xref: /netbsd-src/sys/dev/ic/gem.c (revision 1ca06f9c9235889e2ff6dc77279d01d151d70a9a)
1 /*	$NetBSD: gem.c,v 1.89 2009/12/05 16:43:25 jdc Exp $ */
2 
3 /*
4  *
5  * Copyright (C) 2001 Eduardo Horvath.
6  * Copyright (c) 2001-2003 Thomas Moestl
7  * All rights reserved.
8  *
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  */
32 
33 /*
34  * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
35  * See `GEM Gigabit Ethernet ASIC Specification'
36  *   http://www.sun.com/processors/manuals/ge.pdf
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.89 2009/12/05 16:43:25 jdc Exp $");
41 
42 #include "opt_inet.h"
43 #include "bpfilter.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/callout.h>
48 #include <sys/mbuf.h>
49 #include <sys/syslog.h>
50 #include <sys/malloc.h>
51 #include <sys/kernel.h>
52 #include <sys/socket.h>
53 #include <sys/ioctl.h>
54 #include <sys/errno.h>
55 #include <sys/device.h>
56 
57 #include <machine/endian.h>
58 
59 #include <uvm/uvm_extern.h>
60 
61 #include <net/if.h>
62 #include <net/if_dl.h>
63 #include <net/if_media.h>
64 #include <net/if_ether.h>
65 
66 #ifdef INET
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/in_var.h>
70 #include <netinet/ip.h>
71 #include <netinet/tcp.h>
72 #include <netinet/udp.h>
73 #endif
74 
75 #if NBPFILTER > 0
76 #include <net/bpf.h>
77 #endif
78 
79 #include <sys/bus.h>
80 #include <sys/intr.h>
81 
82 #include <dev/mii/mii.h>
83 #include <dev/mii/miivar.h>
84 #include <dev/mii/mii_bitbang.h>
85 
86 #include <dev/ic/gemreg.h>
87 #include <dev/ic/gemvar.h>
88 
89 #define TRIES	10000
90 
91 static void	gem_inten(struct gem_softc *);
92 static void	gem_start(struct ifnet *);
93 static void	gem_stop(struct ifnet *, int);
94 int		gem_ioctl(struct ifnet *, u_long, void *);
95 void		gem_tick(void *);
96 void		gem_watchdog(struct ifnet *);
97 void		gem_pcs_start(struct gem_softc *sc);
98 void		gem_pcs_stop(struct gem_softc *sc, int);
99 int		gem_init(struct ifnet *);
100 void		gem_init_regs(struct gem_softc *sc);
101 static int	gem_ringsize(int sz);
102 static int	gem_meminit(struct gem_softc *);
103 void		gem_mifinit(struct gem_softc *);
104 static int	gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
105 		    u_int32_t, u_int32_t);
106 void		gem_reset(struct gem_softc *);
107 int		gem_reset_rx(struct gem_softc *sc);
108 static void	gem_reset_rxdma(struct gem_softc *sc);
109 static void	gem_rx_common(struct gem_softc *sc);
110 int		gem_reset_tx(struct gem_softc *sc);
111 int		gem_disable_rx(struct gem_softc *sc);
112 int		gem_disable_tx(struct gem_softc *sc);
113 static void	gem_rxdrain(struct gem_softc *sc);
114 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
115 void		gem_setladrf(struct gem_softc *);
116 
117 /* MII methods & callbacks */
118 static int	gem_mii_readreg(device_t, int, int);
119 static void	gem_mii_writereg(device_t, int, int, int);
120 static void	gem_mii_statchg(device_t);
121 
122 static int	gem_ifflags_cb(struct ethercom *);
123 
124 void		gem_statuschange(struct gem_softc *);
125 
126 int		gem_ser_mediachange(struct ifnet *);
127 void		gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
128 
129 static void	gem_partial_detach(struct gem_softc *, enum gem_attach_stage);
130 
131 struct mbuf	*gem_get(struct gem_softc *, int, int);
132 int		gem_put(struct gem_softc *, int, struct mbuf *);
133 void		gem_read(struct gem_softc *, int, int);
134 int		gem_pint(struct gem_softc *);
135 int		gem_eint(struct gem_softc *, u_int);
136 int		gem_rint(struct gem_softc *);
137 int		gem_tint(struct gem_softc *);
138 void		gem_power(int, void *);
139 
140 #ifdef GEM_DEBUG
141 static void gem_txsoft_print(const struct gem_softc *, int, int);
142 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
143 				printf x
144 #else
145 #define	DPRINTF(sc, x)	/* nothing */
146 #endif
147 
148 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
149 
150 int
151 gem_detach(struct gem_softc *sc, int flags)
152 {
153 	int i;
154 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
155 
156 	/*
157 	 * Free any resources we've allocated during the attach.
158 	 * Do this in reverse order and fall through.
159 	 */
160 	switch (sc->sc_att_stage) {
161 	case GEM_ATT_BACKEND_2:
162 	case GEM_ATT_BACKEND_1:
163 	case GEM_ATT_FINISHED:
164 		gem_stop(&sc->sc_ethercom.ec_if, 1);
165 
166 #ifdef GEM_COUNTERS
167 		for (i = __arraycount(sc->sc_ev_rxhist); --i >= 0; )
168 			evcnt_detach(&sc->sc_ev_rxhist[i]);
169 		evcnt_detach(&sc->sc_ev_rxnobuf);
170 		evcnt_detach(&sc->sc_ev_rxfull);
171 		evcnt_detach(&sc->sc_ev_rxint);
172 		evcnt_detach(&sc->sc_ev_txint);
173 #endif
174 		evcnt_detach(&sc->sc_ev_intr);
175 
176 #if NRND > 0
177 		rnd_detach_source(&sc->rnd_source);
178 #endif
179 		ether_ifdetach(ifp);
180 		if_detach(ifp);
181 		ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
182 
183 		callout_destroy(&sc->sc_tick_ch);
184 
185 		/*FALLTHROUGH*/
186 	case GEM_ATT_MII:
187 		sc->sc_att_stage = GEM_ATT_MII;
188 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
189 		/*FALLTHROUGH*/
190 	case GEM_ATT_7:
191 		for (i = 0; i < GEM_NRXDESC; i++) {
192 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
193 				bus_dmamap_destroy(sc->sc_dmatag,
194 				    sc->sc_rxsoft[i].rxs_dmamap);
195 		}
196 		/*FALLTHROUGH*/
197 	case GEM_ATT_6:
198 		for (i = 0; i < GEM_TXQUEUELEN; i++) {
199 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
200 				bus_dmamap_destroy(sc->sc_dmatag,
201 				    sc->sc_txsoft[i].txs_dmamap);
202 		}
203 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
204 		/*FALLTHROUGH*/
205 	case GEM_ATT_5:
206 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_nulldmamap);
207 		/*FALLTHROUGH*/
208 	case GEM_ATT_4:
209 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
210 		/*FALLTHROUGH*/
211 	case GEM_ATT_3:
212 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
213 		/*FALLTHROUGH*/
214 	case GEM_ATT_2:
215 		bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
216 		    sizeof(struct gem_control_data));
217 		/*FALLTHROUGH*/
218 	case GEM_ATT_1:
219 		bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
220 		/*FALLTHROUGH*/
221 	case GEM_ATT_0:
222 		sc->sc_att_stage = GEM_ATT_0;
223 		/*FALLTHROUGH*/
224 	case GEM_ATT_BACKEND_0:
225 		break;
226 	}
227 	return 0;
228 }
229 
230 static void
231 gem_partial_detach(struct gem_softc *sc, enum gem_attach_stage stage)
232 {
233 	cfattach_t ca = device_cfattach(sc->sc_dev);
234 
235 	sc->sc_att_stage = stage;
236 	(*ca->ca_detach)(sc->sc_dev, 0);
237 }
238 
239 /*
240  * gem_attach:
241  *
242  *	Attach a Gem interface to the system.
243  */
244 void
245 gem_attach(struct gem_softc *sc, const uint8_t *enaddr)
246 {
247 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
248 	struct mii_data *mii = &sc->sc_mii;
249 	bus_space_tag_t t = sc->sc_bustag;
250 	bus_space_handle_t h = sc->sc_h1;
251 	struct ifmedia_entry *ifm;
252 	int i, error, phyaddr;
253 	u_int32_t v;
254 	char *nullbuf;
255 
256 	/* Make sure the chip is stopped. */
257 	ifp->if_softc = sc;
258 	gem_reset(sc);
259 
260 	/*
261 	 * Allocate the control data structures, and create and load the
262 	 * DMA map for it. gem_control_data is 9216 bytes, we have space for
263 	 * the padding buffer in the bus_dmamem_alloc()'d memory.
264 	 */
265 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
266 	    sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
267 	    0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
268 		aprint_error_dev(sc->sc_dev,
269 		   "unable to allocate control data, error = %d\n",
270 		    error);
271 		gem_partial_detach(sc, GEM_ATT_0);
272 		return;
273 	}
274 
275 	/* XXX should map this in with correct endianness */
276 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
277 	    sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
278 	    BUS_DMA_COHERENT)) != 0) {
279 		aprint_error_dev(sc->sc_dev,
280 		    "unable to map control data, error = %d\n", error);
281 		gem_partial_detach(sc, GEM_ATT_1);
282 		return;
283 	}
284 
285 	nullbuf =
286 	    (char *)sc->sc_control_data + sizeof(struct gem_control_data);
287 
288 	if ((error = bus_dmamap_create(sc->sc_dmatag,
289 	    sizeof(struct gem_control_data), 1,
290 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
291 		aprint_error_dev(sc->sc_dev,
292 		    "unable to create control data DMA map, error = %d\n",
293 		    error);
294 		gem_partial_detach(sc, GEM_ATT_2);
295 		return;
296 	}
297 
298 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
299 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
300 	    0)) != 0) {
301 		aprint_error_dev(sc->sc_dev,
302 		    "unable to load control data DMA map, error = %d\n",
303 		    error);
304 		gem_partial_detach(sc, GEM_ATT_3);
305 		return;
306 	}
307 
308 	memset(nullbuf, 0, ETHER_MIN_TX);
309 	if ((error = bus_dmamap_create(sc->sc_dmatag,
310 	    ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
311 		aprint_error_dev(sc->sc_dev,
312 		    "unable to create padding DMA map, error = %d\n", error);
313 		gem_partial_detach(sc, GEM_ATT_4);
314 		return;
315 	}
316 
317 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
318 	    nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
319 		aprint_error_dev(sc->sc_dev,
320 		    "unable to load padding DMA map, error = %d\n", error);
321 		gem_partial_detach(sc, GEM_ATT_5);
322 		return;
323 	}
324 
325 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
326 	    BUS_DMASYNC_PREWRITE);
327 
328 	/*
329 	 * Initialize the transmit job descriptors.
330 	 */
331 	SIMPLEQ_INIT(&sc->sc_txfreeq);
332 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
333 
334 	/*
335 	 * Create the transmit buffer DMA maps.
336 	 */
337 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
338 		struct gem_txsoft *txs;
339 
340 		txs = &sc->sc_txsoft[i];
341 		txs->txs_mbuf = NULL;
342 		if ((error = bus_dmamap_create(sc->sc_dmatag,
343 		    ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
344 		    ETHER_MAX_LEN_JUMBO, 0, 0,
345 		    &txs->txs_dmamap)) != 0) {
346 			aprint_error_dev(sc->sc_dev,
347 			    "unable to create tx DMA map %d, error = %d\n",
348 			    i, error);
349 			gem_partial_detach(sc, GEM_ATT_6);
350 			return;
351 		}
352 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
353 	}
354 
355 	/*
356 	 * Create the receive buffer DMA maps.
357 	 */
358 	for (i = 0; i < GEM_NRXDESC; i++) {
359 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
360 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
361 			aprint_error_dev(sc->sc_dev,
362 			    "unable to create rx DMA map %d, error = %d\n",
363 			    i, error);
364 			gem_partial_detach(sc, GEM_ATT_7);
365 			return;
366 		}
367 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
368 	}
369 
370 	/* Initialize ifmedia structures and MII info */
371 	mii->mii_ifp = ifp;
372 	mii->mii_readreg = gem_mii_readreg;
373 	mii->mii_writereg = gem_mii_writereg;
374 	mii->mii_statchg = gem_mii_statchg;
375 
376 	sc->sc_ethercom.ec_mii = mii;
377 
378 	/*
379 	 * Initialization based  on `GEM Gigabit Ethernet ASIC Specification'
380 	 * Section 3.2.1 `Initialization Sequence'.
381 	 * However, we can't assume SERDES or Serialink if neither
382 	 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
383 	 * being set, as both are set on Sun X1141A (with SERDES).  So,
384 	 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
385 	 * Also, for variants that report 2 PHY's, we prefer the external
386 	 * PHY over the internal PHY, so we look for that first.
387 	 */
388 	gem_mifinit(sc);
389 
390 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
391 		ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
392 		    ether_mediastatus);
393 		/* Look for external PHY */
394 		if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
395 			sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
396 			bus_space_write_4(t, h, GEM_MIF_CONFIG,
397 			    sc->sc_mif_config);
398 			switch (sc->sc_variant) {
399 			case GEM_SUN_ERI:
400 				phyaddr = GEM_PHYAD_EXTERNAL;
401 				break;
402 			default:
403 				phyaddr = MII_PHY_ANY;
404 				break;
405 			}
406 			mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
407 			    MII_OFFSET_ANY, MIIF_FORCEANEG);
408 		}
409 #ifdef GEM_DEBUG
410 		  else
411 			aprint_debug_dev(sc->sc_dev, "using external PHY\n");
412 #endif
413 		/* Look for internal PHY if no external PHY was found */
414 		if (LIST_EMPTY(&mii->mii_phys) &&
415 		    sc->sc_mif_config & GEM_MIF_CONFIG_MDI0) {
416 			sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
417 			bus_space_write_4(t, h, GEM_MIF_CONFIG,
418 			    sc->sc_mif_config);
419 			switch (sc->sc_variant) {
420 			case GEM_SUN_ERI:
421 			case GEM_APPLE_K2_GMAC:
422 				phyaddr = GEM_PHYAD_INTERNAL;
423 				break;
424 			case GEM_APPLE_GMAC:
425 				phyaddr = GEM_PHYAD_EXTERNAL;
426 				break;
427 			default:
428 				phyaddr = MII_PHY_ANY;
429 				break;
430 			}
431 			mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
432 			    MII_OFFSET_ANY, MIIF_FORCEANEG);
433 #ifdef GEM_DEBUG
434 			if (!LIST_EMPTY(&mii->mii_phys))
435 				aprint_debug_dev(sc->sc_dev,
436 				    "using internal PHY\n");
437 #endif
438 		}
439 		if (LIST_EMPTY(&mii->mii_phys)) {
440 				/* No PHY attached */
441 				aprint_error_dev(sc->sc_dev,
442 				    "PHY probe failed\n");
443 				gem_partial_detach(sc, GEM_ATT_MII);
444 				return;
445 		} else {
446 			struct mii_softc *child;
447 
448 			/*
449 			 * Walk along the list of attached MII devices and
450 			 * establish an `MII instance' to `PHY number'
451 			 * mapping.
452 			 */
453 			LIST_FOREACH(child, &mii->mii_phys, mii_list) {
454 				/*
455 				 * Note: we support just one PHY: the internal
456 				 * or external MII is already selected for us
457 				 * by the GEM_MIF_CONFIG  register.
458 				 */
459 				if (child->mii_phy > 1 || child->mii_inst > 0) {
460 					aprint_error_dev(sc->sc_dev,
461 					    "cannot accommodate MII device"
462 					    " %s at PHY %d, instance %d\n",
463 					       device_xname(child->mii_dev),
464 					       child->mii_phy, child->mii_inst);
465 					continue;
466 				}
467 				sc->sc_phys[child->mii_inst] = child->mii_phy;
468 			}
469 
470 			if (sc->sc_variant != GEM_SUN_ERI)
471 				bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
472 				    GEM_MII_DATAPATH_MII);
473 
474 			/*
475 			 * XXX - we can really do the following ONLY if the
476 			 * PHY indeed has the auto negotiation capability!!
477 			 */
478 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
479 		}
480 	} else {
481 		ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
482 		    gem_ser_mediastatus);
483 		/* SERDES or Serialink */
484 		if (sc->sc_flags & GEM_SERDES) {
485 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
486 			    GEM_MII_DATAPATH_SERDES);
487 		} else {
488 			sc->sc_flags |= GEM_SERIAL;
489 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
490 			    GEM_MII_DATAPATH_SERIAL);
491 		}
492 
493 		aprint_normal_dev(sc->sc_dev, "using external PCS %s: ",
494 		    sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
495 
496 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0, NULL);
497 		/* Check for FDX and HDX capabilities */
498 		sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
499 		if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
500 			ifmedia_add(&sc->sc_mii.mii_media,
501 			    IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_FDX, 0, NULL);
502 			aprint_normal("1000baseSX-FDX, ");
503 		}
504 		if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
505 			ifmedia_add(&sc->sc_mii.mii_media,
506 			    IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_HDX, 0, NULL);
507 			aprint_normal("1000baseSX-HDX, ");
508 		}
509 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
510 		sc->sc_mii_media = IFM_AUTO;
511 		aprint_normal("auto\n");
512 
513 		gem_pcs_stop(sc, 1);
514 	}
515 
516 	/*
517 	 * From this point forward, the attachment cannot fail.  A failure
518 	 * before this point releases all resources that may have been
519 	 * allocated.
520 	 */
521 
522 	/* Announce ourselves. */
523 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s",
524 	    ether_sprintf(enaddr));
525 
526 	/* Get RX FIFO size */
527 	sc->sc_rxfifosize = 64 *
528 	    bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
529 	aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
530 
531 	/* Get TX FIFO size */
532 	v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
533 	aprint_normal(", %uKB TX fifo\n", v / 16);
534 
535 	/* Initialize ifnet structure. */
536 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
537 	ifp->if_softc = sc;
538 	ifp->if_flags =
539 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
540 	sc->sc_if_flags = ifp->if_flags;
541 #if 0
542 	/*
543 	 * The GEM hardware supports basic TCP checksum offloading only.
544 	 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
545 	 * have bugs in the receive checksum, so don't enable it for now.
546 	 */
547 	if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
548 	    (GEM_IS_APPLE(sc) &&
549 	    (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
550 		ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
551 #endif
552 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
553 	ifp->if_start = gem_start;
554 	ifp->if_ioctl = gem_ioctl;
555 	ifp->if_watchdog = gem_watchdog;
556 	ifp->if_stop = gem_stop;
557 	ifp->if_init = gem_init;
558 	IFQ_SET_READY(&ifp->if_snd);
559 
560 	/*
561 	 * If we support GigE media, we support jumbo frames too.
562 	 * Unless we are Apple.
563 	 */
564 	TAILQ_FOREACH(ifm, &sc->sc_mii.mii_media.ifm_list, ifm_list) {
565 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
566 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
567 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
568 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
569 			if (!GEM_IS_APPLE(sc))
570 				sc->sc_ethercom.ec_capabilities
571 				    |= ETHERCAP_JUMBO_MTU;
572 			sc->sc_flags |= GEM_GIGABIT;
573 			break;
574 		}
575 	}
576 
577 	/* claim 802.1q capability */
578 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
579 
580 	/* Attach the interface. */
581 	if_attach(ifp);
582 	ether_ifattach(ifp, enaddr);
583 	ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
584 
585 #if NRND > 0
586 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
587 			  RND_TYPE_NET, 0);
588 #endif
589 
590 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
591 	    NULL, device_xname(sc->sc_dev), "interrupts");
592 #ifdef GEM_COUNTERS
593 	evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
594 	    &sc->sc_ev_intr, device_xname(sc->sc_dev), "tx interrupts");
595 	evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
596 	    &sc->sc_ev_intr, device_xname(sc->sc_dev), "rx interrupts");
597 	evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
598 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx ring full");
599 	evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
600 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx malloc failure");
601 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
602 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 0desc");
603 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
604 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 1desc");
605 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
606 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 2desc");
607 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
608 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 3desc");
609 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
610 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >3desc");
611 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
612 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >7desc");
613 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
614 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >15desc");
615 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
616 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >31desc");
617 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
618 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >63desc");
619 #endif
620 
621 	callout_init(&sc->sc_tick_ch, 0);
622 
623 	sc->sc_att_stage = GEM_ATT_FINISHED;
624 
625 	return;
626 }
627 
628 void
629 gem_tick(void *arg)
630 {
631 	struct gem_softc *sc = arg;
632 	int s;
633 
634 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
635 		/*
636 		 * We have to reset everything if we failed to get a
637 		 * PCS interrupt.  Restarting the callout is handled
638 		 * in gem_pcs_start().
639 		 */
640 		gem_init(&sc->sc_ethercom.ec_if);
641 	} else {
642 		s = splnet();
643 		mii_tick(&sc->sc_mii);
644 		splx(s);
645 		callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
646 	}
647 }
648 
649 static int
650 gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, u_int32_t clr, u_int32_t set)
651 {
652 	int i;
653 	u_int32_t reg;
654 
655 	for (i = TRIES; i--; DELAY(100)) {
656 		reg = bus_space_read_4(sc->sc_bustag, h, r);
657 		if ((reg & clr) == 0 && (reg & set) == set)
658 			return (1);
659 	}
660 	return (0);
661 }
662 
663 void
664 gem_reset(struct gem_softc *sc)
665 {
666 	bus_space_tag_t t = sc->sc_bustag;
667 	bus_space_handle_t h = sc->sc_h2;
668 	int s;
669 
670 	s = splnet();
671 	DPRINTF(sc, ("%s: gem_reset\n", device_xname(sc->sc_dev)));
672 	gem_reset_rx(sc);
673 	gem_reset_tx(sc);
674 
675 	/* Do a full reset */
676 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
677 	if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
678 		aprint_error_dev(sc->sc_dev, "cannot reset device\n");
679 	splx(s);
680 }
681 
682 
683 /*
684  * gem_rxdrain:
685  *
686  *	Drain the receive queue.
687  */
688 static void
689 gem_rxdrain(struct gem_softc *sc)
690 {
691 	struct gem_rxsoft *rxs;
692 	int i;
693 
694 	for (i = 0; i < GEM_NRXDESC; i++) {
695 		rxs = &sc->sc_rxsoft[i];
696 		if (rxs->rxs_mbuf != NULL) {
697 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
698 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
699 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
700 			m_freem(rxs->rxs_mbuf);
701 			rxs->rxs_mbuf = NULL;
702 		}
703 	}
704 }
705 
706 /*
707  * Reset the whole thing.
708  */
709 static void
710 gem_stop(struct ifnet *ifp, int disable)
711 {
712 	struct gem_softc *sc = ifp->if_softc;
713 	struct gem_txsoft *txs;
714 
715 	DPRINTF(sc, ("%s: gem_stop\n", device_xname(sc->sc_dev)));
716 
717 	callout_stop(&sc->sc_tick_ch);
718 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
719 		gem_pcs_stop(sc, disable);
720 	else
721 		mii_down(&sc->sc_mii);
722 
723 	/* XXX - Should we reset these instead? */
724 	gem_disable_tx(sc);
725 	gem_disable_rx(sc);
726 
727 	/*
728 	 * Release any queued transmit buffers.
729 	 */
730 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
731 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
732 		if (txs->txs_mbuf != NULL) {
733 			bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
734 			    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
735 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
736 			m_freem(txs->txs_mbuf);
737 			txs->txs_mbuf = NULL;
738 		}
739 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
740 	}
741 
742 	/*
743 	 * Mark the interface down and cancel the watchdog timer.
744 	 */
745 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
746 	sc->sc_if_flags = ifp->if_flags;
747 	ifp->if_timer = 0;
748 
749 	if (disable)
750 		gem_rxdrain(sc);
751 }
752 
753 
754 /*
755  * Reset the receiver
756  */
757 int
758 gem_reset_rx(struct gem_softc *sc)
759 {
760 	bus_space_tag_t t = sc->sc_bustag;
761 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
762 
763 	/*
764 	 * Resetting while DMA is in progress can cause a bus hang, so we
765 	 * disable DMA first.
766 	 */
767 	gem_disable_rx(sc);
768 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
769 	bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
770 	/* Wait till it finishes */
771 	if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
772 		aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
773 
774 	/* Finally, reset the ERX */
775 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
776 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
777 	/* Wait till it finishes */
778 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
779 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
780 		return (1);
781 	}
782 	return (0);
783 }
784 
785 
786 /*
787  * Reset the receiver DMA engine.
788  *
789  * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
790  * etc in order to reset the receiver DMA engine only and not do a full
791  * reset which amongst others also downs the link and clears the FIFOs.
792  */
793 static void
794 gem_reset_rxdma(struct gem_softc *sc)
795 {
796 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
797 	bus_space_tag_t t = sc->sc_bustag;
798 	bus_space_handle_t h = sc->sc_h1;
799 	int i;
800 
801 	if (gem_reset_rx(sc) != 0) {
802 		gem_init(ifp);
803 		return;
804 	}
805 	for (i = 0; i < GEM_NRXDESC; i++)
806 		if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
807 			GEM_UPDATE_RXDESC(sc, i);
808 	sc->sc_rxptr = 0;
809 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
810 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
811 
812 	/* Reprogram Descriptor Ring Base Addresses */
813 	/* NOTE: we use only 32-bit DMA addresses here. */
814 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
815 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
816 
817 	/* Redo ERX Configuration */
818 	gem_rx_common(sc);
819 
820 	/* Give the reciever a swift kick */
821 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
822 }
823 
824 /*
825  * Common RX configuration for gem_init() and gem_reset_rxdma().
826  */
827 static void
828 gem_rx_common(struct gem_softc *sc)
829 {
830 	bus_space_tag_t t = sc->sc_bustag;
831 	bus_space_handle_t h = sc->sc_h1;
832 	u_int32_t v;
833 
834 	/* Encode Receive Descriptor ring size: four possible values */
835 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
836 
837 	/* Set receive h/w checksum offset */
838 #ifdef INET
839 	v |= (ETHER_HDR_LEN + sizeof(struct ip) +
840 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
841 	    ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
842 #endif
843 
844 	/* Enable RX DMA */
845 	bus_space_write_4(t, h, GEM_RX_CONFIG,
846 	    v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
847 	    (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
848 
849 	/*
850 	 * The following value is for an OFF Threshold of about 3/4 full
851 	 * and an ON Threshold of 1/4 full.
852 	 */
853 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
854 	    (3 * sc->sc_rxfifosize / 256) |
855 	    ((sc->sc_rxfifosize / 256) << 12));
856 	bus_space_write_4(t, h, GEM_RX_BLANKING,
857 	    (6 << GEM_RX_BLANKING_TIME_SHIFT) | 6);
858 }
859 
860 /*
861  * Reset the transmitter
862  */
863 int
864 gem_reset_tx(struct gem_softc *sc)
865 {
866 	bus_space_tag_t t = sc->sc_bustag;
867 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
868 
869 	/*
870 	 * Resetting while DMA is in progress can cause a bus hang, so we
871 	 * disable DMA first.
872 	 */
873 	gem_disable_tx(sc);
874 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
875 	bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
876 	/* Wait till it finishes */
877 	if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
878 		aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
879 	/* Wait 5ms extra. */
880 	delay(5000);
881 
882 	/* Finally, reset the ETX */
883 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
884 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
885 	/* Wait till it finishes */
886 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
887 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
888 		return (1);
889 	}
890 	return (0);
891 }
892 
893 /*
894  * disable receiver.
895  */
896 int
897 gem_disable_rx(struct gem_softc *sc)
898 {
899 	bus_space_tag_t t = sc->sc_bustag;
900 	bus_space_handle_t h = sc->sc_h1;
901 	u_int32_t cfg;
902 
903 	/* Flip the enable bit */
904 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
905 	cfg &= ~GEM_MAC_RX_ENABLE;
906 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
907 	bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
908 	/* Wait for it to finish */
909 	return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
910 }
911 
912 /*
913  * disable transmitter.
914  */
915 int
916 gem_disable_tx(struct gem_softc *sc)
917 {
918 	bus_space_tag_t t = sc->sc_bustag;
919 	bus_space_handle_t h = sc->sc_h1;
920 	u_int32_t cfg;
921 
922 	/* Flip the enable bit */
923 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
924 	cfg &= ~GEM_MAC_TX_ENABLE;
925 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
926 	bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
927 	/* Wait for it to finish */
928 	return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
929 }
930 
931 /*
932  * Initialize interface.
933  */
934 int
935 gem_meminit(struct gem_softc *sc)
936 {
937 	struct gem_rxsoft *rxs;
938 	int i, error;
939 
940 	/*
941 	 * Initialize the transmit descriptor ring.
942 	 */
943 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
944 	for (i = 0; i < GEM_NTXDESC; i++) {
945 		sc->sc_txdescs[i].gd_flags = 0;
946 		sc->sc_txdescs[i].gd_addr = 0;
947 	}
948 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
949 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
950 	sc->sc_txfree = GEM_NTXDESC-1;
951 	sc->sc_txnext = 0;
952 	sc->sc_txwin = 0;
953 
954 	/*
955 	 * Initialize the receive descriptor and receive job
956 	 * descriptor rings.
957 	 */
958 	for (i = 0; i < GEM_NRXDESC; i++) {
959 		rxs = &sc->sc_rxsoft[i];
960 		if (rxs->rxs_mbuf == NULL) {
961 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
962 				aprint_error_dev(sc->sc_dev,
963 				    "unable to allocate or map rx "
964 				    "buffer %d, error = %d\n",
965 				    i, error);
966 				/*
967 				 * XXX Should attempt to run with fewer receive
968 				 * XXX buffers instead of just failing.
969 				 */
970 				gem_rxdrain(sc);
971 				return (1);
972 			}
973 		} else
974 			GEM_INIT_RXDESC(sc, i);
975 	}
976 	sc->sc_rxptr = 0;
977 	sc->sc_meminited = 1;
978 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
979 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
980 
981 	return (0);
982 }
983 
984 static int
985 gem_ringsize(int sz)
986 {
987 	switch (sz) {
988 	case 32:
989 		return GEM_RING_SZ_32;
990 	case 64:
991 		return GEM_RING_SZ_64;
992 	case 128:
993 		return GEM_RING_SZ_128;
994 	case 256:
995 		return GEM_RING_SZ_256;
996 	case 512:
997 		return GEM_RING_SZ_512;
998 	case 1024:
999 		return GEM_RING_SZ_1024;
1000 	case 2048:
1001 		return GEM_RING_SZ_2048;
1002 	case 4096:
1003 		return GEM_RING_SZ_4096;
1004 	case 8192:
1005 		return GEM_RING_SZ_8192;
1006 	default:
1007 		printf("gem: invalid Receive Descriptor ring size %d\n", sz);
1008 		return GEM_RING_SZ_32;
1009 	}
1010 }
1011 
1012 
1013 /*
1014  * Start PCS
1015  */
1016 void
1017 gem_pcs_start(struct gem_softc *sc)
1018 {
1019 	bus_space_tag_t t = sc->sc_bustag;
1020 	bus_space_handle_t h = sc->sc_h1;
1021 	uint32_t v;
1022 
1023 #ifdef GEM_DEBUG
1024 	aprint_debug_dev(sc->sc_dev, "gem_pcs_start()\n");
1025 #endif
1026 
1027 	/*
1028 	 * Set up.  We must disable the MII before modifying the
1029 	 * GEM_MII_ANAR register
1030 	 */
1031 	if (sc->sc_flags & GEM_SERDES) {
1032 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1033 		    GEM_MII_DATAPATH_SERDES);
1034 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1035 		    GEM_MII_SLINK_LOOPBACK);
1036 	} else {
1037 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1038 		    GEM_MII_DATAPATH_SERIAL);
1039 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
1040 	}
1041 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1042 	v = bus_space_read_4(t, h, GEM_MII_ANAR);
1043 	v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
1044 	if (sc->sc_mii_media == IFM_AUTO)
1045 		v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
1046 	else if (sc->sc_mii_media == IFM_FDX) {
1047 		v |= GEM_MII_ANEG_FUL_DUPLX;
1048 		v &= ~GEM_MII_ANEG_HLF_DUPLX;
1049 	} else if (sc->sc_mii_media == IFM_HDX) {
1050 		v &= ~GEM_MII_ANEG_FUL_DUPLX;
1051 		v |= GEM_MII_ANEG_HLF_DUPLX;
1052 	}
1053 
1054 	/* Configure link. */
1055 	bus_space_write_4(t, h, GEM_MII_ANAR, v);
1056 	bus_space_write_4(t, h, GEM_MII_CONTROL,
1057 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1058 	bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
1059 	gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
1060 
1061 	/* Start the 10 second timer */
1062 	callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
1063 }
1064 
1065 /*
1066  * Stop PCS
1067  */
1068 void
1069 gem_pcs_stop(struct gem_softc *sc, int disable)
1070 {
1071 	bus_space_tag_t t = sc->sc_bustag;
1072 	bus_space_handle_t h = sc->sc_h1;
1073 
1074 #ifdef GEM_DEBUG
1075 	aprint_debug_dev(sc->sc_dev, "gem_pcs_stop()\n");
1076 #endif
1077 
1078 	/* Tell link partner that we're going away */
1079 	bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
1080 
1081 	/*
1082 	 * Disable PCS MII.  The documentation suggests that setting
1083 	 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
1084 	 * negotiation will shut down the link.  However, it appears
1085 	 * that we also need to unset the datapath mode.
1086 	 */
1087 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1088 	bus_space_write_4(t, h, GEM_MII_CONTROL,
1089 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1090 	bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
1091 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1092 
1093 	if (disable) {
1094 		if (sc->sc_flags & GEM_SERDES)
1095 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1096 				GEM_MII_SLINK_POWER_OFF);
1097 		else
1098 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1099 			    GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
1100 	}
1101 
1102 	sc->sc_flags &= ~GEM_LINK;
1103 	sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
1104 	sc->sc_mii.mii_media_status = IFM_AVALID;
1105 }
1106 
1107 
1108 /*
1109  * Initialization of interface; set up initialization block
1110  * and transmit/receive descriptor rings.
1111  */
1112 int
1113 gem_init(struct ifnet *ifp)
1114 {
1115 	struct gem_softc *sc = ifp->if_softc;
1116 	bus_space_tag_t t = sc->sc_bustag;
1117 	bus_space_handle_t h = sc->sc_h1;
1118 	int rc = 0, s;
1119 	u_int max_frame_size;
1120 	u_int32_t v;
1121 
1122 	s = splnet();
1123 
1124 	DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(sc->sc_dev)));
1125 	/*
1126 	 * Initialization sequence. The numbered steps below correspond
1127 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1128 	 * Channel Engine manual (part of the PCIO manual).
1129 	 * See also the STP2002-STQ document from Sun Microsystems.
1130 	 */
1131 
1132 	/* step 1 & 2. Reset the Ethernet Channel */
1133 	gem_stop(ifp, 0);
1134 	gem_reset(sc);
1135 	DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(sc->sc_dev)));
1136 
1137 	/* Re-initialize the MIF */
1138 	gem_mifinit(sc);
1139 
1140 	/* Set up correct datapath for non-SERDES/Serialink */
1141 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1142 	    sc->sc_variant != GEM_SUN_ERI)
1143 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1144 		    GEM_MII_DATAPATH_MII);
1145 
1146 	/* Call MI reset function if any */
1147 	if (sc->sc_hwreset)
1148 		(*sc->sc_hwreset)(sc);
1149 
1150 	/* step 3. Setup data structures in host memory */
1151 	if (gem_meminit(sc) != 0)
1152 		return 1;
1153 
1154 	/* step 4. TX MAC registers & counters */
1155 	gem_init_regs(sc);
1156 	max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
1157 	max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
1158 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1159 		max_frame_size += ETHER_VLAN_ENCAP_LEN;
1160 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1161 	    max_frame_size|/* burst size */(0x2000<<16));
1162 
1163 	/* step 5. RX MAC registers & counters */
1164 	gem_setladrf(sc);
1165 
1166 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
1167 	/* NOTE: we use only 32-bit DMA addresses here. */
1168 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
1169 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
1170 
1171 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
1172 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
1173 
1174 	/* step 8. Global Configuration & Interrupt Mask */
1175 	gem_inten(sc);
1176 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
1177 			GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
1178 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
1179 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
1180 	    GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
1181 
1182 	/* step 9. ETX Configuration: use mostly default values */
1183 
1184 	/* Enable TX DMA */
1185 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
1186 	bus_space_write_4(t, h, GEM_TX_CONFIG,
1187 	    v | GEM_TX_CONFIG_TXDMA_EN |
1188 	    (((sc->sc_flags & GEM_GIGABIT ? 0x4FF : 0x100) << 10) &
1189 	    GEM_TX_CONFIG_TXFIFO_TH));
1190 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
1191 
1192 	/* step 10. ERX Configuration */
1193 	gem_rx_common(sc);
1194 
1195 	/* step 11. Configure Media */
1196 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1197 	    (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
1198 		goto out;
1199 
1200 	/* step 12. RX_MAC Configuration Register */
1201 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1202 	v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
1203 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1204 
1205 	/* step 14. Issue Transmit Pending command */
1206 
1207 	/* Call MI initialization function if any */
1208 	if (sc->sc_hwinit)
1209 		(*sc->sc_hwinit)(sc);
1210 
1211 
1212 	/* step 15.  Give the reciever a swift kick */
1213 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
1214 
1215 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1216 		/* Configure PCS */
1217 		gem_pcs_start(sc);
1218 	else
1219 		/* Start the one second timer. */
1220 		callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
1221 
1222 	sc->sc_flags &= ~GEM_LINK;
1223 	ifp->if_flags |= IFF_RUNNING;
1224 	ifp->if_flags &= ~IFF_OACTIVE;
1225 	ifp->if_timer = 0;
1226 	sc->sc_if_flags = ifp->if_flags;
1227 out:
1228 	splx(s);
1229 
1230 	return (0);
1231 }
1232 
1233 void
1234 gem_init_regs(struct gem_softc *sc)
1235 {
1236 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1237 	bus_space_tag_t t = sc->sc_bustag;
1238 	bus_space_handle_t h = sc->sc_h1;
1239 	const u_char *laddr = CLLADDR(ifp->if_sadl);
1240 	u_int32_t v;
1241 
1242 	/* These regs are not cleared on reset */
1243 	if (!sc->sc_inited) {
1244 
1245 		/* Load recommended values */
1246 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
1247 		bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
1248 		bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
1249 
1250 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1251 		/* Max frame and max burst size */
1252 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1253 		    ETHER_MAX_LEN | (0x2000<<16));
1254 
1255 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
1256 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
1257 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1258 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1259 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1260 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1261 
1262 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
1263 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1264 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1265 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1266 
1267 		/* MAC control addr set to 01:80:c2:00:00:01 */
1268 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1269 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1270 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1271 
1272 		/* MAC filter addr set to 0:0:0:0:0:0 */
1273 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1274 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1275 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1276 
1277 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1278 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1279 
1280 		sc->sc_inited = 1;
1281 	}
1282 
1283 	/* Counters need to be zeroed */
1284 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1285 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1286 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1287 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1288 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1289 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1290 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1291 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1292 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1293 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1294 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1295 
1296 	/* Set XOFF PAUSE time. */
1297 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1298 
1299 	/*
1300 	 * Set the internal arbitration to "infinite" bursts of the
1301 	 * maximum length of 31 * 64 bytes so DMA transfers aren't
1302 	 * split up in cache line size chunks. This greatly improves
1303 	 * especially RX performance.
1304 	 * Enable silicon bug workarounds for the Apple variants.
1305 	 */
1306 	bus_space_write_4(t, h, GEM_CONFIG,
1307 	    GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
1308 	    ((sc->sc_flags & GEM_PCI) ?
1309 	    GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
1310 	    GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
1311 
1312 	/*
1313 	 * Set the station address.
1314 	 */
1315 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1316 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1317 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1318 
1319 	/*
1320 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
1321 	 */
1322 	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1323 	v = GEM_MAC_XIF_TX_MII_ENA;
1324 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)  {
1325 		if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1326 			v |= GEM_MAC_XIF_FDPLX_LED;
1327 				if (sc->sc_flags & GEM_GIGABIT)
1328 					v |= GEM_MAC_XIF_GMII_MODE;
1329 		}
1330 	} else {
1331 		v |= GEM_MAC_XIF_GMII_MODE;
1332 	}
1333 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1334 }
1335 
1336 #ifdef GEM_DEBUG
1337 static void
1338 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
1339 {
1340 	int i;
1341 
1342 	for (i = firstdesc;; i = GEM_NEXTTX(i)) {
1343 		printf("descriptor %d:\t", i);
1344 		printf("gd_flags:   0x%016" PRIx64 "\t",
1345 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1346 		printf("gd_addr: 0x%016" PRIx64 "\n",
1347 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1348 		if (i == lastdesc)
1349 			break;
1350 	}
1351 }
1352 #endif
1353 
1354 static void
1355 gem_start(struct ifnet *ifp)
1356 {
1357 	struct gem_softc *sc = ifp->if_softc;
1358 	struct mbuf *m0, *m;
1359 	struct gem_txsoft *txs;
1360 	bus_dmamap_t dmamap;
1361 	int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
1362 	uint64_t flags = 0;
1363 
1364 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1365 		return;
1366 
1367 	/*
1368 	 * Remember the previous number of free descriptors and
1369 	 * the first descriptor we'll use.
1370 	 */
1371 	ofree = sc->sc_txfree;
1372 	firsttx = sc->sc_txnext;
1373 
1374 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1375 	    device_xname(sc->sc_dev), ofree, firsttx));
1376 
1377 	/*
1378 	 * Loop through the send queue, setting up transmit descriptors
1379 	 * until we drain the queue, or use up all available transmit
1380 	 * descriptors.
1381 	 */
1382 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1383 	    sc->sc_txfree != 0) {
1384 		/*
1385 		 * Grab a packet off the queue.
1386 		 */
1387 		IFQ_POLL(&ifp->if_snd, m0);
1388 		if (m0 == NULL)
1389 			break;
1390 		m = NULL;
1391 
1392 		dmamap = txs->txs_dmamap;
1393 
1394 		/*
1395 		 * Load the DMA map.  If this fails, the packet either
1396 		 * didn't fit in the alloted number of segments, or we were
1397 		 * short on resources.  In this case, we'll copy and try
1398 		 * again.
1399 		 */
1400 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1401 		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
1402 		      (m0->m_pkthdr.len < ETHER_MIN_TX &&
1403 		       dmamap->dm_nsegs == GEM_NTXSEGS)) {
1404 			if (m0->m_pkthdr.len > MCLBYTES) {
1405 				aprint_error_dev(sc->sc_dev,
1406 				    "unable to allocate jumbo Tx cluster\n");
1407 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1408 				m_freem(m0);
1409 				continue;
1410 			}
1411 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1412 			if (m == NULL) {
1413 				aprint_error_dev(sc->sc_dev,
1414 				    "unable to allocate Tx mbuf\n");
1415 				break;
1416 			}
1417 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1418 			if (m0->m_pkthdr.len > MHLEN) {
1419 				MCLGET(m, M_DONTWAIT);
1420 				if ((m->m_flags & M_EXT) == 0) {
1421 					aprint_error_dev(sc->sc_dev,
1422 					    "unable to allocate Tx cluster\n");
1423 					m_freem(m);
1424 					break;
1425 				}
1426 			}
1427 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1428 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1429 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1430 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1431 			if (error) {
1432 				aprint_error_dev(sc->sc_dev,
1433 				    "unable to load Tx buffer, error = %d\n",
1434 				    error);
1435 				break;
1436 			}
1437 		}
1438 
1439 		/*
1440 		 * Ensure we have enough descriptors free to describe
1441 		 * the packet.
1442 		 */
1443 		if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1444 		     (sc->sc_txfree - 1) : sc->sc_txfree)) {
1445 			/*
1446 			 * Not enough free descriptors to transmit this
1447 			 * packet.  We haven't committed to anything yet,
1448 			 * so just unload the DMA map, put the packet
1449 			 * back on the queue, and punt.  Notify the upper
1450 			 * layer that there are no more slots left.
1451 			 *
1452 			 * XXX We could allocate an mbuf and copy, but
1453 			 * XXX it is worth it?
1454 			 */
1455 			ifp->if_flags |= IFF_OACTIVE;
1456 			sc->sc_if_flags = ifp->if_flags;
1457 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
1458 			if (m != NULL)
1459 				m_freem(m);
1460 			break;
1461 		}
1462 
1463 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1464 		if (m != NULL) {
1465 			m_freem(m0);
1466 			m0 = m;
1467 		}
1468 
1469 		/*
1470 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1471 		 */
1472 
1473 		/* Sync the DMA map. */
1474 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1475 		    BUS_DMASYNC_PREWRITE);
1476 
1477 		/*
1478 		 * Initialize the transmit descriptors.
1479 		 */
1480 		for (nexttx = sc->sc_txnext, seg = 0;
1481 		     seg < dmamap->dm_nsegs;
1482 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
1483 
1484 			/*
1485 			 * If this is the first descriptor we're
1486 			 * enqueueing, set the start of packet flag,
1487 			 * and the checksum stuff if we want the hardware
1488 			 * to do it.
1489 			 */
1490 			sc->sc_txdescs[nexttx].gd_addr =
1491 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1492 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1493 			if (nexttx == firsttx) {
1494 				flags |= GEM_TD_START_OF_PACKET;
1495 				if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1496 					sc->sc_txwin = 0;
1497 					flags |= GEM_TD_INTERRUPT_ME;
1498 				}
1499 
1500 #ifdef INET
1501 				/* h/w checksum */
1502 				if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
1503 				    m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1504 					struct ether_header *eh;
1505 					uint16_t offset, start;
1506 
1507 					eh = mtod(m0, struct ether_header *);
1508 					switch (ntohs(eh->ether_type)) {
1509 					case ETHERTYPE_IP:
1510 						start = ETHER_HDR_LEN;
1511 						break;
1512 					case ETHERTYPE_VLAN:
1513 						start = ETHER_HDR_LEN +
1514 							ETHER_VLAN_ENCAP_LEN;
1515 						break;
1516 					default:
1517 						/* unsupported, drop it */
1518 						m_free(m0);
1519 						continue;
1520 					}
1521 					start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1522 					offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1523 					flags |= (start <<
1524 						  GEM_TD_CXSUM_STARTSHFT) |
1525 						 (offset <<
1526 						  GEM_TD_CXSUM_STUFFSHFT) |
1527 						 GEM_TD_CXSUM_ENABLE;
1528 				}
1529 #endif
1530 			}
1531 			if (seg == dmamap->dm_nsegs - 1) {
1532 				flags |= GEM_TD_END_OF_PACKET;
1533 			} else {
1534 				/* last flag set outside of loop */
1535 				sc->sc_txdescs[nexttx].gd_flags =
1536 					GEM_DMA_WRITE(sc, flags);
1537 			}
1538 			lasttx = nexttx;
1539 		}
1540 		if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1541 			/* add padding buffer at end of chain */
1542 			flags &= ~GEM_TD_END_OF_PACKET;
1543 			sc->sc_txdescs[lasttx].gd_flags =
1544 			    GEM_DMA_WRITE(sc, flags);
1545 
1546 			sc->sc_txdescs[nexttx].gd_addr =
1547 			    GEM_DMA_WRITE(sc,
1548 			    sc->sc_nulldmamap->dm_segs[0].ds_addr);
1549 			flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1550 			    GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1551 			lasttx = nexttx;
1552 			nexttx = GEM_NEXTTX(nexttx);
1553 			seg++;
1554 		}
1555 		sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1556 
1557 		KASSERT(lasttx != -1);
1558 
1559 		/*
1560 		 * Store a pointer to the packet so we can free it later,
1561 		 * and remember what txdirty will be once the packet is
1562 		 * done.
1563 		 */
1564 		txs->txs_mbuf = m0;
1565 		txs->txs_firstdesc = sc->sc_txnext;
1566 		txs->txs_lastdesc = lasttx;
1567 		txs->txs_ndescs = seg;
1568 
1569 #ifdef GEM_DEBUG
1570 		if (ifp->if_flags & IFF_DEBUG) {
1571 			printf("     gem_start %p transmit chain:\n", txs);
1572 			gem_txsoft_print(sc, txs->txs_firstdesc,
1573 			    txs->txs_lastdesc);
1574 		}
1575 #endif
1576 
1577 		/* Sync the descriptors we're using. */
1578 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1579 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1580 
1581 		/* Advance the tx pointer. */
1582 		sc->sc_txfree -= txs->txs_ndescs;
1583 		sc->sc_txnext = nexttx;
1584 
1585 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1586 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1587 
1588 #if NBPFILTER > 0
1589 		/*
1590 		 * Pass the packet to any BPF listeners.
1591 		 */
1592 		if (ifp->if_bpf)
1593 			bpf_mtap(ifp->if_bpf, m0);
1594 #endif /* NBPFILTER > 0 */
1595 	}
1596 
1597 	if (txs == NULL || sc->sc_txfree == 0) {
1598 		/* No more slots left; notify upper layer. */
1599 		ifp->if_flags |= IFF_OACTIVE;
1600 		sc->sc_if_flags = ifp->if_flags;
1601 	}
1602 
1603 	if (sc->sc_txfree != ofree) {
1604 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1605 		    device_xname(sc->sc_dev), lasttx, firsttx));
1606 		/*
1607 		 * The entire packet chain is set up.
1608 		 * Kick the transmitter.
1609 		 */
1610 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1611 			device_xname(sc->sc_dev), nexttx));
1612 		bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
1613 			sc->sc_txnext);
1614 
1615 		/* Set a watchdog timer in case the chip flakes out. */
1616 		ifp->if_timer = 5;
1617 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1618 			device_xname(sc->sc_dev), ifp->if_timer));
1619 	}
1620 }
1621 
1622 /*
1623  * Transmit interrupt.
1624  */
1625 int
1626 gem_tint(struct gem_softc *sc)
1627 {
1628 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1629 	bus_space_tag_t t = sc->sc_bustag;
1630 	bus_space_handle_t mac = sc->sc_h1;
1631 	struct gem_txsoft *txs;
1632 	int txlast;
1633 	int progress = 0;
1634 	u_int32_t v;
1635 
1636 	DPRINTF(sc, ("%s: gem_tint\n", device_xname(sc->sc_dev)));
1637 
1638 	/* Unload collision counters ... */
1639 	v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1640 	    bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1641 	ifp->if_collisions += v +
1642 	    bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1643 	    bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT);
1644 	ifp->if_oerrors += v;
1645 
1646 	/* ... then clear the hardware counters. */
1647 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1648 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1649 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1650 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1651 
1652 	/*
1653 	 * Go through our Tx list and free mbufs for those
1654 	 * frames that have been transmitted.
1655 	 */
1656 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1657 		/*
1658 		 * In theory, we could harvest some descriptors before
1659 		 * the ring is empty, but that's a bit complicated.
1660 		 *
1661 		 * GEM_TX_COMPLETION points to the last descriptor
1662 		 * processed +1.
1663 		 *
1664 		 * Let's assume that the NIC writes back to the Tx
1665 		 * descriptors before it updates the completion
1666 		 * register.  If the NIC has posted writes to the
1667 		 * Tx descriptors, PCI ordering requires that the
1668 		 * posted writes flush to RAM before the register-read
1669 		 * finishes.  So let's read the completion register,
1670 		 * before syncing the descriptors, so that we
1671 		 * examine Tx descriptors that are at least as
1672 		 * current as the completion register.
1673 		 */
1674 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1675 		DPRINTF(sc,
1676 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1677 				txs->txs_lastdesc, txlast));
1678 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1679 			if (txlast >= txs->txs_firstdesc &&
1680 			    txlast <= txs->txs_lastdesc)
1681 				break;
1682 		} else if (txlast >= txs->txs_firstdesc ||
1683 			   txlast <= txs->txs_lastdesc)
1684 			break;
1685 
1686 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1687 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1688 
1689 #ifdef GEM_DEBUG	/* XXX DMA synchronization? */
1690 		if (ifp->if_flags & IFF_DEBUG) {
1691 			printf("    txsoft %p transmit chain:\n", txs);
1692 			gem_txsoft_print(sc, txs->txs_firstdesc,
1693 			    txs->txs_lastdesc);
1694 		}
1695 #endif
1696 
1697 
1698 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1699 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1700 
1701 		sc->sc_txfree += txs->txs_ndescs;
1702 
1703 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1704 		    0, txs->txs_dmamap->dm_mapsize,
1705 		    BUS_DMASYNC_POSTWRITE);
1706 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1707 		if (txs->txs_mbuf != NULL) {
1708 			m_freem(txs->txs_mbuf);
1709 			txs->txs_mbuf = NULL;
1710 		}
1711 
1712 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1713 
1714 		ifp->if_opackets++;
1715 		progress = 1;
1716 	}
1717 
1718 #if 0
1719 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1720 		"GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
1721 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
1722 		((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1723 			GEM_TX_DATA_PTR_HI) << 32) |
1724 			     bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1725 			GEM_TX_DATA_PTR_LO),
1726 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
1727 #endif
1728 
1729 	if (progress) {
1730 		if (sc->sc_txfree == GEM_NTXDESC - 1)
1731 			sc->sc_txwin = 0;
1732 
1733 		/* Freed some descriptors, so reset IFF_OACTIVE and restart. */
1734 		ifp->if_flags &= ~IFF_OACTIVE;
1735 		sc->sc_if_flags = ifp->if_flags;
1736 		ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
1737 		gem_start(ifp);
1738 	}
1739 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1740 		device_xname(sc->sc_dev), ifp->if_timer));
1741 
1742 	return (1);
1743 }
1744 
1745 /*
1746  * Receive interrupt.
1747  */
1748 int
1749 gem_rint(struct gem_softc *sc)
1750 {
1751 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1752 	bus_space_tag_t t = sc->sc_bustag;
1753 	bus_space_handle_t h = sc->sc_h1;
1754 	struct gem_rxsoft *rxs;
1755 	struct mbuf *m;
1756 	u_int64_t rxstat;
1757 	u_int32_t rxcomp;
1758 	int i, len, progress = 0;
1759 
1760 	DPRINTF(sc, ("%s: gem_rint\n", device_xname(sc->sc_dev)));
1761 
1762 	/*
1763 	 * Ignore spurious interrupt that sometimes occurs before
1764 	 * we are set up when we network boot.
1765 	 */
1766 	if (!sc->sc_meminited)
1767 		return 1;
1768 
1769 	/*
1770 	 * Read the completion register once.  This limits
1771 	 * how long the following loop can execute.
1772 	 */
1773 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1774 
1775 	/*
1776 	 * XXX Read the lastrx only once at the top for speed.
1777 	 */
1778 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1779 		sc->sc_rxptr, rxcomp));
1780 
1781 	/*
1782 	 * Go into the loop at least once.
1783 	 */
1784 	for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1785 	     i = GEM_NEXTRX(i)) {
1786 		rxs = &sc->sc_rxsoft[i];
1787 
1788 		GEM_CDRXSYNC(sc, i,
1789 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1790 
1791 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1792 
1793 		if (rxstat & GEM_RD_OWN) {
1794 			GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1795 			/*
1796 			 * We have processed all of the receive buffers.
1797 			 */
1798 			break;
1799 		}
1800 
1801 		progress++;
1802 		ifp->if_ipackets++;
1803 
1804 		if (rxstat & GEM_RD_BAD_CRC) {
1805 			ifp->if_ierrors++;
1806 			aprint_error_dev(sc->sc_dev,
1807 			    "receive error: CRC error\n");
1808 			GEM_INIT_RXDESC(sc, i);
1809 			continue;
1810 		}
1811 
1812 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1813 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1814 #ifdef GEM_DEBUG
1815 		if (ifp->if_flags & IFF_DEBUG) {
1816 			printf("    rxsoft %p descriptor %d: ", rxs, i);
1817 			printf("gd_flags: 0x%016llx\t", (long long)
1818 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1819 			printf("gd_addr: 0x%016llx\n", (long long)
1820 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1821 		}
1822 #endif
1823 
1824 		/* No errors; receive the packet. */
1825 		len = GEM_RD_BUFLEN(rxstat);
1826 
1827 		/*
1828 		 * Allocate a new mbuf cluster.  If that fails, we are
1829 		 * out of memory, and must drop the packet and recycle
1830 		 * the buffer that's already attached to this descriptor.
1831 		 */
1832 		m = rxs->rxs_mbuf;
1833 		if (gem_add_rxbuf(sc, i) != 0) {
1834 			GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1835 			ifp->if_ierrors++;
1836 			GEM_INIT_RXDESC(sc, i);
1837 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1838 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1839 			continue;
1840 		}
1841 		m->m_data += 2; /* We're already off by two */
1842 
1843 		m->m_pkthdr.rcvif = ifp;
1844 		m->m_pkthdr.len = m->m_len = len;
1845 
1846 #if NBPFILTER > 0
1847 		/*
1848 		 * Pass this up to any BPF listeners, but only
1849 		 * pass it up the stack if it's for us.
1850 		 */
1851 		if (ifp->if_bpf)
1852 			bpf_mtap(ifp->if_bpf, m);
1853 #endif /* NBPFILTER > 0 */
1854 
1855 #ifdef INET
1856 		/* hardware checksum */
1857 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1858 			struct ether_header *eh;
1859 			struct ip *ip;
1860 			int32_t hlen, pktlen;
1861 
1862 			if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1863 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1864 					 ETHER_VLAN_ENCAP_LEN;
1865 				eh = (struct ether_header *) (mtod(m, char *) +
1866 					ETHER_VLAN_ENCAP_LEN);
1867 			} else {
1868 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1869 				eh = mtod(m, struct ether_header *);
1870 			}
1871 			if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1872 				goto swcsum;
1873 			ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
1874 
1875 			/* IPv4 only */
1876 			if (ip->ip_v != IPVERSION)
1877 				goto swcsum;
1878 
1879 			hlen = ip->ip_hl << 2;
1880 			if (hlen < sizeof(struct ip))
1881 				goto swcsum;
1882 
1883 			/*
1884 			 * bail if too short, has random trailing garbage,
1885 			 * truncated, fragment, or has ethernet pad.
1886 			 */
1887 			if ((ntohs(ip->ip_len) < hlen) ||
1888 			    (ntohs(ip->ip_len) != pktlen) ||
1889 			    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1890 				goto swcsum;
1891 
1892 			switch (ip->ip_p) {
1893 			case IPPROTO_TCP:
1894 				if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1895 					goto swcsum;
1896 				if (pktlen < (hlen + sizeof(struct tcphdr)))
1897 					goto swcsum;
1898 				m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1899 				break;
1900 			case IPPROTO_UDP:
1901 				/* FALLTHROUGH */
1902 			default:
1903 				goto swcsum;
1904 			}
1905 
1906 			/* the uncomplemented sum is expected */
1907 			m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1908 
1909 			/* if the pkt had ip options, we have to deduct them */
1910 			if (hlen > sizeof(struct ip)) {
1911 				uint16_t *opts;
1912 				uint32_t optsum, temp;
1913 
1914 				optsum = 0;
1915 				temp = hlen - sizeof(struct ip);
1916 				opts = (uint16_t *) ((char *) ip +
1917 					sizeof(struct ip));
1918 
1919 				while (temp > 1) {
1920 					optsum += ntohs(*opts++);
1921 					temp -= 2;
1922 				}
1923 				while (optsum >> 16)
1924 					optsum = (optsum >> 16) +
1925 						 (optsum & 0xffff);
1926 
1927 				/* Deduct ip opts sum from hwsum. */
1928 				m->m_pkthdr.csum_data += (uint16_t)~optsum;
1929 
1930 				while (m->m_pkthdr.csum_data >> 16)
1931 					m->m_pkthdr.csum_data =
1932 						(m->m_pkthdr.csum_data >> 16) +
1933 						(m->m_pkthdr.csum_data &
1934 						 0xffff);
1935 			}
1936 
1937 			m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1938 						  M_CSUM_NO_PSEUDOHDR;
1939 		} else
1940 swcsum:
1941 			m->m_pkthdr.csum_flags = 0;
1942 #endif
1943 		/* Pass it on. */
1944 		(*ifp->if_input)(ifp, m);
1945 	}
1946 
1947 	if (progress) {
1948 		/* Update the receive pointer. */
1949 		if (i == sc->sc_rxptr) {
1950 			GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1951 #ifdef GEM_DEBUG
1952 			if (ifp->if_flags & IFF_DEBUG)
1953 				printf("%s: rint: ring wrap\n",
1954 				    device_xname(sc->sc_dev));
1955 #endif
1956 		}
1957 		sc->sc_rxptr = i;
1958 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1959 	}
1960 #ifdef GEM_COUNTERS
1961 	if (progress <= 4) {
1962 		GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1963 	} else if (progress < 32) {
1964 		if (progress < 16)
1965 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1966 		else
1967 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1968 
1969 	} else {
1970 		if (progress < 64)
1971 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1972 		else
1973 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1974 	}
1975 #endif
1976 
1977 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1978 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1979 
1980 	/* Read error counters ... */
1981 	ifp->if_ierrors +=
1982 	    bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
1983 	    bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
1984 	    bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
1985 	    bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL);
1986 
1987 	/* ... then clear the hardware counters. */
1988 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1989 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1990 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1991 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1992 
1993 	return (1);
1994 }
1995 
1996 
1997 /*
1998  * gem_add_rxbuf:
1999  *
2000  *	Add a receive buffer to the indicated descriptor.
2001  */
2002 int
2003 gem_add_rxbuf(struct gem_softc *sc, int idx)
2004 {
2005 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
2006 	struct mbuf *m;
2007 	int error;
2008 
2009 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2010 	if (m == NULL)
2011 		return (ENOBUFS);
2012 
2013 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2014 	MCLGET(m, M_DONTWAIT);
2015 	if ((m->m_flags & M_EXT) == 0) {
2016 		m_freem(m);
2017 		return (ENOBUFS);
2018 	}
2019 
2020 #ifdef GEM_DEBUG
2021 /* bzero the packet to check DMA */
2022 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
2023 #endif
2024 
2025 	if (rxs->rxs_mbuf != NULL)
2026 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
2027 
2028 	rxs->rxs_mbuf = m;
2029 
2030 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
2031 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2032 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2033 	if (error) {
2034 		aprint_error_dev(sc->sc_dev,
2035 		    "can't load rx DMA map %d, error = %d\n", idx, error);
2036 		panic("gem_add_rxbuf");	/* XXX */
2037 	}
2038 
2039 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
2040 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2041 
2042 	GEM_INIT_RXDESC(sc, idx);
2043 
2044 	return (0);
2045 }
2046 
2047 
2048 int
2049 gem_eint(struct gem_softc *sc, u_int status)
2050 {
2051 	char bits[128];
2052 	u_int32_t r, v;
2053 
2054 	if ((status & GEM_INTR_MIF) != 0) {
2055 		printf("%s: XXXlink status changed\n", device_xname(sc->sc_dev));
2056 		return (1);
2057 	}
2058 
2059 	if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
2060 		gem_reset_rxdma(sc);
2061 		return (1);
2062 	}
2063 
2064 	if (status & GEM_INTR_BERR) {
2065 		if (sc->sc_flags & GEM_PCI)
2066 			r = GEM_ERROR_STATUS;
2067 		else
2068 			r = GEM_SBUS_ERROR_STATUS;
2069 		bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2070 		v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2071 		aprint_error_dev(sc->sc_dev, "bus error interrupt: 0x%02x\n",
2072 		    v);
2073 		return (1);
2074 	}
2075 	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2076 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
2077 
2078 	return (1);
2079 }
2080 
2081 
2082 /*
2083  * PCS interrupts.
2084  * We should receive these when the link status changes, but sometimes
2085  * we don't receive them for link up.  We compensate for this in the
2086  * gem_tick() callout.
2087  */
2088 int
2089 gem_pint(struct gem_softc *sc)
2090 {
2091 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2092 	bus_space_tag_t t = sc->sc_bustag;
2093 	bus_space_handle_t h = sc->sc_h1;
2094 	u_int32_t v, v2;
2095 
2096 	/*
2097 	 * Clear the PCS interrupt from GEM_STATUS.  The PCS register is
2098 	 * latched, so we have to read it twice.  There is only one bit in
2099 	 * use, so the value is meaningless.
2100 	 */
2101 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2102 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2103 
2104 	if ((ifp->if_flags & IFF_UP) == 0)
2105 		return 1;
2106 
2107 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
2108 		return 1;
2109 
2110 	v = bus_space_read_4(t, h, GEM_MII_STATUS);
2111 	/* If we see remote fault, our link partner is probably going away */
2112 	if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
2113 		gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
2114 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
2115 	/* Otherwise, we may need to wait after auto-negotiation completes */
2116 	} else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
2117 	    GEM_MII_STATUS_ANEG_CPT) {
2118 		gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
2119 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
2120 	}
2121 	if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
2122 		if (sc->sc_flags & GEM_LINK) {
2123 			return 1;
2124 		}
2125 		callout_stop(&sc->sc_tick_ch);
2126 		v = bus_space_read_4(t, h, GEM_MII_ANAR);
2127 		v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
2128 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
2129 		sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
2130 		v &= v2;
2131 		if (v & GEM_MII_ANEG_FUL_DUPLX) {
2132 			sc->sc_mii.mii_media_active |= IFM_FDX;
2133 #ifdef GEM_DEBUG
2134 			aprint_debug_dev(sc->sc_dev, "link up: full duplex\n");
2135 #endif
2136 		} else if (v & GEM_MII_ANEG_HLF_DUPLX) {
2137 			sc->sc_mii.mii_media_active |= IFM_HDX;
2138 #ifdef GEM_DEBUG
2139 			aprint_debug_dev(sc->sc_dev, "link up: half duplex\n");
2140 #endif
2141 		} else {
2142 #ifdef GEM_DEBUG
2143 			aprint_debug_dev(sc->sc_dev, "duplex mismatch\n");
2144 #endif
2145 		}
2146 		gem_statuschange(sc);
2147 	} else {
2148 		if ((sc->sc_flags & GEM_LINK) == 0) {
2149 			return 1;
2150 		}
2151 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
2152 		sc->sc_mii.mii_media_status = IFM_AVALID;
2153 #ifdef GEM_DEBUG
2154 			aprint_debug_dev(sc->sc_dev, "link down\n");
2155 #endif
2156 		gem_statuschange(sc);
2157 
2158 		/* Start the 10 second timer */
2159 		callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
2160 	}
2161 	return 1;
2162 }
2163 
2164 
2165 
2166 int
2167 gem_intr(void *v)
2168 {
2169 	struct gem_softc *sc = v;
2170 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2171 	bus_space_tag_t t = sc->sc_bustag;
2172 	bus_space_handle_t h = sc->sc_h1;
2173 	u_int32_t status;
2174 	int r = 0;
2175 #ifdef GEM_DEBUG
2176 	char bits[128];
2177 #endif
2178 
2179 	/* XXX We should probably mask out interrupts until we're done */
2180 
2181 	sc->sc_ev_intr.ev_count++;
2182 
2183 	status = bus_space_read_4(t, h, GEM_STATUS);
2184 #ifdef GEM_DEBUG
2185 	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2186 #endif
2187 	DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
2188 		device_xname(sc->sc_dev), (status >> 19), bits));
2189 
2190 
2191 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
2192 		r |= gem_eint(sc, status);
2193 
2194 	/* We don't bother with GEM_INTR_TX_DONE */
2195 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
2196 		GEM_COUNTER_INCR(sc, sc_ev_txint);
2197 		r |= gem_tint(sc);
2198 	}
2199 
2200 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
2201 		GEM_COUNTER_INCR(sc, sc_ev_rxint);
2202 		r |= gem_rint(sc);
2203 	}
2204 
2205 	/* We should eventually do more than just print out error stats. */
2206 	if (status & GEM_INTR_TX_MAC) {
2207 		int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
2208 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
2209 			printf("%s: MAC tx fault, status %x\n",
2210 			    device_xname(sc->sc_dev), txstat);
2211 		if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
2212 			gem_init(ifp);
2213 	}
2214 	if (status & GEM_INTR_RX_MAC) {
2215 		int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
2216 		/*
2217 		 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
2218 		 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
2219 		 * silicon bug so handle them silently. Moreover, it's
2220 		 * likely that the receiver has hung so we reset it.
2221 		 */
2222 		if (rxstat & GEM_MAC_RX_OVERFLOW) {
2223 			ifp->if_ierrors++;
2224 			gem_reset_rxdma(sc);
2225 		} else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
2226 			printf("%s: MAC rx fault, status 0x%02x\n",
2227 			    device_xname(sc->sc_dev), rxstat);
2228 	}
2229 	if (status & GEM_INTR_PCS) {
2230 		r |= gem_pint(sc);
2231 	}
2232 
2233 /* Do we need to do anything with these?
2234 	if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
2235 		status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
2236 		if ((status2 & GEM_MAC_PAUSED) != 0)
2237 			aprintf_debug_dev(sc->sc_dev, "PAUSE received (%d slots)\n",
2238 			    GEM_MAC_PAUSE_TIME(status2));
2239 		if ((status2 & GEM_MAC_PAUSE) != 0)
2240 			aprintf_debug_dev(sc->sc_dev, "transited to PAUSE state\n");
2241 		if ((status2 & GEM_MAC_RESUME) != 0)
2242 			aprintf_debug_dev(sc->sc_dev, "transited to non-PAUSE state\n");
2243 	}
2244 	if ((status & GEM_INTR_MIF) != 0)
2245 		aprintf_debug_dev(sc->sc_dev, "MIF interrupt\n");
2246 */
2247 #if NRND > 0
2248 	rnd_add_uint32(&sc->rnd_source, status);
2249 #endif
2250 	return (r);
2251 }
2252 
2253 
2254 void
2255 gem_watchdog(struct ifnet *ifp)
2256 {
2257 	struct gem_softc *sc = ifp->if_softc;
2258 
2259 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
2260 		"GEM_MAC_RX_CONFIG %x\n",
2261 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
2262 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
2263 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
2264 
2265 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
2266 	++ifp->if_oerrors;
2267 
2268 	/* Try to get more packets going. */
2269 	gem_start(ifp);
2270 }
2271 
2272 /*
2273  * Initialize the MII Management Interface
2274  */
2275 void
2276 gem_mifinit(struct gem_softc *sc)
2277 {
2278 	bus_space_tag_t t = sc->sc_bustag;
2279 	bus_space_handle_t mif = sc->sc_h1;
2280 
2281 	/* Configure the MIF in frame mode */
2282 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
2283 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
2284 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
2285 }
2286 
2287 /*
2288  * MII interface
2289  *
2290  * The GEM MII interface supports at least three different operating modes:
2291  *
2292  * Bitbang mode is implemented using data, clock and output enable registers.
2293  *
2294  * Frame mode is implemented by loading a complete frame into the frame
2295  * register and polling the valid bit for completion.
2296  *
2297  * Polling mode uses the frame register but completion is indicated by
2298  * an interrupt.
2299  *
2300  */
2301 static int
2302 gem_mii_readreg(device_t self, int phy, int reg)
2303 {
2304 	struct gem_softc *sc = device_private(self);
2305 	bus_space_tag_t t = sc->sc_bustag;
2306 	bus_space_handle_t mif = sc->sc_h1;
2307 	int n;
2308 	u_int32_t v;
2309 
2310 #ifdef GEM_DEBUG1
2311 	if (sc->sc_debug)
2312 		printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
2313 #endif
2314 
2315 	/* Construct the frame command */
2316 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
2317 		GEM_MIF_FRAME_READ;
2318 
2319 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2320 	for (n = 0; n < 100; n++) {
2321 		DELAY(1);
2322 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2323 		if (v & GEM_MIF_FRAME_TA0)
2324 			return (v & GEM_MIF_FRAME_DATA);
2325 	}
2326 
2327 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
2328 	return (0);
2329 }
2330 
2331 static void
2332 gem_mii_writereg(device_t self, int phy, int reg, int val)
2333 {
2334 	struct gem_softc *sc = device_private(self);
2335 	bus_space_tag_t t = sc->sc_bustag;
2336 	bus_space_handle_t mif = sc->sc_h1;
2337 	int n;
2338 	u_int32_t v;
2339 
2340 #ifdef GEM_DEBUG1
2341 	if (sc->sc_debug)
2342 		printf("gem_mii_writereg: PHY %d reg %d val %x\n",
2343 			phy, reg, val);
2344 #endif
2345 
2346 	/* Construct the frame command */
2347 	v = GEM_MIF_FRAME_WRITE			|
2348 	    (phy << GEM_MIF_PHY_SHIFT)		|
2349 	    (reg << GEM_MIF_REG_SHIFT)		|
2350 	    (val & GEM_MIF_FRAME_DATA);
2351 
2352 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2353 	for (n = 0; n < 100; n++) {
2354 		DELAY(1);
2355 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2356 		if (v & GEM_MIF_FRAME_TA0)
2357 			return;
2358 	}
2359 
2360 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
2361 }
2362 
2363 static void
2364 gem_mii_statchg(device_t self)
2365 {
2366 	struct gem_softc *sc = device_private(self);
2367 #ifdef GEM_DEBUG
2368 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
2369 #endif
2370 
2371 #ifdef GEM_DEBUG
2372 	if (sc->sc_debug)
2373 		printf("gem_mii_statchg: status change: phy = %d\n",
2374 			sc->sc_phys[instance]);
2375 #endif
2376 	gem_statuschange(sc);
2377 }
2378 
2379 /*
2380  * Common status change for gem_mii_statchg() and gem_pint()
2381  */
2382 void
2383 gem_statuschange(struct gem_softc* sc)
2384 {
2385 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2386 	bus_space_tag_t t = sc->sc_bustag;
2387 	bus_space_handle_t mac = sc->sc_h1;
2388 	int gigabit;
2389 	u_int32_t rxcfg, txcfg, v;
2390 
2391 	if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
2392 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
2393 		sc->sc_flags |= GEM_LINK;
2394 	else
2395 		sc->sc_flags &= ~GEM_LINK;
2396 
2397 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2398 		gigabit = 1;
2399 	else
2400 		gigabit = 0;
2401 
2402 	/*
2403 	 * The configuration done here corresponds to the steps F) and
2404 	 * G) and as far as enabling of RX and TX MAC goes also step H)
2405 	 * of the initialization sequence outlined in section 3.2.1 of
2406 	 * the GEM Gigabit Ethernet ASIC Specification.
2407 	 */
2408 
2409 	rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
2410 	rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
2411 	txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
2412 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2413 		txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
2414 	else if (gigabit) {
2415 		rxcfg |= GEM_MAC_RX_CARR_EXTEND;
2416 		txcfg |= GEM_MAC_RX_CARR_EXTEND;
2417 	}
2418 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
2419 	bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
2420 	    BUS_SPACE_BARRIER_WRITE);
2421 	if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
2422 		aprint_normal_dev(sc->sc_dev, "cannot disable TX MAC\n");
2423 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
2424 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
2425 	bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
2426 	    BUS_SPACE_BARRIER_WRITE);
2427 	if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
2428 		aprint_normal_dev(sc->sc_dev, "cannot disable RX MAC\n");
2429 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
2430 
2431 	v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
2432 	    ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
2433 	bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
2434 
2435 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
2436 	    gigabit != 0)
2437 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2438 		    GEM_MAC_SLOT_TIME_CARR_EXTEND);
2439 	else
2440 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2441 		    GEM_MAC_SLOT_TIME_NORMAL);
2442 
2443 	/* XIF Configuration */
2444 	if (sc->sc_flags & GEM_LINK)
2445 		v = GEM_MAC_XIF_LINK_LED;
2446 	else
2447 		v = 0;
2448 	v |= GEM_MAC_XIF_TX_MII_ENA;
2449 
2450 	/* If an external transceiver is connected, enable its MII drivers */
2451 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
2452 	if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
2453 		if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
2454 			/* External MII needs echo disable if half duplex. */
2455 			if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) &
2456 			    IFM_FDX) != 0)
2457 				/* turn on full duplex LED */
2458 				v |= GEM_MAC_XIF_FDPLX_LED;
2459 			else
2460 				/* half duplex -- disable echo */
2461 				v |= GEM_MAC_XIF_ECHO_DISABL;
2462 			if (gigabit)
2463 				v |= GEM_MAC_XIF_GMII_MODE;
2464 			else
2465 				v &= ~GEM_MAC_XIF_GMII_MODE;
2466 		} else
2467 			/* Internal MII needs buf enable */
2468 			v |= GEM_MAC_XIF_MII_BUF_ENA;
2469 	} else {
2470 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2471 			v |= GEM_MAC_XIF_FDPLX_LED;
2472 		v |= GEM_MAC_XIF_GMII_MODE;
2473 	}
2474 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
2475 
2476 	if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2477 	    (sc->sc_flags & GEM_LINK) != 0) {
2478 		bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
2479 		    txcfg | GEM_MAC_TX_ENABLE);
2480 		bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
2481 		    rxcfg | GEM_MAC_RX_ENABLE);
2482 	}
2483 }
2484 
2485 int
2486 gem_ser_mediachange(struct ifnet *ifp)
2487 {
2488 	struct gem_softc *sc = ifp->if_softc;
2489 	u_int s, t;
2490 
2491 	if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
2492 		return EINVAL;
2493 
2494 	s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
2495 	if (s == IFM_AUTO) {
2496 		if (sc->sc_mii_media != s) {
2497 #ifdef GEM_DEBUG
2498 			aprint_debug_dev(sc->sc_dev, "setting media to auto\n");
2499 #endif
2500 			sc->sc_mii_media = s;
2501 			if (ifp->if_flags & IFF_UP) {
2502 				gem_pcs_stop(sc, 0);
2503 				gem_pcs_start(sc);
2504 			}
2505 		}
2506 		return 0;
2507 	}
2508 	if (s == IFM_1000_SX) {
2509 		t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media);
2510 		if (t == IFM_FDX || t == IFM_HDX) {
2511 			if (sc->sc_mii_media != t) {
2512 				sc->sc_mii_media = t;
2513 #ifdef GEM_DEBUG
2514 				aprint_debug_dev(sc->sc_dev,
2515 				    "setting media to 1000baseSX-%s\n",
2516 				    t == IFM_FDX ? "FDX" : "HDX");
2517 #endif
2518 				if (ifp->if_flags & IFF_UP) {
2519 					gem_pcs_stop(sc, 0);
2520 					gem_pcs_start(sc);
2521 				}
2522 			}
2523 			return 0;
2524 		}
2525 	}
2526 	return EINVAL;
2527 }
2528 
2529 void
2530 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2531 {
2532 	struct gem_softc *sc = ifp->if_softc;
2533 
2534 	if ((ifp->if_flags & IFF_UP) == 0)
2535 		return;
2536 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
2537 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
2538 }
2539 
2540 static int
2541 gem_ifflags_cb(struct ethercom *ec)
2542 {
2543 	struct ifnet *ifp = &ec->ec_if;
2544 	struct gem_softc *sc = ifp->if_softc;
2545 	int change = ifp->if_flags ^ sc->sc_if_flags;
2546 
2547 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
2548 		return ENETRESET;
2549 	else if ((change & IFF_PROMISC) != 0)
2550 		gem_setladrf(sc);
2551 	return 0;
2552 }
2553 
2554 /*
2555  * Process an ioctl request.
2556  */
2557 int
2558 gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
2559 {
2560 	struct gem_softc *sc = ifp->if_softc;
2561 	int s, error = 0;
2562 
2563 	s = splnet();
2564 
2565 	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2566 		error = 0;
2567 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2568 			;
2569 		else if (ifp->if_flags & IFF_RUNNING) {
2570 			/*
2571 			 * Multicast list has changed; set the hardware filter
2572 			 * accordingly.
2573 			 */
2574 			gem_setladrf(sc);
2575 		}
2576 	}
2577 
2578 	/* Try to get things going again */
2579 	if (ifp->if_flags & IFF_UP)
2580 		gem_start(ifp);
2581 	splx(s);
2582 	return (error);
2583 }
2584 
2585 static void
2586 gem_inten(struct gem_softc *sc)
2587 {
2588 	bus_space_tag_t t = sc->sc_bustag;
2589 	bus_space_handle_t h = sc->sc_h1;
2590 	uint32_t v;
2591 
2592 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
2593 		v = GEM_INTR_PCS;
2594 	else
2595 		v = GEM_INTR_MIF;
2596 	bus_space_write_4(t, h, GEM_INTMASK,
2597 		      ~(GEM_INTR_TX_INTME |
2598 			GEM_INTR_TX_EMPTY |
2599 			GEM_INTR_TX_MAC |
2600 			GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF|
2601 			GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL|
2602 			GEM_INTR_BERR | v));
2603 }
2604 
2605 bool
2606 gem_resume(device_t self PMF_FN_ARGS)
2607 {
2608 	struct gem_softc *sc = device_private(self);
2609 
2610 	gem_inten(sc);
2611 
2612 	return true;
2613 }
2614 
2615 bool
2616 gem_suspend(device_t self PMF_FN_ARGS)
2617 {
2618 	struct gem_softc *sc = device_private(self);
2619 	bus_space_tag_t t = sc->sc_bustag;
2620 	bus_space_handle_t h = sc->sc_h1;
2621 
2622 	bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
2623 
2624 	return true;
2625 }
2626 
2627 bool
2628 gem_shutdown(device_t self, int howto)
2629 {
2630 	struct gem_softc *sc = device_private(self);
2631 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2632 
2633 	gem_stop(ifp, 1);
2634 
2635 	return true;
2636 }
2637 
2638 /*
2639  * Set up the logical address filter.
2640  */
2641 void
2642 gem_setladrf(struct gem_softc *sc)
2643 {
2644 	struct ethercom *ec = &sc->sc_ethercom;
2645 	struct ifnet *ifp = &ec->ec_if;
2646 	struct ether_multi *enm;
2647 	struct ether_multistep step;
2648 	bus_space_tag_t t = sc->sc_bustag;
2649 	bus_space_handle_t h = sc->sc_h1;
2650 	u_int32_t crc;
2651 	u_int32_t hash[16];
2652 	u_int32_t v;
2653 	int i;
2654 
2655 	/* Get current RX configuration */
2656 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2657 
2658 	/*
2659 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2660 	 * and hash filter.  Depending on the case, the right bit will be
2661 	 * enabled.
2662 	 */
2663 	v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
2664 	    GEM_MAC_RX_PROMISC_GRP);
2665 
2666 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
2667 		/* Turn on promiscuous mode */
2668 		v |= GEM_MAC_RX_PROMISCUOUS;
2669 		ifp->if_flags |= IFF_ALLMULTI;
2670 		goto chipit;
2671 	}
2672 
2673 	/*
2674 	 * Set up multicast address filter by passing all multicast addresses
2675 	 * through a crc generator, and then using the high order 8 bits as an
2676 	 * index into the 256 bit logical address filter.  The high order 4
2677 	 * bits selects the word, while the other 4 bits select the bit within
2678 	 * the word (where bit 0 is the MSB).
2679 	 */
2680 
2681 	/* Clear hash table */
2682 	memset(hash, 0, sizeof(hash));
2683 
2684 	ETHER_FIRST_MULTI(step, ec, enm);
2685 	while (enm != NULL) {
2686 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2687 			/*
2688 			 * We must listen to a range of multicast addresses.
2689 			 * For now, just accept all multicasts, rather than
2690 			 * trying to set only those filter bits needed to match
2691 			 * the range.  (At this time, the only use of address
2692 			 * ranges is for IP multicast routing, for which the
2693 			 * range is big enough to require all bits set.)
2694 			 * XXX should use the address filters for this
2695 			 */
2696 			ifp->if_flags |= IFF_ALLMULTI;
2697 			v |= GEM_MAC_RX_PROMISC_GRP;
2698 			goto chipit;
2699 		}
2700 
2701 		/* Get the LE CRC32 of the address */
2702 		crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2703 
2704 		/* Just want the 8 most significant bits. */
2705 		crc >>= 24;
2706 
2707 		/* Set the corresponding bit in the filter. */
2708 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
2709 
2710 		ETHER_NEXT_MULTI(step, enm);
2711 	}
2712 
2713 	v |= GEM_MAC_RX_HASH_FILTER;
2714 	ifp->if_flags &= ~IFF_ALLMULTI;
2715 
2716 	/* Now load the hash table into the chip (if we are using it) */
2717 	for (i = 0; i < 16; i++) {
2718 		bus_space_write_4(t, h,
2719 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2720 		    hash[i]);
2721 	}
2722 
2723 chipit:
2724 	sc->sc_if_flags = ifp->if_flags;
2725 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2726 }
2727