1 /* $NetBSD: gem.c,v 1.80 2008/12/16 22:35:30 christos Exp $ */ 2 3 /* 4 * 5 * Copyright (C) 2001 Eduardo Horvath. 6 * Copyright (c) 2001-2003 Thomas Moestl 7 * All rights reserved. 8 * 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 */ 32 33 /* 34 * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers 35 * See `GEM Gigabit Ethernet ASIC Specification' 36 * http://www.sun.com/processors/manuals/ge.pdf 37 */ 38 39 #include <sys/cdefs.h> 40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.80 2008/12/16 22:35:30 christos Exp $"); 41 42 #include "opt_inet.h" 43 #include "bpfilter.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/callout.h> 48 #include <sys/mbuf.h> 49 #include <sys/syslog.h> 50 #include <sys/malloc.h> 51 #include <sys/kernel.h> 52 #include <sys/socket.h> 53 #include <sys/ioctl.h> 54 #include <sys/errno.h> 55 #include <sys/device.h> 56 57 #include <machine/endian.h> 58 59 #include <uvm/uvm_extern.h> 60 61 #include <net/if.h> 62 #include <net/if_dl.h> 63 #include <net/if_media.h> 64 #include <net/if_ether.h> 65 66 #ifdef INET 67 #include <netinet/in.h> 68 #include <netinet/in_systm.h> 69 #include <netinet/in_var.h> 70 #include <netinet/ip.h> 71 #include <netinet/tcp.h> 72 #include <netinet/udp.h> 73 #endif 74 75 #if NBPFILTER > 0 76 #include <net/bpf.h> 77 #endif 78 79 #include <sys/bus.h> 80 #include <sys/intr.h> 81 82 #include <dev/mii/mii.h> 83 #include <dev/mii/miivar.h> 84 #include <dev/mii/mii_bitbang.h> 85 86 #include <dev/ic/gemreg.h> 87 #include <dev/ic/gemvar.h> 88 89 #define TRIES 10000 90 91 static void gem_start(struct ifnet *); 92 static void gem_stop(struct ifnet *, int); 93 int gem_ioctl(struct ifnet *, u_long, void *); 94 void gem_tick(void *); 95 void gem_watchdog(struct ifnet *); 96 void gem_shutdown(void *); 97 void gem_pcs_start(struct gem_softc *sc); 98 void gem_pcs_stop(struct gem_softc *sc, int); 99 int gem_init(struct ifnet *); 100 void gem_init_regs(struct gem_softc *sc); 101 static int gem_ringsize(int sz); 102 static int gem_meminit(struct gem_softc *); 103 void gem_mifinit(struct gem_softc *); 104 static int gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int, 105 u_int32_t, u_int32_t); 106 void gem_reset(struct gem_softc *); 107 int gem_reset_rx(struct gem_softc *sc); 108 static void gem_reset_rxdma(struct gem_softc *sc); 109 static void gem_rx_common(struct gem_softc *sc); 110 int gem_reset_tx(struct gem_softc *sc); 111 int gem_disable_rx(struct gem_softc *sc); 112 int gem_disable_tx(struct gem_softc *sc); 113 static void gem_rxdrain(struct gem_softc *sc); 114 int gem_add_rxbuf(struct gem_softc *sc, int idx); 115 void gem_setladrf(struct gem_softc *); 116 117 /* MII methods & callbacks */ 118 static int gem_mii_readreg(struct device *, int, int); 119 static void gem_mii_writereg(struct device *, int, int, int); 120 static void gem_mii_statchg(struct device *); 121 122 static int gem_ifflags_cb(struct ethercom *); 123 124 void gem_statuschange(struct gem_softc *); 125 126 int gem_ser_mediachange(struct ifnet *); 127 void gem_ser_mediastatus(struct ifnet *, struct ifmediareq *); 128 129 struct mbuf *gem_get(struct gem_softc *, int, int); 130 int gem_put(struct gem_softc *, int, struct mbuf *); 131 void gem_read(struct gem_softc *, int, int); 132 int gem_pint(struct gem_softc *); 133 int gem_eint(struct gem_softc *, u_int); 134 int gem_rint(struct gem_softc *); 135 int gem_tint(struct gem_softc *); 136 void gem_power(int, void *); 137 138 #ifdef GEM_DEBUG 139 static void gem_txsoft_print(const struct gem_softc *, int, int); 140 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \ 141 printf x 142 #else 143 #define DPRINTF(sc, x) /* nothing */ 144 #endif 145 146 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header)) 147 148 149 /* 150 * gem_attach: 151 * 152 * Attach a Gem interface to the system. 153 */ 154 void 155 gem_attach(sc, enaddr) 156 struct gem_softc *sc; 157 const uint8_t *enaddr; 158 { 159 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 160 struct mii_data *mii = &sc->sc_mii; 161 bus_space_tag_t t = sc->sc_bustag; 162 bus_space_handle_t h = sc->sc_h1; 163 struct ifmedia_entry *ifm; 164 int i, error; 165 u_int32_t v; 166 char *nullbuf; 167 168 /* Make sure the chip is stopped. */ 169 ifp->if_softc = sc; 170 gem_reset(sc); 171 172 /* 173 * Allocate the control data structures, and create and load the 174 * DMA map for it. gem_control_data is 9216 bytes, we have space for 175 * the padding buffer in the bus_dmamem_alloc()'d memory. 176 */ 177 if ((error = bus_dmamem_alloc(sc->sc_dmatag, 178 sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE, 179 0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) { 180 aprint_error_dev(&sc->sc_dev, 181 "unable to allocate control data, error = %d\n", 182 error); 183 goto fail_0; 184 } 185 186 /* XXX should map this in with correct endianness */ 187 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg, 188 sizeof(struct gem_control_data), (void **)&sc->sc_control_data, 189 BUS_DMA_COHERENT)) != 0) { 190 aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n", 191 error); 192 goto fail_1; 193 } 194 195 nullbuf = 196 (char *)sc->sc_control_data + sizeof(struct gem_control_data); 197 198 if ((error = bus_dmamap_create(sc->sc_dmatag, 199 sizeof(struct gem_control_data), 1, 200 sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) { 201 aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, " 202 "error = %d\n", error); 203 goto fail_2; 204 } 205 206 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap, 207 sc->sc_control_data, sizeof(struct gem_control_data), NULL, 208 0)) != 0) { 209 aprint_error_dev(&sc->sc_dev, 210 "unable to load control data DMA map, error = %d\n", 211 error); 212 goto fail_3; 213 } 214 215 memset(nullbuf, 0, ETHER_MIN_TX); 216 if ((error = bus_dmamap_create(sc->sc_dmatag, 217 ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) { 218 aprint_error_dev(&sc->sc_dev, "unable to create padding DMA map, " 219 "error = %d\n", error); 220 goto fail_4; 221 } 222 223 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap, 224 nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) { 225 aprint_error_dev(&sc->sc_dev, 226 "unable to load padding DMA map, error = %d\n", 227 error); 228 goto fail_5; 229 } 230 231 bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX, 232 BUS_DMASYNC_PREWRITE); 233 234 /* 235 * Initialize the transmit job descriptors. 236 */ 237 SIMPLEQ_INIT(&sc->sc_txfreeq); 238 SIMPLEQ_INIT(&sc->sc_txdirtyq); 239 240 /* 241 * Create the transmit buffer DMA maps. 242 */ 243 for (i = 0; i < GEM_TXQUEUELEN; i++) { 244 struct gem_txsoft *txs; 245 246 txs = &sc->sc_txsoft[i]; 247 txs->txs_mbuf = NULL; 248 if ((error = bus_dmamap_create(sc->sc_dmatag, 249 ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS, 250 ETHER_MAX_LEN_JUMBO, 0, 0, 251 &txs->txs_dmamap)) != 0) { 252 aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, " 253 "error = %d\n", i, error); 254 goto fail_6; 255 } 256 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 257 } 258 259 /* 260 * Create the receive buffer DMA maps. 261 */ 262 for (i = 0; i < GEM_NRXDESC; i++) { 263 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1, 264 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { 265 aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, " 266 "error = %d\n", i, error); 267 goto fail_7; 268 } 269 sc->sc_rxsoft[i].rxs_mbuf = NULL; 270 } 271 272 /* Initialize ifmedia structures and MII info */ 273 mii->mii_ifp = ifp; 274 mii->mii_readreg = gem_mii_readreg; 275 mii->mii_writereg = gem_mii_writereg; 276 mii->mii_statchg = gem_mii_statchg; 277 278 sc->sc_ethercom.ec_mii = mii; 279 280 /* 281 * Initialization based on `GEM Gigabit Ethernet ASIC Specification' 282 * Section 3.2.1 `Initialization Sequence'. 283 * However, we can't assume SERDES or Serialink if neither 284 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set 285 * being set, as both are set on Sun X1141A (with SERDES). So, 286 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL. 287 * Also, for Apple variants with 2 PHY's, we prefer the external 288 * PHY over the internal PHY. 289 */ 290 gem_mifinit(sc); 291 292 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) { 293 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange, 294 ether_mediastatus); 295 mii_attach(&sc->sc_dev, mii, 0xffffffff, 296 MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG); 297 if (LIST_EMPTY(&mii->mii_phys)) { 298 /* No PHY attached */ 299 aprint_error_dev(&sc->sc_dev, "PHY probe failed\n"); 300 goto fail_7; 301 } else { 302 struct mii_softc *child; 303 304 /* 305 * Walk along the list of attached MII devices and 306 * establish an `MII instance' to `PHY number' 307 * mapping. 308 */ 309 LIST_FOREACH(child, &mii->mii_phys, mii_list) { 310 /* 311 * Note: we support just one PHY: the internal 312 * or external MII is already selected for us 313 * by the GEM_MIF_CONFIG register. 314 */ 315 if (child->mii_phy > 1 || child->mii_inst > 0) { 316 aprint_error_dev(&sc->sc_dev, 317 "cannot accommodate MII device" 318 " %s at PHY %d, instance %d\n", 319 device_xname(child->mii_dev), 320 child->mii_phy, child->mii_inst); 321 continue; 322 } 323 sc->sc_phys[child->mii_inst] = child->mii_phy; 324 } 325 326 /* 327 * Now select and activate the PHY we will use. 328 * 329 * The order of preference is External (MDI1), 330 * then Internal (MDI0), 331 */ 332 if (sc->sc_phys[1]) { 333 #ifdef GEM_DEBUG 334 aprint_debug_dev(&sc->sc_dev, "using external PHY\n"); 335 #endif 336 sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL; 337 } else { 338 #ifdef GEM_DEBUG 339 aprint_debug_dev(&sc->sc_dev, "using internal PHY\n"); 340 sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL; 341 #endif 342 } 343 bus_space_write_4(t, h, GEM_MIF_CONFIG, 344 sc->sc_mif_config); 345 if (sc->sc_variant != GEM_SUN_ERI) 346 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, 347 GEM_MII_DATAPATH_MII); 348 349 /* 350 * XXX - we can really do the following ONLY if the 351 * PHY indeed has the auto negotiation capability!! 352 */ 353 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); 354 } 355 } else { 356 ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange, 357 gem_ser_mediastatus); 358 /* SERDES or Serialink */ 359 if (sc->sc_flags & GEM_SERDES) { 360 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, 361 GEM_MII_DATAPATH_SERDES); 362 } else { 363 sc->sc_flags |= GEM_SERIAL; 364 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, 365 GEM_MII_DATAPATH_SERIAL); 366 } 367 368 aprint_normal_dev(&sc->sc_dev, "using external PCS %s: ", 369 sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink"); 370 371 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0, NULL); 372 /* Check for FDX and HDX capabilities */ 373 sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR); 374 if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) { 375 ifmedia_add(&sc->sc_mii.mii_media, 376 IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_FDX, 0, NULL); 377 aprint_normal("1000baseSX-FDX, "); 378 } 379 if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) { 380 ifmedia_add(&sc->sc_mii.mii_media, 381 IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_HDX, 0, NULL); 382 aprint_normal("1000baseSX-HDX, "); 383 } 384 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); 385 sc->sc_mii_media = IFM_AUTO; 386 aprint_normal("auto\n"); 387 388 gem_pcs_stop(sc, 1); 389 } 390 391 /* 392 * From this point forward, the attachment cannot fail. A failure 393 * before this point releases all resources that may have been 394 * allocated. 395 */ 396 397 /* Announce ourselves. */ 398 aprint_normal_dev(&sc->sc_dev, "Ethernet address %s", 399 ether_sprintf(enaddr)); 400 401 /* Get RX FIFO size */ 402 sc->sc_rxfifosize = 64 * 403 bus_space_read_4(t, h, GEM_RX_FIFO_SIZE); 404 aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024); 405 406 /* Get TX FIFO size */ 407 v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE); 408 aprint_normal(", %uKB TX fifo\n", v / 16); 409 410 /* Initialize ifnet structure. */ 411 strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ); 412 ifp->if_softc = sc; 413 ifp->if_flags = 414 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST; 415 sc->sc_if_flags = ifp->if_flags; 416 /* 417 * The GEM hardware supports basic TCP checksum offloading only. 418 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80) 419 * have bugs in the receive checksum, so don't enable it for now. 420 if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) || 421 (GEM_IS_APPLE(sc) && 422 (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80))) 423 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx; 424 */ 425 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx; 426 ifp->if_start = gem_start; 427 ifp->if_ioctl = gem_ioctl; 428 ifp->if_watchdog = gem_watchdog; 429 ifp->if_stop = gem_stop; 430 ifp->if_init = gem_init; 431 IFQ_SET_READY(&ifp->if_snd); 432 433 /* 434 * If we support GigE media, we support jumbo frames too. 435 * Unless we are Apple. 436 */ 437 TAILQ_FOREACH(ifm, &sc->sc_mii.mii_media.ifm_list, ifm_list) { 438 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T || 439 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX || 440 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX || 441 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) { 442 if (!GEM_IS_APPLE(sc)) 443 sc->sc_ethercom.ec_capabilities 444 |= ETHERCAP_JUMBO_MTU; 445 sc->sc_flags |= GEM_GIGABIT; 446 break; 447 } 448 } 449 450 /* claim 802.1q capability */ 451 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; 452 453 /* Attach the interface. */ 454 if_attach(ifp); 455 ether_ifattach(ifp, enaddr); 456 ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb); 457 458 sc->sc_sh = shutdownhook_establish(gem_shutdown, sc); 459 if (sc->sc_sh == NULL) 460 panic("gem_config: can't establish shutdownhook"); 461 462 #if NRND > 0 463 rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev), 464 RND_TYPE_NET, 0); 465 #endif 466 467 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR, 468 NULL, device_xname(&sc->sc_dev), "interrupts"); 469 #ifdef GEM_COUNTERS 470 evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR, 471 &sc->sc_ev_intr, device_xname(&sc->sc_dev), "tx interrupts"); 472 evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR, 473 &sc->sc_ev_intr, device_xname(&sc->sc_dev), "rx interrupts"); 474 evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR, 475 &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx ring full"); 476 evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR, 477 &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx malloc failure"); 478 evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR, 479 &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx 0desc"); 480 evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR, 481 &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx 1desc"); 482 evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR, 483 &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx 2desc"); 484 evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR, 485 &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx 3desc"); 486 evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR, 487 &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx >3desc"); 488 evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR, 489 &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx >7desc"); 490 evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR, 491 &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx >15desc"); 492 evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR, 493 &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx >31desc"); 494 evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR, 495 &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx >63desc"); 496 #endif 497 498 #if notyet 499 /* 500 * Add a suspend hook to make sure we come back up after a 501 * resume. 502 */ 503 sc->sc_powerhook = powerhook_establish(device_xname(&sc->sc_dev), 504 gem_power, sc); 505 if (sc->sc_powerhook == NULL) 506 aprint_error_dev(&sc->sc_dev, "WARNING: unable to establish power hook\n"); 507 #endif 508 509 callout_init(&sc->sc_tick_ch, 0); 510 return; 511 512 /* 513 * Free any resources we've allocated during the failed attach 514 * attempt. Do this in reverse order and fall through. 515 */ 516 fail_7: 517 for (i = 0; i < GEM_NRXDESC; i++) { 518 if (sc->sc_rxsoft[i].rxs_dmamap != NULL) 519 bus_dmamap_destroy(sc->sc_dmatag, 520 sc->sc_rxsoft[i].rxs_dmamap); 521 } 522 fail_6: 523 for (i = 0; i < GEM_TXQUEUELEN; i++) { 524 if (sc->sc_txsoft[i].txs_dmamap != NULL) 525 bus_dmamap_destroy(sc->sc_dmatag, 526 sc->sc_txsoft[i].txs_dmamap); 527 } 528 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap); 529 fail_5: 530 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap); 531 fail_4: 532 bus_dmamem_unmap(sc->sc_dmatag, (void *)nullbuf, ETHER_MIN_TX); 533 fail_3: 534 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap); 535 fail_2: 536 bus_dmamem_unmap(sc->sc_dmatag, (void *)sc->sc_control_data, 537 sizeof(struct gem_control_data)); 538 fail_1: 539 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg); 540 fail_0: 541 return; 542 } 543 544 545 void 546 gem_tick(arg) 547 void *arg; 548 { 549 struct gem_softc *sc = arg; 550 int s; 551 552 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) { 553 /* 554 * We have to reset everything if we failed to get a 555 * PCS interrupt. Restarting the callout is handled 556 * in gem_pcs_start(). 557 */ 558 gem_init(&sc->sc_ethercom.ec_if); 559 } else { 560 s = splnet(); 561 mii_tick(&sc->sc_mii); 562 splx(s); 563 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc); 564 } 565 } 566 567 static int 568 gem_bitwait(sc, h, r, clr, set) 569 struct gem_softc *sc; 570 bus_space_handle_t h; 571 int r; 572 u_int32_t clr; 573 u_int32_t set; 574 { 575 int i; 576 u_int32_t reg; 577 578 for (i = TRIES; i--; DELAY(100)) { 579 reg = bus_space_read_4(sc->sc_bustag, h, r); 580 if ((reg & clr) == 0 && (reg & set) == set) 581 return (1); 582 } 583 return (0); 584 } 585 586 void 587 gem_reset(sc) 588 struct gem_softc *sc; 589 { 590 bus_space_tag_t t = sc->sc_bustag; 591 bus_space_handle_t h = sc->sc_h2; 592 int s; 593 594 s = splnet(); 595 DPRINTF(sc, ("%s: gem_reset\n", device_xname(&sc->sc_dev))); 596 gem_reset_rx(sc); 597 gem_reset_tx(sc); 598 599 /* Do a full reset */ 600 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX); 601 if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0)) 602 aprint_error_dev(&sc->sc_dev, "cannot reset device\n"); 603 splx(s); 604 } 605 606 607 /* 608 * gem_rxdrain: 609 * 610 * Drain the receive queue. 611 */ 612 static void 613 gem_rxdrain(struct gem_softc *sc) 614 { 615 struct gem_rxsoft *rxs; 616 int i; 617 618 for (i = 0; i < GEM_NRXDESC; i++) { 619 rxs = &sc->sc_rxsoft[i]; 620 if (rxs->rxs_mbuf != NULL) { 621 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0, 622 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 623 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap); 624 m_freem(rxs->rxs_mbuf); 625 rxs->rxs_mbuf = NULL; 626 } 627 } 628 } 629 630 /* 631 * Reset the whole thing. 632 */ 633 static void 634 gem_stop(struct ifnet *ifp, int disable) 635 { 636 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc; 637 struct gem_txsoft *txs; 638 639 DPRINTF(sc, ("%s: gem_stop\n", device_xname(&sc->sc_dev))); 640 641 callout_stop(&sc->sc_tick_ch); 642 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) 643 gem_pcs_stop(sc, disable); 644 else 645 mii_down(&sc->sc_mii); 646 647 /* XXX - Should we reset these instead? */ 648 gem_disable_tx(sc); 649 gem_disable_rx(sc); 650 651 /* 652 * Release any queued transmit buffers. 653 */ 654 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) { 655 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); 656 if (txs->txs_mbuf != NULL) { 657 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0, 658 txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 659 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap); 660 m_freem(txs->txs_mbuf); 661 txs->txs_mbuf = NULL; 662 } 663 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 664 } 665 666 /* 667 * Mark the interface down and cancel the watchdog timer. 668 */ 669 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 670 sc->sc_if_flags = ifp->if_flags; 671 ifp->if_timer = 0; 672 673 if (disable) 674 gem_rxdrain(sc); 675 } 676 677 678 /* 679 * Reset the receiver 680 */ 681 int 682 gem_reset_rx(struct gem_softc *sc) 683 { 684 bus_space_tag_t t = sc->sc_bustag; 685 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2; 686 687 /* 688 * Resetting while DMA is in progress can cause a bus hang, so we 689 * disable DMA first. 690 */ 691 gem_disable_rx(sc); 692 bus_space_write_4(t, h, GEM_RX_CONFIG, 0); 693 bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE); 694 /* Wait till it finishes */ 695 if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0)) 696 aprint_error_dev(&sc->sc_dev, "cannot disable read dma\n"); 697 698 /* Finally, reset the ERX */ 699 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX); 700 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE); 701 /* Wait till it finishes */ 702 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) { 703 aprint_error_dev(&sc->sc_dev, "cannot reset receiver\n"); 704 return (1); 705 } 706 return (0); 707 } 708 709 710 /* 711 * Reset the receiver DMA engine. 712 * 713 * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW 714 * etc in order to reset the receiver DMA engine only and not do a full 715 * reset which amongst others also downs the link and clears the FIFOs. 716 */ 717 static void 718 gem_reset_rxdma(struct gem_softc *sc) 719 { 720 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 721 bus_space_tag_t t = sc->sc_bustag; 722 bus_space_handle_t h = sc->sc_h1; 723 int i; 724 725 if (gem_reset_rx(sc) != 0) { 726 gem_init(ifp); 727 return; 728 } 729 for (i = 0; i < GEM_NRXDESC; i++) 730 if (sc->sc_rxsoft[i].rxs_mbuf != NULL) 731 GEM_UPDATE_RXDESC(sc, i); 732 sc->sc_rxptr = 0; 733 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE); 734 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD); 735 736 /* Reprogram Descriptor Ring Base Addresses */ 737 /* NOTE: we use only 32-bit DMA addresses here. */ 738 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0); 739 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0)); 740 741 /* Redo ERX Configuration */ 742 gem_rx_common(sc); 743 744 /* Give the reciever a swift kick */ 745 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4); 746 } 747 748 /* 749 * Common RX configuration for gem_init() and gem_reset_rxdma(). 750 */ 751 static void 752 gem_rx_common(struct gem_softc *sc) 753 { 754 bus_space_tag_t t = sc->sc_bustag; 755 bus_space_handle_t h = sc->sc_h1; 756 u_int32_t v; 757 758 /* Encode Receive Descriptor ring size: four possible values */ 759 v = gem_ringsize(GEM_NRXDESC /*XXX*/); 760 761 /* Set receive h/w checksum offset */ 762 #ifdef INET 763 v |= (ETHER_HDR_LEN + sizeof(struct ip) + 764 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ? 765 ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT; 766 #endif 767 768 /* Enable RX DMA */ 769 bus_space_write_4(t, h, GEM_RX_CONFIG, 770 v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) | 771 (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN); 772 773 /* 774 * The following value is for an OFF Threshold of about 3/4 full 775 * and an ON Threshold of 1/4 full. 776 */ 777 bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH, 778 (3 * sc->sc_rxfifosize / 256) | 779 ((sc->sc_rxfifosize / 256) << 12)); 780 bus_space_write_4(t, h, GEM_RX_BLANKING, 781 (6 << GEM_RX_BLANKING_TIME_SHIFT) | 6); 782 } 783 784 /* 785 * Reset the transmitter 786 */ 787 int 788 gem_reset_tx(struct gem_softc *sc) 789 { 790 bus_space_tag_t t = sc->sc_bustag; 791 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2; 792 793 /* 794 * Resetting while DMA is in progress can cause a bus hang, so we 795 * disable DMA first. 796 */ 797 gem_disable_tx(sc); 798 bus_space_write_4(t, h, GEM_TX_CONFIG, 0); 799 bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE); 800 /* Wait till it finishes */ 801 if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0)) 802 aprint_error_dev(&sc->sc_dev, "cannot disable read dma\n"); 803 /* Wait 5ms extra. */ 804 delay(5000); 805 806 /* Finally, reset the ETX */ 807 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX); 808 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE); 809 /* Wait till it finishes */ 810 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) { 811 aprint_error_dev(&sc->sc_dev, "cannot reset receiver\n"); 812 return (1); 813 } 814 return (0); 815 } 816 817 /* 818 * disable receiver. 819 */ 820 int 821 gem_disable_rx(struct gem_softc *sc) 822 { 823 bus_space_tag_t t = sc->sc_bustag; 824 bus_space_handle_t h = sc->sc_h1; 825 u_int32_t cfg; 826 827 /* Flip the enable bit */ 828 cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG); 829 cfg &= ~GEM_MAC_RX_ENABLE; 830 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg); 831 bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE); 832 /* Wait for it to finish */ 833 return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0)); 834 } 835 836 /* 837 * disable transmitter. 838 */ 839 int 840 gem_disable_tx(struct gem_softc *sc) 841 { 842 bus_space_tag_t t = sc->sc_bustag; 843 bus_space_handle_t h = sc->sc_h1; 844 u_int32_t cfg; 845 846 /* Flip the enable bit */ 847 cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG); 848 cfg &= ~GEM_MAC_TX_ENABLE; 849 bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg); 850 bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE); 851 /* Wait for it to finish */ 852 return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0)); 853 } 854 855 /* 856 * Initialize interface. 857 */ 858 int 859 gem_meminit(struct gem_softc *sc) 860 { 861 struct gem_rxsoft *rxs; 862 int i, error; 863 864 /* 865 * Initialize the transmit descriptor ring. 866 */ 867 memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs)); 868 for (i = 0; i < GEM_NTXDESC; i++) { 869 sc->sc_txdescs[i].gd_flags = 0; 870 sc->sc_txdescs[i].gd_addr = 0; 871 } 872 GEM_CDTXSYNC(sc, 0, GEM_NTXDESC, 873 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 874 sc->sc_txfree = GEM_NTXDESC-1; 875 sc->sc_txnext = 0; 876 sc->sc_txwin = 0; 877 878 /* 879 * Initialize the receive descriptor and receive job 880 * descriptor rings. 881 */ 882 for (i = 0; i < GEM_NRXDESC; i++) { 883 rxs = &sc->sc_rxsoft[i]; 884 if (rxs->rxs_mbuf == NULL) { 885 if ((error = gem_add_rxbuf(sc, i)) != 0) { 886 aprint_error_dev(&sc->sc_dev, "unable to allocate or map rx " 887 "buffer %d, error = %d\n", 888 i, error); 889 /* 890 * XXX Should attempt to run with fewer receive 891 * XXX buffers instead of just failing. 892 */ 893 gem_rxdrain(sc); 894 return (1); 895 } 896 } else 897 GEM_INIT_RXDESC(sc, i); 898 } 899 sc->sc_rxptr = 0; 900 sc->sc_meminited = 1; 901 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE); 902 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD); 903 904 return (0); 905 } 906 907 static int 908 gem_ringsize(int sz) 909 { 910 switch (sz) { 911 case 32: 912 return GEM_RING_SZ_32; 913 case 64: 914 return GEM_RING_SZ_64; 915 case 128: 916 return GEM_RING_SZ_128; 917 case 256: 918 return GEM_RING_SZ_256; 919 case 512: 920 return GEM_RING_SZ_512; 921 case 1024: 922 return GEM_RING_SZ_1024; 923 case 2048: 924 return GEM_RING_SZ_2048; 925 case 4096: 926 return GEM_RING_SZ_4096; 927 case 8192: 928 return GEM_RING_SZ_8192; 929 default: 930 printf("gem: invalid Receive Descriptor ring size %d\n", sz); 931 return GEM_RING_SZ_32; 932 } 933 } 934 935 936 /* 937 * Start PCS 938 */ 939 void 940 gem_pcs_start(struct gem_softc *sc) 941 { 942 bus_space_tag_t t = sc->sc_bustag; 943 bus_space_handle_t h = sc->sc_h1; 944 uint32_t v; 945 946 #ifdef GEM_DEBUG 947 aprint_debug_dev(&sc->sc_dev, "gem_pcs_start()\n"); 948 #endif 949 950 /* 951 * Set up. We must disable the MII before modifying the 952 * GEM_MII_ANAR register 953 */ 954 if (sc->sc_flags & GEM_SERDES) { 955 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, 956 GEM_MII_DATAPATH_SERDES); 957 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 958 GEM_MII_SLINK_LOOPBACK); 959 } else { 960 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, 961 GEM_MII_DATAPATH_SERIAL); 962 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0); 963 } 964 bus_space_write_4(t, h, GEM_MII_CONFIG, 0); 965 v = bus_space_read_4(t, h, GEM_MII_ANAR); 966 v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE); 967 if (sc->sc_mii_media == IFM_AUTO) 968 v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX); 969 else if (sc->sc_mii_media == IFM_FDX) { 970 v |= GEM_MII_ANEG_FUL_DUPLX; 971 v &= ~GEM_MII_ANEG_HLF_DUPLX; 972 } else if (sc->sc_mii_media == IFM_HDX) { 973 v &= ~GEM_MII_ANEG_FUL_DUPLX; 974 v |= GEM_MII_ANEG_HLF_DUPLX; 975 } 976 977 /* Configure link. */ 978 bus_space_write_4(t, h, GEM_MII_ANAR, v); 979 bus_space_write_4(t, h, GEM_MII_CONTROL, 980 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN); 981 bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE); 982 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT); 983 984 /* Start the 10 second timer */ 985 callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc); 986 } 987 988 /* 989 * Stop PCS 990 */ 991 void 992 gem_pcs_stop(struct gem_softc *sc, int disable) 993 { 994 bus_space_tag_t t = sc->sc_bustag; 995 bus_space_handle_t h = sc->sc_h1; 996 997 #ifdef GEM_DEBUG 998 aprint_debug_dev(&sc->sc_dev, "gem_pcs_stop()\n"); 999 #endif 1000 1001 /* Tell link partner that we're going away */ 1002 bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF); 1003 1004 /* 1005 * Disable PCS MII. The documentation suggests that setting 1006 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto- 1007 * negotiation will shut down the link. However, it appears 1008 * that we also need to unset the datapath mode. 1009 */ 1010 bus_space_write_4(t, h, GEM_MII_CONFIG, 0); 1011 bus_space_write_4(t, h, GEM_MII_CONTROL, 1012 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN); 1013 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII); 1014 bus_space_write_4(t, h, GEM_MII_CONFIG, 0); 1015 1016 if (disable) { 1017 if (sc->sc_flags & GEM_SERDES) 1018 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 1019 GEM_MII_SLINK_POWER_OFF); 1020 else 1021 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 1022 GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF); 1023 } 1024 1025 sc->sc_flags &= ~GEM_LINK; 1026 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE; 1027 sc->sc_mii.mii_media_status = IFM_AVALID; 1028 } 1029 1030 1031 /* 1032 * Initialization of interface; set up initialization block 1033 * and transmit/receive descriptor rings. 1034 */ 1035 int 1036 gem_init(struct ifnet *ifp) 1037 { 1038 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc; 1039 bus_space_tag_t t = sc->sc_bustag; 1040 bus_space_handle_t h = sc->sc_h1; 1041 int rc = 0, s; 1042 u_int max_frame_size; 1043 u_int32_t v; 1044 1045 s = splnet(); 1046 1047 DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(&sc->sc_dev))); 1048 /* 1049 * Initialization sequence. The numbered steps below correspond 1050 * to the sequence outlined in section 6.3.5.1 in the Ethernet 1051 * Channel Engine manual (part of the PCIO manual). 1052 * See also the STP2002-STQ document from Sun Microsystems. 1053 */ 1054 1055 /* step 1 & 2. Reset the Ethernet Channel */ 1056 gem_stop(ifp, 0); 1057 gem_reset(sc); 1058 DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(&sc->sc_dev))); 1059 1060 /* Re-initialize the MIF */ 1061 gem_mifinit(sc); 1062 1063 /* Set up correct datapath for non-SERDES/Serialink */ 1064 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 && 1065 sc->sc_variant != GEM_SUN_ERI) 1066 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, 1067 GEM_MII_DATAPATH_MII); 1068 1069 /* Call MI reset function if any */ 1070 if (sc->sc_hwreset) 1071 (*sc->sc_hwreset)(sc); 1072 1073 /* step 3. Setup data structures in host memory */ 1074 if (gem_meminit(sc) != 0) 1075 return 1; 1076 1077 /* step 4. TX MAC registers & counters */ 1078 gem_init_regs(sc); 1079 max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU); 1080 max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN; 1081 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) 1082 max_frame_size += ETHER_VLAN_ENCAP_LEN; 1083 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME, 1084 max_frame_size|/* burst size */(0x2000<<16)); 1085 1086 /* step 5. RX MAC registers & counters */ 1087 gem_setladrf(sc); 1088 1089 /* step 6 & 7. Program Descriptor Ring Base Addresses */ 1090 /* NOTE: we use only 32-bit DMA addresses here. */ 1091 bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0); 1092 bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0)); 1093 1094 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0); 1095 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0)); 1096 1097 /* step 8. Global Configuration & Interrupt Mask */ 1098 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) 1099 v = GEM_INTR_PCS; 1100 else 1101 v = GEM_INTR_MIF; 1102 bus_space_write_4(t, h, GEM_INTMASK, 1103 ~(GEM_INTR_TX_INTME | 1104 GEM_INTR_TX_EMPTY | 1105 GEM_INTR_TX_MAC | 1106 GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF| 1107 GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL| 1108 GEM_INTR_BERR | v)); 1109 bus_space_write_4(t, h, GEM_MAC_RX_MASK, 1110 GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT); 1111 bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */ 1112 bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 1113 GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME); 1114 1115 /* step 9. ETX Configuration: use mostly default values */ 1116 1117 /* Enable TX DMA */ 1118 v = gem_ringsize(GEM_NTXDESC /*XXX*/); 1119 bus_space_write_4(t, h, GEM_TX_CONFIG, 1120 v|GEM_TX_CONFIG_TXDMA_EN| 1121 ((0x4FF<<10)&GEM_TX_CONFIG_TXFIFO_TH)); 1122 bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext); 1123 1124 /* step 10. ERX Configuration */ 1125 gem_rx_common(sc); 1126 1127 /* step 11. Configure Media */ 1128 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 && 1129 (rc = mii_ifmedia_change(&sc->sc_mii)) != 0) 1130 goto out; 1131 1132 /* step 12. RX_MAC Configuration Register */ 1133 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG); 1134 v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC; 1135 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v); 1136 1137 /* step 14. Issue Transmit Pending command */ 1138 1139 /* Call MI initialization function if any */ 1140 if (sc->sc_hwinit) 1141 (*sc->sc_hwinit)(sc); 1142 1143 1144 /* step 15. Give the reciever a swift kick */ 1145 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4); 1146 1147 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) 1148 /* Configure PCS */ 1149 gem_pcs_start(sc); 1150 else 1151 /* Start the one second timer. */ 1152 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc); 1153 1154 sc->sc_flags &= ~GEM_LINK; 1155 ifp->if_flags |= IFF_RUNNING; 1156 ifp->if_flags &= ~IFF_OACTIVE; 1157 ifp->if_timer = 0; 1158 sc->sc_if_flags = ifp->if_flags; 1159 out: 1160 splx(s); 1161 1162 return (0); 1163 } 1164 1165 void 1166 gem_init_regs(struct gem_softc *sc) 1167 { 1168 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1169 bus_space_tag_t t = sc->sc_bustag; 1170 bus_space_handle_t h = sc->sc_h1; 1171 const u_char *laddr = CLLADDR(ifp->if_sadl); 1172 u_int32_t v; 1173 1174 /* These regs are not cleared on reset */ 1175 if (!sc->sc_inited) { 1176 1177 /* Load recommended values */ 1178 bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00); 1179 bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08); 1180 bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04); 1181 1182 bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN); 1183 /* Max frame and max burst size */ 1184 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME, 1185 ETHER_MAX_LEN | (0x2000<<16)); 1186 1187 bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07); 1188 bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04); 1189 bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10); 1190 bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088); 1191 bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED, 1192 ((laddr[5]<<8)|laddr[4])&0x3ff); 1193 1194 /* Secondary MAC addr set to 0:0:0:0:0:0 */ 1195 bus_space_write_4(t, h, GEM_MAC_ADDR3, 0); 1196 bus_space_write_4(t, h, GEM_MAC_ADDR4, 0); 1197 bus_space_write_4(t, h, GEM_MAC_ADDR5, 0); 1198 1199 /* MAC control addr set to 01:80:c2:00:00:01 */ 1200 bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001); 1201 bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200); 1202 bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180); 1203 1204 /* MAC filter addr set to 0:0:0:0:0:0 */ 1205 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0); 1206 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0); 1207 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0); 1208 1209 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0); 1210 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0); 1211 1212 sc->sc_inited = 1; 1213 } 1214 1215 /* Counters need to be zeroed */ 1216 bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0); 1217 bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0); 1218 bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0); 1219 bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0); 1220 bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0); 1221 bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0); 1222 bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0); 1223 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0); 1224 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0); 1225 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0); 1226 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0); 1227 1228 /* Set XOFF PAUSE time. */ 1229 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0); 1230 1231 /* 1232 * Set the internal arbitration to "infinite" bursts of the 1233 * maximum length of 31 * 64 bytes so DMA transfers aren't 1234 * split up in cache line size chunks. This greatly improves 1235 * especially RX performance. 1236 * Enable silicon bug workarounds for the Apple variants. 1237 */ 1238 bus_space_write_4(t, h, GEM_CONFIG, 1239 GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT | 1240 ((sc->sc_flags & GEM_PCI) ? 1241 GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ? 1242 GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0)); 1243 1244 /* 1245 * Set the station address. 1246 */ 1247 bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]); 1248 bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]); 1249 bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]); 1250 1251 /* 1252 * Enable MII outputs. Enable GMII if there is a gigabit PHY. 1253 */ 1254 sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG); 1255 v = GEM_MAC_XIF_TX_MII_ENA; 1256 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) { 1257 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) { 1258 v |= GEM_MAC_XIF_FDPLX_LED; 1259 if (sc->sc_flags & GEM_GIGABIT) 1260 v |= GEM_MAC_XIF_GMII_MODE; 1261 } 1262 } else { 1263 v |= GEM_MAC_XIF_GMII_MODE; 1264 } 1265 bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v); 1266 } 1267 1268 #ifdef GEM_DEBUG 1269 static void 1270 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc) 1271 { 1272 int i; 1273 1274 for (i = firstdesc;; i = GEM_NEXTTX(i)) { 1275 printf("descriptor %d:\t", i); 1276 printf("gd_flags: 0x%016" PRIx64 "\t", 1277 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags)); 1278 printf("gd_addr: 0x%016" PRIx64 "\n", 1279 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr)); 1280 if (i == lastdesc) 1281 break; 1282 } 1283 } 1284 #endif 1285 1286 static void 1287 gem_start(ifp) 1288 struct ifnet *ifp; 1289 { 1290 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc; 1291 struct mbuf *m0, *m; 1292 struct gem_txsoft *txs; 1293 bus_dmamap_t dmamap; 1294 int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg; 1295 uint64_t flags = 0; 1296 1297 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 1298 return; 1299 1300 /* 1301 * Remember the previous number of free descriptors and 1302 * the first descriptor we'll use. 1303 */ 1304 ofree = sc->sc_txfree; 1305 firsttx = sc->sc_txnext; 1306 1307 DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n", 1308 device_xname(&sc->sc_dev), ofree, firsttx)); 1309 1310 /* 1311 * Loop through the send queue, setting up transmit descriptors 1312 * until we drain the queue, or use up all available transmit 1313 * descriptors. 1314 */ 1315 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL && 1316 sc->sc_txfree != 0) { 1317 /* 1318 * Grab a packet off the queue. 1319 */ 1320 IFQ_POLL(&ifp->if_snd, m0); 1321 if (m0 == NULL) 1322 break; 1323 m = NULL; 1324 1325 dmamap = txs->txs_dmamap; 1326 1327 /* 1328 * Load the DMA map. If this fails, the packet either 1329 * didn't fit in the alloted number of segments, or we were 1330 * short on resources. In this case, we'll copy and try 1331 * again. 1332 */ 1333 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0, 1334 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 || 1335 (m0->m_pkthdr.len < ETHER_MIN_TX && 1336 dmamap->dm_nsegs == GEM_NTXSEGS)) { 1337 if (m0->m_pkthdr.len > MCLBYTES) { 1338 aprint_error_dev(&sc->sc_dev, "unable to allocate jumbo Tx " 1339 "cluster\n"); 1340 IFQ_DEQUEUE(&ifp->if_snd, m0); 1341 m_freem(m0); 1342 continue; 1343 } 1344 MGETHDR(m, M_DONTWAIT, MT_DATA); 1345 if (m == NULL) { 1346 aprint_error_dev(&sc->sc_dev, "unable to allocate Tx mbuf\n"); 1347 break; 1348 } 1349 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner); 1350 if (m0->m_pkthdr.len > MHLEN) { 1351 MCLGET(m, M_DONTWAIT); 1352 if ((m->m_flags & M_EXT) == 0) { 1353 aprint_error_dev(&sc->sc_dev, "unable to allocate Tx " 1354 "cluster\n"); 1355 m_freem(m); 1356 break; 1357 } 1358 } 1359 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *)); 1360 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len; 1361 error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, 1362 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT); 1363 if (error) { 1364 aprint_error_dev(&sc->sc_dev, "unable to load Tx buffer, " 1365 "error = %d\n", error); 1366 break; 1367 } 1368 } 1369 1370 /* 1371 * Ensure we have enough descriptors free to describe 1372 * the packet. 1373 */ 1374 if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ? 1375 (sc->sc_txfree - 1) : sc->sc_txfree)) { 1376 /* 1377 * Not enough free descriptors to transmit this 1378 * packet. We haven't committed to anything yet, 1379 * so just unload the DMA map, put the packet 1380 * back on the queue, and punt. Notify the upper 1381 * layer that there are no more slots left. 1382 * 1383 * XXX We could allocate an mbuf and copy, but 1384 * XXX it is worth it? 1385 */ 1386 ifp->if_flags |= IFF_OACTIVE; 1387 sc->sc_if_flags = ifp->if_flags; 1388 bus_dmamap_unload(sc->sc_dmatag, dmamap); 1389 if (m != NULL) 1390 m_freem(m); 1391 break; 1392 } 1393 1394 IFQ_DEQUEUE(&ifp->if_snd, m0); 1395 if (m != NULL) { 1396 m_freem(m0); 1397 m0 = m; 1398 } 1399 1400 /* 1401 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. 1402 */ 1403 1404 /* Sync the DMA map. */ 1405 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize, 1406 BUS_DMASYNC_PREWRITE); 1407 1408 /* 1409 * Initialize the transmit descriptors. 1410 */ 1411 for (nexttx = sc->sc_txnext, seg = 0; 1412 seg < dmamap->dm_nsegs; 1413 seg++, nexttx = GEM_NEXTTX(nexttx)) { 1414 1415 /* 1416 * If this is the first descriptor we're 1417 * enqueueing, set the start of packet flag, 1418 * and the checksum stuff if we want the hardware 1419 * to do it. 1420 */ 1421 sc->sc_txdescs[nexttx].gd_addr = 1422 GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr); 1423 flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE; 1424 if (nexttx == firsttx) { 1425 flags |= GEM_TD_START_OF_PACKET; 1426 if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) { 1427 sc->sc_txwin = 0; 1428 flags |= GEM_TD_INTERRUPT_ME; 1429 } 1430 1431 #ifdef INET 1432 /* h/w checksum */ 1433 if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 && 1434 m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) { 1435 struct ether_header *eh; 1436 uint16_t offset, start; 1437 1438 eh = mtod(m0, struct ether_header *); 1439 switch (ntohs(eh->ether_type)) { 1440 case ETHERTYPE_IP: 1441 start = ETHER_HDR_LEN; 1442 break; 1443 case ETHERTYPE_VLAN: 1444 start = ETHER_HDR_LEN + 1445 ETHER_VLAN_ENCAP_LEN; 1446 break; 1447 default: 1448 /* unsupported, drop it */ 1449 m_free(m0); 1450 continue; 1451 } 1452 start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data); 1453 offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start; 1454 flags |= (start << 1455 GEM_TD_CXSUM_STARTSHFT) | 1456 (offset << 1457 GEM_TD_CXSUM_STUFFSHFT) | 1458 GEM_TD_CXSUM_ENABLE; 1459 } 1460 #endif 1461 } 1462 if (seg == dmamap->dm_nsegs - 1) { 1463 flags |= GEM_TD_END_OF_PACKET; 1464 } else { 1465 /* last flag set outside of loop */ 1466 sc->sc_txdescs[nexttx].gd_flags = 1467 GEM_DMA_WRITE(sc, flags); 1468 } 1469 lasttx = nexttx; 1470 } 1471 if (m0->m_pkthdr.len < ETHER_MIN_TX) { 1472 /* add padding buffer at end of chain */ 1473 flags &= ~GEM_TD_END_OF_PACKET; 1474 sc->sc_txdescs[lasttx].gd_flags = 1475 GEM_DMA_WRITE(sc, flags); 1476 1477 sc->sc_txdescs[nexttx].gd_addr = 1478 GEM_DMA_WRITE(sc, 1479 sc->sc_nulldmamap->dm_segs[0].ds_addr); 1480 flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) & 1481 GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET; 1482 lasttx = nexttx; 1483 nexttx = GEM_NEXTTX(nexttx); 1484 seg++; 1485 } 1486 sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags); 1487 1488 KASSERT(lasttx != -1); 1489 1490 /* 1491 * Store a pointer to the packet so we can free it later, 1492 * and remember what txdirty will be once the packet is 1493 * done. 1494 */ 1495 txs->txs_mbuf = m0; 1496 txs->txs_firstdesc = sc->sc_txnext; 1497 txs->txs_lastdesc = lasttx; 1498 txs->txs_ndescs = seg; 1499 1500 #ifdef GEM_DEBUG 1501 if (ifp->if_flags & IFF_DEBUG) { 1502 printf(" gem_start %p transmit chain:\n", txs); 1503 gem_txsoft_print(sc, txs->txs_firstdesc, 1504 txs->txs_lastdesc); 1505 } 1506 #endif 1507 1508 /* Sync the descriptors we're using. */ 1509 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs, 1510 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1511 1512 /* Advance the tx pointer. */ 1513 sc->sc_txfree -= txs->txs_ndescs; 1514 sc->sc_txnext = nexttx; 1515 1516 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q); 1517 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q); 1518 1519 #if NBPFILTER > 0 1520 /* 1521 * Pass the packet to any BPF listeners. 1522 */ 1523 if (ifp->if_bpf) 1524 bpf_mtap(ifp->if_bpf, m0); 1525 #endif /* NBPFILTER > 0 */ 1526 } 1527 1528 if (txs == NULL || sc->sc_txfree == 0) { 1529 /* No more slots left; notify upper layer. */ 1530 ifp->if_flags |= IFF_OACTIVE; 1531 sc->sc_if_flags = ifp->if_flags; 1532 } 1533 1534 if (sc->sc_txfree != ofree) { 1535 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n", 1536 device_xname(&sc->sc_dev), lasttx, firsttx)); 1537 /* 1538 * The entire packet chain is set up. 1539 * Kick the transmitter. 1540 */ 1541 DPRINTF(sc, ("%s: gem_start: kicking tx %d\n", 1542 device_xname(&sc->sc_dev), nexttx)); 1543 bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK, 1544 sc->sc_txnext); 1545 1546 /* Set a watchdog timer in case the chip flakes out. */ 1547 ifp->if_timer = 5; 1548 DPRINTF(sc, ("%s: gem_start: watchdog %d\n", 1549 device_xname(&sc->sc_dev), ifp->if_timer)); 1550 } 1551 } 1552 1553 /* 1554 * Transmit interrupt. 1555 */ 1556 int 1557 gem_tint(sc) 1558 struct gem_softc *sc; 1559 { 1560 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1561 bus_space_tag_t t = sc->sc_bustag; 1562 bus_space_handle_t mac = sc->sc_h1; 1563 struct gem_txsoft *txs; 1564 int txlast; 1565 int progress = 0; 1566 u_int32_t v; 1567 1568 DPRINTF(sc, ("%s: gem_tint\n", device_xname(&sc->sc_dev))); 1569 1570 /* Unload collision counters ... */ 1571 v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) + 1572 bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT); 1573 ifp->if_collisions += v + 1574 bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) + 1575 bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT); 1576 ifp->if_oerrors += v; 1577 1578 /* ... then clear the hardware counters. */ 1579 bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0); 1580 bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0); 1581 bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0); 1582 bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0); 1583 1584 /* 1585 * Go through our Tx list and free mbufs for those 1586 * frames that have been transmitted. 1587 */ 1588 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) { 1589 /* 1590 * In theory, we could harvest some descriptors before 1591 * the ring is empty, but that's a bit complicated. 1592 * 1593 * GEM_TX_COMPLETION points to the last descriptor 1594 * processed +1. 1595 * 1596 * Let's assume that the NIC writes back to the Tx 1597 * descriptors before it updates the completion 1598 * register. If the NIC has posted writes to the 1599 * Tx descriptors, PCI ordering requires that the 1600 * posted writes flush to RAM before the register-read 1601 * finishes. So let's read the completion register, 1602 * before syncing the descriptors, so that we 1603 * examine Tx descriptors that are at least as 1604 * current as the completion register. 1605 */ 1606 txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION); 1607 DPRINTF(sc, 1608 ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n", 1609 txs->txs_lastdesc, txlast)); 1610 if (txs->txs_firstdesc <= txs->txs_lastdesc) { 1611 if (txlast >= txs->txs_firstdesc && 1612 txlast <= txs->txs_lastdesc) 1613 break; 1614 } else if (txlast >= txs->txs_firstdesc || 1615 txlast <= txs->txs_lastdesc) 1616 break; 1617 1618 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs, 1619 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1620 1621 #ifdef GEM_DEBUG /* XXX DMA synchronization? */ 1622 if (ifp->if_flags & IFF_DEBUG) { 1623 printf(" txsoft %p transmit chain:\n", txs); 1624 gem_txsoft_print(sc, txs->txs_firstdesc, 1625 txs->txs_lastdesc); 1626 } 1627 #endif 1628 1629 1630 DPRINTF(sc, ("gem_tint: releasing a desc\n")); 1631 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); 1632 1633 sc->sc_txfree += txs->txs_ndescs; 1634 1635 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 1636 0, txs->txs_dmamap->dm_mapsize, 1637 BUS_DMASYNC_POSTWRITE); 1638 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap); 1639 if (txs->txs_mbuf != NULL) { 1640 m_freem(txs->txs_mbuf); 1641 txs->txs_mbuf = NULL; 1642 } 1643 1644 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 1645 1646 ifp->if_opackets++; 1647 progress = 1; 1648 } 1649 1650 #if 0 1651 DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x " 1652 "GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n", 1653 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE), 1654 ((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1, 1655 GEM_TX_DATA_PTR_HI) << 32) | 1656 bus_space_read_4(sc->sc_bustag, sc->sc_h1, 1657 GEM_TX_DATA_PTR_LO), 1658 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION))); 1659 #endif 1660 1661 if (progress) { 1662 if (sc->sc_txfree == GEM_NTXDESC - 1) 1663 sc->sc_txwin = 0; 1664 1665 /* Freed some descriptors, so reset IFF_OACTIVE and restart. */ 1666 ifp->if_flags &= ~IFF_OACTIVE; 1667 sc->sc_if_flags = ifp->if_flags; 1668 ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5; 1669 gem_start(ifp); 1670 } 1671 DPRINTF(sc, ("%s: gem_tint: watchdog %d\n", 1672 device_xname(&sc->sc_dev), ifp->if_timer)); 1673 1674 return (1); 1675 } 1676 1677 /* 1678 * Receive interrupt. 1679 */ 1680 int 1681 gem_rint(sc) 1682 struct gem_softc *sc; 1683 { 1684 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1685 bus_space_tag_t t = sc->sc_bustag; 1686 bus_space_handle_t h = sc->sc_h1; 1687 struct gem_rxsoft *rxs; 1688 struct mbuf *m; 1689 u_int64_t rxstat; 1690 u_int32_t rxcomp; 1691 int i, len, progress = 0; 1692 1693 DPRINTF(sc, ("%s: gem_rint\n", device_xname(&sc->sc_dev))); 1694 1695 /* 1696 * Ignore spurious interrupt that sometimes occurs before 1697 * we are set up when we network boot. 1698 */ 1699 if (!sc->sc_meminited) 1700 return 1; 1701 1702 /* 1703 * Read the completion register once. This limits 1704 * how long the following loop can execute. 1705 */ 1706 rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION); 1707 1708 /* 1709 * XXX Read the lastrx only once at the top for speed. 1710 */ 1711 DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n", 1712 sc->sc_rxptr, rxcomp)); 1713 1714 /* 1715 * Go into the loop at least once. 1716 */ 1717 for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp; 1718 i = GEM_NEXTRX(i)) { 1719 rxs = &sc->sc_rxsoft[i]; 1720 1721 GEM_CDRXSYNC(sc, i, 1722 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1723 1724 rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags); 1725 1726 if (rxstat & GEM_RD_OWN) { 1727 GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD); 1728 /* 1729 * We have processed all of the receive buffers. 1730 */ 1731 break; 1732 } 1733 1734 progress++; 1735 ifp->if_ipackets++; 1736 1737 if (rxstat & GEM_RD_BAD_CRC) { 1738 ifp->if_ierrors++; 1739 aprint_error_dev(&sc->sc_dev, "receive error: CRC error\n"); 1740 GEM_INIT_RXDESC(sc, i); 1741 continue; 1742 } 1743 1744 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0, 1745 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 1746 #ifdef GEM_DEBUG 1747 if (ifp->if_flags & IFF_DEBUG) { 1748 printf(" rxsoft %p descriptor %d: ", rxs, i); 1749 printf("gd_flags: 0x%016llx\t", (long long) 1750 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags)); 1751 printf("gd_addr: 0x%016llx\n", (long long) 1752 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr)); 1753 } 1754 #endif 1755 1756 /* No errors; receive the packet. */ 1757 len = GEM_RD_BUFLEN(rxstat); 1758 1759 /* 1760 * Allocate a new mbuf cluster. If that fails, we are 1761 * out of memory, and must drop the packet and recycle 1762 * the buffer that's already attached to this descriptor. 1763 */ 1764 m = rxs->rxs_mbuf; 1765 if (gem_add_rxbuf(sc, i) != 0) { 1766 GEM_COUNTER_INCR(sc, sc_ev_rxnobuf); 1767 ifp->if_ierrors++; 1768 GEM_INIT_RXDESC(sc, i); 1769 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0, 1770 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 1771 continue; 1772 } 1773 m->m_data += 2; /* We're already off by two */ 1774 1775 m->m_pkthdr.rcvif = ifp; 1776 m->m_pkthdr.len = m->m_len = len; 1777 1778 #if NBPFILTER > 0 1779 /* 1780 * Pass this up to any BPF listeners, but only 1781 * pass it up the stack if it's for us. 1782 */ 1783 if (ifp->if_bpf) 1784 bpf_mtap(ifp->if_bpf, m); 1785 #endif /* NBPFILTER > 0 */ 1786 1787 #ifdef INET 1788 /* hardware checksum */ 1789 if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) { 1790 struct ether_header *eh; 1791 struct ip *ip; 1792 int32_t hlen, pktlen; 1793 1794 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) { 1795 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN - 1796 ETHER_VLAN_ENCAP_LEN; 1797 eh = (struct ether_header *) (mtod(m, char *) + 1798 ETHER_VLAN_ENCAP_LEN); 1799 } else { 1800 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN; 1801 eh = mtod(m, struct ether_header *); 1802 } 1803 if (ntohs(eh->ether_type) != ETHERTYPE_IP) 1804 goto swcsum; 1805 ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN); 1806 1807 /* IPv4 only */ 1808 if (ip->ip_v != IPVERSION) 1809 goto swcsum; 1810 1811 hlen = ip->ip_hl << 2; 1812 if (hlen < sizeof(struct ip)) 1813 goto swcsum; 1814 1815 /* 1816 * bail if too short, has random trailing garbage, 1817 * truncated, fragment, or has ethernet pad. 1818 */ 1819 if ((ntohs(ip->ip_len) < hlen) || 1820 (ntohs(ip->ip_len) != pktlen) || 1821 (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK))) 1822 goto swcsum; 1823 1824 switch (ip->ip_p) { 1825 case IPPROTO_TCP: 1826 if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4)) 1827 goto swcsum; 1828 if (pktlen < (hlen + sizeof(struct tcphdr))) 1829 goto swcsum; 1830 m->m_pkthdr.csum_flags = M_CSUM_TCPv4; 1831 break; 1832 case IPPROTO_UDP: 1833 /* FALLTHROUGH */ 1834 default: 1835 goto swcsum; 1836 } 1837 1838 /* the uncomplemented sum is expected */ 1839 m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM; 1840 1841 /* if the pkt had ip options, we have to deduct them */ 1842 if (hlen > sizeof(struct ip)) { 1843 uint16_t *opts; 1844 uint32_t optsum, temp; 1845 1846 optsum = 0; 1847 temp = hlen - sizeof(struct ip); 1848 opts = (uint16_t *) ((char *) ip + 1849 sizeof(struct ip)); 1850 1851 while (temp > 1) { 1852 optsum += ntohs(*opts++); 1853 temp -= 2; 1854 } 1855 while (optsum >> 16) 1856 optsum = (optsum >> 16) + 1857 (optsum & 0xffff); 1858 1859 /* Deduct ip opts sum from hwsum (rfc 1624). */ 1860 m->m_pkthdr.csum_data = 1861 ~((~m->m_pkthdr.csum_data) - ~optsum); 1862 1863 while (m->m_pkthdr.csum_data >> 16) 1864 m->m_pkthdr.csum_data = 1865 (m->m_pkthdr.csum_data >> 16) + 1866 (m->m_pkthdr.csum_data & 1867 0xffff); 1868 } 1869 1870 m->m_pkthdr.csum_flags |= M_CSUM_DATA | 1871 M_CSUM_NO_PSEUDOHDR; 1872 } else 1873 swcsum: 1874 m->m_pkthdr.csum_flags = 0; 1875 #endif 1876 /* Pass it on. */ 1877 (*ifp->if_input)(ifp, m); 1878 } 1879 1880 if (progress) { 1881 /* Update the receive pointer. */ 1882 if (i == sc->sc_rxptr) { 1883 GEM_COUNTER_INCR(sc, sc_ev_rxfull); 1884 #ifdef GEM_DEBUG 1885 if (ifp->if_flags & IFF_DEBUG) 1886 printf("%s: rint: ring wrap\n", 1887 device_xname(&sc->sc_dev)); 1888 #endif 1889 } 1890 sc->sc_rxptr = i; 1891 bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i)); 1892 } 1893 #ifdef GEM_COUNTERS 1894 if (progress <= 4) { 1895 GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]); 1896 } else if (progress < 32) { 1897 if (progress < 16) 1898 GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]); 1899 else 1900 GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]); 1901 1902 } else { 1903 if (progress < 64) 1904 GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]); 1905 else 1906 GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]); 1907 } 1908 #endif 1909 1910 DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n", 1911 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION))); 1912 1913 /* Read error counters ... */ 1914 ifp->if_ierrors += 1915 bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) + 1916 bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) + 1917 bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) + 1918 bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL); 1919 1920 /* ... then clear the hardware counters. */ 1921 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0); 1922 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0); 1923 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0); 1924 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0); 1925 1926 return (1); 1927 } 1928 1929 1930 /* 1931 * gem_add_rxbuf: 1932 * 1933 * Add a receive buffer to the indicated descriptor. 1934 */ 1935 int 1936 gem_add_rxbuf(struct gem_softc *sc, int idx) 1937 { 1938 struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx]; 1939 struct mbuf *m; 1940 int error; 1941 1942 MGETHDR(m, M_DONTWAIT, MT_DATA); 1943 if (m == NULL) 1944 return (ENOBUFS); 1945 1946 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner); 1947 MCLGET(m, M_DONTWAIT); 1948 if ((m->m_flags & M_EXT) == 0) { 1949 m_freem(m); 1950 return (ENOBUFS); 1951 } 1952 1953 #ifdef GEM_DEBUG 1954 /* bzero the packet to check DMA */ 1955 memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size); 1956 #endif 1957 1958 if (rxs->rxs_mbuf != NULL) 1959 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap); 1960 1961 rxs->rxs_mbuf = m; 1962 1963 error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap, 1964 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, 1965 BUS_DMA_READ|BUS_DMA_NOWAIT); 1966 if (error) { 1967 aprint_error_dev(&sc->sc_dev, "can't load rx DMA map %d, error = %d\n", 1968 idx, error); 1969 panic("gem_add_rxbuf"); /* XXX */ 1970 } 1971 1972 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0, 1973 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 1974 1975 GEM_INIT_RXDESC(sc, idx); 1976 1977 return (0); 1978 } 1979 1980 1981 int 1982 gem_eint(struct gem_softc *sc, u_int status) 1983 { 1984 char bits[128]; 1985 u_int32_t r, v; 1986 1987 if ((status & GEM_INTR_MIF) != 0) { 1988 printf("%s: XXXlink status changed\n", device_xname(&sc->sc_dev)); 1989 return (1); 1990 } 1991 1992 if ((status & GEM_INTR_RX_TAG_ERR) != 0) { 1993 gem_reset_rxdma(sc); 1994 return (1); 1995 } 1996 1997 if (status & GEM_INTR_BERR) { 1998 if (sc->sc_flags & GEM_PCI) 1999 r = GEM_ERROR_STATUS; 2000 else 2001 r = GEM_SBUS_ERROR_STATUS; 2002 bus_space_read_4(sc->sc_bustag, sc->sc_h2, r); 2003 v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r); 2004 aprint_error_dev(&sc->sc_dev, "bus error interrupt: 0x%02x\n", 2005 v); 2006 return (1); 2007 } 2008 snprintb(bits, sizeof(bits), GEM_INTR_BITS, status); 2009 printf("%s: status=%s\n", device_xname(&sc->sc_dev), bits); 2010 2011 return (1); 2012 } 2013 2014 2015 /* 2016 * PCS interrupts. 2017 * We should receive these when the link status changes, but sometimes 2018 * we don't receive them for link up. We compensate for this in the 2019 * gem_tick() callout. 2020 */ 2021 int 2022 gem_pint(struct gem_softc *sc) 2023 { 2024 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2025 bus_space_tag_t t = sc->sc_bustag; 2026 bus_space_handle_t h = sc->sc_h1; 2027 u_int32_t v, v2; 2028 2029 /* 2030 * Clear the PCS interrupt from GEM_STATUS. The PCS register is 2031 * latched, so we have to read it twice. There is only one bit in 2032 * use, so the value is meaningless. 2033 */ 2034 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS); 2035 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS); 2036 2037 if ((ifp->if_flags & IFF_UP) == 0) 2038 return 1; 2039 2040 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) 2041 return 1; 2042 2043 v = bus_space_read_4(t, h, GEM_MII_STATUS); 2044 /* If we see remote fault, our link partner is probably going away */ 2045 if ((v & GEM_MII_STATUS_REM_FLT) != 0) { 2046 gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0); 2047 v = bus_space_read_4(t, h, GEM_MII_STATUS); 2048 /* Otherwise, we may need to wait after auto-negotiation completes */ 2049 } else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) == 2050 GEM_MII_STATUS_ANEG_CPT) { 2051 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS); 2052 v = bus_space_read_4(t, h, GEM_MII_STATUS); 2053 } 2054 if ((v & GEM_MII_STATUS_LINK_STS) != 0) { 2055 if (sc->sc_flags & GEM_LINK) { 2056 return 1; 2057 } 2058 callout_stop(&sc->sc_tick_ch); 2059 v = bus_space_read_4(t, h, GEM_MII_ANAR); 2060 v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR); 2061 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX; 2062 sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE; 2063 v &= v2; 2064 if (v & GEM_MII_ANEG_FUL_DUPLX) { 2065 sc->sc_mii.mii_media_active |= IFM_FDX; 2066 #ifdef GEM_DEBUG 2067 aprint_debug_dev(&sc->sc_dev, "link up: full duplex\n"); 2068 #endif 2069 } else if (v & GEM_MII_ANEG_HLF_DUPLX) { 2070 sc->sc_mii.mii_media_active |= IFM_HDX; 2071 #ifdef GEM_DEBUG 2072 aprint_debug_dev(&sc->sc_dev, "link up: half duplex\n"); 2073 #endif 2074 } else { 2075 #ifdef GEM_DEBUG 2076 aprint_debug_dev(&sc->sc_dev, "duplex mismatch\n"); 2077 #endif 2078 } 2079 gem_statuschange(sc); 2080 } else { 2081 if ((sc->sc_flags & GEM_LINK) == 0) { 2082 return 1; 2083 } 2084 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE; 2085 sc->sc_mii.mii_media_status = IFM_AVALID; 2086 #ifdef GEM_DEBUG 2087 aprint_debug_dev(&sc->sc_dev, "link down\n"); 2088 #endif 2089 gem_statuschange(sc); 2090 2091 /* Start the 10 second timer */ 2092 callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc); 2093 } 2094 return 1; 2095 } 2096 2097 2098 2099 int 2100 gem_intr(v) 2101 void *v; 2102 { 2103 struct gem_softc *sc = (struct gem_softc *)v; 2104 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2105 bus_space_tag_t t = sc->sc_bustag; 2106 bus_space_handle_t h = sc->sc_h1; 2107 u_int32_t status; 2108 int r = 0; 2109 #ifdef GEM_DEBUG 2110 char bits[128]; 2111 #endif 2112 2113 /* XXX We should probably mask out interrupts until we're done */ 2114 2115 sc->sc_ev_intr.ev_count++; 2116 2117 status = bus_space_read_4(t, h, GEM_STATUS); 2118 #ifdef GEM_DEBUG 2119 snprintb(bits, sizeof(bits), GEM_INTR_BITS, status); 2120 #endif 2121 DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n", 2122 device_xname(&sc->sc_dev), (status >> 19), bits)); 2123 2124 2125 if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0) 2126 r |= gem_eint(sc, status); 2127 2128 /* We don't bother with GEM_INTR_TX_DONE */ 2129 if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) { 2130 GEM_COUNTER_INCR(sc, sc_ev_txint); 2131 r |= gem_tint(sc); 2132 } 2133 2134 if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) { 2135 GEM_COUNTER_INCR(sc, sc_ev_rxint); 2136 r |= gem_rint(sc); 2137 } 2138 2139 /* We should eventually do more than just print out error stats. */ 2140 if (status & GEM_INTR_TX_MAC) { 2141 int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS); 2142 if (txstat & ~GEM_MAC_TX_XMIT_DONE) 2143 printf("%s: MAC tx fault, status %x\n", 2144 device_xname(&sc->sc_dev), txstat); 2145 if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG)) 2146 gem_init(ifp); 2147 } 2148 if (status & GEM_INTR_RX_MAC) { 2149 int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS); 2150 /* 2151 * At least with GEM_SUN_GEM and some GEM_SUN_ERI 2152 * revisions GEM_MAC_RX_OVERFLOW happen often due to a 2153 * silicon bug so handle them silently. Moreover, it's 2154 * likely that the receiver has hung so we reset it. 2155 */ 2156 if (rxstat & GEM_MAC_RX_OVERFLOW) { 2157 ifp->if_ierrors++; 2158 gem_reset_rxdma(sc); 2159 } else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT)) 2160 printf("%s: MAC rx fault, status 0x%02x\n", 2161 device_xname(&sc->sc_dev), rxstat); 2162 } 2163 if (status & GEM_INTR_PCS) { 2164 r |= gem_pint(sc); 2165 } 2166 2167 /* Do we need to do anything with these? 2168 if ((status & GEM_MAC_CONTROL_STATUS) != 0) { 2169 status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS); 2170 if ((status2 & GEM_MAC_PAUSED) != 0) 2171 aprintf_debug_dev(&sc->sc_dev, "PAUSE received (%d slots)\n", 2172 GEM_MAC_PAUSE_TIME(status2)); 2173 if ((status2 & GEM_MAC_PAUSE) != 0) 2174 aprintf_debug_dev(&sc->sc_dev, "transited to PAUSE state\n"); 2175 if ((status2 & GEM_MAC_RESUME) != 0) 2176 aprintf_debug_dev(&sc->sc_dev, "transited to non-PAUSE state\n"); 2177 } 2178 if ((status & GEM_INTR_MIF) != 0) 2179 aprintf_debug_dev(&sc->sc_dev, "MIF interrupt\n"); 2180 */ 2181 #if NRND > 0 2182 rnd_add_uint32(&sc->rnd_source, status); 2183 #endif 2184 return (r); 2185 } 2186 2187 2188 void 2189 gem_watchdog(ifp) 2190 struct ifnet *ifp; 2191 { 2192 struct gem_softc *sc = ifp->if_softc; 2193 2194 DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x " 2195 "GEM_MAC_RX_CONFIG %x\n", 2196 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG), 2197 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS), 2198 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG))); 2199 2200 log(LOG_ERR, "%s: device timeout\n", device_xname(&sc->sc_dev)); 2201 ++ifp->if_oerrors; 2202 2203 /* Try to get more packets going. */ 2204 gem_start(ifp); 2205 } 2206 2207 /* 2208 * Initialize the MII Management Interface 2209 */ 2210 void 2211 gem_mifinit(sc) 2212 struct gem_softc *sc; 2213 { 2214 bus_space_tag_t t = sc->sc_bustag; 2215 bus_space_handle_t mif = sc->sc_h1; 2216 2217 /* Configure the MIF in frame mode */ 2218 sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG); 2219 sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA; 2220 bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config); 2221 } 2222 2223 /* 2224 * MII interface 2225 * 2226 * The GEM MII interface supports at least three different operating modes: 2227 * 2228 * Bitbang mode is implemented using data, clock and output enable registers. 2229 * 2230 * Frame mode is implemented by loading a complete frame into the frame 2231 * register and polling the valid bit for completion. 2232 * 2233 * Polling mode uses the frame register but completion is indicated by 2234 * an interrupt. 2235 * 2236 */ 2237 static int 2238 gem_mii_readreg(self, phy, reg) 2239 struct device *self; 2240 int phy, reg; 2241 { 2242 struct gem_softc *sc = (void *)self; 2243 bus_space_tag_t t = sc->sc_bustag; 2244 bus_space_handle_t mif = sc->sc_h1; 2245 int n; 2246 u_int32_t v; 2247 2248 #ifdef GEM_DEBUG1 2249 if (sc->sc_debug) 2250 printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg); 2251 #endif 2252 2253 /* Construct the frame command */ 2254 v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) | 2255 GEM_MIF_FRAME_READ; 2256 2257 bus_space_write_4(t, mif, GEM_MIF_FRAME, v); 2258 for (n = 0; n < 100; n++) { 2259 DELAY(1); 2260 v = bus_space_read_4(t, mif, GEM_MIF_FRAME); 2261 if (v & GEM_MIF_FRAME_TA0) 2262 return (v & GEM_MIF_FRAME_DATA); 2263 } 2264 2265 printf("%s: mii_read timeout\n", device_xname(&sc->sc_dev)); 2266 return (0); 2267 } 2268 2269 static void 2270 gem_mii_writereg(self, phy, reg, val) 2271 struct device *self; 2272 int phy, reg, val; 2273 { 2274 struct gem_softc *sc = (void *)self; 2275 bus_space_tag_t t = sc->sc_bustag; 2276 bus_space_handle_t mif = sc->sc_h1; 2277 int n; 2278 u_int32_t v; 2279 2280 #ifdef GEM_DEBUG1 2281 if (sc->sc_debug) 2282 printf("gem_mii_writereg: PHY %d reg %d val %x\n", 2283 phy, reg, val); 2284 #endif 2285 2286 /* Construct the frame command */ 2287 v = GEM_MIF_FRAME_WRITE | 2288 (phy << GEM_MIF_PHY_SHIFT) | 2289 (reg << GEM_MIF_REG_SHIFT) | 2290 (val & GEM_MIF_FRAME_DATA); 2291 2292 bus_space_write_4(t, mif, GEM_MIF_FRAME, v); 2293 for (n = 0; n < 100; n++) { 2294 DELAY(1); 2295 v = bus_space_read_4(t, mif, GEM_MIF_FRAME); 2296 if (v & GEM_MIF_FRAME_TA0) 2297 return; 2298 } 2299 2300 printf("%s: mii_write timeout\n", device_xname(&sc->sc_dev)); 2301 } 2302 2303 static void 2304 gem_mii_statchg(dev) 2305 struct device *dev; 2306 { 2307 struct gem_softc *sc = (void *)dev; 2308 #ifdef GEM_DEBUG 2309 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media); 2310 #endif 2311 2312 #ifdef GEM_DEBUG 2313 if (sc->sc_debug) 2314 printf("gem_mii_statchg: status change: phy = %d\n", 2315 sc->sc_phys[instance]); 2316 #endif 2317 gem_statuschange(sc); 2318 } 2319 2320 /* 2321 * Common status change for gem_mii_statchg() and gem_pint() 2322 */ 2323 void 2324 gem_statuschange(struct gem_softc* sc) 2325 { 2326 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2327 bus_space_tag_t t = sc->sc_bustag; 2328 bus_space_handle_t mac = sc->sc_h1; 2329 int gigabit; 2330 u_int32_t rxcfg, txcfg, v; 2331 2332 if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 && 2333 IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE) 2334 sc->sc_flags |= GEM_LINK; 2335 else 2336 sc->sc_flags &= ~GEM_LINK; 2337 2338 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000)) 2339 gigabit = 1; 2340 else 2341 gigabit = 0; 2342 2343 /* 2344 * The configuration done here corresponds to the steps F) and 2345 * G) and as far as enabling of RX and TX MAC goes also step H) 2346 * of the initialization sequence outlined in section 3.2.1 of 2347 * the GEM Gigabit Ethernet ASIC Specification. 2348 */ 2349 2350 rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG); 2351 rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE); 2352 txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT; 2353 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) 2354 txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS; 2355 else if (gigabit) { 2356 rxcfg |= GEM_MAC_RX_CARR_EXTEND; 2357 txcfg |= GEM_MAC_RX_CARR_EXTEND; 2358 } 2359 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0); 2360 bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4, 2361 BUS_SPACE_BARRIER_WRITE); 2362 if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0)) 2363 aprint_normal_dev(&sc->sc_dev, "cannot disable TX MAC\n"); 2364 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg); 2365 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0); 2366 bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4, 2367 BUS_SPACE_BARRIER_WRITE); 2368 if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0)) 2369 aprint_normal_dev(&sc->sc_dev, "cannot disable RX MAC\n"); 2370 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg); 2371 2372 v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) & 2373 ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE); 2374 bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v); 2375 2376 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 && 2377 gigabit != 0) 2378 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME, 2379 GEM_MAC_SLOT_TIME_CARR_EXTEND); 2380 else 2381 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME, 2382 GEM_MAC_SLOT_TIME_NORMAL); 2383 2384 /* XIF Configuration */ 2385 if (sc->sc_flags & GEM_LINK) 2386 v = GEM_MAC_XIF_LINK_LED; 2387 else 2388 v = 0; 2389 v |= GEM_MAC_XIF_TX_MII_ENA; 2390 2391 /* If an external transceiver is connected, enable its MII drivers */ 2392 sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG); 2393 if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) { 2394 if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) { 2395 /* External MII needs echo disable if half duplex. */ 2396 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & 2397 IFM_FDX) != 0) 2398 /* turn on full duplex LED */ 2399 v |= GEM_MAC_XIF_FDPLX_LED; 2400 else 2401 /* half duplex -- disable echo */ 2402 v |= GEM_MAC_XIF_ECHO_DISABL; 2403 if (gigabit) 2404 v |= GEM_MAC_XIF_GMII_MODE; 2405 else 2406 v &= ~GEM_MAC_XIF_GMII_MODE; 2407 } else 2408 /* Internal MII needs buf enable */ 2409 v |= GEM_MAC_XIF_MII_BUF_ENA; 2410 } else { 2411 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) 2412 v |= GEM_MAC_XIF_FDPLX_LED; 2413 v |= GEM_MAC_XIF_GMII_MODE; 2414 } 2415 bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v); 2416 2417 if ((ifp->if_flags & IFF_RUNNING) != 0 && 2418 (sc->sc_flags & GEM_LINK) != 0) { 2419 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 2420 txcfg | GEM_MAC_TX_ENABLE); 2421 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 2422 rxcfg | GEM_MAC_RX_ENABLE); 2423 } 2424 } 2425 2426 int 2427 gem_ser_mediachange(struct ifnet *ifp) 2428 { 2429 struct gem_softc *sc = ifp->if_softc; 2430 u_int s, t; 2431 2432 if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER) 2433 return EINVAL; 2434 2435 s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media); 2436 if (s == IFM_AUTO) { 2437 if (sc->sc_mii_media != s) { 2438 #ifdef GEM_DEBUG 2439 aprint_debug_dev(&sc->sc_dev, "setting media to auto\n"); 2440 #endif 2441 sc->sc_mii_media = s; 2442 if (ifp->if_flags & IFF_UP) { 2443 gem_pcs_stop(sc, 0); 2444 gem_pcs_start(sc); 2445 } 2446 } 2447 return 0; 2448 } 2449 if (s == IFM_1000_SX) { 2450 t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media); 2451 if (t == IFM_FDX || t == IFM_HDX) { 2452 if (sc->sc_mii_media != t) { 2453 sc->sc_mii_media = t; 2454 #ifdef GEM_DEBUG 2455 aprint_debug_dev(&sc->sc_dev, 2456 "setting media to 1000baseSX-%s\n", 2457 t == IFM_FDX ? "FDX" : "HDX"); 2458 #endif 2459 if (ifp->if_flags & IFF_UP) { 2460 gem_pcs_stop(sc, 0); 2461 gem_pcs_start(sc); 2462 } 2463 } 2464 return 0; 2465 } 2466 } 2467 return EINVAL; 2468 } 2469 2470 void 2471 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 2472 { 2473 struct gem_softc *sc = ifp->if_softc; 2474 2475 if ((ifp->if_flags & IFF_UP) == 0) 2476 return; 2477 ifmr->ifm_active = sc->sc_mii.mii_media_active; 2478 ifmr->ifm_status = sc->sc_mii.mii_media_status; 2479 } 2480 2481 static int 2482 gem_ifflags_cb(struct ethercom *ec) 2483 { 2484 struct ifnet *ifp = &ec->ec_if; 2485 struct gem_softc *sc = ifp->if_softc; 2486 int change = ifp->if_flags ^ sc->sc_if_flags; 2487 2488 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0) 2489 return ENETRESET; 2490 else if ((change & IFF_PROMISC) != 0) 2491 gem_setladrf(sc); 2492 return 0; 2493 } 2494 2495 /* 2496 * Process an ioctl request. 2497 */ 2498 int 2499 gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data) 2500 { 2501 struct gem_softc *sc = ifp->if_softc; 2502 int s, error = 0; 2503 2504 s = splnet(); 2505 2506 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { 2507 error = 0; 2508 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI) 2509 ; 2510 else if (ifp->if_flags & IFF_RUNNING) { 2511 /* 2512 * Multicast list has changed; set the hardware filter 2513 * accordingly. 2514 */ 2515 gem_setladrf(sc); 2516 } 2517 } 2518 2519 /* Try to get things going again */ 2520 if (ifp->if_flags & IFF_UP) 2521 gem_start(ifp); 2522 splx(s); 2523 return (error); 2524 } 2525 2526 2527 void 2528 gem_shutdown(arg) 2529 void *arg; 2530 { 2531 struct gem_softc *sc = (struct gem_softc *)arg; 2532 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2533 2534 gem_stop(ifp, 1); 2535 } 2536 2537 /* 2538 * Set up the logical address filter. 2539 */ 2540 void 2541 gem_setladrf(sc) 2542 struct gem_softc *sc; 2543 { 2544 struct ethercom *ec = &sc->sc_ethercom; 2545 struct ifnet *ifp = &ec->ec_if; 2546 struct ether_multi *enm; 2547 struct ether_multistep step; 2548 bus_space_tag_t t = sc->sc_bustag; 2549 bus_space_handle_t h = sc->sc_h1; 2550 u_int32_t crc; 2551 u_int32_t hash[16]; 2552 u_int32_t v; 2553 int i; 2554 2555 /* Get current RX configuration */ 2556 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG); 2557 2558 /* 2559 * Turn off promiscuous mode, promiscuous group mode (all multicast), 2560 * and hash filter. Depending on the case, the right bit will be 2561 * enabled. 2562 */ 2563 v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER| 2564 GEM_MAC_RX_PROMISC_GRP); 2565 2566 if ((ifp->if_flags & IFF_PROMISC) != 0) { 2567 /* Turn on promiscuous mode */ 2568 v |= GEM_MAC_RX_PROMISCUOUS; 2569 ifp->if_flags |= IFF_ALLMULTI; 2570 goto chipit; 2571 } 2572 2573 /* 2574 * Set up multicast address filter by passing all multicast addresses 2575 * through a crc generator, and then using the high order 8 bits as an 2576 * index into the 256 bit logical address filter. The high order 4 2577 * bits selects the word, while the other 4 bits select the bit within 2578 * the word (where bit 0 is the MSB). 2579 */ 2580 2581 /* Clear hash table */ 2582 memset(hash, 0, sizeof(hash)); 2583 2584 ETHER_FIRST_MULTI(step, ec, enm); 2585 while (enm != NULL) { 2586 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 2587 /* 2588 * We must listen to a range of multicast addresses. 2589 * For now, just accept all multicasts, rather than 2590 * trying to set only those filter bits needed to match 2591 * the range. (At this time, the only use of address 2592 * ranges is for IP multicast routing, for which the 2593 * range is big enough to require all bits set.) 2594 * XXX should use the address filters for this 2595 */ 2596 ifp->if_flags |= IFF_ALLMULTI; 2597 v |= GEM_MAC_RX_PROMISC_GRP; 2598 goto chipit; 2599 } 2600 2601 /* Get the LE CRC32 of the address */ 2602 crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo)); 2603 2604 /* Just want the 8 most significant bits. */ 2605 crc >>= 24; 2606 2607 /* Set the corresponding bit in the filter. */ 2608 hash[crc >> 4] |= 1 << (15 - (crc & 15)); 2609 2610 ETHER_NEXT_MULTI(step, enm); 2611 } 2612 2613 v |= GEM_MAC_RX_HASH_FILTER; 2614 ifp->if_flags &= ~IFF_ALLMULTI; 2615 2616 /* Now load the hash table into the chip (if we are using it) */ 2617 for (i = 0; i < 16; i++) { 2618 bus_space_write_4(t, h, 2619 GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0), 2620 hash[i]); 2621 } 2622 2623 chipit: 2624 sc->sc_if_flags = ifp->if_flags; 2625 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v); 2626 } 2627 2628 #if notyet 2629 2630 /* 2631 * gem_power: 2632 * 2633 * Power management (suspend/resume) hook. 2634 */ 2635 void 2636 gem_power(why, arg) 2637 int why; 2638 void *arg; 2639 { 2640 struct gem_softc *sc = arg; 2641 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2642 int s; 2643 2644 s = splnet(); 2645 switch (why) { 2646 case PWR_SUSPEND: 2647 case PWR_STANDBY: 2648 gem_stop(ifp, 1); 2649 if (sc->sc_power != NULL) 2650 (*sc->sc_power)(sc, why); 2651 break; 2652 case PWR_RESUME: 2653 if (ifp->if_flags & IFF_UP) { 2654 if (sc->sc_power != NULL) 2655 (*sc->sc_power)(sc, why); 2656 gem_init(ifp); 2657 } 2658 break; 2659 case PWR_SOFTSUSPEND: 2660 case PWR_SOFTSTANDBY: 2661 case PWR_SOFTRESUME: 2662 break; 2663 } 2664 splx(s); 2665 } 2666 #endif 2667