether_ifattach(ifp, enaddr);
583 	ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
584 
585 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
586 			  RND_TYPE_NET, RND_FLAG_DEFAULT);
587 
588 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
589 	    NULL, device_xname(sc->sc_dev), "interrupts");
590 #ifdef GEM_COUNTERS
591 	evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
592 	    &sc->sc_ev_intr, device_xname(sc->sc_dev), "tx interrupts");
593 	evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
594 	    &sc->sc_ev_intr, device_xname(sc->sc_dev), "rx interrupts");
595 	evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
596 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx ring full");
597 	evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
598 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx malloc failure");
599 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
600 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 0desc");
601 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
602 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 1desc");
603 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
604 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 2desc");
605 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
606 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 3desc");
607 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
608 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >3desc");
609 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
610 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >7desc");
611 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
612 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >15desc");
613 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
614 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >31desc");
615 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
616 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >63desc");
617 #endif
618 
619 	callout_init(&sc->sc_tick_ch, 0);
620 	callout_setfunc(&sc->sc_tick_ch, gem_tick, sc);
621 
622 	callout_init(&sc->sc_rx_watchdog, 0);
623 	callout_setfunc(&sc->sc_rx_watchdog, gem_rx_watchdog, sc);
624 
625 	sc->sc_att_stage = GEM_ATT_FINISHED;
626 
627 	return;
628 }
629 
630 void
631 gem_tick(void *arg)
632 {
633 	struct gem_softc *sc = arg;
634 	int s;
635 
636 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
637 		/*
638 		 * We have to reset everything if we failed to get a
639 		 * PCS interrupt.  Restarting the callout is handled
640 		 * in gem_pcs_start().
641 		 */
642 		gem_init(&sc->sc_ethercom.ec_if);
643 	} else {
644 		s = splnet();
645 		mii_tick(&sc->sc_mii);
646 		splx(s);
647 		callout_schedule(&sc->sc_tick_ch, hz);
648 	}
649 }
650 
651 static int
652 gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, uint32_t clr,
653     uint32_t set)
654 {
655 	int i;
656 	uint32_t reg;
657 
658 	for (i = TRIES; i--; DELAY(100)) {
659 		reg = bus_space_read_4(sc->sc_bustag, h, r);
660 		if ((reg & clr) == 0 && (reg & set) == set)
661 			return (1);
662 	}
663 	return (0);
664 }
665 
666 void
667 gem_reset(struct gem_softc *sc)
668 {
669 	bus_space_tag_t t = sc->sc_bustag;
670 	bus_space_handle_t h = sc->sc_h2;
671 	int s;
672 
673 	s = splnet();
674 	DPRINTF(sc, ("%s: gem_reset\n", device_xname(sc->sc_dev)));
675 	gem_reset_rx(sc);
676 	gem_reset_tx(sc);
677 
678 	/* Do a full reset */
679 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX);
680 	if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
681 		aprint_error_dev(sc->sc_dev, "cannot reset device\n");
682 	splx(s);
683 }
684 
685 
686 /*
687  * gem_rxdrain:
688  *
689  *	Drain the receive queue.
690  */
691 static void
692 gem_rxdrain(struct gem_softc *sc)
693 {
694 	struct gem_rxsoft *rxs;
695 	int i;
696 
697 	for (i = 0; i < GEM_NRXDESC; i++) {
698 		rxs = &sc->sc_rxsoft[i];
699 		if (rxs->rxs_mbuf != NULL) {
700 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
701 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
702 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
703 			m_freem(rxs->rxs_mbuf);
704 			rxs->rxs_mbuf = NULL;
705 		}
706 	}
707 }
708 
709 /*
710  * Reset the whole thing.
711  */
712 static void
713 gem_stop(struct ifnet *ifp, int disable)
714 {
715 	struct gem_softc *sc = ifp->if_softc;
716 	struct gem_txsoft *txs;
717 
718 	DPRINTF(sc, ("%s: gem_stop\n", device_xname(sc->sc_dev)));
719 
720 	callout_halt(&sc->sc_tick_ch, NULL);
721 	callout_halt(&sc->sc_rx_watchdog, NULL);
722 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
723 		gem_pcs_stop(sc, disable);
724 	else
725 		mii_down(&sc->sc_mii);
726 
727 	/* XXX - Should we reset these instead? */
728 	gem_disable_tx(sc);
729 	gem_disable_rx(sc);
730 
731 	/*
732 	 * Release any queued transmit buffers.
733 	 */
734 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
735 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
736 		if (txs->txs_mbuf != NULL) {
737 			bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
738 			    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
739 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
740 			m_freem(txs->txs_mbuf);
741 			txs->txs_mbuf = NULL;
742 		}
743 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
744 	}
745 
746 	/*
747 	 * Mark the interface down and cancel the watchdog timer.
748 	 */
749 	ifp->if_flags &= ~IFF_RUNNING;
750 	sc->sc_if_flags = ifp->if_flags;
751 	ifp->if_timer = 0;
752 
753 	if (disable)
754 		gem_rxdrain(sc);
755 }
756 
757 
758 /*
759  * Reset the receiver
760  */
761 int
762 gem_reset_rx(struct gem_softc *sc)
763 {
764 	bus_space_tag_t t = sc->sc_bustag;
765 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
766 
767 	/*
768 	 * Resetting while DMA is in progress can cause a bus hang, so we
769 	 * disable DMA first.
770 	 */
771 	gem_disable_rx(sc);
772 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
773 	bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
774 	/* Wait till it finishes */
775 	if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
776 		aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
777 	/* Wait 5ms extra. */
778 	delay(5000);
779 
780 	/* Finally, reset the ERX */
781 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
782 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
783 	/* Wait till it finishes */
784 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
785 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
786 		return (1);
787 	}
788 	return (0);
789 }
790 
791 
792 /*
793  * Reset the receiver DMA engine.
794  *
795  * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
796  * etc in order to reset the receiver DMA engine only and not do a full
797  * reset which amongst others also downs the link and clears the FIFOs.
798  */
799 static void
800 gem_reset_rxdma(struct gem_softc *sc)
801 {
802 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
803 	bus_space_tag_t t = sc->sc_bustag;
804 	bus_space_handle_t h = sc->sc_h1;
805 	int i;
806 
807 	if (gem_reset_rx(sc) != 0) {
808 		gem_init(ifp);
809 		return;
810 	}
811 	for (i = 0; i < GEM_NRXDESC; i++)
812 		if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
813 			GEM_UPDATE_RXDESC(sc, i);
814 	sc->sc_rxptr = 0;
815 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
816 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
817 
818 	/* Reprogram Descriptor Ring Base Addresses */
819 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI,
820 	    ((uint64_t)GEM_CDRXADDR(sc, 0)) >> 32);
821 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
822 
823 	/* Redo ERX Configuration */
824 	gem_rx_common(sc);
825 
826 	/* Give the receiver a swift kick */
827 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
828 }
829 
830 /*
831  * Common RX configuration for gem_init() and gem_reset_rxdma().
832  */
833 static void
834 gem_rx_common(struct gem_softc *sc)
835 {
836 	bus_space_tag_t t = sc->sc_bustag;
837 	bus_space_handle_t h = sc->sc_h1;
838 	uint32_t v;
839 
840 	/* Encode Receive Descriptor ring size: four possible values */
841 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
842 
843 	/* Set receive h/w checksum offset */
844 #ifdef INET
845 	v |= (ETHER_HDR_LEN + sizeof(struct ip) +
846 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
847 	    ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
848 #endif
849 
850 	/* Enable RX DMA */
851 	bus_space_write_4(t, h, GEM_RX_CONFIG,
852 	    v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
853 	    (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
854 
855 	/*
856 	 * The following value is for an OFF Threshold of about 3/4 full
857 	 * and an ON Threshold of 1/4 full.
858 	 */
859 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
860 	    (3 * sc->sc_rxfifosize / 256) |
861 	    ((sc->sc_rxfifosize / 256) << 12));
862 	bus_space_write_4(t, h, GEM_RX_BLANKING,
863 	    (6 << GEM_RX_BLANKING_TIME_SHIFT) | 8);
864 }
865 
866 /*
867  * Reset the transmitter
868  */
869 int
870 gem_reset_tx(struct gem_softc *sc)
871 {
872 	bus_space_tag_t t = sc->sc_bustag;
873 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
874 
875 	/*
876 	 * Resetting while DMA is in progress can cause a bus hang, so we
877 	 * disable DMA first.
878 	 */
879 	gem_disable_tx(sc);
880 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
881 	bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
882 	/* Wait till it finishes */
883 	if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
884 		aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
885 	/* Wait 5ms extra. */
886 	delay(5000);
887 
888 	/* Finally, reset the ETX */
889 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
890 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
891 	/* Wait till it finishes */
892 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
893 		aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
894 		return (1);
895 	}
896 	return (0);
897 }
898 
899 /*
900  * disable receiver.
901  */
902 int
903 gem_disable_rx(struct gem_softc *sc)
904 {
905 	bus_space_tag_t t = sc->sc_bustag;
906 	bus_space_handle_t h = sc->sc_h1;
907 	uint32_t cfg;
908 
909 	/* Flip the enable bit */
910 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
911 	cfg &= ~GEM_MAC_RX_ENABLE;
912 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
913 	bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
914 	/* Wait for it to finish */
915 	return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
916 }
917 
918 /*
919  * disable transmitter.
920  */
921 int
922 gem_disable_tx(struct gem_softc *sc)
923 {
924 	bus_space_tag_t t = sc->sc_bustag;
925 	bus_space_handle_t h = sc->sc_h1;
926 	uint32_t cfg;
927 
928 	/* Flip the enable bit */
929 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
930 	cfg &= ~GEM_MAC_TX_ENABLE;
931 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
932 	bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
933 	/* Wait for it to finish */
934 	return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
935 }
936 
937 /*
938  * Initialize interface.
939  */
940 int
941 gem_meminit(struct gem_softc *sc)
942 {
943 	struct gem_rxsoft *rxs;
944 	int i, error;
945 
946 	/*
947 	 * Initialize the transmit descriptor ring.
948 	 */
949 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
950 	for (i = 0; i < GEM_NTXDESC; i++) {
951 		sc->sc_txdescs[i].gd_flags = 0;
952 		sc->sc_txdescs[i].gd_addr = 0;
953 	}
954 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
955 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
956 	sc->sc_txfree = GEM_NTXDESC-1;
957 	sc->sc_txnext = 0;
958 	sc->sc_txwin = 0;
959 
960 	/*
961 	 * Initialize the receive descriptor and receive job
962 	 * descriptor rings.
963 	 */
964 	for (i = 0; i < GEM_NRXDESC; i++) {
965 		rxs = &sc->sc_rxsoft[i];
966 		if (rxs->rxs_mbuf == NULL) {
967 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
968 				aprint_error_dev(sc->sc_dev,
969 				    "unable to allocate or map rx "
970 				    "buffer %d, error = %d\n",
971 				    i, error);
972 				/*
973 				 * XXX Should attempt to run with fewer receive
974 				 * XXX buffers instead of just failing.
975 				 */
976 				gem_rxdrain(sc);
977 				return (1);
978 			}
979 		} else
980 			GEM_INIT_RXDESC(sc, i);
981 	}
982 	sc->sc_rxptr = 0;
983 	sc->sc_meminited = 1;
984 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
985 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
986 
987 	return (0);
988 }
989 
990 static int
991 gem_ringsize(int sz)
992 {
993 	switch (sz) {
994 	case 32:
995 		return GEM_RING_SZ_32;
996 	case 64:
997 		return GEM_RING_SZ_64;
998 	case 128:
999 		return GEM_RING_SZ_128;
1000 	case 256:
1001 		return GEM_RING_SZ_256;
1002 	case 512:
1003 		return GEM_RING_SZ_512;
1004 	case 1024:
1005 		return GEM_RING_SZ_1024;
1006 	case 2048:
1007 		return GEM_RING_SZ_2048;
1008 	case 4096:
1009 		return GEM_RING_SZ_4096;
1010 	case 8192:
1011 		return GEM_RING_SZ_8192;
1012 	default:
1013 		printf("gem: invalid Receive Descriptor ring size %d\n", sz);
1014 		return GEM_RING_SZ_32;
1015 	}
1016 }
1017 
1018 
1019 /*
1020  * Start PCS
1021  */
1022 void
1023 gem_pcs_start(struct gem_softc *sc)
1024 {
1025 	bus_space_tag_t t = sc->sc_bustag;
1026 	bus_space_handle_t h = sc->sc_h1;
1027 	uint32_t v;
1028 
1029 #ifdef GEM_DEBUG
1030 	aprint_debug_dev(sc->sc_dev, "gem_pcs_start()\n");
1031 #endif
1032 
1033 	/*
1034 	 * Set up.  We must disable the MII before modifying the
1035 	 * GEM_MII_ANAR register
1036 	 */
1037 	if (sc->sc_flags & GEM_SERDES) {
1038 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1039 		    GEM_MII_DATAPATH_SERDES);
1040 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1041 		    GEM_MII_SLINK_LOOPBACK);
1042 	} else {
1043 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1044 		    GEM_MII_DATAPATH_SERIAL);
1045 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
1046 	}
1047 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1048 	v = bus_space_read_4(t, h, GEM_MII_ANAR);
1049 	v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
1050 	if (IFM_SUBTYPE(sc->sc_mii_media) == IFM_AUTO)
1051 		v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
1052 	else if ((IFM_OPTIONS(sc->sc_mii_media) & IFM_FDX) != 0) {
1053 		v |= GEM_MII_ANEG_FUL_DUPLX;
1054 		v &= ~GEM_MII_ANEG_HLF_DUPLX;
1055 	} else if ((IFM_OPTIONS(sc->sc_mii_media) & IFM_HDX) != 0) {
1056 		v &= ~GEM_MII_ANEG_FUL_DUPLX;
1057 		v |= GEM_MII_ANEG_HLF_DUPLX;
1058 	}
1059 
1060 	/* Configure link. */
1061 	bus_space_write_4(t, h, GEM_MII_ANAR, v);
1062 	bus_space_write_4(t, h, GEM_MII_CONTROL,
1063 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1064 	bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
1065 	gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
1066 
1067 	/* Start the 10 second timer */
1068 	callout_schedule(&sc->sc_tick_ch, hz * 10);
1069 }
1070 
1071 /*
1072  * Stop PCS
1073  */
1074 void
1075 gem_pcs_stop(struct gem_softc *sc, int disable)
1076 {
1077 	bus_space_tag_t t = sc->sc_bustag;
1078 	bus_space_handle_t h = sc->sc_h1;
1079 
1080 #ifdef GEM_DEBUG
1081 	aprint_debug_dev(sc->sc_dev, "gem_pcs_stop()\n");
1082 #endif
1083 
1084 	/* Tell link partner that we're going away */
1085 	bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
1086 
1087 	/*
1088 	 * Disable PCS MII.  The documentation suggests that setting
1089 	 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
1090 	 * negotiation will shut down the link.  However, it appears
1091 	 * that we also need to unset the datapath mode.
1092 	 */
1093 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1094 	bus_space_write_4(t, h, GEM_MII_CONTROL,
1095 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1096 	bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
1097 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1098 
1099 	if (disable) {
1100 		if (sc->sc_flags & GEM_SERDES)
1101 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1102 				GEM_MII_SLINK_POWER_OFF);
1103 		else
1104 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1105 			    GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
1106 	}
1107 
1108 	sc->sc_flags &= ~GEM_LINK;
1109 	sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
1110 	sc->sc_mii.mii_media_status = IFM_AVALID;
1111 }
1112 
1113 
1114 /*
1115  * Initialization of interface; set up initialization block
1116  * and transmit/receive descriptor rings.
1117  */
1118 int
1119 gem_init(struct ifnet *ifp)
1120 {
1121 	struct gem_softc *sc = ifp->if_softc;
1122 	bus_space_tag_t t = sc->sc_bustag;
1123 	bus_space_handle_t h = sc->sc_h1;
1124 	int rc = 0, s;
1125 	u_int max_frame_size;
1126 	uint32_t v;
1127 
1128 	s = splnet();
1129 
1130 	DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(sc->sc_dev)));
1131 	/*
1132 	 * Initialization sequence. The numbered steps below correspond
1133 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1134 	 * Channel Engine manual (part of the PCIO manual).
1135 	 * See also the STP2002-STQ document from Sun Microsystems.
1136 	 */
1137 
1138 	/* step 1 & 2. Reset the Ethernet Channel */
1139 	gem_stop(ifp, 0);
1140 	gem_reset(sc);
1141 	DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(sc->sc_dev)));
1142 
1143 	/* Re-initialize the MIF */
1144 	gem_mifinit(sc);
1145 
1146 	/* Set up correct datapath for non-SERDES/Serialink */
1147 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1148 	    sc->sc_variant != GEM_SUN_ERI)
1149 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1150 		    GEM_MII_DATAPATH_MII);
1151 
1152 	/* Call MI reset function if any */
1153 	if (sc->sc_hwreset)
1154 		(*sc->sc_hwreset)(sc);
1155 
1156 	/* step 3. Setup data structures in host memory */
1157 	if (gem_meminit(sc) != 0) {
1158 		splx(s);
1159 		return 1;
1160 	}
1161 
1162 	/* step 4. TX MAC registers & counters */
1163 	gem_init_regs(sc);
1164 	max_frame_size = uimax(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
1165 	max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
1166 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1167 		max_frame_size += ETHER_VLAN_ENCAP_LEN;
1168 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1169 	    max_frame_size|/* burst size */(0x2000<<16));
1170 
1171 	/* step 5. RX MAC registers & counters */
1172 	gem_setladrf(sc);
1173 
1174 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
1175 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI,
1176 	    ((uint64_t)GEM_CDTXADDR(sc, 0)) >> 32);
1177 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
1178 
1179 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI,
1180 	    ((uint64_t)GEM_CDRXADDR(sc, 0)) >> 32);
1181 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
1182 
1183 	/* step 8. Global Configuration & Interrupt Mask */
1184 	gem_inten(sc);
1185 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
1186 			GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
1187 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
1188 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
1189 	    GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
1190 
1191 	/* step 9. ETX Configuration: use mostly default values */
1192 
1193 	/* Enable TX DMA */
1194 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
1195 	bus_space_write_4(t, h, GEM_TX_CONFIG,
1196 	    v | GEM_TX_CONFIG_TXDMA_EN |
1197 	    (((sc->sc_flags & GEM_GIGABIT ? 0x4FF : 0x100) << 10) &
1198 	    GEM_TX_CONFIG_TXFIFO_TH));
1199 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
1200 
1201 	/* step 10. ERX Configuration */
1202 	gem_rx_common(sc);
1203 
1204 	/* step 11. Configure Media */
1205 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1206 	    (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
1207 		goto out;
1208 
1209 	/* step 12. RX_MAC Configuration Register */
1210 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1211 	v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
1212 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1213 
1214 	/* step 14. Issue Transmit Pending command */
1215 
1216 	/* Call MI initialization function if any */
1217 	if (sc->sc_hwinit)
1218 		(*sc->sc_hwinit)(sc);
1219 
1220 	/* step 15.  Give the receiver a swift kick */
1221 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
1222 
1223 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1224 		/* Configure PCS */
1225 		gem_pcs_start(sc);
1226 	else
1227 		/* Start the one second timer. */
1228 		callout_schedule(&sc->sc_tick_ch, hz);
1229 
1230 	sc->sc_flags &= ~GEM_LINK;
1231 	ifp->if_flags |= IFF_RUNNING;
1232 	ifp->if_timer = 0;
1233 	sc->sc_if_flags = ifp->if_flags;
1234 out:
1235 	splx(s);
1236 
1237 	return (0);
1238 }
1239 
1240 void
1241 gem_init_regs(struct gem_softc *sc)
1242 {
1243 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1244 	bus_space_tag_t t = sc->sc_bustag;
1245 	bus_space_handle_t h = sc->sc_h1;
1246 	const u_char *laddr = CLLADDR(ifp->if_sadl);
1247 	uint32_t v;
1248 
1249 	/* These regs are not cleared on reset */
1250 	if (!sc->sc_inited) {
1251 
1252 		/* Load recommended values */
1253 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
1254 		bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
1255 		bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
1256 
1257 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1258 		/* Max frame and max burst size */
1259 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1260 		    ETHER_MAX_LEN | (0x2000<<16));
1261 
1262 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
1263 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
1264 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1265 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1266 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1267 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1268 
1269 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
1270 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1271 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1272 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1273 
1274 		/* MAC control addr set to 01:80:c2:00:00:01 */
1275 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1276 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1277 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1278 
1279 		/* MAC filter addr set to 0:0:0:0:0:0 */
1280 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1281 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1282 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1283 
1284 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1285 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1286 
1287 		sc->sc_inited = 1;
1288 	}
1289 
1290 	/* Counters need to be zeroed */
1291 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1292 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1293 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1294 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1295 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1296 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1297 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1298 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1299 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1300 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1301 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1302 
1303 	/* Set XOFF PAUSE time. */
1304 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1305 
1306 	/*
1307 	 * Set the internal arbitration to "infinite" bursts of the
1308 	 * maximum length of 31 * 64 bytes so DMA transfers aren't
1309 	 * split up in cache line size chunks. This greatly improves
1310 	 * especially RX performance.
1311 	 * Enable silicon bug workarounds for the Apple variants.
1312 	 */
1313 	bus_space_write_4(t, h, GEM_CONFIG,
1314 	    GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
1315 	    ((sc->sc_flags & GEM_PCI) ?
1316 	    GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
1317 	    GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
1318 
1319 	/*
1320 	 * Set the station address.
1321 	 */
1322 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1323 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1324 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1325 
1326 	/*
1327 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
1328 	 */
1329 	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1330 	v = GEM_MAC_XIF_TX_MII_ENA;
1331 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
1332 		if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1333 			v |= GEM_MAC_XIF_FDPLX_LED;
1334 				if (sc->sc_flags & GEM_GIGABIT)
1335 					v |= GEM_MAC_XIF_GMII_MODE;
1336 		}
1337 	} else {
1338 		v |= GEM_MAC_XIF_GMII_MODE;
1339 	}
1340 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1341 }
1342 
1343 #ifdef GEM_DEBUG
1344 static void
1345 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
1346 {
1347 	int i;
1348 
1349 	for (i = firstdesc;; i = GEM_NEXTTX(i)) {
1350 		printf("descriptor %d:\t", i);
1351 		printf("gd_flags:   0x%016" PRIx64 "\t",
1352 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1353 		printf("gd_addr: 0x%016" PRIx64 "\n",
1354 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1355 		if (i == lastdesc)
1356 			break;
1357 	}
1358 }
1359 #endif
1360 
1361 static void
1362 gem_start(struct ifnet *ifp)
1363 {
1364 	struct gem_softc *sc = ifp->if_softc;
1365 	struct mbuf *m0, *m;
1366 	struct gem_txsoft *txs;
1367 	bus_dmamap_t dmamap;
1368 	int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
1369 #ifdef GEM_DEBUG
1370 	int otxnext;
1371 #endif
1372 	uint64_t flags = 0;
1373 
1374 	if ((ifp->if_flags & IFF_RUNNING) != IFF_RUNNING)
1375 		return;
1376 
1377 	/*
1378 	 * Remember the previous number of free descriptors and
1379 	 * the first descriptor we'll use.
1380 	 */
1381 	ofree = sc->sc_txfree;
1382 #ifdef GEM_DEBUG
1383 	otxnext = sc->sc_txnext;
1384 #endif
1385 
1386 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1387 	    device_xname(sc->sc_dev), ofree, otxnext));
1388 
1389 	/*
1390 	 * Loop through the send queue, setting up transmit descriptors
1391 	 * until we drain the queue, or use up all available transmit
1392 	 * descriptors.
1393 	 */
1394 #ifdef INET
1395 next:
1396 #endif
1397 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1398 	    sc->sc_txfree != 0) {
1399 		/*
1400 		 * Grab a packet off the queue.
1401 		 */
1402 		IFQ_POLL(&ifp->if_snd, m0);
1403 		if (m0 == NULL)
1404 			break;
1405 		m = NULL;
1406 
1407 		dmamap = txs->txs_dmamap;
1408 
1409 		/*
1410 		 * Load the DMA map.  If this fails, the packet either
1411 		 * didn't fit in the alloted number of segments, or we were
1412 		 * short on resources.  In this case, we'll copy and try
1413 		 * again.
1414 		 */
1415 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1416 		      BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0 ||
1417 		      (m0->m_pkthdr.len < ETHER_MIN_TX &&
1418 		       dmamap->dm_nsegs == GEM_NTXSEGS)) {
1419 			if (m0->m_pkthdr.len > MCLBYTES) {
1420 				aprint_error_dev(sc->sc_dev,
1421 				    "unable to allocate jumbo Tx cluster\n");
1422 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1423 				m_freem(m0);
1424 				continue;
1425 			}
1426 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1427 			if (m == NULL) {
1428 				aprint_error_dev(sc->sc_dev,
1429 				    "unable to allocate Tx mbuf\n");
1430 				break;
1431 			}
1432 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1433 			if (m0->m_pkthdr.len > MHLEN) {
1434 				MCLGET(m, M_DONTWAIT);
1435 				if ((m->m_flags & M_EXT) == 0) {
1436 					aprint_error_dev(sc->sc_dev,
1437 					    "unable to allocate Tx cluster\n");
1438 					m_freem(m);
1439 					break;
1440 				}
1441 			}
1442 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1443 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1444 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1445 			    m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1446 			if (error) {
1447 				aprint_error_dev(sc->sc_dev,
1448 				    "unable to load Tx buffer, error = %d\n",
1449 				    error);
1450 				break;
1451 			}
1452 		}
1453 
1454 		/*
1455 		 * Ensure we have enough descriptors free to describe
1456 		 * the packet.
1457 		 */
1458 		if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1459 		     (sc->sc_txfree - 1) : sc->sc_txfree)) {
1460 			/*
1461 			 * Not enough free descriptors to transmit this
1462 			 * packet.
1463 			 */
1464 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
1465 			if (m != NULL)
1466 				m_freem(m);
1467 			break;
1468 		}
1469 
1470 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1471 		if (m != NULL) {
1472 			m_freem(m0);
1473 			m0 = m;
1474 		}
1475 
1476 		/*
1477 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1478 		 */
1479 
1480 		/* Sync the DMA map. */
1481 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1482 		    BUS_DMASYNC_PREWRITE);
1483 
1484 		/*
1485 		 * Initialize the transmit descriptors.
1486 		 */
1487 		firsttx = sc->sc_txnext;
1488 		for (nexttx = firsttx, seg = 0;
1489 		     seg < dmamap->dm_nsegs;
1490 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
1491 
1492 			/*
1493 			 * If this is the first descriptor we're
1494 			 * enqueueing, set the start of packet flag,
1495 			 * and the checksum stuff if we want the hardware
1496 			 * to do it.
1497 			 */
1498 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1499 			if (nexttx == firsttx) {
1500 				flags |= GEM_TD_START_OF_PACKET;
1501 #ifdef INET
1502 				/* h/w checksum */
1503 				if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
1504 				    m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1505 					struct ether_header *eh;
1506 					uint16_t offset, start;
1507 
1508 					eh = mtod(m0, struct ether_header *);
1509 					switch (ntohs(eh->ether_type)) {
1510 					case ETHERTYPE_IP:
1511 						start = ETHER_HDR_LEN;
1512 						break;
1513 					case ETHERTYPE_VLAN:
1514 						start = ETHER_HDR_LEN +
1515 							ETHER_VLAN_ENCAP_LEN;
1516 						break;
1517 					default:
1518 						/* unsupported, drop it */
1519 						bus_dmamap_unload(sc->sc_dmatag,
1520 							dmamap);
1521 						m_freem(m0);
1522 						goto next;
1523 					}
1524 					start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1525 					offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1526 					flags |= (start <<
1527 						  GEM_TD_CXSUM_STARTSHFT) |
1528 						 (offset <<
1529 						  GEM_TD_CXSUM_STUFFSHFT) |
1530 						 GEM_TD_CXSUM_ENABLE;
1531 				}
1532 #endif
1533 				if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1534 					sc->sc_txwin = 0;
1535 					flags |= GEM_TD_INTERRUPT_ME;
1536 				}
1537 			}
1538 			sc->sc_txdescs[nexttx].gd_addr =
1539 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1540 			if (seg == dmamap->dm_nsegs - 1) {
1541 				flags |= GEM_TD_END_OF_PACKET;
1542 			} else {
1543 				/* last flag set outside of loop */
1544 				sc->sc_txdescs[nexttx].gd_flags =
1545 					GEM_DMA_WRITE(sc, flags);
1546 			}
1547 			lasttx = nexttx;
1548 		}
1549 		if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1550 			/* add padding buffer at end of chain */
1551 			flags &= ~GEM_TD_END_OF_PACKET;
1552 			sc->sc_txdescs[lasttx].gd_flags =
1553 			    GEM_DMA_WRITE(sc, flags);
1554 
1555 			sc->sc_txdescs[nexttx].gd_addr =
1556 			    GEM_DMA_WRITE(sc,
1557 			    sc->sc_nulldmamap->dm_segs[0].ds_addr);
1558 			flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1559 			    GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1560 			lasttx = nexttx;
1561 			nexttx = GEM_NEXTTX(nexttx);
1562 			seg++;
1563 		}
1564 		sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1565 
1566 		KASSERT(lasttx != -1);
1567 
1568 		/*
1569 		 * Store a pointer to the packet so we can free it later,
1570 		 * and remember what txdirty will be once the packet is
1571 		 * done.
1572 		 */
1573 		txs->txs_mbuf = m0;
1574 		txs->txs_firstdesc = sc->sc_txnext;
1575 		txs->txs_lastdesc = lasttx;
1576 		txs->txs_ndescs = seg;
1577 
1578 #ifdef GEM_DEBUG
1579 		if (ifp->if_flags & IFF_DEBUG) {
1580 			printf("     gem_start %p transmit chain:\n", txs);
1581 			gem_txsoft_print(sc, txs->txs_firstdesc,
1582 			    txs->txs_lastdesc);
1583 		}
1584 #endif
1585 
1586 		/* Sync the descriptors we're using. */
1587 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1588 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1589 
1590 		/* Advance the tx pointer. */
1591 		sc->sc_txfree -= txs->txs_ndescs;
1592 		sc->sc_txnext = nexttx;
1593 
1594 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1595 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1596 
1597 		/*
1598 		 * Pass the packet to any BPF listeners.
1599 		 */
1600 		bpf_mtap(ifp, m0, BPF_D_OUT);
1601 	}
1602 
1603 	if (sc->sc_txfree != ofree) {
1604 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1605 		    device_xname(sc->sc_dev), lasttx, otxnext));
1606 		/*
1607 		 * The entire packet chain is set up.
1608 		 * Kick the transmitter.
1609 		 */
1610 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1611 			device_xname(sc->sc_dev), nexttx));
1612 		bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
1613 			sc->sc_txnext);
1614 
1615 		/* Set a watchdog timer in case the chip flakes out. */
1616 		ifp->if_timer = 5;
1617 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1618 			device_xname(sc->sc_dev), ifp->if_timer));
1619 	}
1620 }
1621 
1622 /*
1623  * Transmit interrupt.
1624  */
1625 int
1626 gem_tint(struct gem_softc *sc)
1627 {
1628 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1629 	bus_space_tag_t t = sc->sc_bustag;
1630 	bus_space_handle_t mac = sc->sc_h1;
1631 	struct gem_txsoft *txs;
1632 	int txlast;
1633 	int progress = 0;
1634 	uint32_t v;
1635 
1636 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1637 
1638 	DPRINTF(sc, ("%s: gem_tint\n", device_xname(sc->sc_dev)));
1639 
1640 	/* Unload collision counters ... */
1641 	v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1642 	    bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1643 	if_statadd_ref(nsr, if_collisions, v +
1644 	    bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1645 	    bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT));
1646 	if_statadd_ref(nsr, if_oerrors, v);
1647 
1648 	/* ... then clear the hardware counters. */
1649 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1650 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1651 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1652 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1653 
1654 	/*
1655 	 * Go through our Tx list and free mbufs for those
1656 	 * frames that have been transmitted.
1657 	 */
1658 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1659 		/*
1660 		 * In theory, we could harvest some descriptors before
1661 		 * the ring is empty, but that's a bit complicated.
1662 		 *
1663 		 * GEM_TX_COMPLETION points to the last descriptor
1664 		 * processed +1.
1665 		 *
1666 		 * Let's assume that the NIC writes back to the Tx
1667 		 * descriptors before it updates the completion
1668 		 * register.  If the NIC has posted writes to the
1669 		 * Tx descriptors, PCI ordering requires that the
1670 		 * posted writes flush to RAM before the register-read
1671 		 * finishes.  So let's read the completion register,
1672 		 * before syncing the descriptors, so that we
1673 		 * examine Tx descriptors that are at least as
1674 		 * current as the completion register.
1675 		 */
1676 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1677 		DPRINTF(sc,
1678 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1679 				txs->txs_lastdesc, txlast));
1680 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1681 			if (txlast >= txs->txs_firstdesc &&
1682 			    txlast <= txs->txs_lastdesc)
1683 				break;
1684 		} else if (txlast >= txs->txs_firstdesc ||
1685 			   txlast <= txs->txs_lastdesc)
1686 			break;
1687 
1688 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1689 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1690 
1691 #ifdef GEM_DEBUG	/* XXX DMA synchronization? */
1692 		if (ifp->if_flags & IFF_DEBUG) {
1693 			printf("    txsoft %p transmit chain:\n", txs);
1694 			gem_txsoft_print(sc, txs->txs_firstdesc,
1695 			    txs->txs_lastdesc);
1696 		}
1697 #endif
1698 
1699 
1700 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1701 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1702 
1703 		sc->sc_txfree += txs->txs_ndescs;
1704 
1705 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1706 		    0, txs->txs_dmamap->dm_mapsize,
1707 		    BUS_DMASYNC_POSTWRITE);
1708 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1709 		if (txs->txs_mbuf != NULL) {
1710 			m_freem(txs->txs_mbuf);
1711 			txs->txs_mbuf = NULL;
1712 		}
1713 
1714 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1715 
1716 		if_statinc_ref(nsr, if_opackets);
1717 		progress = 1;
1718 	}
1719 
1720 	IF_STAT_PUTREF(ifp);
1721 
1722 #if 0
1723 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1724 		"GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
1725 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
1726 		((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1727 			GEM_TX_DATA_PTR_HI) << 32) |
1728 			     bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1729 			GEM_TX_DATA_PTR_LO),
1730 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
1731 #endif
1732 
1733 	if (progress) {
1734 		if (sc->sc_txfree == GEM_NTXDESC - 1)
1735 			sc->sc_txwin = 0;
1736 
1737 		ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
1738 		if_schedule_deferred_start(ifp);
1739 	}
1740 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1741 		device_xname(sc->sc_dev), ifp->if_timer));
1742 
1743 	return (1);
1744 }
1745 
1746 /*
1747  * Receive interrupt.
1748  */
1749 int
1750 gem_rint(struct gem_softc *sc)
1751 {
1752 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1753 	bus_space_tag_t t = sc->sc_bustag;
1754 	bus_space_handle_t h = sc->sc_h1;
1755 	struct gem_rxsoft *rxs;
1756 	struct mbuf *m;
1757 	uint64_t rxstat;
1758 	uint32_t rxcomp;
1759 	int i, len, progress = 0;
1760 
1761 	DPRINTF(sc, ("%s: gem_rint\n", device_xname(sc->sc_dev)));
1762 
1763 	/*
1764 	 * Ignore spurious interrupt that sometimes occurs before
1765 	 * we are set up when we network boot.
1766 	 */
1767 	if (!sc->sc_meminited)
1768 		return 1;
1769 
1770 	/*
1771 	 * Read the completion register once.  This limits
1772 	 * how long the following loop can execute.
1773 	 */
1774 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1775 
1776 	/*
1777 	 * XXX Read the lastrx only once at the top for speed.
1778 	 */
1779 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1780 		sc->sc_rxptr, rxcomp));
1781 
1782 	/*
1783 	 * Go into the loop at least once.
1784 	 */
1785 	for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1786 	     i = GEM_NEXTRX(i)) {
1787 		rxs = &sc->sc_rxsoft[i];
1788 
1789 		GEM_CDRXSYNC(sc, i,
1790 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1791 
1792 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1793 
1794 		if (rxstat & GEM_RD_OWN) {
1795 			GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1796 			/*
1797 			 * We have processed all of the receive buffers.
1798 			 */
1799 			break;
1800 		}
1801 
1802 		progress++;
1803 
1804 		if (rxstat & GEM_RD_BAD_CRC) {
1805 			if_statinc(ifp, if_ierrors);
1806 			aprint_error_dev(sc->sc_dev,
1807 			    "receive error: CRC error\n");
1808 			GEM_INIT_RXDESC(sc, i);
1809 			continue;
1810 		}
1811 
1812 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1813 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1814 #ifdef GEM_DEBUG
1815 		if (ifp->if_flags & IFF_DEBUG) {
1816 			printf("    rxsoft %p descriptor %d: ", rxs, i);
1817 			printf("gd_flags: 0x%016llx\t", (long long)
1818 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1819 			printf("gd_addr: 0x%016llx\n", (long long)
1820 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1821 		}
1822 #endif
1823 
1824 		/* No errors; receive the packet. */
1825 		len = GEM_RD_BUFLEN(rxstat);
1826 
1827 		/*
1828 		 * Allocate a new mbuf cluster.  If that fails, we are
1829 		 * out of memory, and must drop the packet and recycle
1830 		 * the buffer that's already attached to this descriptor.
1831 		 */
1832 		m = rxs->rxs_mbuf;
1833 		if (gem_add_rxbuf(sc, i) != 0) {
1834 			GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1835 			if_statinc(ifp, if_ierrors);
1836 			aprint_error_dev(sc->sc_dev,
1837 			    "receive error: RX no buffer space\n");
1838 			GEM_INIT_RXDESC(sc, i);
1839 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1840 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1841 			continue;
1842 		}
1843 		m->m_data += 2; /* We're already off by two */
1844 
1845 		m_set_rcvif(m, ifp);
1846 		m->m_pkthdr.len = m->m_len = len;
1847 
1848 #ifdef INET
1849 		/* hardware checksum */
1850 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1851 			struct ether_header *eh;
1852 			struct ip *ip;
1853 			int32_t hlen, pktlen;
1854 
1855 			if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1856 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1857 					 ETHER_VLAN_ENCAP_LEN;
1858 				eh = (struct ether_header *) (mtod(m, char *) +
1859 					ETHER_VLAN_ENCAP_LEN);
1860 			} else {
1861 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1862 				eh = mtod(m, struct ether_header *);
1863 			}
1864 			if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1865 				goto swcsum;
1866 			ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
1867 
1868 			/* IPv4 only */
1869 			if (ip->ip_v != IPVERSION)
1870 				goto swcsum;
1871 
1872 			hlen = ip->ip_hl << 2;
1873 			if (hlen < sizeof(struct ip))
1874 				goto swcsum;
1875 
1876 			/*
1877 			 * bail if too short, has random trailing garbage,
1878 			 * truncated, fragment, or has ethernet pad.
1879 			 */
1880 			if ((ntohs(ip->ip_len) < hlen) ||
1881 			    (ntohs(ip->ip_len) != pktlen) ||
1882 			    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1883 				goto swcsum;
1884 
1885 			switch (ip->ip_p) {
1886 			case IPPROTO_TCP:
1887 				if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1888 					goto swcsum;
1889 				if (pktlen < (hlen + sizeof(struct tcphdr)))
1890 					goto swcsum;
1891 				m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1892 				break;
1893 			case IPPROTO_UDP:
1894 				/* FALLTHROUGH */
1895 			default:
1896 				goto swcsum;
1897 			}
1898 
1899 			/* the uncomplemented sum is expected */
1900 			m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1901 
1902 			/* if the pkt had ip options, we have to deduct them */
1903 			if (hlen > sizeof(struct ip)) {
1904 				uint16_t *opts;
1905 				uint32_t optsum, temp;
1906 
1907 				optsum = 0;
1908 				temp = hlen - sizeof(struct ip);
1909 				opts = (uint16_t *) ((char *) ip +
1910 					sizeof(struct ip));
1911 
1912 				while (temp > 1) {
1913 					optsum += ntohs(*opts++);
1914 					temp -= 2;
1915 				}
1916 				while (optsum >> 16)
1917 					optsum = (optsum >> 16) +
1918 						 (optsum & 0xffff);
1919 
1920 				/* Deduct ip opts sum from hwsum. */
1921 				m->m_pkthdr.csum_data += (uint16_t)~optsum;
1922 
1923 				while (m->m_pkthdr.csum_data >> 16)
1924 					m->m_pkthdr.csum_data =
1925 						(m->m_pkthdr.csum_data >> 16) +
1926 						(m->m_pkthdr.csum_data &
1927 						 0xffff);
1928 			}
1929 
1930 			m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1931 						  M_CSUM_NO_PSEUDOHDR;
1932 		} else
1933 swcsum:
1934 			m->m_pkthdr.csum_flags = 0;
1935 #endif
1936 		/* Pass it on. */
1937 		if_percpuq_enqueue(ifp->if_percpuq, m);
1938 	}
1939 
1940 	if (progress) {
1941 		/* Update the receive pointer. */
1942 		if (i == sc->sc_rxptr) {
1943 			GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1944 #ifdef GEM_DEBUG
1945 			if (ifp->if_flags & IFF_DEBUG)
1946 				printf("%s: rint: ring wrap\n",
1947 				    device_xname(sc->sc_dev));
1948 #endif
1949 		}
1950 		sc->sc_rxptr = i;
1951 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1952 	}
1953 #ifdef GEM_COUNTERS
1954 	if (progress <= 4) {
1955 		GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1956 	} else if (progress < 32) {
1957 		if (progress < 16)
1958 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1959 		else
1960 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1961 
1962 	} else {
1963 		if (progress < 64)
1964 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1965 		else
1966 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1967 	}
1968 #endif
1969 
1970 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1971 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1972 
1973 	/* Read error counters ... */
1974 	if_statadd(ifp, if_ierrors,
1975 	    bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
1976 	    bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
1977 	    bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
1978 	    bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL));
1979 
1980 	/* ... then clear the hardware counters. */
1981 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1982 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1983 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1984 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1985 
1986 	return (1);
1987 }
1988 
1989 
1990 /*
1991  * gem_add_rxbuf:
1992  *
1993  *	Add a receive buffer to the indicated descriptor.
1994  */
1995 int
1996 gem_add_rxbuf(struct gem_softc *sc, int idx)
1997 {
1998 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1999 	struct mbuf *m;
2000 	int error;
2001 
2002 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2003 	if (m == NULL)
2004 		return (ENOBUFS);
2005 
2006 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2007 	MCLGET(m, M_DONTWAIT);
2008 	if ((m->m_flags & M_EXT) == 0) {
2009 		m_freem(m);
2010 		return (ENOBUFS);
2011 	}
2012 
2013 #ifdef GEM_DEBUG
2014 /* bzero the packet to check DMA */
2015 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
2016 #endif
2017 
2018 	if (rxs->rxs_mbuf != NULL)
2019 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
2020 
2021 	rxs->rxs_mbuf = m;
2022 
2023 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
2024 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2025 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
2026 	if (error) {
2027 		aprint_error_dev(sc->sc_dev,
2028 		    "can't load rx DMA map %d, error = %d\n", idx, error);
2029 		panic("gem_add_rxbuf");	/* XXX */
2030 	}
2031 
2032 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
2033 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2034 
2035 	GEM_INIT_RXDESC(sc, idx);
2036 
2037 	return (0);
2038 }
2039 
2040 
2041 int
2042 gem_eint(struct gem_softc *sc, u_int status)
2043 {
2044 	char bits[128];
2045 	uint32_t r, v;
2046 
2047 	if ((status & GEM_INTR_MIF) != 0) {
2048 		printf("%s: XXXlink status changed\n", device_xname(sc->sc_dev));
2049 		return (1);
2050 	}
2051 
2052 	if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
2053 		gem_reset_rxdma(sc);
2054 		return (1);
2055 	}
2056 
2057 	if (status & GEM_INTR_BERR) {
2058 		if (sc->sc_flags & GEM_PCI)
2059 			r = GEM_ERROR_STATUS;
2060 		else
2061 			r = GEM_SBUS_ERROR_STATUS;
2062 		bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2063 		v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2064 		aprint_error_dev(sc->sc_dev, "bus error interrupt: 0x%02x\n",
2065 		    v);
2066 		return (1);
2067 	}
2068 	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2069 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
2070 
2071 	return (1);
2072 }
2073 
2074 
2075 /*
2076  * PCS interrupts.
2077  * We should receive these when the link status changes, but sometimes
2078  * we don't receive them for link up.  We compensate for this in the
2079  * gem_tick() callout.
2080  */
2081 int
2082 gem_pint(struct gem_softc *sc)
2083 {
2084 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2085 	bus_space_tag_t t = sc->sc_bustag;
2086 	bus_space_handle_t h = sc->sc_h1;
2087 	uint32_t v, v2;
2088 
2089 	/*
2090 	 * Clear the PCS interrupt from GEM_STATUS.  The PCS register is
2091 	 * latched, so we have to read it twice.  There is only one bit in
2092 	 * use, so the value is meaningless.
2093 	 */
2094 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2095 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2096 
2097 	if ((ifp->if_flags & IFF_UP) == 0)
2098 		return 1;
2099 
2100 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
2101 		return 1;
2102 
2103 	v = bus_space_read_4(t, h, GEM_MII_STATUS);
2104 	/* If we see remote fault, our link partner is probably going away */
2105 	if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
2106 		gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
2107 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
2108 	/* Otherwise, we may need to wait after auto-negotiation completes */
2109 	} else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
2110 	    GEM_MII_STATUS_ANEG_CPT) {
2111 		gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
2112 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
2113 	}
2114 	if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
2115 		if (sc->sc_flags & GEM_LINK) {
2116 			return 1;
2117 		}
2118 		callout_stop(&sc->sc_tick_ch);
2119 		v = bus_space_read_4(t, h, GEM_MII_ANAR);
2120 		v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
2121 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
2122 		sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
2123 		v &= v2;
2124 		if (v & GEM_MII_ANEG_FUL_DUPLX) {
2125 			sc->sc_mii.mii_media_active |= IFM_FDX;
2126 #ifdef GEM_DEBUG
2127 			aprint_debug_dev(sc->sc_dev, "link up: full duplex\n");
2128 #endif
2129 		} else if (v & GEM_MII_ANEG_HLF_DUPLX) {
2130 			sc->sc_mii.mii_media_active |= IFM_HDX;
2131 #ifdef GEM_DEBUG
2132 			aprint_debug_dev(sc->sc_dev, "link up: half duplex\n");
2133 #endif
2134 		} else {
2135 #ifdef GEM_DEBUG
2136 			aprint_debug_dev(sc->sc_dev, "duplex mismatch\n");
2137 #endif
2138 		}
2139 		gem_statuschange(sc);
2140 	} else {
2141 		if ((sc->sc_flags & GEM_LINK) == 0) {
2142 			return 1;
2143 		}
2144 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
2145 		sc->sc_mii.mii_media_status = IFM_AVALID;
2146 #ifdef GEM_DEBUG
2147 			aprint_debug_dev(sc->sc_dev, "link down\n");
2148 #endif
2149 		gem_statuschange(sc);
2150 
2151 		/* Start the 10 second timer */
2152 		callout_schedule(&sc->sc_tick_ch, hz * 10);
2153 	}
2154 	return 1;
2155 }
2156 
2157 
2158 
2159 int
2160 gem_intr(void *v)
2161 {
2162 	struct gem_softc *sc = v;
2163 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2164 	bus_space_tag_t t = sc->sc_bustag;
2165 	bus_space_handle_t h = sc->sc_h1;
2166 	uint32_t status;
2167 	int r = 0;
2168 #ifdef GEM_DEBUG
2169 	char bits[128];
2170 #endif
2171 
2172 	/* XXX We should probably mask out interrupts until we're done */
2173 
2174 	sc->sc_ev_intr.ev_count++;
2175 
2176 	status = bus_space_read_4(t, h, GEM_STATUS);
2177 #ifdef GEM_DEBUG
2178 	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2179 #endif
2180 	DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
2181 		device_xname(sc->sc_dev), (status >> 19), bits));
2182 
2183 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
2184 		r |= gem_eint(sc, status);
2185 
2186 	/* We don't bother with GEM_INTR_TX_DONE */
2187 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
2188 		GEM_COUNTER_INCR(sc, sc_ev_txint);
2189 		r |= gem_tint(sc);
2190 	}
2191 
2192 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
2193 		GEM_COUNTER_INCR(sc, sc_ev_rxint);
2194 		r |= gem_rint(sc);
2195 	}
2196 
2197 	/* We should eventually do more than just print out error stats. */
2198 	if (status & GEM_INTR_TX_MAC) {
2199 		int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
2200 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
2201 			printf("%s: MAC tx fault, status %x\n",
2202 			    device_xname(sc->sc_dev), txstat);
2203 		if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
2204 			gem_init(ifp);
2205 	}
2206 	if (status & GEM_INTR_RX_MAC) {
2207 		int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
2208 		/*
2209 		 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
2210 		 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
2211 		 * silicon bug so handle them silently.  So if we detect
2212 		 * an RX FIFO overflow, we fire off a timer, and check
2213 		 * whether we're still making progress by looking at the
2214 		 * RX FIFO write and read pointers.
2215 		 */
2216 		if (rxstat & GEM_MAC_RX_OVERFLOW) {
2217 			if_statinc(ifp, if_ierrors);
2218 			aprint_error_dev(sc->sc_dev,
2219 			    "receive error: RX overflow sc->rxptr %d, complete %d\n", sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION));
2220 			sc->sc_rx_fifo_wr_ptr =
2221 				bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2222 			sc->sc_rx_fifo_rd_ptr =
2223 				bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2224 			callout_schedule(&sc->sc_rx_watchdog, 400);
2225 		} else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
2226 			printf("%s: MAC rx fault, status 0x%02x\n",
2227 			    device_xname(sc->sc_dev), rxstat);
2228 	}
2229 	if (status & GEM_INTR_PCS) {
2230 		r |= gem_pint(sc);
2231 	}
2232 
2233 /* Do we need to do anything with these?
2234 	if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
2235 		status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
2236 		if ((status2 & GEM_MAC_PAUSED) != 0)
2237 			aprintf_debug_dev(sc->sc_dev, "PAUSE received (%d slots)\n",
2238 			    GEM_MAC_PAUSE_TIME(status2));
2239 		if ((status2 & GEM_MAC_PAUSE) != 0)
2240 			aprintf_debug_dev(sc->sc_dev, "transited to PAUSE state\n");
2241 		if ((status2 & GEM_MAC_RESUME) != 0)
2242 			aprintf_debug_dev(sc->sc_dev, "transited to non-PAUSE state\n");
2243 	}
2244 	if ((status & GEM_INTR_MIF) != 0)
2245 		aprintf_debug_dev(sc->sc_dev, "MIF interrupt\n");
2246 */
2247 	rnd_add_uint32(&sc->rnd_source, status);
2248 	return (r);
2249 }
2250 
2251 void
2252 gem_rx_watchdog(void *arg)
2253 {
2254 	struct gem_softc *sc = arg;
2255 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2256 	bus_space_tag_t t = sc->sc_bustag;
2257 	bus_space_handle_t h = sc->sc_h1;
2258 	uint32_t rx_fifo_wr_ptr;
2259 	uint32_t rx_fifo_rd_ptr;
2260 	uint32_t state;
2261 
2262 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
2263 		aprint_error_dev(sc->sc_dev, "receiver not running\n");
2264 		return;
2265 	}
2266 
2267 	rx_fifo_wr_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2268 	rx_fifo_rd_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2269 	state = bus_space_read_4(t, h, GEM_MAC_MAC_STATE);
2270 	if ((state & GEM_MAC_STATE_OVERFLOW) == GEM_MAC_STATE_OVERFLOW &&
2271 	    ((rx_fifo_wr_ptr == rx_fifo_rd_ptr) ||
2272 	     ((sc->sc_rx_fifo_wr_ptr == rx_fifo_wr_ptr) &&
2273 	      (sc->sc_rx_fifo_rd_ptr == rx_fifo_rd_ptr))))
2274 	{
2275 		/*
2276 		 * The RX state machine is still in overflow state and
2277 		 * the RX FIFO write and read pointers seem to be
2278 		 * stuck.  Whack the chip over the head to get things
2279 		 * going again.
2280 		 */
2281 		aprint_error_dev(sc->sc_dev,
2282 		    "receiver stuck in overflow, resetting\n");
2283 		gem_init(ifp);
2284 	} else {
2285 		if ((state & GEM_MAC_STATE_OVERFLOW) != GEM_MAC_STATE_OVERFLOW) {
2286 			aprint_error_dev(sc->sc_dev,
2287 				"rx_watchdog: not in overflow state: 0x%x\n",
2288 				state);
2289 		}
2290 		if (rx_fifo_wr_ptr != rx_fifo_rd_ptr) {
2291 			aprint_error_dev(sc->sc_dev,
2292 				"rx_watchdog: wr & rd ptr different\n");
2293 		}
2294 		if (sc->sc_rx_fifo_wr_ptr != rx_fifo_wr_ptr) {
2295 			aprint_error_dev(sc->sc_dev,
2296 				"rx_watchdog: wr pointer != saved\n");
2297 		}
2298 		if (sc->sc_rx_fifo_rd_ptr != rx_fifo_rd_ptr) {
2299 			aprint_error_dev(sc->sc_dev,
2300 				"rx_watchdog: rd pointer != saved\n");
2301 		}
2302 		aprint_error_dev(sc->sc_dev, "resetting anyway\n");
2303 		gem_init(ifp);
2304 	}
2305 }
2306 
2307 void
2308 gem_watchdog(struct ifnet *ifp)
2309 {
2310 	struct gem_softc *sc = ifp->if_softc;
2311 
2312 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
2313 		"GEM_MAC_RX_CONFIG %x\n",
2314 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
2315 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
2316 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
2317 
2318 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
2319 	if_statinc(ifp, if_oerrors);
2320 
2321 	/* Try to get more packets going. */
2322 	gem_init(ifp);
2323 	gem_start(ifp);
2324 }
2325 
2326 /*
2327  * Initialize the MII Management Interface
2328  */
2329 void
2330 gem_mifinit(struct gem_softc *sc)
2331 {
2332 	bus_space_tag_t t = sc->sc_bustag;
2333 	bus_space_handle_t mif = sc->sc_h1;
2334 
2335 	/* Configure the MIF in frame mode */
2336 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
2337 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
2338 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
2339 }
2340 
2341 /*
2342  * MII interface
2343  *
2344  * The GEM MII interface supports at least three different operating modes:
2345  *
2346  * Bitbang mode is implemented using data, clock and output enable registers.
2347  *
2348  * Frame mode is implemented by loading a complete frame into the frame
2349  * register and polling the valid bit for completion.
2350  *
2351  * Polling mode uses the frame register but completion is indicated by
2352  * an interrupt.
2353  *
2354  */
2355 static int
2356 gem_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
2357 {
2358 	struct gem_softc *sc = device_private(self);
2359 	bus_space_tag_t t = sc->sc_bustag;
2360 	bus_space_handle_t mif = sc->sc_h1;
2361 	int n;
2362 	uint32_t v;
2363 
2364 #ifdef GEM_DEBUG1
2365 	if (sc->sc_debug)
2366 		printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
2367 #endif
2368 
2369 	/* Construct the frame command */
2370 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
2371 		GEM_MIF_FRAME_READ;
2372 
2373 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2374 	for (n = 0; n < 100; n++) {
2375 		DELAY(1);
2376 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2377 		if (v & GEM_MIF_FRAME_TA0) {
2378 			*val = v & GEM_MIF_FRAME_DATA;
2379 			return 0;
2380 		}
2381 	}
2382 
2383 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
2384 	return ETIMEDOUT;
2385 }
2386 
2387 static int
2388 gem_mii_writereg(device_t self, int phy, int reg, uint16_t val)
2389 {
2390 	struct gem_softc *sc = device_private(self);
2391 	bus_space_tag_t t = sc->sc_bustag;
2392 	bus_space_handle_t mif = sc->sc_h1;
2393 	int n;
2394 	uint32_t v;
2395 
2396 #ifdef GEM_DEBUG1
2397 	if (sc->sc_debug)
2398 		printf("gem_mii_writereg: PHY %d reg %d val %x\n",
2399 			phy, reg, val);
2400 #endif
2401 
2402 	/* Construct the frame command */
2403 	v = GEM_MIF_FRAME_WRITE			|
2404 	    (phy << GEM_MIF_PHY_SHIFT)		|
2405 	    (reg << GEM_MIF_REG_SHIFT)		|
2406 	    (val & GEM_MIF_FRAME_DATA);
2407 
2408 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2409 	for (n = 0; n < 100; n++) {
2410 		DELAY(1);
2411 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2412 		if (v & GEM_MIF_FRAME_TA0)
2413 			return 0;
2414 	}
2415 
2416 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
2417 	return ETIMEDOUT;
2418 }
2419 
2420 static void
2421 gem_mii_statchg(struct ifnet *ifp)
2422 {
2423 	struct gem_softc *sc = ifp->if_softc;
2424 #ifdef GEM_DEBUG
2425 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
2426 #endif
2427 
2428 #ifdef GEM_DEBUG
2429 	if (sc->sc_debug)
2430 		printf("gem_mii_statchg: status change: phy = %d\n",
2431 			sc->sc_phys[instance]);
2432 #endif
2433 	gem_statuschange(sc);
2434 }
2435 
2436 /*
2437  * Common status change for gem_mii_statchg() and gem_pint()
2438  */
2439 void
2440 gem_statuschange(struct gem_softc* sc)
2441 {
2442 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2443 	bus_space_tag_t t = sc->sc_bustag;
2444 	bus_space_handle_t mac = sc->sc_h1;
2445 	int gigabit;
2446 	uint32_t rxcfg, txcfg, v;
2447 
2448 	if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
2449 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
2450 		sc->sc_flags |= GEM_LINK;
2451 	else
2452 		sc->sc_flags &= ~GEM_LINK;
2453 
2454 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2455 		gigabit = 1;
2456 	else
2457 		gigabit = 0;
2458 
2459 	/*
2460 	 * The configuration done here corresponds to the steps F) and
2461 	 * G) and as far as enabling of RX and TX MAC goes also step H)
2462 	 * of the initialization sequence outlined in section 3.2.1 of
2463 	 * the GEM Gigabit Ethernet ASIC Specification.
2464 	 */
2465 
2466 	rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
2467 	rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
2468 	txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
2469 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2470 		txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
2471 	else if (gigabit) {
2472 		rxcfg |= GEM_MAC_RX_CARR_EXTEND;
2473 		txcfg |= GEM_MAC_RX_CARR_EXTEND;
2474 	}
2475 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
2476 	bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
2477 	    BUS_SPACE_BARRIER_WRITE);
2478 	if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
2479 		aprint_normal_dev(sc->sc_dev, "cannot disable TX MAC\n");
2480 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
2481 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
2482 	bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
2483 	    BUS_SPACE_BARRIER_WRITE);
2484 	if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
2485 		aprint_normal_dev(sc->sc_dev, "cannot disable RX MAC\n");
2486 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
2487 
2488 	v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
2489 	    ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
2490 	bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
2491 
2492 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
2493 	    gigabit != 0)
2494 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2495 		    GEM_MAC_SLOT_TIME_CARR_EXTEND);
2496 	else
2497 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2498 		    GEM_MAC_SLOT_TIME_NORMAL);
2499 
2500 	/* XIF Configuration */
2501 	if (sc->sc_flags & GEM_LINK)
2502 		v = GEM_MAC_XIF_LINK_LED;
2503 	else
2504 		v = 0;
2505 	v |= GEM_MAC_XIF_TX_MII_ENA;
2506 
2507 	/* If an external transceiver is connected, enable its MII drivers */
2508 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
2509 	if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
2510 		if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
2511 			if (gigabit)
2512 				v |= GEM_MAC_XIF_GMII_MODE;
2513 			else
2514 				v &= ~GEM_MAC_XIF_GMII_MODE;
2515 		} else
2516 			/* Internal MII needs buf enable */
2517 			v |= GEM_MAC_XIF_MII_BUF_ENA;
2518 		/* MII needs echo disable if half duplex. */
2519 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2520 			/* turn on full duplex LED */
2521 			v |= GEM_MAC_XIF_FDPLX_LED;
2522 		else
2523 			/* half duplex -- disable echo */
2524 			v |= GEM_MAC_XIF_ECHO_DISABL;
2525 	} else {
2526 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2527 			v |= GEM_MAC_XIF_FDPLX_LED;
2528 		v |= GEM_MAC_XIF_GMII_MODE;
2529 	}
2530 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
2531 
2532 	if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2533 	    (sc->sc_flags & GEM_LINK) != 0) {
2534 		bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
2535 		    txcfg | GEM_MAC_TX_ENABLE);
2536 		bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
2537 		    rxcfg | GEM_MAC_RX_ENABLE);
2538 	}
2539 }
2540 
2541 int
2542 gem_ser_mediachange(struct ifnet *ifp)
2543 {
2544 	struct gem_softc *sc = ifp->if_softc;
2545 	u_int s, t;
2546 
2547 	if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
2548 		return EINVAL;
2549 
2550 	s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
2551 	if (s == IFM_AUTO) {
2552 		if (sc->sc_mii_media != s) {
2553 #ifdef GEM_DEBUG
2554 			aprint_debug_dev(sc->sc_dev, "setting media to auto\n");
2555 #endif
2556 			sc->sc_mii_media = s;
2557 			if (ifp->if_flags & IFF_UP) {
2558 				gem_pcs_stop(sc, 0);
2559 				gem_pcs_start(sc);
2560 			}
2561 		}
2562 		return 0;
2563 	}
2564 	if (s == IFM_1000_SX) {
2565 		t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media)
2566 		    & (IFM_FDX | IFM_HDX);
2567 		if ((sc->sc_mii_media & (IFM_FDX | IFM_HDX)) != t) {
2568 			sc->sc_mii_media &= ~(IFM_FDX | IFM_HDX);
2569 			sc->sc_mii_media |= t;
2570 #ifdef GEM_DEBUG
2571 			aprint_debug_dev(sc->sc_dev,
2572 			    "setting media to 1000baseSX-%s\n",
2573 			    t == IFM_FDX ? "FDX" : "HDX");
2574 #endif
2575 			if (ifp->if_flags & IFF_UP) {
2576 				gem_pcs_stop(sc, 0);
2577 				gem_pcs_start(sc);
2578 			}
2579 		}
2580 		return 0;
2581 	}
2582 	return EINVAL;
2583 }
2584 
2585 void
2586 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2587 {
2588 	struct gem_softc *sc = ifp->if_softc;
2589 
2590 	if ((ifp->if_flags & IFF_UP) == 0)
2591 		return;
2592 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
2593 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
2594 }
2595 
2596 static int
2597 gem_ifflags_cb(struct ethercom *ec)
2598 {
2599 	struct ifnet *ifp = &ec->ec_if;
2600 	struct gem_softc *sc = ifp->if_softc;
2601 	u_short change = ifp->if_flags ^ sc->sc_if_flags;
2602 
2603 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
2604 		return ENETRESET;
2605 	else if ((change & IFF_PROMISC) != 0)
2606 		gem_setladrf(sc);
2607 	return 0;
2608 }
2609 
2610 /*
2611  * Process an ioctl request.
2612  */
2613 int
2614 gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
2615 {
2616 	struct gem_softc *sc = ifp->if_softc;
2617 	int s, error = 0;
2618 
2619 	s = splnet();
2620 
2621 	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2622 		error = 0;
2623 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2624 			;
2625 		else if (ifp->if_flags & IFF_RUNNING) {
2626 			/*
2627 			 * Multicast list has changed; set the hardware filter
2628 			 * accordingly.
2629 			 */
2630 			gem_setladrf(sc);
2631 		}
2632 	}
2633 
2634 	/* Try to get things going again */
2635 	if (ifp->if_flags & IFF_UP)
2636 		gem_start(ifp);
2637 	splx(s);
2638 	return (error);
2639 }
2640 
2641 static void
2642 gem_inten(struct gem_softc *sc)
2643 {
2644 	bus_space_tag_t t = sc->sc_bustag;
2645 	bus_space_handle_t h = sc->sc_h1;
2646 	uint32_t v;
2647 
2648 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
2649 		v = GEM_INTR_PCS;
2650 	else
2651 		v = GEM_INTR_MIF;
2652 	bus_space_write_4(t, h, GEM_INTMASK,
2653 		      ~(GEM_INTR_TX_INTME |
2654 			GEM_INTR_TX_EMPTY |
2655 			GEM_INTR_TX_MAC |
2656 			GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF |
2657 			GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL |
2658 			GEM_INTR_BERR | v));
2659 }
2660 
2661 bool
2662 gem_resume(device_t self, const pmf_qual_t *qual)
2663 {
2664 	struct gem_softc *sc = device_private(self);
2665 
2666 	gem_inten(sc);
2667 
2668 	return true;
2669 }
2670 
2671 bool
2672 gem_suspend(device_t self, const pmf_qual_t *qual)
2673 {
2674 	struct gem_softc *sc = device_private(self);
2675 	bus_space_tag_t t = sc->sc_bustag;
2676 	bus_space_handle_t h = sc->sc_h1;
2677 
2678 	bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
2679 
2680 	return true;
2681 }
2682 
2683 bool
2684 gem_shutdown(device_t self, int howto)
2685 {
2686 	struct gem_softc *sc = device_private(self);
2687 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2688 
2689 	gem_stop(ifp, 1);
2690 
2691 	return true;
2692 }
2693 
2694 /*
2695  * Set up the logical address filter.
2696  */
2697 void
2698 gem_setladrf(struct gem_softc *sc)
2699 {
2700 	struct ethercom *ec = &sc->sc_ethercom;
2701 	struct ifnet *ifp = &ec->ec_if;
2702 	struct ether_multi *enm;
2703 	struct ether_multistep step;
2704 	bus_space_tag_t t = sc->sc_bustag;
2705 	bus_space_handle_t h = sc->sc_h1;
2706 	uint32_t crc;
2707 	uint32_t hash[16];
2708 	uint32_t v;
2709 	int i;
2710 
2711 	/* Get current RX configuration */
2712 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2713 
2714 	/*
2715 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2716 	 * and hash filter.  Depending on the case, the right bit will be
2717 	 * enabled.
2718 	 */
2719 	v &= ~(GEM_MAC_RX_PROMISCUOUS | GEM_MAC_RX_HASH_FILTER |
2720 	    GEM_MAC_RX_PROMISC_GRP);
2721 
2722 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
2723 		/* Turn on promiscuous mode */
2724 		v |= GEM_MAC_RX_PROMISCUOUS;
2725 		ifp->if_flags |= IFF_ALLMULTI;
2726 		goto chipit;
2727 	}
2728 
2729 	/*
2730 	 * Set up multicast address filter by passing all multicast addresses
2731 	 * through a crc generator, and then using the high order 8 bits as an
2732 	 * index into the 256 bit logical address filter.  The high order 4
2733 	 * bits selects the word, while the other 4 bits select the bit within
2734 	 * the word (where bit 0 is the MSB).
2735 	 */
2736 
2737 	/* Clear hash table */
2738 	memset(hash, 0, sizeof(hash));
2739 
2740 	ETHER_LOCK(ec);
2741 	ETHER_FIRST_MULTI(step, ec, enm);
2742 	while (enm != NULL) {
2743 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2744 			/*
2745 			 * We must listen to a range of multicast addresses.
2746 			 * For now, just accept all multicasts, rather than
2747 			 * trying to set only those filter bits needed to match
2748 			 * the range.  (At this time, the only use of address
2749 			 * ranges is for IP multicast routing, for which the
2750 			 * range is big enough to require all bits set.)
2751 			 * XXX should use the address filters for this
2752 			 */
2753 			ifp->if_flags |= IFF_ALLMULTI;
2754 			v |= GEM_MAC_RX_PROMISC_GRP;
2755 			ETHER_UNLOCK(ec);
2756 			goto chipit;
2757 		}
2758 
2759 		/* Get the LE CRC32 of the address */
2760 		crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2761 
2762 		/* Just want the 8 most significant bits. */
2763 		crc >>= 24;
2764 
2765 		/* Set the corresponding bit in the filter. */
2766 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
2767 
2768 		ETHER_NEXT_MULTI(step, enm);
2769 	}
2770 	ETHER_UNLOCK(ec);
2771 
2772 	v |= GEM_MAC_RX_HASH_FILTER;
2773 	ifp->if_flags &= ~IFF_ALLMULTI;
2774 
2775 	/* Now load the hash table into the chip (if we are using it) */
2776 	for (i = 0; i < 16; i++) {
2777 		bus_space_write_4(t, h,
2778 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2779 		    hash[i]);
2780 	}
2781 
2782 chipit:
2783 	sc->sc_if_flags = ifp->if_flags;
2784 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2785 }
2786