xref: /netbsd-src/sys/dev/ic/gem.c (revision 27578b9aac214cc7796ead81dcc5427e79d5f2a0)
1 /*	$NetBSD: gem.c,v 1.1 2001/09/16 00:11:43 eeh Exp $ */
2 
3 /*
4  *
5  * Copyright (C) 2001 Eduardo Horvath.
6  * All rights reserved.
7  *
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  */
31 
32 /*
33  * Driver for Sun GEM ethernet controllers.
34  */
35 
36 #define	GEM_DEBUG
37 int gem_opdebug = 0;
38 
39 #include "bpfilter.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/syslog.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/socket.h>
49 #include <sys/ioctl.h>
50 #include <sys/errno.h>
51 #include <sys/device.h>
52 
53 #include <machine/endian.h>
54 
55 #include <uvm/uvm_extern.h>
56 
57 #include <net/if.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_ether.h>
61 
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65 
66 #include <machine/bus.h>
67 #include <machine/intr.h>
68 
69 #include <dev/mii/mii.h>
70 #include <dev/mii/miivar.h>
71 #include <dev/mii/mii_bitbang.h>
72 
73 #include <dev/ic/gemreg.h>
74 #include <dev/ic/gemvar.h>
75 
76 #define TRIES	10000
77 
78 void		gem_start __P((struct ifnet *));
79 void		gem_stop __P((struct ifnet *, int));
80 int		gem_ioctl __P((struct ifnet *, u_long, caddr_t));
81 void		gem_tick __P((void *));
82 void		gem_watchdog __P((struct ifnet *));
83 void		gem_shutdown __P((void *));
84 int		gem_init __P((struct ifnet *));
85 void		gem_init_regs(struct gem_softc *sc);
86 static int	gem_ringsize(int sz);
87 int		gem_meminit __P((struct gem_softc *));
88 void		gem_mifinit __P((struct gem_softc *));
89 void		gem_reset __P((struct gem_softc *));
90 int		gem_reset_rx(struct gem_softc *sc);
91 int		gem_reset_tx(struct gem_softc *sc);
92 int		gem_disable_rx(struct gem_softc *sc);
93 int		gem_disable_tx(struct gem_softc *sc);
94 void		gem_rxdrain(struct gem_softc *sc);
95 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
96 void		gem_setladrf __P((struct gem_softc *));
97 
98 /* MII methods & callbacks */
99 static int	gem_mii_readreg __P((struct device *, int, int));
100 static void	gem_mii_writereg __P((struct device *, int, int, int));
101 static void	gem_mii_statchg __P((struct device *));
102 
103 int		gem_mediachange __P((struct ifnet *));
104 void		gem_mediastatus __P((struct ifnet *, struct ifmediareq *));
105 
106 struct mbuf	*gem_get __P((struct gem_softc *, int, int));
107 int		gem_put __P((struct gem_softc *, int, struct mbuf *));
108 void		gem_read __P((struct gem_softc *, int, int));
109 int		gem_eint __P((struct gem_softc *, u_int));
110 int		gem_rint __P((struct gem_softc *));
111 int		gem_tint __P((struct gem_softc *));
112 void		gem_power __P((int, void *));
113 
114 static int	ether_cmp __P((u_char *, u_char *));
115 
116 /* Default buffer copy routines */
117 void	gem_copytobuf_contig __P((struct gem_softc *, void *, int, int));
118 void	gem_copyfrombuf_contig __P((struct gem_softc *, void *, int, int));
119 void	gem_zerobuf_contig __P((struct gem_softc *, int, int));
120 
121 
122 #ifdef GEM_DEBUG
123 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
124 				printf x
125 #else
126 #define	DPRINTF(sc, x)	/* nothing */
127 #endif
128 
129 
130 /*
131  * gem_config:
132  *
133  *	Attach a Gem interface to the system.
134  */
135 void
136 gem_config(sc)
137 	struct gem_softc *sc;
138 {
139 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
140 	struct mii_data *mii = &sc->sc_mii;
141 	struct mii_softc *child;
142 	int i, error;
143 
144 	/* Make sure the chip is stopped. */
145 	ifp->if_softc = sc;
146 	gem_reset(sc);
147 
148 	/*
149 	 * Allocate the control data structures, and create and load the
150 	 * DMA map for it.
151 	 */
152 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
153 	    sizeof(struct gem_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
154 	    1, &sc->sc_cdnseg, 0)) != 0) {
155 		printf("%s: unable to allocate control data, error = %d\n",
156 		    sc->sc_dev.dv_xname, error);
157 		goto fail_0;
158 	}
159 
160 /* XXX should map this in with correct endianness */
161 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
162 	    sizeof(struct gem_control_data), (caddr_t *)&sc->sc_control_data,
163 	    BUS_DMA_COHERENT)) != 0) {
164 		printf("%s: unable to map control data, error = %d\n",
165 		    sc->sc_dev.dv_xname, error);
166 		goto fail_1;
167 	}
168 
169 	if ((error = bus_dmamap_create(sc->sc_dmatag,
170 	    sizeof(struct gem_control_data), 1,
171 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
172 		printf("%s: unable to create control data DMA map, "
173 		    "error = %d\n", sc->sc_dev.dv_xname, error);
174 		goto fail_2;
175 	}
176 
177 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
178 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
179 	    0)) != 0) {
180 		printf("%s: unable to load control data DMA map, error = %d\n",
181 		    sc->sc_dev.dv_xname, error);
182 		goto fail_3;
183 	}
184 
185 	/*
186 	 * Initialize the transmit job descriptors.
187 	 */
188 	SIMPLEQ_INIT(&sc->sc_txfreeq);
189 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
190 
191 	/*
192 	 * Create the transmit buffer DMA maps.
193 	 */
194 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
195 		struct gem_txsoft *txs;
196 
197 		txs = &sc->sc_txsoft[i];
198 		txs->txs_mbuf = NULL;
199 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
200 		    GEM_NTXSEGS, MCLBYTES, 0, 0,
201 		    &txs->txs_dmamap)) != 0) {
202 			printf("%s: unable to create tx DMA map %d, "
203 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
204 			goto fail_4;
205 		}
206 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
207 	}
208 
209 	/*
210 	 * Create the receive buffer DMA maps.
211 	 */
212 	for (i = 0; i < GEM_NRXDESC; i++) {
213 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
214 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
215 			printf("%s: unable to create rx DMA map %d, "
216 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
217 			goto fail_5;
218 		}
219 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
220 	}
221 
222 	/*
223 	 * From this point forward, the attachment cannot fail.  A failure
224 	 * before this point releases all resources that may have been
225 	 * allocated.
226 	 */
227 	sc->sc_flags |= GEMF_ATTACHED;
228 
229 	/* Announce ourselves. */
230 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
231 	    ether_sprintf(sc->sc_enaddr));
232 
233 	/* Initialize ifnet structure. */
234 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
235 	ifp->if_softc = sc;
236 	ifp->if_flags =
237 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
238 	ifp->if_start = gem_start;
239 	ifp->if_ioctl = gem_ioctl;
240 	ifp->if_watchdog = gem_watchdog;
241 	ifp->if_stop = gem_stop;
242 	ifp->if_init = gem_init;
243 	IFQ_SET_READY(&ifp->if_snd);
244 
245 	/* Initialize ifmedia structures and MII info */
246 	mii->mii_ifp = ifp;
247 	mii->mii_readreg = gem_mii_readreg;
248 	mii->mii_writereg = gem_mii_writereg;
249 	mii->mii_statchg = gem_mii_statchg;
250 
251 	ifmedia_init(&mii->mii_media, 0, gem_mediachange, gem_mediastatus);
252 
253 	gem_mifinit(sc);
254 
255 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
256 			MII_PHY_ANY, MII_OFFSET_ANY, 0);
257 
258 	child = LIST_FIRST(&mii->mii_phys);
259 	if (child == NULL) {
260 		/* No PHY attached */
261 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
262 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
263 	} else {
264 		/*
265 		 * Walk along the list of attached MII devices and
266 		 * establish an `MII instance' to `phy number'
267 		 * mapping. We'll use this mapping in media change
268 		 * requests to determine which phy to use to program
269 		 * the MIF configuration register.
270 		 */
271 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
272 			/*
273 			 * Note: we support just two PHYs: the built-in
274 			 * internal device and an external on the MII
275 			 * connector.
276 			 */
277 			if (child->mii_phy > 1 || child->mii_inst > 1) {
278 				printf("%s: cannot accomodate MII device %s"
279 				       " at phy %d, instance %d\n",
280 				       sc->sc_dev.dv_xname,
281 				       child->mii_dev.dv_xname,
282 				       child->mii_phy, child->mii_inst);
283 				continue;
284 			}
285 
286 			sc->sc_phys[child->mii_inst] = child->mii_phy;
287 		}
288 
289 		/*
290 		 * Now select and activate the PHY we will use.
291 		 *
292 		 * The order of preference is External (MDI1),
293 		 * Internal (MDI0), Serial Link (no MII).
294 		 */
295 		if (sc->sc_phys[1]) {
296 #ifdef DEBUG
297 			printf("using external phy\n");
298 #endif
299 			sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
300 		} else {
301 #ifdef DEBUG
302 			printf("using internal phy\n");
303 #endif
304 			sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
305 		}
306 		bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG,
307 			sc->sc_mif_config);
308 
309 		/*
310 		 * XXX - we can really do the following ONLY if the
311 		 * phy indeed has the auto negotiation capability!!
312 		 */
313 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
314 	}
315 
316 	/* claim 802.1q capability */
317 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
318 
319 	/* Attach the interface. */
320 	if_attach(ifp);
321 	ether_ifattach(ifp, sc->sc_enaddr);
322 
323 	sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
324 	if (sc->sc_sh == NULL)
325 		panic("gem_config: can't establish shutdownhook");
326 
327 #if NRND > 0
328 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
329 			  RND_TYPE_NET, 0);
330 #endif
331 
332 
333 #if notyet
334 	/*
335 	 * Add a suspend hook to make sure we come back up after a
336 	 * resume.
337 	 */
338 	sc->sc_powerhook = powerhook_establish(gem_power, sc);
339 	if (sc->sc_powerhook == NULL)
340 		printf("%s: WARNING: unable to establish power hook\n",
341 		    sc->sc_dev.dv_xname);
342 #endif
343 
344 	callout_init(&sc->sc_tick_ch);
345 	return;
346 
347 	/*
348 	 * Free any resources we've allocated during the failed attach
349 	 * attempt.  Do this in reverse order and fall through.
350 	 */
351  fail_5:
352 	for (i = 0; i < GEM_NRXDESC; i++) {
353 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
354 			bus_dmamap_destroy(sc->sc_dmatag,
355 			    sc->sc_rxsoft[i].rxs_dmamap);
356 	}
357  fail_4:
358 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
359 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
360 			bus_dmamap_destroy(sc->sc_dmatag,
361 			    sc->sc_txsoft[i].txs_dmamap);
362 	}
363 	bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
364  fail_3:
365 	bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
366  fail_2:
367 	bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sc_control_data,
368 	    sizeof(struct gem_control_data));
369  fail_1:
370 	bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
371  fail_0:
372 	return;
373 }
374 
375 
376 void
377 gem_tick(arg)
378 	void *arg;
379 {
380 	struct gem_softc *sc = arg;
381 	int s;
382 
383 	s = splnet();
384 	mii_tick(&sc->sc_mii);
385 	splx(s);
386 
387 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
388 
389 }
390 
391 void
392 gem_reset(sc)
393 	struct gem_softc *sc;
394 {
395 	bus_space_tag_t t = sc->sc_bustag;
396 	bus_space_handle_t h = sc->sc_h;
397 	int i;
398 	int s;
399 
400 	s = splnet();
401 	DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
402 	gem_reset_rx(sc);
403 	gem_reset_tx(sc);
404 
405 	/* Do a full reset */
406 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
407 	for (i=TRIES; i--; delay(100))
408 		if ((bus_space_read_4(t, h, GEM_RESET) &
409 			(GEM_RESET_RX|GEM_RESET_TX)) == 0)
410 			break;
411 	if ((bus_space_read_4(t, h, GEM_RESET) &
412 		(GEM_RESET_RX|GEM_RESET_TX)) != 0) {
413 		printf("%s: cannot reset device\n",
414 			sc->sc_dev.dv_xname);
415 	}
416 	splx(s);
417 }
418 
419 
420 /*
421  * gem_rxdrain:
422  *
423  *	Drain the receive queue.
424  */
425 void
426 gem_rxdrain(struct gem_softc *sc)
427 {
428 	struct gem_rxsoft *rxs;
429 	int i;
430 
431 	for (i = 0; i < GEM_NRXDESC; i++) {
432 		rxs = &sc->sc_rxsoft[i];
433 		if (rxs->rxs_mbuf != NULL) {
434 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
435 			m_freem(rxs->rxs_mbuf);
436 			rxs->rxs_mbuf = NULL;
437 		}
438 	}
439 }
440 
441 /*
442  * Reset the whole thing.
443  */
444 void
445 gem_stop(struct ifnet *ifp, int disable)
446 {
447 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
448 	struct gem_txsoft *txs;
449 
450 if (gem_opdebug) printf("in stop %d\n", disable);
451 	DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
452 
453 	callout_stop(&sc->sc_tick_ch);
454 	mii_down(&sc->sc_mii);
455 
456 	/* XXX - Should we reset these instead? */
457 	gem_disable_rx(sc);
458 	gem_disable_rx(sc);
459 
460 	/*
461 	 * Release any queued transmit buffers.
462 	 */
463 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
464 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
465 		if (txs->txs_mbuf != NULL) {
466 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
467 			m_freem(txs->txs_mbuf);
468 			txs->txs_mbuf = NULL;
469 		}
470 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
471 	}
472 
473 	if (disable) {
474 		gem_rxdrain(sc);
475 	}
476 
477 	/*
478 	 * Mark the interface down and cancel the watchdog timer.
479 	 */
480 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
481 	ifp->if_timer = 0;
482 }
483 
484 
485 /*
486  * Reset the receiver
487  */
488 int
489 gem_reset_rx(struct gem_softc *sc)
490 {
491 	bus_space_tag_t t = sc->sc_bustag;
492 	bus_space_handle_t h = sc->sc_h;
493 	int i;
494 
495 
496 	/*
497 	 * Resetting while DMA is in progress can cause a bus hang, so we
498 	 * disable DMA first.
499 	 */
500 	gem_disable_rx(sc);
501 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
502 	/* Wait till it finishes */
503 	for (i=TRIES; i--; delay(100))
504 		if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) == 0)
505 			break;
506 	if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) != 0)
507 		printf("%s: cannot disable read dma\n",
508 			sc->sc_dev.dv_xname);
509 
510 	/* Wait 5ms extra. */
511 	delay(5000);
512 
513 	/* Finally, reset the ERX */
514 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX);
515 	/* Wait till it finishes */
516 	for (i=TRIES; i--; delay(100))
517 		if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) == 0)
518 			break;
519 	if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) != 0) {
520 		printf("%s: cannot reset receiver\n",
521 			sc->sc_dev.dv_xname);
522 		return (1);
523 	}
524 	return (0);
525 }
526 
527 
528 /*
529  * Reset the transmitter
530  */
531 int
532 gem_reset_tx(struct gem_softc *sc)
533 {
534 	bus_space_tag_t t = sc->sc_bustag;
535 	bus_space_handle_t h = sc->sc_h;
536 	int i;
537 
538 	/*
539 	 * Resetting while DMA is in progress can cause a bus hang, so we
540 	 * disable DMA first.
541 	 */
542 	gem_disable_tx(sc);
543 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
544 	/* Wait till it finishes */
545 	for (i=TRIES; i--; delay(100))
546 		if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) == 0)
547 			break;
548 	if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) != 0)
549 		printf("%s: cannot disable read dma\n",
550 			sc->sc_dev.dv_xname);
551 
552 	/* Wait 5ms extra. */
553 	delay(5000);
554 
555 	/* Finally, reset the ETX */
556 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX);
557 	/* Wait till it finishes */
558 	for (i=TRIES; i--; delay(100))
559 		if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) == 0)
560 			break;
561 	if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) != 0) {
562 		printf("%s: cannot reset receiver\n",
563 			sc->sc_dev.dv_xname);
564 		return (1);
565 	}
566 	return (0);
567 }
568 
569 /*
570  * disable receiver.
571  */
572 int
573 gem_disable_rx(struct gem_softc *sc)
574 {
575 	bus_space_tag_t t = sc->sc_bustag;
576 	bus_space_handle_t h = sc->sc_h;
577 	int i;
578 	u_int32_t cfg;
579 
580 	/* Flip the enable bit */
581 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
582 	cfg &= ~GEM_MAC_RX_ENABLE;
583 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
584 
585 	/* Wait for it to finish */
586 	for (i=TRIES; i--; delay(100))
587 		if ((bus_space_read_4(t, h, GEM_MAC_RX_CONFIG) &
588 			GEM_MAC_RX_ENABLE) == 0)
589 			return (0);
590 	return (1);
591 }
592 
593 /*
594  * disable transmitter.
595  */
596 int
597 gem_disable_tx(struct gem_softc *sc)
598 {
599 	bus_space_tag_t t = sc->sc_bustag;
600 	bus_space_handle_t h = sc->sc_h;
601 	int i;
602 	u_int32_t cfg;
603 
604 	/* Flip the enable bit */
605 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
606 	cfg &= ~GEM_MAC_TX_ENABLE;
607 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
608 
609 	/* Wait for it to finish */
610 	for (i=TRIES; i--; delay(100))
611 		if ((bus_space_read_4(t, h, GEM_MAC_TX_CONFIG) &
612 			GEM_MAC_TX_ENABLE) == 0)
613 			return (0);
614 	return (1);
615 }
616 
617 /*
618  * Initialize interface.
619  */
620 int
621 gem_meminit(struct gem_softc *sc)
622 {
623 	struct gem_rxsoft *rxs;
624 	int i, error;
625 
626 	/*
627 	 * Initialize the transmit descriptor ring.
628 	 */
629 	memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
630 	for (i = 0; i < GEM_NTXDESC; i++) {
631 		sc->sc_txdescs[i].gd_flags = 0;
632 		sc->sc_txdescs[i].gd_addr = 0;
633 	}
634 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
635 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
636 	sc->sc_txfree = GEM_NTXDESC;
637 	sc->sc_txnext = 0;
638 
639 	/*
640 	 * Initialize the receive descriptor and receive job
641 	 * descriptor rings.
642 	 */
643 	for (i = 0; i < GEM_NRXDESC; i++) {
644 		rxs = &sc->sc_rxsoft[i];
645 		if (rxs->rxs_mbuf == NULL) {
646 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
647 				printf("%s: unable to allocate or map rx "
648 				    "buffer %d, error = %d\n",
649 				    sc->sc_dev.dv_xname, i, error);
650 				/*
651 				 * XXX Should attempt to run with fewer receive
652 				 * XXX buffers instead of just failing.
653 				 */
654 				gem_rxdrain(sc);
655 				return (1);
656 			}
657 		} else
658 			GEM_INIT_RXDESC(sc, i);
659 	}
660 	sc->sc_rxptr = 0;
661 
662 	return (0);
663 }
664 
665 static int
666 gem_ringsize(int sz)
667 {
668 	int v;
669 
670 	switch (sz) {
671 	case 32:
672 		v = GEM_RING_SZ_32;
673 		break;
674 	case 64:
675 		v = GEM_RING_SZ_64;
676 		break;
677 	case 128:
678 		v = GEM_RING_SZ_128;
679 		break;
680 	case 256:
681 		v = GEM_RING_SZ_256;
682 		break;
683 	case 512:
684 		v = GEM_RING_SZ_512;
685 		break;
686 	case 1024:
687 		v = GEM_RING_SZ_1024;
688 		break;
689 	case 2048:
690 		v = GEM_RING_SZ_2048;
691 		break;
692 	case 4096:
693 		v = GEM_RING_SZ_4096;
694 		break;
695 	case 8192:
696 		v = GEM_RING_SZ_8192;
697 		break;
698 	default:
699 		printf("gem: invalid Receive Descriptor ring size\n");
700 		break;
701 	}
702 	return (v);
703 }
704 
705 /*
706  * Initialization of interface; set up initialization block
707  * and transmit/receive descriptor rings.
708  */
709 int
710 gem_init(struct ifnet *ifp)
711 {
712 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
713 	bus_space_tag_t t = sc->sc_bustag;
714 	bus_space_handle_t h = sc->sc_h;
715 	int s;
716 	u_int32_t v;
717 
718 	s = splnet();
719 
720 	DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
721 	/*
722 	 * Initialization sequence. The numbered steps below correspond
723 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
724 	 * Channel Engine manual (part of the PCIO manual).
725 	 * See also the STP2002-STQ document from Sun Microsystems.
726 	 */
727 
728 	/* step 1 & 2. Reset the Ethernet Channel */
729 	gem_stop(ifp, 0);
730 if (gem_opdebug) printf("in init\n");
731 	gem_reset(sc);
732 	DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
733 
734 	/* Re-initialize the MIF */
735 	gem_mifinit(sc);
736 
737 	/* Call MI reset function if any */
738 	if (sc->sc_hwreset)
739 		(*sc->sc_hwreset)(sc);
740 
741 	/* step 3. Setup data structures in host memory */
742 	gem_meminit(sc);
743 
744 	/* step 4. TX MAC registers & counters */
745 	gem_init_regs(sc);
746 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
747 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
748 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN  + sizeof(struct ether_header):
749             ETHER_MAX_LEN + sizeof(struct ether_header)) | (0x2000<<16));
750 
751 	/* step 5. RX MAC registers & counters */
752 	gem_setladrf(sc);
753 
754 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
755 	bus_space_write_8(t, h, GEM_TX_RING_PTR,
756 		GEM_CDTXADDR(sc, 0));
757 	/* Yeeech.  The following has endianness issues. */
758 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI,
759 		(((uint64_t)GEM_CDRXADDR(sc, 0))>>32));
760 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO,
761 		GEM_CDRXADDR(sc, 0));
762 
763 	/* step 8. Global Configuration & Interrupt Mask */
764 	bus_space_write_4(t, h, GEM_INTMASK,
765 		      ~(GEM_INTR_TX_INTME|
766 			GEM_INTR_TX_EMPTY|
767 			GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
768 			GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
769 			GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
770 			GEM_INTR_BERR));
771 	bus_space_write_4(t, h, GEM_MAC_RX_MASK, 0); /* XXXX */
772 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
773 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
774 #if 0
775 	if (!sc->sc_pci) {
776 		/* Config SBus */
777 		switch (sc->sc_burst) {
778 		default:
779 			v = 0;
780 			break;
781 		case 16:
782 			v = GEM_SEB_CFG_BURST16;
783 			break;
784 		case 32:
785 			v = GEM_SEB_CFG_BURST32;
786 			break;
787 		case 64:
788 			v = GEM_SEB_CFG_BURST64;
789 			break;
790 		}
791 		bus_space_write_4(t, seb, GEM_SEBI_CFG,
792 			v|GE_SIOCFG_PARITY|GE_SIOCFG_BMODE64);
793 	}
794 #endif
795 	/* step 9. ETX Configuration: use mostly default values */
796 
797 	/* Enable DMA */
798 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
799 	bus_space_write_4(t, h, GEM_TX_CONFIG,
800 		v|GEM_TX_CONFIG_TXDMA_EN|
801 		((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
802 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
803 
804 	/* step 10. ERX Configuration */
805 
806 	/* Encode Receive Descriptor ring size: four possible values */
807 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
808 
809 	/* Enable DMA */
810 	bus_space_write_4(t, h, GEM_RX_CONFIG,
811 		v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
812 		(2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN|
813 		(0<<GEM_RX_CONFIG_CXM_START_SHFT));
814 	/*
815 	 * The following value is for an OFF Threshold of about 15.5 Kbytes
816 	 * and an ON Threshold of 4K bytes.
817 	 */
818 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH, 0xf8 | (0x40 << 12));
819 	bus_space_write_4(t, h, GEM_RX_BLANKING, (2<<12)|6);
820 
821 	/* step 11. Configure Media */
822 	gem_mii_statchg(&sc->sc_dev);
823 
824 /* XXXX Serial link needs a whole different setup. */
825 
826 
827 	/* step 12. RX_MAC Configuration Register */
828 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
829 	v |= GEM_MAC_RX_ENABLE;
830 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
831 
832 	/* step 14. Issue Transmit Pending command */
833 
834 	/* Call MI initialization function if any */
835 	if (sc->sc_hwinit)
836 		(*sc->sc_hwinit)(sc);
837 
838 
839 	/* step 15.  Give the reciever a swift kick */
840 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
841 
842 	/* Start the one second timer. */
843 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
844 
845 	ifp->if_flags |= IFF_RUNNING;
846 	ifp->if_flags &= ~IFF_OACTIVE;
847 	ifp->if_timer = 0;
848 	splx(s);
849 
850 	return (0);
851 }
852 
853 /*
854  * Compare two Ether/802 addresses for equality, inlined and unrolled for
855  * speed.
856  */
857 static __inline__ int
858 ether_cmp(a, b)
859 	u_char *a, *b;
860 {
861 
862 	if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
863 	    a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
864 		return (0);
865 	return (1);
866 }
867 
868 
869 void
870 gem_init_regs(struct gem_softc *sc)
871 {
872 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
873 	bus_space_tag_t t = sc->sc_bustag;
874 	bus_space_handle_t h = sc->sc_h;
875 
876 	/* These regs are not cleared on reset */
877 	sc->sc_inited = 0;
878 	if (!sc->sc_inited) {
879 
880 		/* Wooo.  Magic values. */
881 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
882 		bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
883 		bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
884 
885 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
886 		/* Max frame and max burst size */
887 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
888 			(ifp->if_mtu+18) | (0x2000<<16)/* Burst size */);
889 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
890 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
891 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
892 		/* Dunno.... */
893 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
894 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
895 			((sc->sc_enaddr[5]<<8)|sc->sc_enaddr[4])&0x3ff);
896 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
897 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
898 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
899 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
900 		/* MAC control addr set to 0:1:c2:0:1:80 */
901 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
902 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
903 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
904 
905 		/* MAC filter addr set to 0:0:0:0:0:0 */
906 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
907 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
908 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
909 
910 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
911 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
912 
913 		sc->sc_inited = 1;
914 	}
915 
916 	/* Counters need to be zeroed */
917 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
918 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
919 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
920 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
921 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
922 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
923 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
924 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
925 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
926 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
927 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
928 
929 	/* Un-pause stuff */
930 #if 0
931 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
932 #else
933 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
934 #endif
935 
936 	/*
937 	 * Set the station address.
938 	 */
939 	bus_space_write_4(t, h, GEM_MAC_ADDR0,
940 		(sc->sc_enaddr[4]<<8) | sc->sc_enaddr[5]);
941 	bus_space_write_4(t, h, GEM_MAC_ADDR1,
942 		(sc->sc_enaddr[2]<<8) | sc->sc_enaddr[3]);
943 	bus_space_write_4(t, h, GEM_MAC_ADDR2,
944 		(sc->sc_enaddr[0]<<8) | sc->sc_enaddr[1]);
945 
946 }
947 
948 
949 
950 void
951 gem_start(ifp)
952 	struct ifnet *ifp;
953 {
954 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
955 	struct mbuf *m0, *m;
956 	struct gem_txsoft *txs, *last_txs;
957 	bus_dmamap_t dmamap;
958 	int error, firsttx, nexttx, lasttx, ofree, seg;
959 
960 if (gem_opdebug) printf("in start free %x next %x kick %x\n",
961 sc->sc_txfree, sc->sc_txnext,
962 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK));
963 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
964 		return;
965 
966 	/*
967 	 * Remember the previous number of free descriptors and
968 	 * the first descriptor we'll use.
969 	 */
970 	ofree = sc->sc_txfree;
971 	firsttx = sc->sc_txnext;
972 
973 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
974 	    sc->sc_dev.dv_xname, ofree, firsttx));
975 
976 	/*
977 	 * Loop through the send queue, setting up transmit descriptors
978 	 * until we drain the queue, or use up all available transmit
979 	 * descriptors.
980 	 */
981 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
982 	       sc->sc_txfree != 0) {
983 		/*
984 		 * Grab a packet off the queue.
985 		 */
986 		IFQ_POLL(&ifp->if_snd, m0);
987 		if (m0 == NULL)
988 			break;
989 		m = NULL;
990 
991 		dmamap = txs->txs_dmamap;
992 
993 		/*
994 		 * Load the DMA map.  If this fails, the packet either
995 		 * didn't fit in the alloted number of segments, or we were
996 		 * short on resources.  In this case, we'll copy and try
997 		 * again.
998 		 */
999 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1000 		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1001 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1002 			if (m == NULL) {
1003 				printf("%s: unable to allocate Tx mbuf\n",
1004 				    sc->sc_dev.dv_xname);
1005 				break;
1006 			}
1007 			if (m0->m_pkthdr.len > MHLEN) {
1008 				MCLGET(m, M_DONTWAIT);
1009 				if ((m->m_flags & M_EXT) == 0) {
1010 					printf("%s: unable to allocate Tx "
1011 					    "cluster\n", sc->sc_dev.dv_xname);
1012 					m_freem(m);
1013 					break;
1014 				}
1015 			}
1016 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1017 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1018 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1019 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1020 			if (error) {
1021 				printf("%s: unable to load Tx buffer, "
1022 				    "error = %d\n", sc->sc_dev.dv_xname, error);
1023 				break;
1024 			}
1025 		}
1026 
1027 		/*
1028 		 * Ensure we have enough descriptors free to describe
1029 		 * the packet.
1030 		 */
1031 		if (dmamap->dm_nsegs > sc->sc_txfree) {
1032 			/*
1033 			 * Not enough free descriptors to transmit this
1034 			 * packet.  We haven't committed to anything yet,
1035 			 * so just unload the DMA map, put the packet
1036 			 * back on the queue, and punt.  Notify the upper
1037 			 * layer that there are no more slots left.
1038 			 *
1039 			 * XXX We could allocate an mbuf and copy, but
1040 			 * XXX it is worth it?
1041 			 */
1042 			ifp->if_flags |= IFF_OACTIVE;
1043 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
1044 			if (m != NULL)
1045 				m_freem(m);
1046 			break;
1047 		}
1048 
1049 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1050 		if (m != NULL) {
1051 			m_freem(m0);
1052 			m0 = m;
1053 		}
1054 
1055 		/*
1056 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1057 		 */
1058 
1059 		/* Sync the DMA map. */
1060 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1061 		    BUS_DMASYNC_PREWRITE);
1062 
1063 		/*
1064 		 * Initialize the transmit descriptors.
1065 		 */
1066 		for (nexttx = sc->sc_txnext, seg = 0;
1067 		     seg < dmamap->dm_nsegs;
1068 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
1069 			uint64_t flags;
1070 
1071 			/*
1072 			 * If this is the first descriptor we're
1073 			 * enqueueing, set the start of packet flag,
1074 			 * and the checksum stuff if we want the hardware
1075 			 * to do it.
1076 			 */
1077 			sc->sc_txdescs[nexttx].gd_addr =
1078 			    htole64(dmamap->dm_segs[seg].ds_addr);
1079 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1080 			if (nexttx == firsttx) {
1081 				flags |= GEM_TD_START_OF_PACKET;
1082 			}
1083 			if (seg == dmamap->dm_nsegs - 1) {
1084 				flags |= GEM_TD_END_OF_PACKET;
1085 			}
1086 			sc->sc_txdescs[nexttx].gd_flags =
1087 				htole64(flags);
1088 			lasttx = nexttx;
1089 		}
1090 
1091 #ifdef GEM_DEBUG
1092 		if (ifp->if_flags & IFF_DEBUG) {
1093 			printf("     gem_start %p transmit chain:\n", txs);
1094 			for (seg = sc->sc_txnext;; seg = GEM_NEXTTX(seg)) {
1095 				printf("descriptor %d:\t", seg);
1096 				printf("gd_flags:   0x%016llx\t", (long long)
1097 					le64toh(sc->sc_txdescs[seg].gd_flags));
1098 				printf("gd_addr: 0x%016llx\n", (long long)
1099 					le64toh(sc->sc_txdescs[seg].gd_addr));
1100 				if (seg == lasttx)
1101 					break;
1102 			}
1103 		}
1104 #endif
1105 
1106 		/* Sync the descriptors we're using. */
1107 		GEM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1108 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1109 
1110 		/*
1111 		 * Store a pointer to the packet so we can free it later,
1112 		 * and remember what txdirty will be once the packet is
1113 		 * done.
1114 		 */
1115 		txs->txs_mbuf = m0;
1116 		txs->txs_firstdesc = sc->sc_txnext;
1117 		txs->txs_lastdesc = lasttx;
1118 		txs->txs_ndescs = dmamap->dm_nsegs;
1119 
1120 		/* Advance the tx pointer. */
1121 		sc->sc_txfree -= dmamap->dm_nsegs;
1122 		sc->sc_txnext = nexttx;
1123 
1124 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
1125 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1126 
1127 		last_txs = txs;
1128 
1129 #if NBPFILTER > 0
1130 		/*
1131 		 * Pass the packet to any BPF listeners.
1132 		 */
1133 		if (ifp->if_bpf)
1134 			bpf_mtap(ifp->if_bpf, m0);
1135 #endif /* NBPFILTER > 0 */
1136 	}
1137 
1138 	if (txs == NULL || sc->sc_txfree == 0) {
1139 		/* No more slots left; notify upper layer. */
1140 		ifp->if_flags |= IFF_OACTIVE;
1141 	}
1142 
1143 	if (sc->sc_txfree != ofree) {
1144 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1145 		    sc->sc_dev.dv_xname, lasttx, firsttx));
1146 #if 0
1147 		/*
1148 		 * Cause a transmit interrupt to happen on the
1149 		 * last packet we enqueued.
1150 		 */
1151 		sc->sc_txdescs[lasttx].gd_flags |= htole64(GEM_TD_INTERRUPT_ME);
1152 		GEM_CDTXSYNC(sc, lasttx, 1,
1153 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1154 #endif
1155 		/*
1156 		 * The entire packet chain is set up.
1157 		 * Kick the transmitter.
1158 		 */
1159 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1160 			sc->sc_dev.dv_xname, nexttx));
1161 if (gem_opdebug) {
1162 	int i;
1163 	int64_t pa;
1164 	i = bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK);
1165 	printf("GEM_TX_KICK %x GEM_TX_DATA_PTR %llx GEM_TX_RING_PTR %llx\n",
1166 		i,
1167 		(long long)bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_DATA_PTR),
1168 		(long long)bus_space_read_8(sc->sc_bustag, sc->sc_h, GEM_TX_RING_PTR));
1169 	printf("descriptor %d: ", (i = lasttx));
1170 	printf("gd_flags: 0x%016llx\t", (long long)
1171 		le64toh(sc->sc_txdescs[i].gd_flags));
1172 		pa = le64toh(sc->sc_txdescs[i].gd_addr);
1173 	printf("gd_addr: 0x%016llx\n", (long long) pa);
1174 	printf("GEM_TX_CONFIG %x GEM_MAC_XIF_CONFIG %x GEM_MAC_TX_CONFIG %x\n",
1175 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_CONFIG),
1176 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_XIF_CONFIG),
1177 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_TX_CONFIG));
1178 }
1179 		bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK,
1180 			sc->sc_txnext);
1181 if (gem_opdebug) printf("gem_start: txkick %x\n",
1182 	bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK));
1183 
1184 		/* Set a watchdog timer in case the chip flakes out. */
1185 		ifp->if_timer = 5;
1186 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1187 			sc->sc_dev.dv_xname, ifp->if_timer));
1188 	}
1189 }
1190 
1191 /*
1192  * Transmit interrupt.
1193  */
1194 int
1195 gem_tint(sc)
1196 	struct gem_softc *sc;
1197 {
1198 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1199 	bus_space_tag_t t = sc->sc_bustag;
1200 	bus_space_handle_t mac = sc->sc_h;
1201 	struct gem_txsoft *txs;
1202 	int txlast;
1203 
1204 
1205 	DPRINTF(sc, ("%s: gem_tint: sc_flags 0x%08x\n",
1206 	    sc->sc_dev.dv_xname, sc->sc_flags));
1207 
1208 	/*
1209 	 * Unload collision counters
1210 	 */
1211 	ifp->if_collisions +=
1212 		bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1213 		bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
1214 		bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1215 		bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1216 
1217 	/*
1218 	 * then clear the hardware counters.
1219 	 */
1220 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1221 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1222 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1223 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1224 
1225 	/*
1226 	 * Go through our Tx list and free mbufs for those
1227 	 * frames that have been transmitted.
1228 	 */
1229 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1230 		GEM_CDTXSYNC(sc, txs->txs_lastdesc,
1231 		    txs->txs_ndescs,
1232 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1233 
1234 #ifdef GEM_DEBUG
1235 		if (ifp->if_flags & IFF_DEBUG) {
1236 			int i;
1237 			printf("    txsoft %p transmit chain:\n", txs);
1238 			for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
1239 				printf("descriptor %d: ", i);
1240 				printf("gd_flags: 0x%016llx\t", (long long)
1241 					le64toh(sc->sc_txdescs[i].gd_flags));
1242 				printf("gd_addr: 0x%016llx\n", (long long)
1243 					le64toh(sc->sc_txdescs[i].gd_addr));
1244 				if (i == txs->txs_lastdesc)
1245 					break;
1246 			}
1247 		}
1248 #endif
1249 
1250 		/*
1251 		 * In theory, we could harveast some descriptors before
1252 		 * the ring is empty, but that's a bit complicated.
1253 		 *
1254 		 * GEM_TX_COMPLETION points to the last descriptor
1255 		 * processed +1.
1256 		 */
1257 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1258 		DPRINTF(sc,
1259 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1260 				txs->txs_lastdesc, txlast));
1261 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1262 			if ((txlast >= txs->txs_firstdesc) &&
1263 				(txlast <= txs->txs_lastdesc))
1264 				break;
1265 		} else {
1266 			/* Ick -- this command wraps */
1267 			if ((txlast >= txs->txs_firstdesc) ||
1268 				(txlast <= txs->txs_lastdesc))
1269 				break;
1270 		}
1271 
1272 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1273 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1274 
1275 		sc->sc_txfree += txs->txs_ndescs;
1276 
1277 		if (txs->txs_mbuf == NULL) {
1278 #ifdef DIAGNOSTIC
1279 				panic("gem_txintr: null mbuf");
1280 #endif
1281 		}
1282 
1283 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1284 		    0, txs->txs_dmamap->dm_mapsize,
1285 		    BUS_DMASYNC_POSTWRITE);
1286 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1287 		m_freem(txs->txs_mbuf);
1288 		txs->txs_mbuf = NULL;
1289 
1290 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1291 
1292 		ifp->if_opackets++;
1293 	}
1294 
1295 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1296 		"GEM_TX_DATA_PTR %llx "
1297 		"GEM_TX_COMPLETION %x\n",
1298 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
1299 		(long long)bus_space_read_8(sc->sc_bustag, sc->sc_h,
1300 			GEM_TX_DATA_PTR),
1301 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION)));
1302 
1303 	gem_start(ifp);
1304 
1305 	if (SIMPLEQ_FIRST(&sc->sc_txdirtyq) == NULL)
1306 		ifp->if_timer = 0;
1307 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1308 		sc->sc_dev.dv_xname, ifp->if_timer));
1309 
1310 	return (1);
1311 }
1312 
1313 /*
1314  * Receive interrupt.
1315  */
1316 int
1317 gem_rint(sc)
1318 	struct gem_softc *sc;
1319 {
1320 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1321 	bus_space_tag_t t = sc->sc_bustag;
1322 	bus_space_handle_t h = sc->sc_h;
1323 	struct ether_header *eh;
1324 	struct gem_rxsoft *rxs;
1325 	struct mbuf *m;
1326 	u_int64_t rxstat;
1327 	int i, len;
1328 
1329 	DPRINTF(sc, ("%s: gem_rint: sc_flags 0x%08x\n",
1330 		sc->sc_dev.dv_xname, sc->sc_flags));
1331 	/*
1332 	 * XXXX Read the lastrx only once at the top for speed.
1333 	 */
1334 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1335 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1336 	for (i = sc->sc_rxptr; i != bus_space_read_4(t, h, GEM_RX_COMPLETION);
1337 	     i = GEM_NEXTRX(i)) {
1338 		rxs = &sc->sc_rxsoft[i];
1339 
1340 		GEM_CDRXSYNC(sc, i,
1341 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1342 
1343 		rxstat = le64toh(sc->sc_rxdescs[i].gd_flags);
1344 
1345 		if (rxstat & GEM_RD_OWN) {
1346 			printf("gem_rint: completed descriptor "
1347 				"still owned %d\n", i);
1348 			/*
1349 			 * We have processed all of the receive buffers.
1350 			 */
1351 			break;
1352 		}
1353 
1354 		if (rxstat & GEM_RD_BAD_CRC) {
1355 			printf("%s: receive error: CRC error\n",
1356 				sc->sc_dev.dv_xname);
1357 			GEM_INIT_RXDESC(sc, i);
1358 			continue;
1359 		}
1360 
1361 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1362 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1363 #ifdef GEM_DEBUG
1364 		if (ifp->if_flags & IFF_DEBUG) {
1365 			printf("    rxsoft %p descriptor %d: ", rxs, i);
1366 			printf("gd_flags: 0x%016llx\t", (long long)
1367 				le64toh(sc->sc_rxdescs[i].gd_flags));
1368 			printf("gd_addr: 0x%016llx\n", (long long)
1369 				le64toh(sc->sc_rxdescs[i].gd_addr));
1370 		}
1371 #endif
1372 
1373 		/*
1374 		 * No errors; receive the packet.  Note the Gem
1375 		 * includes the CRC with every packet.
1376 		 */
1377 		len = GEM_RD_BUFLEN(rxstat);
1378 
1379 		/*
1380 		 * We align the mbuf data in gem_add_rxbuf() so
1381 		 * we can use __NO_STRICT_ALIGNMENT here
1382 		 */
1383 #define __NO_STRICT_ALIGNMENT
1384 #ifdef __NO_STRICT_ALIGNMENT
1385 		/*
1386 		 * Allocate a new mbuf cluster.  If that fails, we are
1387 		 * out of memory, and must drop the packet and recycle
1388 		 * the buffer that's already attached to this descriptor.
1389 		 */
1390 		m = rxs->rxs_mbuf;
1391 		if (gem_add_rxbuf(sc, i) != 0) {
1392 			ifp->if_ierrors++;
1393 			GEM_INIT_RXDESC(sc, i);
1394 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1395 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1396 			continue;
1397 		}
1398 		m->m_data += 2; /* We're already off by two */
1399 #else
1400 		/*
1401 		 * The Gem's receive buffers must be 4-byte aligned.
1402 		 * But this means that the data after the Ethernet header
1403 		 * is misaligned.  We must allocate a new buffer and
1404 		 * copy the data, shifted forward 2 bytes.
1405 		 */
1406 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1407 		if (m == NULL) {
1408  dropit:
1409 			ifp->if_ierrors++;
1410 			GEM_INIT_RXDESC(sc, i);
1411 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1412 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1413 			continue;
1414 		}
1415 		if (len > (MHLEN - 2)) {
1416 			MCLGET(m, M_DONTWAIT);
1417 			if ((m->m_flags & M_EXT) == 0) {
1418 				m_freem(m);
1419 				goto dropit;
1420 			}
1421 		}
1422 		m->m_data += 2;
1423 
1424 		/*
1425 		 * Note that we use clusters for incoming frames, so the
1426 		 * buffer is virtually contiguous.
1427 		 */
1428 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1429 
1430 		/* Allow the receive descriptor to continue using its mbuf. */
1431 		GEM_INIT_RXDESC(sc, i);
1432 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1433 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1434 #endif /* __NO_STRICT_ALIGNMENT */
1435 
1436 		ifp->if_ipackets++;
1437 		eh = mtod(m, struct ether_header *);
1438 		m->m_flags |= M_HASFCS;
1439 		m->m_pkthdr.rcvif = ifp;
1440 		m->m_pkthdr.len = m->m_len = len;
1441 
1442 #if NBPFILTER > 0
1443 		/*
1444 		 * Pass this up to any BPF listeners, but only
1445 		 * pass it up the stack if its for us.
1446 		 */
1447 		if (ifp->if_bpf)
1448 			bpf_mtap(ifp->if_bpf, m);
1449 #endif /* NPBFILTER > 0 */
1450 
1451 #if 0
1452 		/*
1453 		 * We sometimes have to run the 21140 in Hash-Only
1454 		 * mode.  If we're in that mode, and not in promiscuous
1455 		 * mode, and we have a unicast packet that isn't for
1456 		 * us, then drop it.
1457 		 */
1458 		if (sc->sc_filtmode == TDCTL_Tx_FT_HASHONLY &&
1459 		    (ifp->if_flags & IFF_PROMISC) == 0 &&
1460 		    ETHER_IS_MULTICAST(eh->ether_dhost) == 0 &&
1461 		    memcmp(LLADDR(ifp->if_sadl), eh->ether_dhost,
1462 			   ETHER_ADDR_LEN) != 0) {
1463 			m_freem(m);
1464 			continue;
1465 		}
1466 #endif
1467 
1468 		/* Pass it on. */
1469 		(*ifp->if_input)(ifp, m);
1470 	}
1471 
1472 	/* Update the receive pointer. */
1473 	sc->sc_rxptr = i;
1474 	bus_space_write_4(t, h, GEM_RX_KICK, i);
1475 
1476 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1477 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1478 
1479 	return (1);
1480 }
1481 
1482 
1483 /*
1484  * gem_add_rxbuf:
1485  *
1486  *	Add a receive buffer to the indicated descriptor.
1487  */
1488 int
1489 gem_add_rxbuf(struct gem_softc *sc, int idx)
1490 {
1491 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1492 	struct mbuf *m;
1493 	int error;
1494 
1495 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1496 	if (m == NULL)
1497 		return (ENOBUFS);
1498 
1499 	MCLGET(m, M_DONTWAIT);
1500 	if ((m->m_flags & M_EXT) == 0) {
1501 		m_freem(m);
1502 		return (ENOBUFS);
1503 	}
1504 
1505 #ifdef GEM_DEBUG
1506 /* bzero the packet to check dma */
1507 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
1508 #endif
1509 
1510 	if (rxs->rxs_mbuf != NULL)
1511 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
1512 
1513 	rxs->rxs_mbuf = m;
1514 
1515 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
1516 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1517 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1518 	if (error) {
1519 		printf("%s: can't load rx DMA map %d, error = %d\n",
1520 		    sc->sc_dev.dv_xname, idx, error);
1521 		panic("gem_add_rxbuf");	/* XXX */
1522 	}
1523 
1524 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1525 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1526 
1527 	GEM_INIT_RXDESC(sc, idx);
1528 
1529 	return (0);
1530 }
1531 
1532 
1533 int
1534 gem_eint(sc, status)
1535 	struct gem_softc *sc;
1536 	u_int status;
1537 {
1538 	char bits[128];
1539 
1540 	if ((status & GEM_INTR_MIF) != 0) {
1541 		printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
1542 		return (1);
1543 	}
1544 
1545 	printf("%s: status=%s\n", sc->sc_dev.dv_xname,
1546 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
1547 	return (1);
1548 }
1549 
1550 
1551 int
1552 gem_intr(v)
1553 	void *v;
1554 {
1555 	struct gem_softc *sc = (struct gem_softc *)v;
1556 	bus_space_tag_t t = sc->sc_bustag;
1557 	bus_space_handle_t seb = sc->sc_h;
1558 	u_int32_t status;
1559 	int r = 0;
1560 
1561 	char bits[128];
1562 
1563 	status = bus_space_read_4(t, seb, GEM_STATUS);
1564 	DPRINTF(sc, ("%s: gem_intr: cplt %xstatus %s\n",
1565 		sc->sc_dev.dv_xname, (status>>19),
1566 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
1567 if (gem_opdebug) printf("%s: gem_intr: cplt %x status %s\n",
1568 	sc->sc_dev.dv_xname, (status>>19),
1569 	bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
1570 if (gem_opdebug && (status & GEM_INTR_TX_DONE)) {
1571 	int i;
1572 	int64_t pa;
1573 	i = bus_space_read_4(t, seb, GEM_TX_KICK);
1574 	printf("GEM_TX_KICK %x GEM_TX_DATA_PTR %llx GEM_TX_RING_PTR %llx\n",
1575 		i, (long long)bus_space_read_4(t, seb, GEM_TX_DATA_PTR),
1576 		(long long)bus_space_read_8(t, seb, GEM_TX_RING_PTR));
1577 	printf("descriptor %d: ", --i);
1578 	printf("gd_flags: 0x%016llx\t", (long long)
1579 		le64toh(sc->sc_txdescs[i].gd_flags));
1580 		pa = le64toh(sc->sc_txdescs[i].gd_addr);
1581 	printf("gd_addr: 0x%016llx\n", (long long) pa);
1582 	printf("GEM_TX_CONFIG %x GEM_MAC_XIF_CONFIG %x GEM_MAC_TX_CONFIG %x "
1583 		"GEM_MAC_TX_STATUS %x\n",
1584 		bus_space_read_4(t, seb, GEM_TX_CONFIG),
1585 		bus_space_read_4(t, seb, GEM_MAC_XIF_CONFIG),
1586 		bus_space_read_4(t, seb, GEM_MAC_TX_CONFIG),
1587 		bus_space_read_4(t, seb, GEM_MAC_TX_STATUS));
1588 }
1589 
1590 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
1591 		r |= gem_eint(sc, status);
1592 
1593 	if ((status &
1594 		(GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME))
1595 		!= 0)
1596 		r |= gem_tint(sc);
1597 
1598 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0)
1599 		r |= gem_rint(sc);
1600 
1601 	/* We should eventually do more than just print out error stats. */
1602 	if (status & GEM_INTR_TX_MAC) {
1603 		int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
1604 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
1605 			printf("MAC tx fault, status %x\n", txstat);
1606 	}
1607 	if (status & GEM_INTR_RX_MAC) {
1608 		int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
1609 		if (rxstat & ~GEM_MAC_RX_DONE)
1610 			printf("MAC rx fault, status %x\n", rxstat);
1611 	}
1612 	return (r);
1613 }
1614 
1615 
1616 void
1617 gem_watchdog(ifp)
1618 	struct ifnet *ifp;
1619 {
1620 	struct gem_softc *sc = ifp->if_softc;
1621 
1622 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
1623 		"GEM_MAC_RX_CONFIG %x\n",
1624 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
1625 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
1626 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG)));
1627 
1628 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1629 	++ifp->if_oerrors;
1630 
1631 	/* Try to get more packets going. */
1632 //	gem_reset(sc);
1633 	gem_start(ifp);
1634 }
1635 
1636 /*
1637  * Initialize the MII Management Interface
1638  */
1639 void
1640 gem_mifinit(sc)
1641 	struct gem_softc *sc;
1642 {
1643 	bus_space_tag_t t = sc->sc_bustag;
1644 	bus_space_handle_t mif = sc->sc_h;
1645 
1646 	/* Configure the MIF in frame mode */
1647 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1648 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
1649 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
1650 }
1651 
1652 /*
1653  * MII interface
1654  *
1655  * The GEM MII interface supports at least three different operating modes:
1656  *
1657  * Bitbang mode is implemented using data, clock and output enable registers.
1658  *
1659  * Frame mode is implemented by loading a complete frame into the frame
1660  * register and polling the valid bit for completion.
1661  *
1662  * Polling mode uses the frame register but completion is indicated by
1663  * an interrupt.
1664  *
1665  */
1666 static int
1667 gem_mii_readreg(self, phy, reg)
1668 	struct device *self;
1669 	int phy, reg;
1670 {
1671 	struct gem_softc *sc = (void *)self;
1672 	bus_space_tag_t t = sc->sc_bustag;
1673 	bus_space_handle_t mif = sc->sc_h;
1674 	int n;
1675 	u_int32_t v;
1676 
1677 #ifdef GEM_DEBUG1
1678 	if (sc->sc_debug)
1679 		printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
1680 #endif
1681 
1682 #if 0
1683 	/* Select the desired PHY in the MIF configuration register */
1684 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1685 	/* Clear PHY select bit */
1686 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
1687 	if (phy == GEM_PHYAD_EXTERNAL)
1688 		/* Set PHY select bit to get at external device */
1689 		v |= GEM_MIF_CONFIG_PHY_SEL;
1690 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1691 #endif
1692 
1693 	/* Construct the frame command */
1694 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
1695 		GEM_MIF_FRAME_READ;
1696 
1697 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1698 	for (n = 0; n < 100; n++) {
1699 		DELAY(1);
1700 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1701 		if (v & GEM_MIF_FRAME_TA0)
1702 			return (v & GEM_MIF_FRAME_DATA);
1703 	}
1704 
1705 	printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1706 	return (0);
1707 }
1708 
1709 static void
1710 gem_mii_writereg(self, phy, reg, val)
1711 	struct device *self;
1712 	int phy, reg, val;
1713 {
1714 	struct gem_softc *sc = (void *)self;
1715 	bus_space_tag_t t = sc->sc_bustag;
1716 	bus_space_handle_t mif = sc->sc_h;
1717 	int n;
1718 	u_int32_t v;
1719 
1720 #ifdef GEM_DEBUG1
1721 	if (sc->sc_debug)
1722 		printf("gem_mii_writereg: phy %d reg %d val %x\n",
1723 			phy, reg, val);
1724 #endif
1725 
1726 #if 0
1727 	/* Select the desired PHY in the MIF configuration register */
1728 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1729 	/* Clear PHY select bit */
1730 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
1731 	if (phy == GEM_PHYAD_EXTERNAL)
1732 		/* Set PHY select bit to get at external device */
1733 		v |= GEM_MIF_CONFIG_PHY_SEL;
1734 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1735 #endif
1736 	/* Construct the frame command */
1737 	v = GEM_MIF_FRAME_WRITE			|
1738 	    (phy << GEM_MIF_PHY_SHIFT)		|
1739 	    (reg << GEM_MIF_REG_SHIFT)		|
1740 	    (val & GEM_MIF_FRAME_DATA);
1741 
1742 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1743 	for (n = 0; n < 100; n++) {
1744 		DELAY(1);
1745 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1746 		if (v & GEM_MIF_FRAME_TA0)
1747 			return;
1748 	}
1749 
1750 	printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1751 }
1752 
1753 static void
1754 gem_mii_statchg(dev)
1755 	struct device *dev;
1756 {
1757 	struct gem_softc *sc = (void *)dev;
1758 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1759 	int phy = sc->sc_phys[instance];
1760 	bus_space_tag_t t = sc->sc_bustag;
1761 	bus_space_handle_t mac = sc->sc_h;
1762 	u_int32_t v;
1763 
1764 #ifdef GEM_DEBUG
1765 	if (sc->sc_debug)
1766 		printf("gem_mii_statchg: status change: phy = %d\n", phy);
1767 #endif
1768 
1769 
1770 	/* Set tx full duplex options */
1771 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
1772 	delay(10000); /* reg must be cleared and delay before changing. */
1773 	v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
1774 		GEM_MAC_TX_ENABLE;
1775 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1776 		v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
1777 	}
1778 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
1779 
1780 	/* XIF Configuration */
1781  /* We should really calculate all this rather than rely on defaults */
1782 	v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
1783 	v = GEM_MAC_XIF_LINK_LED;
1784 	v |= GEM_MAC_XIF_TX_MII_ENA;
1785 	/* If an external transceiver is connected, enable its MII drivers */
1786 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
1787 	if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
1788 		/* External MII needs echo disable if half duplex. */
1789 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1790 			/* turn on full duplex LED */
1791 			v |= GEM_MAC_XIF_FDPLX_LED;
1792  			else
1793 	 			/* half duplex -- disable echo */
1794 		 		v |= GEM_MAC_XIF_ECHO_DISABL;
1795 	} else
1796 		/* Internal MII needs buf enable */
1797 		v |= GEM_MAC_XIF_MII_BUF_ENA;
1798 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
1799 }
1800 
1801 int
1802 gem_mediachange(ifp)
1803 	struct ifnet *ifp;
1804 {
1805 	struct gem_softc *sc = ifp->if_softc;
1806 
1807 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1808 		return (EINVAL);
1809 
1810 	return (mii_mediachg(&sc->sc_mii));
1811 }
1812 
1813 void
1814 gem_mediastatus(ifp, ifmr)
1815 	struct ifnet *ifp;
1816 	struct ifmediareq *ifmr;
1817 {
1818 	struct gem_softc *sc = ifp->if_softc;
1819 
1820 	if ((ifp->if_flags & IFF_UP) == 0)
1821 		return;
1822 
1823 	mii_pollstat(&sc->sc_mii);
1824 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1825 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1826 }
1827 
1828 int gem_ioctldebug = 0;
1829 /*
1830  * Process an ioctl request.
1831  */
1832 int
1833 gem_ioctl(ifp, cmd, data)
1834 	struct ifnet *ifp;
1835 	u_long cmd;
1836 	caddr_t data;
1837 {
1838 	struct gem_softc *sc = ifp->if_softc;
1839 	struct ifreq *ifr = (struct ifreq *)data;
1840 	int s, error = 0;
1841 
1842 
1843 	switch (cmd) {
1844 	case SIOCGIFMEDIA:
1845 	case SIOCSIFMEDIA:
1846 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1847 		break;
1848 
1849 	default:
1850 		error = ether_ioctl(ifp, cmd, data);
1851 		if (error == ENETRESET) {
1852 			/*
1853 			 * Multicast list has changed; set the hardware filter
1854 			 * accordingly.
1855 			 */
1856 if (gem_ioctldebug) printf("reset1\n");
1857 			gem_init(ifp);
1858 			delay(50000);
1859 			error = 0;
1860 		}
1861 		break;
1862 	}
1863 
1864 	/* Try to get things going again */
1865 	if (ifp->if_flags & IFF_UP) {
1866 if (gem_ioctldebug) printf("start\n");
1867 		gem_start(ifp);
1868 	}
1869 	splx(s);
1870 	return (error);
1871 }
1872 
1873 
1874 void
1875 gem_shutdown(arg)
1876 	void *arg;
1877 {
1878 	struct gem_softc *sc = (struct gem_softc *)arg;
1879 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1880 
1881 	gem_stop(ifp, 1);
1882 }
1883 
1884 /*
1885  * Set up the logical address filter.
1886  */
1887 void
1888 gem_setladrf(sc)
1889 	struct gem_softc *sc;
1890 {
1891 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1892 	struct ether_multi *enm;
1893 	struct ether_multistep step;
1894 	struct ethercom *ec = &sc->sc_ethercom;
1895 	bus_space_tag_t t = sc->sc_bustag;
1896 	bus_space_handle_t h = sc->sc_h;
1897 	u_char *cp;
1898 	u_int32_t crc;
1899 	u_int32_t hash[16];
1900 	u_int32_t v;
1901 	int len;
1902 
1903 	/* Clear hash table */
1904 	memset(hash, 0, sizeof(hash));
1905 
1906 	/* Get current RX configuration */
1907 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1908 
1909 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
1910 		/* Turn on promiscuous mode; turn off the hash filter */
1911 		v |= GEM_MAC_RX_PROMISCUOUS;
1912 		v &= ~GEM_MAC_RX_HASH_FILTER;
1913 		ifp->if_flags |= IFF_ALLMULTI;
1914 		goto chipit;
1915 	}
1916 
1917 	/* Turn off promiscuous mode; turn on the hash filter */
1918 	v &= ~GEM_MAC_RX_PROMISCUOUS;
1919 	v |= GEM_MAC_RX_HASH_FILTER;
1920 
1921 	/*
1922 	 * Set up multicast address filter by passing all multicast addresses
1923 	 * through a crc generator, and then using the high order 6 bits as an
1924 	 * index into the 256 bit logical address filter.  The high order bit
1925 	 * selects the word, while the rest of the bits select the bit within
1926 	 * the word.
1927 	 */
1928 
1929 	ETHER_FIRST_MULTI(step, ec, enm);
1930 	while (enm != NULL) {
1931 		if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
1932 			/*
1933 			 * We must listen to a range of multicast addresses.
1934 			 * For now, just accept all multicasts, rather than
1935 			 * trying to set only those filter bits needed to match
1936 			 * the range.  (At this time, the only use of address
1937 			 * ranges is for IP multicast routing, for which the
1938 			 * range is big enough to require all bits set.)
1939 			 */
1940 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1941 			ifp->if_flags |= IFF_ALLMULTI;
1942 			goto chipit;
1943 		}
1944 
1945 		cp = enm->enm_addrlo;
1946 		crc = 0xffffffff;
1947 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1948 			int octet = *cp++;
1949 			int i;
1950 
1951 #define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
1952 			for (i = 0; i < 8; i++) {
1953 				if ((crc & 1) ^ (octet & 1)) {
1954 					crc >>= 1;
1955 					crc ^= MC_POLY_LE;
1956 				} else {
1957 					crc >>= 1;
1958 				}
1959 				octet >>= 1;
1960 			}
1961 		}
1962 		/* Just want the 8 most significant bits. */
1963 		crc >>= 24;
1964 
1965 		/* Set the corresponding bit in the filter. */
1966 		hash[crc >> 4] |= 1 << (crc & 0xf);
1967 
1968 		ETHER_NEXT_MULTI(step, enm);
1969 	}
1970 
1971 	ifp->if_flags &= ~IFF_ALLMULTI;
1972 
1973 chipit:
1974 	/* Now load the hash table into the chip */
1975 	bus_space_write_4(t, h, GEM_MAC_HASH0, hash[0]);
1976 	bus_space_write_4(t, h, GEM_MAC_HASH1, hash[1]);
1977 	bus_space_write_4(t, h, GEM_MAC_HASH2, hash[2]);
1978 	bus_space_write_4(t, h, GEM_MAC_HASH3, hash[3]);
1979 	bus_space_write_4(t, h, GEM_MAC_HASH4, hash[4]);
1980 	bus_space_write_4(t, h, GEM_MAC_HASH5, hash[5]);
1981 	bus_space_write_4(t, h, GEM_MAC_HASH6, hash[6]);
1982 	bus_space_write_4(t, h, GEM_MAC_HASH7, hash[7]);
1983 	bus_space_write_4(t, h, GEM_MAC_HASH8, hash[8]);
1984 	bus_space_write_4(t, h, GEM_MAC_HASH9, hash[9]);
1985 	bus_space_write_4(t, h, GEM_MAC_HASH10, hash[10]);
1986 	bus_space_write_4(t, h, GEM_MAC_HASH11, hash[11]);
1987 	bus_space_write_4(t, h, GEM_MAC_HASH12, hash[12]);
1988 	bus_space_write_4(t, h, GEM_MAC_HASH13, hash[13]);
1989 	bus_space_write_4(t, h, GEM_MAC_HASH14, hash[14]);
1990 	bus_space_write_4(t, h, GEM_MAC_HASH15, hash[15]);
1991 
1992 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1993 }
1994 
1995 #if notyet
1996 
1997 /*
1998  * gem_power:
1999  *
2000  *	Power management (suspend/resume) hook.
2001  */
2002 void
2003 gem_power(why, arg)
2004 	int why;
2005 	void *arg;
2006 {
2007 	struct gem_softc *sc = arg;
2008 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2009 	int s;
2010 
2011 	s = splnet();
2012 	switch (why) {
2013 	case PWR_SUSPEND:
2014 	case PWR_STANDBY:
2015 		gem_stop(ifp, 1);
2016 		if (sc->sc_power != NULL)
2017 			(*sc->sc_power)(sc, why);
2018 		break;
2019 	case PWR_RESUME:
2020 		if (ifp->if_flags & IFF_UP) {
2021 			if (sc->sc_power != NULL)
2022 				(*sc->sc_power)(sc, why);
2023 			gem_init(ifp);
2024 		}
2025 		break;
2026 	case PWR_SOFTSUSPEND:
2027 	case PWR_SOFTSTANDBY:
2028 	case PWR_SOFTRESUME:
2029 		break;
2030 	}
2031 	splx(s);
2032 }
2033 #endif
2034