1 /* $NetBSD: gem.c,v 1.131 2020/07/15 01:42:27 msaitoh Exp $ */ 2 3 /* 4 * 5 * Copyright (C) 2001 Eduardo Horvath. 6 * Copyright (c) 2001-2003 Thomas Moestl 7 * All rights reserved. 8 * 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 */ 32 33 /* 34 * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers 35 * See `GEM Gigabit Ethernet ASIC Specification' 36 * http://www.sun.com/processors/manuals/ge.pdf 37 */ 38 39 #include <sys/cdefs.h> 40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.131 2020/07/15 01:42:27 msaitoh Exp $"); 41 42 #include "opt_inet.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/callout.h> 47 #include <sys/mbuf.h> 48 #include <sys/syslog.h> 49 #include <sys/malloc.h> 50 #include <sys/kernel.h> 51 #include <sys/socket.h> 52 #include <sys/ioctl.h> 53 #include <sys/errno.h> 54 #include <sys/device.h> 55 56 #include <machine/endian.h> 57 58 #include <net/if.h> 59 #include <net/if_dl.h> 60 #include <net/if_media.h> 61 #include <net/if_ether.h> 62 63 #ifdef INET 64 #include <netinet/in.h> 65 #include <netinet/in_systm.h> 66 #include <netinet/in_var.h> 67 #include <netinet/ip.h> 68 #include <netinet/tcp.h> 69 #include <netinet/udp.h> 70 #endif 71 72 #include <net/bpf.h> 73 74 #include <sys/bus.h> 75 #include <sys/intr.h> 76 77 #include <dev/mii/mii.h> 78 #include <dev/mii/miivar.h> 79 #include <dev/mii/mii_bitbang.h> 80 81 #include <dev/ic/gemreg.h> 82 #include <dev/ic/gemvar.h> 83 84 #define TRIES 10000 85 86 static void gem_inten(struct gem_softc *); 87 static void gem_start(struct ifnet *); 88 static void gem_stop(struct ifnet *, int); 89 int gem_ioctl(struct ifnet *, u_long, void *); 90 void gem_tick(void *); 91 void gem_watchdog(struct ifnet *); 92 void gem_rx_watchdog(void *); 93 void gem_pcs_start(struct gem_softc *sc); 94 void gem_pcs_stop(struct gem_softc *sc, int); 95 int gem_init(struct ifnet *); 96 void gem_init_regs(struct gem_softc *sc); 97 static int gem_ringsize(int sz); 98 static int gem_meminit(struct gem_softc *); 99 void gem_mifinit(struct gem_softc *); 100 static int gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int, 101 uint32_t, uint32_t); 102 void gem_reset(struct gem_softc *); 103 int gem_reset_rx(struct gem_softc *sc); 104 static void gem_reset_rxdma(struct gem_softc *sc); 105 static void gem_rx_common(struct gem_softc *sc); 106 int gem_reset_tx(struct gem_softc *sc); 107 int gem_disable_rx(struct gem_softc *sc); 108 int gem_disable_tx(struct gem_softc *sc); 109 static void gem_rxdrain(struct gem_softc *sc); 110 int gem_add_rxbuf(struct gem_softc *sc, int idx); 111 void gem_setladrf(struct gem_softc *); 112 113 /* MII methods & callbacks */ 114 static int gem_mii_readreg(device_t, int, int, uint16_t *); 115 static int gem_mii_writereg(device_t, int, int, uint16_t); 116 static void gem_mii_statchg(struct ifnet *); 117 118 static int gem_ifflags_cb(struct ethercom *); 119 120 void gem_statuschange(struct gem_softc *); 121 122 int gem_ser_mediachange(struct ifnet *); 123 void gem_ser_mediastatus(struct ifnet *, struct ifmediareq *); 124 125 static void gem_partial_detach(struct gem_softc *, enum gem_attach_stage); 126 127 struct mbuf *gem_get(struct gem_softc *, int, int); 128 int gem_put(struct gem_softc *, int, struct mbuf *); 129 void gem_read(struct gem_softc *, int, int); 130 int gem_pint(struct gem_softc *); 131 int gem_eint(struct gem_softc *, u_int); 132 int gem_rint(struct gem_softc *); 133 int gem_tint(struct gem_softc *); 134 void gem_power(int, void *); 135 136 #ifdef GEM_DEBUG 137 static void gem_txsoft_print(const struct gem_softc *, int, int); 138 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \ 139 printf x 140 #else 141 #define DPRINTF(sc, x) /* nothing */ 142 #endif 143 144 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header)) 145 146 int 147 gem_detach(struct gem_softc *sc, int flags) 148 { 149 int i; 150 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 151 bus_space_tag_t t = sc->sc_bustag; 152 bus_space_handle_t h = sc->sc_h1; 153 154 /* 155 * Free any resources we've allocated during the attach. 156 * Do this in reverse order and fall through. 157 */ 158 switch (sc->sc_att_stage) { 159 case GEM_ATT_BACKEND_2: 160 case GEM_ATT_BACKEND_1: 161 case GEM_ATT_FINISHED: 162 bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0); 163 gem_stop(&sc->sc_ethercom.ec_if, 1); 164 165 #ifdef GEM_COUNTERS 166 for (i = __arraycount(sc->sc_ev_rxhist); --i >= 0; ) 167 evcnt_detach(&sc->sc_ev_rxhist[i]); 168 evcnt_detach(&sc->sc_ev_rxnobuf); 169 evcnt_detach(&sc->sc_ev_rxfull); 170 evcnt_detach(&sc->sc_ev_rxint); 171 evcnt_detach(&sc->sc_ev_txint); 172 #endif 173 evcnt_detach(&sc->sc_ev_intr); 174 175 rnd_detach_source(&sc->rnd_source); 176 ether_ifdetach(ifp); 177 if_detach(ifp); 178 ifmedia_fini(&sc->sc_mii.mii_media); 179 180 callout_destroy(&sc->sc_tick_ch); 181 callout_destroy(&sc->sc_rx_watchdog); 182 183 /*FALLTHROUGH*/ 184 case GEM_ATT_MII: 185 sc->sc_att_stage = GEM_ATT_MII; 186 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY); 187 /*FALLTHROUGH*/ 188 case GEM_ATT_7: 189 for (i = 0; i < GEM_NRXDESC; i++) { 190 if (sc->sc_rxsoft[i].rxs_dmamap != NULL) 191 bus_dmamap_destroy(sc->sc_dmatag, 192 sc->sc_rxsoft[i].rxs_dmamap); 193 } 194 /*FALLTHROUGH*/ 195 case GEM_ATT_6: 196 for (i = 0; i < GEM_TXQUEUELEN; i++) { 197 if (sc->sc_txsoft[i].txs_dmamap != NULL) 198 bus_dmamap_destroy(sc->sc_dmatag, 199 sc->sc_txsoft[i].txs_dmamap); 200 } 201 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap); 202 /*FALLTHROUGH*/ 203 case GEM_ATT_5: 204 bus_dmamap_unload(sc->sc_dmatag, sc->sc_nulldmamap); 205 /*FALLTHROUGH*/ 206 case GEM_ATT_4: 207 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap); 208 /*FALLTHROUGH*/ 209 case GEM_ATT_3: 210 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap); 211 /*FALLTHROUGH*/ 212 case GEM_ATT_2: 213 bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data, 214 sizeof(struct gem_control_data)); 215 /*FALLTHROUGH*/ 216 case GEM_ATT_1: 217 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg); 218 /*FALLTHROUGH*/ 219 case GEM_ATT_0: 220 sc->sc_att_stage = GEM_ATT_0; 221 /*FALLTHROUGH*/ 222 case GEM_ATT_BACKEND_0: 223 break; 224 } 225 return 0; 226 } 227 228 static void 229 gem_partial_detach(struct gem_softc *sc, enum gem_attach_stage stage) 230 { 231 cfattach_t ca = device_cfattach(sc->sc_dev); 232 233 sc->sc_att_stage = stage; 234 (*ca->ca_detach)(sc->sc_dev, 0); 235 } 236 237 /* 238 * gem_attach: 239 * 240 * Attach a Gem interface to the system. 241 */ 242 void 243 gem_attach(struct gem_softc *sc, const uint8_t *enaddr) 244 { 245 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 246 struct mii_data *mii = &sc->sc_mii; 247 bus_space_tag_t t = sc->sc_bustag; 248 bus_space_handle_t h = sc->sc_h1; 249 struct ifmedia_entry *ife; 250 int i, error, phyaddr; 251 uint32_t v; 252 char *nullbuf; 253 254 /* Make sure the chip is stopped. */ 255 ifp->if_softc = sc; 256 gem_reset(sc); 257 258 /* 259 * Allocate the control data structures, and create and load the 260 * DMA map for it. gem_control_data is 9216 bytes, we have space for 261 * the padding buffer in the bus_dmamem_alloc()'d memory. 262 */ 263 if ((error = bus_dmamem_alloc(sc->sc_dmatag, 264 sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE, 265 0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) { 266 aprint_error_dev(sc->sc_dev, 267 "unable to allocate control data, error = %d\n", 268 error); 269 gem_partial_detach(sc, GEM_ATT_0); 270 return; 271 } 272 273 /* XXX should map this in with correct endianness */ 274 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg, 275 sizeof(struct gem_control_data), (void **)&sc->sc_control_data, 276 BUS_DMA_COHERENT)) != 0) { 277 aprint_error_dev(sc->sc_dev, 278 "unable to map control data, error = %d\n", error); 279 gem_partial_detach(sc, GEM_ATT_1); 280 return; 281 } 282 283 nullbuf = 284 (char *)sc->sc_control_data + sizeof(struct gem_control_data); 285 286 if ((error = bus_dmamap_create(sc->sc_dmatag, 287 sizeof(struct gem_control_data), 1, 288 sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) { 289 aprint_error_dev(sc->sc_dev, 290 "unable to create control data DMA map, error = %d\n", 291 error); 292 gem_partial_detach(sc, GEM_ATT_2); 293 return; 294 } 295 296 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap, 297 sc->sc_control_data, sizeof(struct gem_control_data), NULL, 298 0)) != 0) { 299 aprint_error_dev(sc->sc_dev, 300 "unable to load control data DMA map, error = %d\n", 301 error); 302 gem_partial_detach(sc, GEM_ATT_3); 303 return; 304 } 305 306 memset(nullbuf, 0, ETHER_MIN_TX); 307 if ((error = bus_dmamap_create(sc->sc_dmatag, 308 ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) { 309 aprint_error_dev(sc->sc_dev, 310 "unable to create padding DMA map, error = %d\n", error); 311 gem_partial_detach(sc, GEM_ATT_4); 312 return; 313 } 314 315 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap, 316 nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) { 317 aprint_error_dev(sc->sc_dev, 318 "unable to load padding DMA map, error = %d\n", error); 319 gem_partial_detach(sc, GEM_ATT_5); 320 return; 321 } 322 323 bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX, 324 BUS_DMASYNC_PREWRITE); 325 326 /* 327 * Initialize the transmit job descriptors. 328 */ 329 SIMPLEQ_INIT(&sc->sc_txfreeq); 330 SIMPLEQ_INIT(&sc->sc_txdirtyq); 331 332 /* 333 * Create the transmit buffer DMA maps. 334 */ 335 for (i = 0; i < GEM_TXQUEUELEN; i++) { 336 struct gem_txsoft *txs; 337 338 txs = &sc->sc_txsoft[i]; 339 txs->txs_mbuf = NULL; 340 if ((error = bus_dmamap_create(sc->sc_dmatag, 341 ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS, 342 ETHER_MAX_LEN_JUMBO, 0, 0, 343 &txs->txs_dmamap)) != 0) { 344 aprint_error_dev(sc->sc_dev, 345 "unable to create tx DMA map %d, error = %d\n", 346 i, error); 347 gem_partial_detach(sc, GEM_ATT_6); 348 return; 349 } 350 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 351 } 352 353 /* 354 * Create the receive buffer DMA maps. 355 */ 356 for (i = 0; i < GEM_NRXDESC; i++) { 357 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1, 358 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { 359 aprint_error_dev(sc->sc_dev, 360 "unable to create rx DMA map %d, error = %d\n", 361 i, error); 362 gem_partial_detach(sc, GEM_ATT_7); 363 return; 364 } 365 sc->sc_rxsoft[i].rxs_mbuf = NULL; 366 } 367 368 /* Initialize ifmedia structures and MII info */ 369 mii->mii_ifp = ifp; 370 mii->mii_readreg = gem_mii_readreg; 371 mii->mii_writereg = gem_mii_writereg; 372 mii->mii_statchg = gem_mii_statchg; 373 374 sc->sc_ethercom.ec_mii = mii; 375 376 /* 377 * Initialization based on `GEM Gigabit Ethernet ASIC Specification' 378 * Section 3.2.1 `Initialization Sequence'. 379 * However, we can't assume SERDES or Serialink if neither 380 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set 381 * being set, as both are set on Sun X1141A (with SERDES). So, 382 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL. 383 * Also, for variants that report 2 PHY's, we prefer the external 384 * PHY over the internal PHY, so we look for that first. 385 */ 386 gem_mifinit(sc); 387 388 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) { 389 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange, 390 ether_mediastatus); 391 /* Look for external PHY */ 392 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) { 393 sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL; 394 bus_space_write_4(t, h, GEM_MIF_CONFIG, 395 sc->sc_mif_config); 396 switch (sc->sc_variant) { 397 case GEM_SUN_ERI: 398 phyaddr = GEM_PHYAD_EXTERNAL; 399 break; 400 default: 401 phyaddr = MII_PHY_ANY; 402 break; 403 } 404 mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr, 405 MII_OFFSET_ANY, MIIF_FORCEANEG); 406 } 407 #ifdef GEM_DEBUG 408 else 409 aprint_debug_dev(sc->sc_dev, "using external PHY\n"); 410 #endif 411 /* Look for internal PHY if no external PHY was found */ 412 if (LIST_EMPTY(&mii->mii_phys) && 413 ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI0) || 414 (sc->sc_variant == GEM_APPLE_K2_GMAC))) { 415 sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL; 416 bus_space_write_4(t, h, GEM_MIF_CONFIG, 417 sc->sc_mif_config); 418 switch (sc->sc_variant) { 419 case GEM_SUN_ERI: 420 case GEM_APPLE_K2_GMAC: 421 phyaddr = GEM_PHYAD_INTERNAL; 422 break; 423 case GEM_APPLE_GMAC: 424 phyaddr = GEM_PHYAD_EXTERNAL; 425 break; 426 default: 427 phyaddr = MII_PHY_ANY; 428 break; 429 } 430 mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr, 431 MII_OFFSET_ANY, MIIF_FORCEANEG); 432 #ifdef GEM_DEBUG 433 if (!LIST_EMPTY(&mii->mii_phys)) 434 aprint_debug_dev(sc->sc_dev, 435 "using internal PHY\n"); 436 #endif 437 } 438 if (LIST_EMPTY(&mii->mii_phys)) { 439 /* No PHY attached */ 440 aprint_error_dev(sc->sc_dev, 441 "PHY probe failed\n"); 442 gem_partial_detach(sc, GEM_ATT_MII); 443 return; 444 } else { 445 struct mii_softc *child; 446 447 /* 448 * Walk along the list of attached MII devices and 449 * establish an `MII instance' to `PHY number' 450 * mapping. 451 */ 452 LIST_FOREACH(child, &mii->mii_phys, mii_list) { 453 /* 454 * Note: we support just one PHY: the internal 455 * or external MII is already selected for us 456 * by the GEM_MIF_CONFIG register. 457 */ 458 if (child->mii_phy > 1 || child->mii_inst > 0) { 459 aprint_error_dev(sc->sc_dev, 460 "cannot accommodate MII device" 461 " %s at PHY %d, instance %d\n", 462 device_xname(child->mii_dev), 463 child->mii_phy, child->mii_inst); 464 continue; 465 } 466 sc->sc_phys[child->mii_inst] = child->mii_phy; 467 } 468 469 if (sc->sc_variant != GEM_SUN_ERI) 470 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, 471 GEM_MII_DATAPATH_MII); 472 473 /* 474 * XXX - we can really do the following ONLY if the 475 * PHY indeed has the auto negotiation capability!! 476 */ 477 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 478 } 479 } else { 480 ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange, 481 gem_ser_mediastatus); 482 /* SERDES or Serialink */ 483 if (sc->sc_flags & GEM_SERDES) { 484 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, 485 GEM_MII_DATAPATH_SERDES); 486 } else { 487 sc->sc_flags |= GEM_SERIAL; 488 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, 489 GEM_MII_DATAPATH_SERIAL); 490 } 491 492 aprint_normal_dev(sc->sc_dev, "using external PCS %s: ", 493 sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink"); 494 495 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_AUTO, 0, NULL); 496 /* Check for FDX and HDX capabilities */ 497 sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR); 498 if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) { 499 ifmedia_add(&mii->mii_media, IFM_ETHER | 500 IFM_1000_SX | IFM_MANUAL | IFM_FDX, 0, NULL); 501 aprint_normal("1000baseSX-FDX, "); 502 } 503 if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) { 504 ifmedia_add(&mii->mii_media, IFM_ETHER | 505 IFM_1000_SX | IFM_MANUAL | IFM_HDX, 0, NULL); 506 aprint_normal("1000baseSX-HDX, "); 507 } 508 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 509 sc->sc_mii_media = IFM_AUTO; 510 aprint_normal("auto\n"); 511 512 gem_pcs_stop(sc, 1); 513 } 514 515 /* 516 * From this point forward, the attachment cannot fail. A failure 517 * before this point releases all resources that may have been 518 * allocated. 519 */ 520 521 /* Announce ourselves. */ 522 aprint_normal_dev(sc->sc_dev, "Ethernet address %s", 523 ether_sprintf(enaddr)); 524 525 /* Get RX FIFO size */ 526 sc->sc_rxfifosize = 64 * 527 bus_space_read_4(t, h, GEM_RX_FIFO_SIZE); 528 aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024); 529 530 /* Get TX FIFO size */ 531 v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE); 532 aprint_normal(", %uKB TX fifo\n", v / 16); 533 534 /* Initialize ifnet structure. */ 535 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 536 ifp->if_softc = sc; 537 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 538 sc->sc_if_flags = ifp->if_flags; 539 #if 0 540 /* 541 * The GEM hardware supports basic TCP checksum offloading only. 542 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80) 543 * have bugs in the receive checksum, so don't enable it for now. 544 */ 545 if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) || 546 (GEM_IS_APPLE(sc) && 547 (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80))) 548 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx; 549 #endif 550 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx; 551 ifp->if_start = gem_start; 552 ifp->if_ioctl = gem_ioctl; 553 ifp->if_watchdog = gem_watchdog; 554 ifp->if_stop = gem_stop; 555 ifp->if_init = gem_init; 556 IFQ_SET_READY(&ifp->if_snd); 557 558 /* 559 * If we support GigE media, we support jumbo frames too. 560 * Unless we are Apple. 561 */ 562 TAILQ_FOREACH(ife, &mii->mii_media.ifm_list, ifm_list) { 563 if (IFM_SUBTYPE(ife->ifm_media) == IFM_1000_T || 564 IFM_SUBTYPE(ife->ifm_media) == IFM_1000_SX || 565 IFM_SUBTYPE(ife->ifm_media) == IFM_1000_LX || 566 IFM_SUBTYPE(ife->ifm_media) == IFM_1000_CX) { 567 if (!GEM_IS_APPLE(sc)) 568 sc->sc_ethercom.ec_capabilities 569 |= ETHERCAP_JUMBO_MTU; 570 sc->sc_flags |= GEM_GIGABIT; 571 break; 572 } 573 } 574 575 /* claim 802.1q capability */ 576 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; 577 578 /* Attach the interface. */ 579 if_attach(ifp); 580 if_deferred_start_init(ifp, NULL); 581 ether_ifattach(ifp, enaddr); 582 ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb); 583 584 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev), 585 RND_TYPE_NET, RND_FLAG_DEFAULT); 586 587 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR, 588 NULL, device_xname(sc->sc_dev), "interrupts"); 589 #ifdef GEM_COUNTERS 590 evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR, 591 &sc->sc_ev_intr, device_xname(sc->sc_dev), "tx interrupts"); 592 evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR, 593 &sc->sc_ev_intr, device_xname(sc->sc_dev), "rx interrupts"); 594 evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR, 595 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx ring full"); 596 evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR, 597 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx malloc failure"); 598 evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR, 599 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 0desc"); 600 evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR, 601 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 1desc"); 602 evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR, 603 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 2desc"); 604 evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR, 605 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 3desc"); 606 evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR, 607 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >3desc"); 608 evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR, 609 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >7desc"); 610 evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR, 611 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >15desc"); 612 evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR, 613 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >31desc"); 614 evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR, 615 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >63desc"); 616 #endif 617 618 callout_init(&sc->sc_tick_ch, 0); 619 callout_setfunc(&sc->sc_tick_ch, gem_tick, sc); 620 621 callout_init(&sc->sc_rx_watchdog, 0); 622 callout_setfunc(&sc->sc_rx_watchdog, gem_rx_watchdog, sc); 623 624 sc->sc_att_stage = GEM_ATT_FINISHED; 625 626 return; 627 } 628 629 void 630 gem_tick(void *arg) 631 { 632 struct gem_softc *sc = arg; 633 int s; 634 635 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) { 636 /* 637 * We have to reset everything if we failed to get a 638 * PCS interrupt. Restarting the callout is handled 639 * in gem_pcs_start(). 640 */ 641 gem_init(&sc->sc_ethercom.ec_if); 642 } else { 643 s = splnet(); 644 mii_tick(&sc->sc_mii); 645 splx(s); 646 callout_schedule(&sc->sc_tick_ch, hz); 647 } 648 } 649 650 static int 651 gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, uint32_t clr, 652 uint32_t set) 653 { 654 int i; 655 uint32_t reg; 656 657 for (i = TRIES; i--; DELAY(100)) { 658 reg = bus_space_read_4(sc->sc_bustag, h, r); 659 if ((reg & clr) == 0 && (reg & set) == set) 660 return (1); 661 } 662 return (0); 663 } 664 665 void 666 gem_reset(struct gem_softc *sc) 667 { 668 bus_space_tag_t t = sc->sc_bustag; 669 bus_space_handle_t h = sc->sc_h2; 670 int s; 671 672 s = splnet(); 673 DPRINTF(sc, ("%s: gem_reset\n", device_xname(sc->sc_dev))); 674 gem_reset_rx(sc); 675 gem_reset_tx(sc); 676 677 /* Do a full reset */ 678 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX); 679 if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0)) 680 aprint_error_dev(sc->sc_dev, "cannot reset device\n"); 681 splx(s); 682 } 683 684 685 /* 686 * gem_rxdrain: 687 * 688 * Drain the receive queue. 689 */ 690 static void 691 gem_rxdrain(struct gem_softc *sc) 692 { 693 struct gem_rxsoft *rxs; 694 int i; 695 696 for (i = 0; i < GEM_NRXDESC; i++) { 697 rxs = &sc->sc_rxsoft[i]; 698 if (rxs->rxs_mbuf != NULL) { 699 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0, 700 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 701 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap); 702 m_freem(rxs->rxs_mbuf); 703 rxs->rxs_mbuf = NULL; 704 } 705 } 706 } 707 708 /* 709 * Reset the whole thing. 710 */ 711 static void 712 gem_stop(struct ifnet *ifp, int disable) 713 { 714 struct gem_softc *sc = ifp->if_softc; 715 struct gem_txsoft *txs; 716 717 DPRINTF(sc, ("%s: gem_stop\n", device_xname(sc->sc_dev))); 718 719 callout_halt(&sc->sc_tick_ch, NULL); 720 callout_halt(&sc->sc_rx_watchdog, NULL); 721 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) 722 gem_pcs_stop(sc, disable); 723 else 724 mii_down(&sc->sc_mii); 725 726 /* XXX - Should we reset these instead? */ 727 gem_disable_tx(sc); 728 gem_disable_rx(sc); 729 730 /* 731 * Release any queued transmit buffers. 732 */ 733 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) { 734 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); 735 if (txs->txs_mbuf != NULL) { 736 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0, 737 txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 738 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap); 739 m_freem(txs->txs_mbuf); 740 txs->txs_mbuf = NULL; 741 } 742 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 743 } 744 745 /* 746 * Mark the interface down and cancel the watchdog timer. 747 */ 748 ifp->if_flags &= ~IFF_RUNNING; 749 sc->sc_if_flags = ifp->if_flags; 750 ifp->if_timer = 0; 751 752 if (disable) 753 gem_rxdrain(sc); 754 } 755 756 757 /* 758 * Reset the receiver 759 */ 760 int 761 gem_reset_rx(struct gem_softc *sc) 762 { 763 bus_space_tag_t t = sc->sc_bustag; 764 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2; 765 766 /* 767 * Resetting while DMA is in progress can cause a bus hang, so we 768 * disable DMA first. 769 */ 770 gem_disable_rx(sc); 771 bus_space_write_4(t, h, GEM_RX_CONFIG, 0); 772 bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE); 773 /* Wait till it finishes */ 774 if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0)) 775 aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n"); 776 /* Wait 5ms extra. */ 777 delay(5000); 778 779 /* Finally, reset the ERX */ 780 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX); 781 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE); 782 /* Wait till it finishes */ 783 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) { 784 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n"); 785 return (1); 786 } 787 return (0); 788 } 789 790 791 /* 792 * Reset the receiver DMA engine. 793 * 794 * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW 795 * etc in order to reset the receiver DMA engine only and not do a full 796 * reset which amongst others also downs the link and clears the FIFOs. 797 */ 798 static void 799 gem_reset_rxdma(struct gem_softc *sc) 800 { 801 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 802 bus_space_tag_t t = sc->sc_bustag; 803 bus_space_handle_t h = sc->sc_h1; 804 int i; 805 806 if (gem_reset_rx(sc) != 0) { 807 gem_init(ifp); 808 return; 809 } 810 for (i = 0; i < GEM_NRXDESC; i++) 811 if (sc->sc_rxsoft[i].rxs_mbuf != NULL) 812 GEM_UPDATE_RXDESC(sc, i); 813 sc->sc_rxptr = 0; 814 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE); 815 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD); 816 817 /* Reprogram Descriptor Ring Base Addresses */ 818 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 819 ((uint64_t)GEM_CDRXADDR(sc, 0)) >> 32); 820 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0)); 821 822 /* Redo ERX Configuration */ 823 gem_rx_common(sc); 824 825 /* Give the receiver a swift kick */ 826 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4); 827 } 828 829 /* 830 * Common RX configuration for gem_init() and gem_reset_rxdma(). 831 */ 832 static void 833 gem_rx_common(struct gem_softc *sc) 834 { 835 bus_space_tag_t t = sc->sc_bustag; 836 bus_space_handle_t h = sc->sc_h1; 837 uint32_t v; 838 839 /* Encode Receive Descriptor ring size: four possible values */ 840 v = gem_ringsize(GEM_NRXDESC /*XXX*/); 841 842 /* Set receive h/w checksum offset */ 843 #ifdef INET 844 v |= (ETHER_HDR_LEN + sizeof(struct ip) + 845 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ? 846 ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT; 847 #endif 848 849 /* Enable RX DMA */ 850 bus_space_write_4(t, h, GEM_RX_CONFIG, 851 v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) | 852 (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN); 853 854 /* 855 * The following value is for an OFF Threshold of about 3/4 full 856 * and an ON Threshold of 1/4 full. 857 */ 858 bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH, 859 (3 * sc->sc_rxfifosize / 256) | 860 ((sc->sc_rxfifosize / 256) << 12)); 861 bus_space_write_4(t, h, GEM_RX_BLANKING, 862 (6 << GEM_RX_BLANKING_TIME_SHIFT) | 8); 863 } 864 865 /* 866 * Reset the transmitter 867 */ 868 int 869 gem_reset_tx(struct gem_softc *sc) 870 { 871 bus_space_tag_t t = sc->sc_bustag; 872 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2; 873 874 /* 875 * Resetting while DMA is in progress can cause a bus hang, so we 876 * disable DMA first. 877 */ 878 gem_disable_tx(sc); 879 bus_space_write_4(t, h, GEM_TX_CONFIG, 0); 880 bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE); 881 /* Wait till it finishes */ 882 if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0)) 883 aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n"); 884 /* Wait 5ms extra. */ 885 delay(5000); 886 887 /* Finally, reset the ETX */ 888 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX); 889 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE); 890 /* Wait till it finishes */ 891 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) { 892 aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n"); 893 return (1); 894 } 895 return (0); 896 } 897 898 /* 899 * disable receiver. 900 */ 901 int 902 gem_disable_rx(struct gem_softc *sc) 903 { 904 bus_space_tag_t t = sc->sc_bustag; 905 bus_space_handle_t h = sc->sc_h1; 906 uint32_t cfg; 907 908 /* Flip the enable bit */ 909 cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG); 910 cfg &= ~GEM_MAC_RX_ENABLE; 911 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg); 912 bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE); 913 /* Wait for it to finish */ 914 return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0)); 915 } 916 917 /* 918 * disable transmitter. 919 */ 920 int 921 gem_disable_tx(struct gem_softc *sc) 922 { 923 bus_space_tag_t t = sc->sc_bustag; 924 bus_space_handle_t h = sc->sc_h1; 925 uint32_t cfg; 926 927 /* Flip the enable bit */ 928 cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG); 929 cfg &= ~GEM_MAC_TX_ENABLE; 930 bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg); 931 bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE); 932 /* Wait for it to finish */ 933 return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0)); 934 } 935 936 /* 937 * Initialize interface. 938 */ 939 int 940 gem_meminit(struct gem_softc *sc) 941 { 942 struct gem_rxsoft *rxs; 943 int i, error; 944 945 /* 946 * Initialize the transmit descriptor ring. 947 */ 948 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs)); 949 for (i = 0; i < GEM_NTXDESC; i++) { 950 sc->sc_txdescs[i].gd_flags = 0; 951 sc->sc_txdescs[i].gd_addr = 0; 952 } 953 GEM_CDTXSYNC(sc, 0, GEM_NTXDESC, 954 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 955 sc->sc_txfree = GEM_NTXDESC-1; 956 sc->sc_txnext = 0; 957 sc->sc_txwin = 0; 958 959 /* 960 * Initialize the receive descriptor and receive job 961 * descriptor rings. 962 */ 963 for (i = 0; i < GEM_NRXDESC; i++) { 964 rxs = &sc->sc_rxsoft[i]; 965 if (rxs->rxs_mbuf == NULL) { 966 if ((error = gem_add_rxbuf(sc, i)) != 0) { 967 aprint_error_dev(sc->sc_dev, 968 "unable to allocate or map rx " 969 "buffer %d, error = %d\n", 970 i, error); 971 /* 972 * XXX Should attempt to run with fewer receive 973 * XXX buffers instead of just failing. 974 */ 975 gem_rxdrain(sc); 976 return (1); 977 } 978 } else 979 GEM_INIT_RXDESC(sc, i); 980 } 981 sc->sc_rxptr = 0; 982 sc->sc_meminited = 1; 983 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE); 984 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD); 985 986 return (0); 987 } 988 989 static int 990 gem_ringsize(int sz) 991 { 992 switch (sz) { 993 case 32: 994 return GEM_RING_SZ_32; 995 case 64: 996 return GEM_RING_SZ_64; 997 case 128: 998 return GEM_RING_SZ_128; 999 case 256: 1000 return GEM_RING_SZ_256; 1001 case 512: 1002 return GEM_RING_SZ_512; 1003 case 1024: 1004 return GEM_RING_SZ_1024; 1005 case 2048: 1006 return GEM_RING_SZ_2048; 1007 case 4096: 1008 return GEM_RING_SZ_4096; 1009 case 8192: 1010 return GEM_RING_SZ_8192; 1011 default: 1012 printf("gem: invalid Receive Descriptor ring size %d\n", sz); 1013 return GEM_RING_SZ_32; 1014 } 1015 } 1016 1017 1018 /* 1019 * Start PCS 1020 */ 1021 void 1022 gem_pcs_start(struct gem_softc *sc) 1023 { 1024 bus_space_tag_t t = sc->sc_bustag; 1025 bus_space_handle_t h = sc->sc_h1; 1026 uint32_t v; 1027 1028 #ifdef GEM_DEBUG 1029 aprint_debug_dev(sc->sc_dev, "gem_pcs_start()\n"); 1030 #endif 1031 1032 /* 1033 * Set up. We must disable the MII before modifying the 1034 * GEM_MII_ANAR register 1035 */ 1036 if (sc->sc_flags & GEM_SERDES) { 1037 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, 1038 GEM_MII_DATAPATH_SERDES); 1039 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 1040 GEM_MII_SLINK_LOOPBACK); 1041 } else { 1042 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, 1043 GEM_MII_DATAPATH_SERIAL); 1044 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0); 1045 } 1046 bus_space_write_4(t, h, GEM_MII_CONFIG, 0); 1047 v = bus_space_read_4(t, h, GEM_MII_ANAR); 1048 v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE); 1049 if (IFM_SUBTYPE(sc->sc_mii_media) == IFM_AUTO) 1050 v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX); 1051 else if ((IFM_OPTIONS(sc->sc_mii_media) & IFM_FDX) != 0) { 1052 v |= GEM_MII_ANEG_FUL_DUPLX; 1053 v &= ~GEM_MII_ANEG_HLF_DUPLX; 1054 } else if ((IFM_OPTIONS(sc->sc_mii_media) & IFM_HDX) != 0) { 1055 v &= ~GEM_MII_ANEG_FUL_DUPLX; 1056 v |= GEM_MII_ANEG_HLF_DUPLX; 1057 } 1058 1059 /* Configure link. */ 1060 bus_space_write_4(t, h, GEM_MII_ANAR, v); 1061 bus_space_write_4(t, h, GEM_MII_CONTROL, 1062 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN); 1063 bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE); 1064 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT); 1065 1066 /* Start the 10 second timer */ 1067 callout_schedule(&sc->sc_tick_ch, hz * 10); 1068 } 1069 1070 /* 1071 * Stop PCS 1072 */ 1073 void 1074 gem_pcs_stop(struct gem_softc *sc, int disable) 1075 { 1076 bus_space_tag_t t = sc->sc_bustag; 1077 bus_space_handle_t h = sc->sc_h1; 1078 1079 #ifdef GEM_DEBUG 1080 aprint_debug_dev(sc->sc_dev, "gem_pcs_stop()\n"); 1081 #endif 1082 1083 /* Tell link partner that we're going away */ 1084 bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF); 1085 1086 /* 1087 * Disable PCS MII. The documentation suggests that setting 1088 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto- 1089 * negotiation will shut down the link. However, it appears 1090 * that we also need to unset the datapath mode. 1091 */ 1092 bus_space_write_4(t, h, GEM_MII_CONFIG, 0); 1093 bus_space_write_4(t, h, GEM_MII_CONTROL, 1094 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN); 1095 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII); 1096 bus_space_write_4(t, h, GEM_MII_CONFIG, 0); 1097 1098 if (disable) { 1099 if (sc->sc_flags & GEM_SERDES) 1100 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 1101 GEM_MII_SLINK_POWER_OFF); 1102 else 1103 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 1104 GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF); 1105 } 1106 1107 sc->sc_flags &= ~GEM_LINK; 1108 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE; 1109 sc->sc_mii.mii_media_status = IFM_AVALID; 1110 } 1111 1112 1113 /* 1114 * Initialization of interface; set up initialization block 1115 * and transmit/receive descriptor rings. 1116 */ 1117 int 1118 gem_init(struct ifnet *ifp) 1119 { 1120 struct gem_softc *sc = ifp->if_softc; 1121 bus_space_tag_t t = sc->sc_bustag; 1122 bus_space_handle_t h = sc->sc_h1; 1123 int rc = 0, s; 1124 u_int max_frame_size; 1125 uint32_t v; 1126 1127 s = splnet(); 1128 1129 DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(sc->sc_dev))); 1130 /* 1131 * Initialization sequence. The numbered steps below correspond 1132 * to the sequence outlined in section 6.3.5.1 in the Ethernet 1133 * Channel Engine manual (part of the PCIO manual). 1134 * See also the STP2002-STQ document from Sun Microsystems. 1135 */ 1136 1137 /* step 1 & 2. Reset the Ethernet Channel */ 1138 gem_stop(ifp, 0); 1139 gem_reset(sc); 1140 DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(sc->sc_dev))); 1141 1142 /* Re-initialize the MIF */ 1143 gem_mifinit(sc); 1144 1145 /* Set up correct datapath for non-SERDES/Serialink */ 1146 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 && 1147 sc->sc_variant != GEM_SUN_ERI) 1148 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, 1149 GEM_MII_DATAPATH_MII); 1150 1151 /* Call MI reset function if any */ 1152 if (sc->sc_hwreset) 1153 (*sc->sc_hwreset)(sc); 1154 1155 /* step 3. Setup data structures in host memory */ 1156 if (gem_meminit(sc) != 0) { 1157 splx(s); 1158 return 1; 1159 } 1160 1161 /* step 4. TX MAC registers & counters */ 1162 gem_init_regs(sc); 1163 max_frame_size = uimax(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU); 1164 max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN; 1165 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) 1166 max_frame_size += ETHER_VLAN_ENCAP_LEN; 1167 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME, 1168 max_frame_size|/* burst size */(0x2000<<16)); 1169 1170 /* step 5. RX MAC registers & counters */ 1171 gem_setladrf(sc); 1172 1173 /* step 6 & 7. Program Descriptor Ring Base Addresses */ 1174 bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 1175 ((uint64_t)GEM_CDTXADDR(sc, 0)) >> 32); 1176 bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0)); 1177 1178 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 1179 ((uint64_t)GEM_CDRXADDR(sc, 0)) >> 32); 1180 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0)); 1181 1182 /* step 8. Global Configuration & Interrupt Mask */ 1183 gem_inten(sc); 1184 bus_space_write_4(t, h, GEM_MAC_RX_MASK, 1185 GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT); 1186 bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */ 1187 bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 1188 GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME); 1189 1190 /* step 9. ETX Configuration: use mostly default values */ 1191 1192 /* Enable TX DMA */ 1193 v = gem_ringsize(GEM_NTXDESC /*XXX*/); 1194 bus_space_write_4(t, h, GEM_TX_CONFIG, 1195 v | GEM_TX_CONFIG_TXDMA_EN | 1196 (((sc->sc_flags & GEM_GIGABIT ? 0x4FF : 0x100) << 10) & 1197 GEM_TX_CONFIG_TXFIFO_TH)); 1198 bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext); 1199 1200 /* step 10. ERX Configuration */ 1201 gem_rx_common(sc); 1202 1203 /* step 11. Configure Media */ 1204 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 && 1205 (rc = mii_ifmedia_change(&sc->sc_mii)) != 0) 1206 goto out; 1207 1208 /* step 12. RX_MAC Configuration Register */ 1209 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG); 1210 v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC; 1211 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v); 1212 1213 /* step 14. Issue Transmit Pending command */ 1214 1215 /* Call MI initialization function if any */ 1216 if (sc->sc_hwinit) 1217 (*sc->sc_hwinit)(sc); 1218 1219 /* step 15. Give the receiver a swift kick */ 1220 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4); 1221 1222 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) 1223 /* Configure PCS */ 1224 gem_pcs_start(sc); 1225 else 1226 /* Start the one second timer. */ 1227 callout_schedule(&sc->sc_tick_ch, hz); 1228 1229 sc->sc_flags &= ~GEM_LINK; 1230 ifp->if_flags |= IFF_RUNNING; 1231 ifp->if_timer = 0; 1232 sc->sc_if_flags = ifp->if_flags; 1233 out: 1234 splx(s); 1235 1236 return (0); 1237 } 1238 1239 void 1240 gem_init_regs(struct gem_softc *sc) 1241 { 1242 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1243 bus_space_tag_t t = sc->sc_bustag; 1244 bus_space_handle_t h = sc->sc_h1; 1245 const u_char *laddr = CLLADDR(ifp->if_sadl); 1246 uint32_t v; 1247 1248 /* These regs are not cleared on reset */ 1249 if (!sc->sc_inited) { 1250 1251 /* Load recommended values */ 1252 bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00); 1253 bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08); 1254 bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04); 1255 1256 bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN); 1257 /* Max frame and max burst size */ 1258 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME, 1259 ETHER_MAX_LEN | (0x2000<<16)); 1260 1261 bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07); 1262 bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04); 1263 bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10); 1264 bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088); 1265 bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED, 1266 ((laddr[5]<<8)|laddr[4])&0x3ff); 1267 1268 /* Secondary MAC addr set to 0:0:0:0:0:0 */ 1269 bus_space_write_4(t, h, GEM_MAC_ADDR3, 0); 1270 bus_space_write_4(t, h, GEM_MAC_ADDR4, 0); 1271 bus_space_write_4(t, h, GEM_MAC_ADDR5, 0); 1272 1273 /* MAC control addr set to 01:80:c2:00:00:01 */ 1274 bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001); 1275 bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200); 1276 bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180); 1277 1278 /* MAC filter addr set to 0:0:0:0:0:0 */ 1279 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0); 1280 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0); 1281 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0); 1282 1283 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0); 1284 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0); 1285 1286 sc->sc_inited = 1; 1287 } 1288 1289 /* Counters need to be zeroed */ 1290 bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0); 1291 bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0); 1292 bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0); 1293 bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0); 1294 bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0); 1295 bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0); 1296 bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0); 1297 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0); 1298 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0); 1299 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0); 1300 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0); 1301 1302 /* Set XOFF PAUSE time. */ 1303 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0); 1304 1305 /* 1306 * Set the internal arbitration to "infinite" bursts of the 1307 * maximum length of 31 * 64 bytes so DMA transfers aren't 1308 * split up in cache line size chunks. This greatly improves 1309 * especially RX performance. 1310 * Enable silicon bug workarounds for the Apple variants. 1311 */ 1312 bus_space_write_4(t, h, GEM_CONFIG, 1313 GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT | 1314 ((sc->sc_flags & GEM_PCI) ? 1315 GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ? 1316 GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0)); 1317 1318 /* 1319 * Set the station address. 1320 */ 1321 bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]); 1322 bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]); 1323 bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]); 1324 1325 /* 1326 * Enable MII outputs. Enable GMII if there is a gigabit PHY. 1327 */ 1328 sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG); 1329 v = GEM_MAC_XIF_TX_MII_ENA; 1330 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) { 1331 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) { 1332 v |= GEM_MAC_XIF_FDPLX_LED; 1333 if (sc->sc_flags & GEM_GIGABIT) 1334 v |= GEM_MAC_XIF_GMII_MODE; 1335 } 1336 } else { 1337 v |= GEM_MAC_XIF_GMII_MODE; 1338 } 1339 bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v); 1340 } 1341 1342 #ifdef GEM_DEBUG 1343 static void 1344 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc) 1345 { 1346 int i; 1347 1348 for (i = firstdesc;; i = GEM_NEXTTX(i)) { 1349 printf("descriptor %d:\t", i); 1350 printf("gd_flags: 0x%016" PRIx64 "\t", 1351 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags)); 1352 printf("gd_addr: 0x%016" PRIx64 "\n", 1353 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr)); 1354 if (i == lastdesc) 1355 break; 1356 } 1357 } 1358 #endif 1359 1360 static void 1361 gem_start(struct ifnet *ifp) 1362 { 1363 struct gem_softc *sc = ifp->if_softc; 1364 struct mbuf *m0, *m; 1365 struct gem_txsoft *txs; 1366 bus_dmamap_t dmamap; 1367 int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg; 1368 #ifdef GEM_DEBUG 1369 int otxnext; 1370 #endif 1371 uint64_t flags = 0; 1372 1373 if ((ifp->if_flags & IFF_RUNNING) != IFF_RUNNING) 1374 return; 1375 1376 /* 1377 * Remember the previous number of free descriptors and 1378 * the first descriptor we'll use. 1379 */ 1380 ofree = sc->sc_txfree; 1381 #ifdef GEM_DEBUG 1382 otxnext = sc->sc_txnext; 1383 #endif 1384 1385 DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n", 1386 device_xname(sc->sc_dev), ofree, otxnext)); 1387 1388 /* 1389 * Loop through the send queue, setting up transmit descriptors 1390 * until we drain the queue, or use up all available transmit 1391 * descriptors. 1392 */ 1393 #ifdef INET 1394 next: 1395 #endif 1396 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL && 1397 sc->sc_txfree != 0) { 1398 /* 1399 * Grab a packet off the queue. 1400 */ 1401 IFQ_POLL(&ifp->if_snd, m0); 1402 if (m0 == NULL) 1403 break; 1404 m = NULL; 1405 1406 dmamap = txs->txs_dmamap; 1407 1408 /* 1409 * Load the DMA map. If this fails, the packet either 1410 * didn't fit in the alloted number of segments, or we were 1411 * short on resources. In this case, we'll copy and try 1412 * again. 1413 */ 1414 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0, 1415 BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0 || 1416 (m0->m_pkthdr.len < ETHER_MIN_TX && 1417 dmamap->dm_nsegs == GEM_NTXSEGS)) { 1418 if (m0->m_pkthdr.len > MCLBYTES) { 1419 aprint_error_dev(sc->sc_dev, 1420 "unable to allocate jumbo Tx cluster\n"); 1421 IFQ_DEQUEUE(&ifp->if_snd, m0); 1422 m_freem(m0); 1423 continue; 1424 } 1425 MGETHDR(m, M_DONTWAIT, MT_DATA); 1426 if (m == NULL) { 1427 aprint_error_dev(sc->sc_dev, 1428 "unable to allocate Tx mbuf\n"); 1429 break; 1430 } 1431 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner); 1432 if (m0->m_pkthdr.len > MHLEN) { 1433 MCLGET(m, M_DONTWAIT); 1434 if ((m->m_flags & M_EXT) == 0) { 1435 aprint_error_dev(sc->sc_dev, 1436 "unable to allocate Tx cluster\n"); 1437 m_freem(m); 1438 break; 1439 } 1440 } 1441 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *)); 1442 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len; 1443 error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, 1444 m, BUS_DMA_WRITE | BUS_DMA_NOWAIT); 1445 if (error) { 1446 aprint_error_dev(sc->sc_dev, 1447 "unable to load Tx buffer, error = %d\n", 1448 error); 1449 break; 1450 } 1451 } 1452 1453 /* 1454 * Ensure we have enough descriptors free to describe 1455 * the packet. 1456 */ 1457 if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ? 1458 (sc->sc_txfree - 1) : sc->sc_txfree)) { 1459 /* 1460 * Not enough free descriptors to transmit this 1461 * packet. 1462 */ 1463 bus_dmamap_unload(sc->sc_dmatag, dmamap); 1464 if (m != NULL) 1465 m_freem(m); 1466 break; 1467 } 1468 1469 IFQ_DEQUEUE(&ifp->if_snd, m0); 1470 if (m != NULL) { 1471 m_freem(m0); 1472 m0 = m; 1473 } 1474 1475 /* 1476 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. 1477 */ 1478 1479 /* Sync the DMA map. */ 1480 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize, 1481 BUS_DMASYNC_PREWRITE); 1482 1483 /* 1484 * Initialize the transmit descriptors. 1485 */ 1486 firsttx = sc->sc_txnext; 1487 for (nexttx = firsttx, seg = 0; 1488 seg < dmamap->dm_nsegs; 1489 seg++, nexttx = GEM_NEXTTX(nexttx)) { 1490 1491 /* 1492 * If this is the first descriptor we're 1493 * enqueueing, set the start of packet flag, 1494 * and the checksum stuff if we want the hardware 1495 * to do it. 1496 */ 1497 flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE; 1498 if (nexttx == firsttx) { 1499 flags |= GEM_TD_START_OF_PACKET; 1500 #ifdef INET 1501 /* h/w checksum */ 1502 if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 && 1503 m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) { 1504 struct ether_header *eh; 1505 uint16_t offset, start; 1506 1507 eh = mtod(m0, struct ether_header *); 1508 switch (ntohs(eh->ether_type)) { 1509 case ETHERTYPE_IP: 1510 start = ETHER_HDR_LEN; 1511 break; 1512 case ETHERTYPE_VLAN: 1513 start = ETHER_HDR_LEN + 1514 ETHER_VLAN_ENCAP_LEN; 1515 break; 1516 default: 1517 /* unsupported, drop it */ 1518 bus_dmamap_unload(sc->sc_dmatag, 1519 dmamap); 1520 m_freem(m0); 1521 goto next; 1522 } 1523 start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data); 1524 offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start; 1525 flags |= (start << 1526 GEM_TD_CXSUM_STARTSHFT) | 1527 (offset << 1528 GEM_TD_CXSUM_STUFFSHFT) | 1529 GEM_TD_CXSUM_ENABLE; 1530 } 1531 #endif 1532 if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) { 1533 sc->sc_txwin = 0; 1534 flags |= GEM_TD_INTERRUPT_ME; 1535 } 1536 } 1537 sc->sc_txdescs[nexttx].gd_addr = 1538 GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr); 1539 if (seg == dmamap->dm_nsegs - 1) { 1540 flags |= GEM_TD_END_OF_PACKET; 1541 } else { 1542 /* last flag set outside of loop */ 1543 sc->sc_txdescs[nexttx].gd_flags = 1544 GEM_DMA_WRITE(sc, flags); 1545 } 1546 lasttx = nexttx; 1547 } 1548 if (m0->m_pkthdr.len < ETHER_MIN_TX) { 1549 /* add padding buffer at end of chain */ 1550 flags &= ~GEM_TD_END_OF_PACKET; 1551 sc->sc_txdescs[lasttx].gd_flags = 1552 GEM_DMA_WRITE(sc, flags); 1553 1554 sc->sc_txdescs[nexttx].gd_addr = 1555 GEM_DMA_WRITE(sc, 1556 sc->sc_nulldmamap->dm_segs[0].ds_addr); 1557 flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) & 1558 GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET; 1559 lasttx = nexttx; 1560 nexttx = GEM_NEXTTX(nexttx); 1561 seg++; 1562 } 1563 sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags); 1564 1565 KASSERT(lasttx != -1); 1566 1567 /* 1568 * Store a pointer to the packet so we can free it later, 1569 * and remember what txdirty will be once the packet is 1570 * done. 1571 */ 1572 txs->txs_mbuf = m0; 1573 txs->txs_firstdesc = sc->sc_txnext; 1574 txs->txs_lastdesc = lasttx; 1575 txs->txs_ndescs = seg; 1576 1577 #ifdef GEM_DEBUG 1578 if (ifp->if_flags & IFF_DEBUG) { 1579 printf(" gem_start %p transmit chain:\n", txs); 1580 gem_txsoft_print(sc, txs->txs_firstdesc, 1581 txs->txs_lastdesc); 1582 } 1583 #endif 1584 1585 /* Sync the descriptors we're using. */ 1586 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs, 1587 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1588 1589 /* Advance the tx pointer. */ 1590 sc->sc_txfree -= txs->txs_ndescs; 1591 sc->sc_txnext = nexttx; 1592 1593 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q); 1594 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q); 1595 1596 /* 1597 * Pass the packet to any BPF listeners. 1598 */ 1599 bpf_mtap(ifp, m0, BPF_D_OUT); 1600 } 1601 1602 if (sc->sc_txfree != ofree) { 1603 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n", 1604 device_xname(sc->sc_dev), lasttx, otxnext)); 1605 /* 1606 * The entire packet chain is set up. 1607 * Kick the transmitter. 1608 */ 1609 DPRINTF(sc, ("%s: gem_start: kicking tx %d\n", 1610 device_xname(sc->sc_dev), nexttx)); 1611 bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK, 1612 sc->sc_txnext); 1613 1614 /* Set a watchdog timer in case the chip flakes out. */ 1615 ifp->if_timer = 5; 1616 DPRINTF(sc, ("%s: gem_start: watchdog %d\n", 1617 device_xname(sc->sc_dev), ifp->if_timer)); 1618 } 1619 } 1620 1621 /* 1622 * Transmit interrupt. 1623 */ 1624 int 1625 gem_tint(struct gem_softc *sc) 1626 { 1627 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1628 bus_space_tag_t t = sc->sc_bustag; 1629 bus_space_handle_t mac = sc->sc_h1; 1630 struct gem_txsoft *txs; 1631 int txlast; 1632 int progress = 0; 1633 uint32_t v; 1634 1635 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 1636 1637 DPRINTF(sc, ("%s: gem_tint\n", device_xname(sc->sc_dev))); 1638 1639 /* Unload collision counters ... */ 1640 v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) + 1641 bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT); 1642 if_statadd_ref(nsr, if_collisions, v + 1643 bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) + 1644 bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT)); 1645 if_statadd_ref(nsr, if_oerrors, v); 1646 1647 /* ... then clear the hardware counters. */ 1648 bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0); 1649 bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0); 1650 bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0); 1651 bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0); 1652 1653 /* 1654 * Go through our Tx list and free mbufs for those 1655 * frames that have been transmitted. 1656 */ 1657 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) { 1658 /* 1659 * In theory, we could harvest some descriptors before 1660 * the ring is empty, but that's a bit complicated. 1661 * 1662 * GEM_TX_COMPLETION points to the last descriptor 1663 * processed +1. 1664 * 1665 * Let's assume that the NIC writes back to the Tx 1666 * descriptors before it updates the completion 1667 * register. If the NIC has posted writes to the 1668 * Tx descriptors, PCI ordering requires that the 1669 * posted writes flush to RAM before the register-read 1670 * finishes. So let's read the completion register, 1671 * before syncing the descriptors, so that we 1672 * examine Tx descriptors that are at least as 1673 * current as the completion register. 1674 */ 1675 txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION); 1676 DPRINTF(sc, 1677 ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n", 1678 txs->txs_lastdesc, txlast)); 1679 if (txs->txs_firstdesc <= txs->txs_lastdesc) { 1680 if (txlast >= txs->txs_firstdesc && 1681 txlast <= txs->txs_lastdesc) 1682 break; 1683 } else if (txlast >= txs->txs_firstdesc || 1684 txlast <= txs->txs_lastdesc) 1685 break; 1686 1687 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs, 1688 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1689 1690 #ifdef GEM_DEBUG /* XXX DMA synchronization? */ 1691 if (ifp->if_flags & IFF_DEBUG) { 1692 printf(" txsoft %p transmit chain:\n", txs); 1693 gem_txsoft_print(sc, txs->txs_firstdesc, 1694 txs->txs_lastdesc); 1695 } 1696 #endif 1697 1698 1699 DPRINTF(sc, ("gem_tint: releasing a desc\n")); 1700 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); 1701 1702 sc->sc_txfree += txs->txs_ndescs; 1703 1704 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 1705 0, txs->txs_dmamap->dm_mapsize, 1706 BUS_DMASYNC_POSTWRITE); 1707 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap); 1708 if (txs->txs_mbuf != NULL) { 1709 m_freem(txs->txs_mbuf); 1710 txs->txs_mbuf = NULL; 1711 } 1712 1713 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 1714 1715 if_statinc_ref(nsr, if_opackets); 1716 progress = 1; 1717 } 1718 1719 IF_STAT_PUTREF(ifp); 1720 1721 #if 0 1722 DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x " 1723 "GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n", 1724 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE), 1725 ((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1, 1726 GEM_TX_DATA_PTR_HI) << 32) | 1727 bus_space_read_4(sc->sc_bustag, sc->sc_h1, 1728 GEM_TX_DATA_PTR_LO), 1729 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION))); 1730 #endif 1731 1732 if (progress) { 1733 if (sc->sc_txfree == GEM_NTXDESC - 1) 1734 sc->sc_txwin = 0; 1735 1736 ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5; 1737 if_schedule_deferred_start(ifp); 1738 } 1739 DPRINTF(sc, ("%s: gem_tint: watchdog %d\n", 1740 device_xname(sc->sc_dev), ifp->if_timer)); 1741 1742 return (1); 1743 } 1744 1745 /* 1746 * Receive interrupt. 1747 */ 1748 int 1749 gem_rint(struct gem_softc *sc) 1750 { 1751 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1752 bus_space_tag_t t = sc->sc_bustag; 1753 bus_space_handle_t h = sc->sc_h1; 1754 struct gem_rxsoft *rxs; 1755 struct mbuf *m; 1756 uint64_t rxstat; 1757 uint32_t rxcomp; 1758 int i, len, progress = 0; 1759 1760 DPRINTF(sc, ("%s: gem_rint\n", device_xname(sc->sc_dev))); 1761 1762 /* 1763 * Ignore spurious interrupt that sometimes occurs before 1764 * we are set up when we network boot. 1765 */ 1766 if (!sc->sc_meminited) 1767 return 1; 1768 1769 /* 1770 * Read the completion register once. This limits 1771 * how long the following loop can execute. 1772 */ 1773 rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION); 1774 1775 /* 1776 * XXX Read the lastrx only once at the top for speed. 1777 */ 1778 DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n", 1779 sc->sc_rxptr, rxcomp)); 1780 1781 /* 1782 * Go into the loop at least once. 1783 */ 1784 for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp; 1785 i = GEM_NEXTRX(i)) { 1786 rxs = &sc->sc_rxsoft[i]; 1787 1788 GEM_CDRXSYNC(sc, i, 1789 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1790 1791 rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags); 1792 1793 if (rxstat & GEM_RD_OWN) { 1794 GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD); 1795 /* 1796 * We have processed all of the receive buffers. 1797 */ 1798 break; 1799 } 1800 1801 progress++; 1802 1803 if (rxstat & GEM_RD_BAD_CRC) { 1804 if_statinc(ifp, if_ierrors); 1805 aprint_error_dev(sc->sc_dev, 1806 "receive error: CRC error\n"); 1807 GEM_INIT_RXDESC(sc, i); 1808 continue; 1809 } 1810 1811 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0, 1812 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 1813 #ifdef GEM_DEBUG 1814 if (ifp->if_flags & IFF_DEBUG) { 1815 printf(" rxsoft %p descriptor %d: ", rxs, i); 1816 printf("gd_flags: 0x%016llx\t", (long long) 1817 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags)); 1818 printf("gd_addr: 0x%016llx\n", (long long) 1819 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr)); 1820 } 1821 #endif 1822 1823 /* No errors; receive the packet. */ 1824 len = GEM_RD_BUFLEN(rxstat); 1825 1826 /* 1827 * Allocate a new mbuf cluster. If that fails, we are 1828 * out of memory, and must drop the packet and recycle 1829 * the buffer that's already attached to this descriptor. 1830 */ 1831 m = rxs->rxs_mbuf; 1832 if (gem_add_rxbuf(sc, i) != 0) { 1833 GEM_COUNTER_INCR(sc, sc_ev_rxnobuf); 1834 if_statinc(ifp, if_ierrors); 1835 aprint_error_dev(sc->sc_dev, 1836 "receive error: RX no buffer space\n"); 1837 GEM_INIT_RXDESC(sc, i); 1838 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0, 1839 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 1840 continue; 1841 } 1842 m->m_data += 2; /* We're already off by two */ 1843 1844 m_set_rcvif(m, ifp); 1845 m->m_pkthdr.len = m->m_len = len; 1846 1847 #ifdef INET 1848 /* hardware checksum */ 1849 if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) { 1850 struct ether_header *eh; 1851 struct ip *ip; 1852 int32_t hlen, pktlen; 1853 1854 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) { 1855 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN - 1856 ETHER_VLAN_ENCAP_LEN; 1857 eh = (struct ether_header *) (mtod(m, char *) + 1858 ETHER_VLAN_ENCAP_LEN); 1859 } else { 1860 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN; 1861 eh = mtod(m, struct ether_header *); 1862 } 1863 if (ntohs(eh->ether_type) != ETHERTYPE_IP) 1864 goto swcsum; 1865 ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN); 1866 1867 /* IPv4 only */ 1868 if (ip->ip_v != IPVERSION) 1869 goto swcsum; 1870 1871 hlen = ip->ip_hl << 2; 1872 if (hlen < sizeof(struct ip)) 1873 goto swcsum; 1874 1875 /* 1876 * bail if too short, has random trailing garbage, 1877 * truncated, fragment, or has ethernet pad. 1878 */ 1879 if ((ntohs(ip->ip_len) < hlen) || 1880 (ntohs(ip->ip_len) != pktlen) || 1881 (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK))) 1882 goto swcsum; 1883 1884 switch (ip->ip_p) { 1885 case IPPROTO_TCP: 1886 if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4)) 1887 goto swcsum; 1888 if (pktlen < (hlen + sizeof(struct tcphdr))) 1889 goto swcsum; 1890 m->m_pkthdr.csum_flags = M_CSUM_TCPv4; 1891 break; 1892 case IPPROTO_UDP: 1893 /* FALLTHROUGH */ 1894 default: 1895 goto swcsum; 1896 } 1897 1898 /* the uncomplemented sum is expected */ 1899 m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM; 1900 1901 /* if the pkt had ip options, we have to deduct them */ 1902 if (hlen > sizeof(struct ip)) { 1903 uint16_t *opts; 1904 uint32_t optsum, temp; 1905 1906 optsum = 0; 1907 temp = hlen - sizeof(struct ip); 1908 opts = (uint16_t *) ((char *) ip + 1909 sizeof(struct ip)); 1910 1911 while (temp > 1) { 1912 optsum += ntohs(*opts++); 1913 temp -= 2; 1914 } 1915 while (optsum >> 16) 1916 optsum = (optsum >> 16) + 1917 (optsum & 0xffff); 1918 1919 /* Deduct ip opts sum from hwsum. */ 1920 m->m_pkthdr.csum_data += (uint16_t)~optsum; 1921 1922 while (m->m_pkthdr.csum_data >> 16) 1923 m->m_pkthdr.csum_data = 1924 (m->m_pkthdr.csum_data >> 16) + 1925 (m->m_pkthdr.csum_data & 1926 0xffff); 1927 } 1928 1929 m->m_pkthdr.csum_flags |= M_CSUM_DATA | 1930 M_CSUM_NO_PSEUDOHDR; 1931 } else 1932 swcsum: 1933 m->m_pkthdr.csum_flags = 0; 1934 #endif 1935 /* Pass it on. */ 1936 if_percpuq_enqueue(ifp->if_percpuq, m); 1937 } 1938 1939 if (progress) { 1940 /* Update the receive pointer. */ 1941 if (i == sc->sc_rxptr) { 1942 GEM_COUNTER_INCR(sc, sc_ev_rxfull); 1943 #ifdef GEM_DEBUG 1944 if (ifp->if_flags & IFF_DEBUG) 1945 printf("%s: rint: ring wrap\n", 1946 device_xname(sc->sc_dev)); 1947 #endif 1948 } 1949 sc->sc_rxptr = i; 1950 bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i)); 1951 } 1952 #ifdef GEM_COUNTERS 1953 if (progress <= 4) { 1954 GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]); 1955 } else if (progress < 32) { 1956 if (progress < 16) 1957 GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]); 1958 else 1959 GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]); 1960 1961 } else { 1962 if (progress < 64) 1963 GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]); 1964 else 1965 GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]); 1966 } 1967 #endif 1968 1969 DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n", 1970 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION))); 1971 1972 /* Read error counters ... */ 1973 if_statadd(ifp, if_ierrors, 1974 bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) + 1975 bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) + 1976 bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) + 1977 bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL)); 1978 1979 /* ... then clear the hardware counters. */ 1980 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0); 1981 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0); 1982 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0); 1983 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0); 1984 1985 return (1); 1986 } 1987 1988 1989 /* 1990 * gem_add_rxbuf: 1991 * 1992 * Add a receive buffer to the indicated descriptor. 1993 */ 1994 int 1995 gem_add_rxbuf(struct gem_softc *sc, int idx) 1996 { 1997 struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx]; 1998 struct mbuf *m; 1999 int error; 2000 2001 MGETHDR(m, M_DONTWAIT, MT_DATA); 2002 if (m == NULL) 2003 return (ENOBUFS); 2004 2005 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner); 2006 MCLGET(m, M_DONTWAIT); 2007 if ((m->m_flags & M_EXT) == 0) { 2008 m_freem(m); 2009 return (ENOBUFS); 2010 } 2011 2012 #ifdef GEM_DEBUG 2013 /* bzero the packet to check DMA */ 2014 memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size); 2015 #endif 2016 2017 if (rxs->rxs_mbuf != NULL) 2018 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap); 2019 2020 rxs->rxs_mbuf = m; 2021 2022 error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap, 2023 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, 2024 BUS_DMA_READ | BUS_DMA_NOWAIT); 2025 if (error) { 2026 aprint_error_dev(sc->sc_dev, 2027 "can't load rx DMA map %d, error = %d\n", idx, error); 2028 panic("gem_add_rxbuf"); /* XXX */ 2029 } 2030 2031 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0, 2032 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2033 2034 GEM_INIT_RXDESC(sc, idx); 2035 2036 return (0); 2037 } 2038 2039 2040 int 2041 gem_eint(struct gem_softc *sc, u_int status) 2042 { 2043 char bits[128]; 2044 uint32_t r, v; 2045 2046 if ((status & GEM_INTR_MIF) != 0) { 2047 printf("%s: XXXlink status changed\n", device_xname(sc->sc_dev)); 2048 return (1); 2049 } 2050 2051 if ((status & GEM_INTR_RX_TAG_ERR) != 0) { 2052 gem_reset_rxdma(sc); 2053 return (1); 2054 } 2055 2056 if (status & GEM_INTR_BERR) { 2057 if (sc->sc_flags & GEM_PCI) 2058 r = GEM_ERROR_STATUS; 2059 else 2060 r = GEM_SBUS_ERROR_STATUS; 2061 bus_space_read_4(sc->sc_bustag, sc->sc_h2, r); 2062 v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r); 2063 aprint_error_dev(sc->sc_dev, "bus error interrupt: 0x%02x\n", 2064 v); 2065 return (1); 2066 } 2067 snprintb(bits, sizeof(bits), GEM_INTR_BITS, status); 2068 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits); 2069 2070 return (1); 2071 } 2072 2073 2074 /* 2075 * PCS interrupts. 2076 * We should receive these when the link status changes, but sometimes 2077 * we don't receive them for link up. We compensate for this in the 2078 * gem_tick() callout. 2079 */ 2080 int 2081 gem_pint(struct gem_softc *sc) 2082 { 2083 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2084 bus_space_tag_t t = sc->sc_bustag; 2085 bus_space_handle_t h = sc->sc_h1; 2086 uint32_t v, v2; 2087 2088 /* 2089 * Clear the PCS interrupt from GEM_STATUS. The PCS register is 2090 * latched, so we have to read it twice. There is only one bit in 2091 * use, so the value is meaningless. 2092 */ 2093 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS); 2094 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS); 2095 2096 if ((ifp->if_flags & IFF_UP) == 0) 2097 return 1; 2098 2099 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) 2100 return 1; 2101 2102 v = bus_space_read_4(t, h, GEM_MII_STATUS); 2103 /* If we see remote fault, our link partner is probably going away */ 2104 if ((v & GEM_MII_STATUS_REM_FLT) != 0) { 2105 gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0); 2106 v = bus_space_read_4(t, h, GEM_MII_STATUS); 2107 /* Otherwise, we may need to wait after auto-negotiation completes */ 2108 } else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) == 2109 GEM_MII_STATUS_ANEG_CPT) { 2110 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS); 2111 v = bus_space_read_4(t, h, GEM_MII_STATUS); 2112 } 2113 if ((v & GEM_MII_STATUS_LINK_STS) != 0) { 2114 if (sc->sc_flags & GEM_LINK) { 2115 return 1; 2116 } 2117 callout_stop(&sc->sc_tick_ch); 2118 v = bus_space_read_4(t, h, GEM_MII_ANAR); 2119 v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR); 2120 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX; 2121 sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE; 2122 v &= v2; 2123 if (v & GEM_MII_ANEG_FUL_DUPLX) { 2124 sc->sc_mii.mii_media_active |= IFM_FDX; 2125 #ifdef GEM_DEBUG 2126 aprint_debug_dev(sc->sc_dev, "link up: full duplex\n"); 2127 #endif 2128 } else if (v & GEM_MII_ANEG_HLF_DUPLX) { 2129 sc->sc_mii.mii_media_active |= IFM_HDX; 2130 #ifdef GEM_DEBUG 2131 aprint_debug_dev(sc->sc_dev, "link up: half duplex\n"); 2132 #endif 2133 } else { 2134 #ifdef GEM_DEBUG 2135 aprint_debug_dev(sc->sc_dev, "duplex mismatch\n"); 2136 #endif 2137 } 2138 gem_statuschange(sc); 2139 } else { 2140 if ((sc->sc_flags & GEM_LINK) == 0) { 2141 return 1; 2142 } 2143 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE; 2144 sc->sc_mii.mii_media_status = IFM_AVALID; 2145 #ifdef GEM_DEBUG 2146 aprint_debug_dev(sc->sc_dev, "link down\n"); 2147 #endif 2148 gem_statuschange(sc); 2149 2150 /* Start the 10 second timer */ 2151 callout_schedule(&sc->sc_tick_ch, hz * 10); 2152 } 2153 return 1; 2154 } 2155 2156 2157 2158 int 2159 gem_intr(void *v) 2160 { 2161 struct gem_softc *sc = v; 2162 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2163 bus_space_tag_t t = sc->sc_bustag; 2164 bus_space_handle_t h = sc->sc_h1; 2165 uint32_t status; 2166 int r = 0; 2167 #ifdef GEM_DEBUG 2168 char bits[128]; 2169 #endif 2170 2171 /* XXX We should probably mask out interrupts until we're done */ 2172 2173 sc->sc_ev_intr.ev_count++; 2174 2175 status = bus_space_read_4(t, h, GEM_STATUS); 2176 #ifdef GEM_DEBUG 2177 snprintb(bits, sizeof(bits), GEM_INTR_BITS, status); 2178 #endif 2179 DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n", 2180 device_xname(sc->sc_dev), (status >> 19), bits)); 2181 2182 if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0) 2183 r |= gem_eint(sc, status); 2184 2185 /* We don't bother with GEM_INTR_TX_DONE */ 2186 if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) { 2187 GEM_COUNTER_INCR(sc, sc_ev_txint); 2188 r |= gem_tint(sc); 2189 } 2190 2191 if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) { 2192 GEM_COUNTER_INCR(sc, sc_ev_rxint); 2193 r |= gem_rint(sc); 2194 } 2195 2196 /* We should eventually do more than just print out error stats. */ 2197 if (status & GEM_INTR_TX_MAC) { 2198 int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS); 2199 if (txstat & ~GEM_MAC_TX_XMIT_DONE) 2200 printf("%s: MAC tx fault, status %x\n", 2201 device_xname(sc->sc_dev), txstat); 2202 if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG)) 2203 gem_init(ifp); 2204 } 2205 if (status & GEM_INTR_RX_MAC) { 2206 int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS); 2207 /* 2208 * At least with GEM_SUN_GEM and some GEM_SUN_ERI 2209 * revisions GEM_MAC_RX_OVERFLOW happen often due to a 2210 * silicon bug so handle them silently. So if we detect 2211 * an RX FIFO overflow, we fire off a timer, and check 2212 * whether we're still making progress by looking at the 2213 * RX FIFO write and read pointers. 2214 */ 2215 if (rxstat & GEM_MAC_RX_OVERFLOW) { 2216 if_statinc(ifp, if_ierrors); 2217 aprint_error_dev(sc->sc_dev, 2218 "receive error: RX overflow sc->rxptr %d, complete %d\n", sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)); 2219 sc->sc_rx_fifo_wr_ptr = 2220 bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR); 2221 sc->sc_rx_fifo_rd_ptr = 2222 bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR); 2223 callout_schedule(&sc->sc_rx_watchdog, 400); 2224 } else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT)) 2225 printf("%s: MAC rx fault, status 0x%02x\n", 2226 device_xname(sc->sc_dev), rxstat); 2227 } 2228 if (status & GEM_INTR_PCS) { 2229 r |= gem_pint(sc); 2230 } 2231 2232 /* Do we need to do anything with these? 2233 if ((status & GEM_MAC_CONTROL_STATUS) != 0) { 2234 status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS); 2235 if ((status2 & GEM_MAC_PAUSED) != 0) 2236 aprintf_debug_dev(sc->sc_dev, "PAUSE received (%d slots)\n", 2237 GEM_MAC_PAUSE_TIME(status2)); 2238 if ((status2 & GEM_MAC_PAUSE) != 0) 2239 aprintf_debug_dev(sc->sc_dev, "transited to PAUSE state\n"); 2240 if ((status2 & GEM_MAC_RESUME) != 0) 2241 aprintf_debug_dev(sc->sc_dev, "transited to non-PAUSE state\n"); 2242 } 2243 if ((status & GEM_INTR_MIF) != 0) 2244 aprintf_debug_dev(sc->sc_dev, "MIF interrupt\n"); 2245 */ 2246 rnd_add_uint32(&sc->rnd_source, status); 2247 return (r); 2248 } 2249 2250 void 2251 gem_rx_watchdog(void *arg) 2252 { 2253 struct gem_softc *sc = arg; 2254 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2255 bus_space_tag_t t = sc->sc_bustag; 2256 bus_space_handle_t h = sc->sc_h1; 2257 uint32_t rx_fifo_wr_ptr; 2258 uint32_t rx_fifo_rd_ptr; 2259 uint32_t state; 2260 2261 if ((ifp->if_flags & IFF_RUNNING) == 0) { 2262 aprint_error_dev(sc->sc_dev, "receiver not running\n"); 2263 return; 2264 } 2265 2266 rx_fifo_wr_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR); 2267 rx_fifo_rd_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR); 2268 state = bus_space_read_4(t, h, GEM_MAC_MAC_STATE); 2269 if ((state & GEM_MAC_STATE_OVERFLOW) == GEM_MAC_STATE_OVERFLOW && 2270 ((rx_fifo_wr_ptr == rx_fifo_rd_ptr) || 2271 ((sc->sc_rx_fifo_wr_ptr == rx_fifo_wr_ptr) && 2272 (sc->sc_rx_fifo_rd_ptr == rx_fifo_rd_ptr)))) 2273 { 2274 /* 2275 * The RX state machine is still in overflow state and 2276 * the RX FIFO write and read pointers seem to be 2277 * stuck. Whack the chip over the head to get things 2278 * going again. 2279 */ 2280 aprint_error_dev(sc->sc_dev, 2281 "receiver stuck in overflow, resetting\n"); 2282 gem_init(ifp); 2283 } else { 2284 if ((state & GEM_MAC_STATE_OVERFLOW) != GEM_MAC_STATE_OVERFLOW) { 2285 aprint_error_dev(sc->sc_dev, 2286 "rx_watchdog: not in overflow state: 0x%x\n", 2287 state); 2288 } 2289 if (rx_fifo_wr_ptr != rx_fifo_rd_ptr) { 2290 aprint_error_dev(sc->sc_dev, 2291 "rx_watchdog: wr & rd ptr different\n"); 2292 } 2293 if (sc->sc_rx_fifo_wr_ptr != rx_fifo_wr_ptr) { 2294 aprint_error_dev(sc->sc_dev, 2295 "rx_watchdog: wr pointer != saved\n"); 2296 } 2297 if (sc->sc_rx_fifo_rd_ptr != rx_fifo_rd_ptr) { 2298 aprint_error_dev(sc->sc_dev, 2299 "rx_watchdog: rd pointer != saved\n"); 2300 } 2301 aprint_error_dev(sc->sc_dev, "resetting anyway\n"); 2302 gem_init(ifp); 2303 } 2304 } 2305 2306 void 2307 gem_watchdog(struct ifnet *ifp) 2308 { 2309 struct gem_softc *sc = ifp->if_softc; 2310 2311 DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x " 2312 "GEM_MAC_RX_CONFIG %x\n", 2313 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG), 2314 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS), 2315 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG))); 2316 2317 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev)); 2318 if_statinc(ifp, if_oerrors); 2319 2320 /* Try to get more packets going. */ 2321 gem_init(ifp); 2322 gem_start(ifp); 2323 } 2324 2325 /* 2326 * Initialize the MII Management Interface 2327 */ 2328 void 2329 gem_mifinit(struct gem_softc *sc) 2330 { 2331 bus_space_tag_t t = sc->sc_bustag; 2332 bus_space_handle_t mif = sc->sc_h1; 2333 2334 /* Configure the MIF in frame mode */ 2335 sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG); 2336 sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA; 2337 bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config); 2338 } 2339 2340 /* 2341 * MII interface 2342 * 2343 * The GEM MII interface supports at least three different operating modes: 2344 * 2345 * Bitbang mode is implemented using data, clock and output enable registers. 2346 * 2347 * Frame mode is implemented by loading a complete frame into the frame 2348 * register and polling the valid bit for completion. 2349 * 2350 * Polling mode uses the frame register but completion is indicated by 2351 * an interrupt. 2352 * 2353 */ 2354 static int 2355 gem_mii_readreg(device_t self, int phy, int reg, uint16_t *val) 2356 { 2357 struct gem_softc *sc = device_private(self); 2358 bus_space_tag_t t = sc->sc_bustag; 2359 bus_space_handle_t mif = sc->sc_h1; 2360 int n; 2361 uint32_t v; 2362 2363 #ifdef GEM_DEBUG1 2364 if (sc->sc_debug) 2365 printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg); 2366 #endif 2367 2368 /* Construct the frame command */ 2369 v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) | 2370 GEM_MIF_FRAME_READ; 2371 2372 bus_space_write_4(t, mif, GEM_MIF_FRAME, v); 2373 for (n = 0; n < 100; n++) { 2374 DELAY(1); 2375 v = bus_space_read_4(t, mif, GEM_MIF_FRAME); 2376 if (v & GEM_MIF_FRAME_TA0) { 2377 *val = v & GEM_MIF_FRAME_DATA; 2378 return 0; 2379 } 2380 } 2381 2382 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev)); 2383 return ETIMEDOUT; 2384 } 2385 2386 static int 2387 gem_mii_writereg(device_t self, int phy, int reg, uint16_t val) 2388 { 2389 struct gem_softc *sc = device_private(self); 2390 bus_space_tag_t t = sc->sc_bustag; 2391 bus_space_handle_t mif = sc->sc_h1; 2392 int n; 2393 uint32_t v; 2394 2395 #ifdef GEM_DEBUG1 2396 if (sc->sc_debug) 2397 printf("gem_mii_writereg: PHY %d reg %d val %x\n", 2398 phy, reg, val); 2399 #endif 2400 2401 /* Construct the frame command */ 2402 v = GEM_MIF_FRAME_WRITE | 2403 (phy << GEM_MIF_PHY_SHIFT) | 2404 (reg << GEM_MIF_REG_SHIFT) | 2405 (val & GEM_MIF_FRAME_DATA); 2406 2407 bus_space_write_4(t, mif, GEM_MIF_FRAME, v); 2408 for (n = 0; n < 100; n++) { 2409 DELAY(1); 2410 v = bus_space_read_4(t, mif, GEM_MIF_FRAME); 2411 if (v & GEM_MIF_FRAME_TA0) 2412 return 0; 2413 } 2414 2415 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev)); 2416 return ETIMEDOUT; 2417 } 2418 2419 static void 2420 gem_mii_statchg(struct ifnet *ifp) 2421 { 2422 struct gem_softc *sc = ifp->if_softc; 2423 #ifdef GEM_DEBUG 2424 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media); 2425 #endif 2426 2427 #ifdef GEM_DEBUG 2428 if (sc->sc_debug) 2429 printf("gem_mii_statchg: status change: phy = %d\n", 2430 sc->sc_phys[instance]); 2431 #endif 2432 gem_statuschange(sc); 2433 } 2434 2435 /* 2436 * Common status change for gem_mii_statchg() and gem_pint() 2437 */ 2438 void 2439 gem_statuschange(struct gem_softc* sc) 2440 { 2441 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2442 bus_space_tag_t t = sc->sc_bustag; 2443 bus_space_handle_t mac = sc->sc_h1; 2444 int gigabit; 2445 uint32_t rxcfg, txcfg, v; 2446 2447 if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 && 2448 IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE) 2449 sc->sc_flags |= GEM_LINK; 2450 else 2451 sc->sc_flags &= ~GEM_LINK; 2452 2453 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000)) 2454 gigabit = 1; 2455 else 2456 gigabit = 0; 2457 2458 /* 2459 * The configuration done here corresponds to the steps F) and 2460 * G) and as far as enabling of RX and TX MAC goes also step H) 2461 * of the initialization sequence outlined in section 3.2.1 of 2462 * the GEM Gigabit Ethernet ASIC Specification. 2463 */ 2464 2465 rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG); 2466 rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE); 2467 txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT; 2468 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) 2469 txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS; 2470 else if (gigabit) { 2471 rxcfg |= GEM_MAC_RX_CARR_EXTEND; 2472 txcfg |= GEM_MAC_RX_CARR_EXTEND; 2473 } 2474 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0); 2475 bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4, 2476 BUS_SPACE_BARRIER_WRITE); 2477 if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0)) 2478 aprint_normal_dev(sc->sc_dev, "cannot disable TX MAC\n"); 2479 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg); 2480 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0); 2481 bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4, 2482 BUS_SPACE_BARRIER_WRITE); 2483 if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0)) 2484 aprint_normal_dev(sc->sc_dev, "cannot disable RX MAC\n"); 2485 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg); 2486 2487 v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) & 2488 ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE); 2489 bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v); 2490 2491 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 && 2492 gigabit != 0) 2493 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME, 2494 GEM_MAC_SLOT_TIME_CARR_EXTEND); 2495 else 2496 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME, 2497 GEM_MAC_SLOT_TIME_NORMAL); 2498 2499 /* XIF Configuration */ 2500 if (sc->sc_flags & GEM_LINK) 2501 v = GEM_MAC_XIF_LINK_LED; 2502 else 2503 v = 0; 2504 v |= GEM_MAC_XIF_TX_MII_ENA; 2505 2506 /* If an external transceiver is connected, enable its MII drivers */ 2507 sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG); 2508 if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) { 2509 if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) { 2510 if (gigabit) 2511 v |= GEM_MAC_XIF_GMII_MODE; 2512 else 2513 v &= ~GEM_MAC_XIF_GMII_MODE; 2514 } else 2515 /* Internal MII needs buf enable */ 2516 v |= GEM_MAC_XIF_MII_BUF_ENA; 2517 /* MII needs echo disable if half duplex. */ 2518 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) 2519 /* turn on full duplex LED */ 2520 v |= GEM_MAC_XIF_FDPLX_LED; 2521 else 2522 /* half duplex -- disable echo */ 2523 v |= GEM_MAC_XIF_ECHO_DISABL; 2524 } else { 2525 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) 2526 v |= GEM_MAC_XIF_FDPLX_LED; 2527 v |= GEM_MAC_XIF_GMII_MODE; 2528 } 2529 bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v); 2530 2531 if ((ifp->if_flags & IFF_RUNNING) != 0 && 2532 (sc->sc_flags & GEM_LINK) != 0) { 2533 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 2534 txcfg | GEM_MAC_TX_ENABLE); 2535 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 2536 rxcfg | GEM_MAC_RX_ENABLE); 2537 } 2538 } 2539 2540 int 2541 gem_ser_mediachange(struct ifnet *ifp) 2542 { 2543 struct gem_softc *sc = ifp->if_softc; 2544 u_int s, t; 2545 2546 if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER) 2547 return EINVAL; 2548 2549 s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media); 2550 if (s == IFM_AUTO) { 2551 if (sc->sc_mii_media != s) { 2552 #ifdef GEM_DEBUG 2553 aprint_debug_dev(sc->sc_dev, "setting media to auto\n"); 2554 #endif 2555 sc->sc_mii_media = s; 2556 if (ifp->if_flags & IFF_UP) { 2557 gem_pcs_stop(sc, 0); 2558 gem_pcs_start(sc); 2559 } 2560 } 2561 return 0; 2562 } 2563 if (s == IFM_1000_SX) { 2564 t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media) 2565 & (IFM_FDX | IFM_HDX); 2566 if ((sc->sc_mii_media & (IFM_FDX | IFM_HDX)) != t) { 2567 sc->sc_mii_media &= ~(IFM_FDX | IFM_HDX); 2568 sc->sc_mii_media |= t; 2569 #ifdef GEM_DEBUG 2570 aprint_debug_dev(sc->sc_dev, 2571 "setting media to 1000baseSX-%s\n", 2572 t == IFM_FDX ? "FDX" : "HDX"); 2573 #endif 2574 if (ifp->if_flags & IFF_UP) { 2575 gem_pcs_stop(sc, 0); 2576 gem_pcs_start(sc); 2577 } 2578 } 2579 return 0; 2580 } 2581 return EINVAL; 2582 } 2583 2584 void 2585 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 2586 { 2587 struct gem_softc *sc = ifp->if_softc; 2588 2589 if ((ifp->if_flags & IFF_UP) == 0) 2590 return; 2591 ifmr->ifm_active = sc->sc_mii.mii_media_active; 2592 ifmr->ifm_status = sc->sc_mii.mii_media_status; 2593 } 2594 2595 static int 2596 gem_ifflags_cb(struct ethercom *ec) 2597 { 2598 struct ifnet *ifp = &ec->ec_if; 2599 struct gem_softc *sc = ifp->if_softc; 2600 u_short change = ifp->if_flags ^ sc->sc_if_flags; 2601 2602 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) 2603 return ENETRESET; 2604 else if ((change & IFF_PROMISC) != 0) 2605 gem_setladrf(sc); 2606 return 0; 2607 } 2608 2609 /* 2610 * Process an ioctl request. 2611 */ 2612 int 2613 gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data) 2614 { 2615 struct gem_softc *sc = ifp->if_softc; 2616 int s, error = 0; 2617 2618 s = splnet(); 2619 2620 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { 2621 error = 0; 2622 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI) 2623 ; 2624 else if (ifp->if_flags & IFF_RUNNING) { 2625 /* 2626 * Multicast list has changed; set the hardware filter 2627 * accordingly. 2628 */ 2629 gem_setladrf(sc); 2630 } 2631 } 2632 2633 /* Try to get things going again */ 2634 if (ifp->if_flags & IFF_UP) 2635 gem_start(ifp); 2636 splx(s); 2637 return (error); 2638 } 2639 2640 static void 2641 gem_inten(struct gem_softc *sc) 2642 { 2643 bus_space_tag_t t = sc->sc_bustag; 2644 bus_space_handle_t h = sc->sc_h1; 2645 uint32_t v; 2646 2647 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) 2648 v = GEM_INTR_PCS; 2649 else 2650 v = GEM_INTR_MIF; 2651 bus_space_write_4(t, h, GEM_INTMASK, 2652 ~(GEM_INTR_TX_INTME | 2653 GEM_INTR_TX_EMPTY | 2654 GEM_INTR_TX_MAC | 2655 GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF | 2656 GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL | 2657 GEM_INTR_BERR | v)); 2658 } 2659 2660 bool 2661 gem_resume(device_t self, const pmf_qual_t *qual) 2662 { 2663 struct gem_softc *sc = device_private(self); 2664 2665 gem_inten(sc); 2666 2667 return true; 2668 } 2669 2670 bool 2671 gem_suspend(device_t self, const pmf_qual_t *qual) 2672 { 2673 struct gem_softc *sc = device_private(self); 2674 bus_space_tag_t t = sc->sc_bustag; 2675 bus_space_handle_t h = sc->sc_h1; 2676 2677 bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0); 2678 2679 return true; 2680 } 2681 2682 bool 2683 gem_shutdown(device_t self, int howto) 2684 { 2685 struct gem_softc *sc = device_private(self); 2686 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2687 2688 gem_stop(ifp, 1); 2689 2690 return true; 2691 } 2692 2693 /* 2694 * Set up the logical address filter. 2695 */ 2696 void 2697 gem_setladrf(struct gem_softc *sc) 2698 { 2699 struct ethercom *ec = &sc->sc_ethercom; 2700 struct ifnet *ifp = &ec->ec_if; 2701 struct ether_multi *enm; 2702 struct ether_multistep step; 2703 bus_space_tag_t t = sc->sc_bustag; 2704 bus_space_handle_t h = sc->sc_h1; 2705 uint32_t crc; 2706 uint32_t hash[16]; 2707 uint32_t v; 2708 int i; 2709 2710 /* Get current RX configuration */ 2711 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG); 2712 2713 /* 2714 * Turn off promiscuous mode, promiscuous group mode (all multicast), 2715 * and hash filter. Depending on the case, the right bit will be 2716 * enabled. 2717 */ 2718 v &= ~(GEM_MAC_RX_PROMISCUOUS | GEM_MAC_RX_HASH_FILTER | 2719 GEM_MAC_RX_PROMISC_GRP); 2720 2721 if ((ifp->if_flags & IFF_PROMISC) != 0) { 2722 /* Turn on promiscuous mode */ 2723 v |= GEM_MAC_RX_PROMISCUOUS; 2724 ifp->if_flags |= IFF_ALLMULTI; 2725 goto chipit; 2726 } 2727 2728 /* 2729 * Set up multicast address filter by passing all multicast addresses 2730 * through a crc generator, and then using the high order 8 bits as an 2731 * index into the 256 bit logical address filter. The high order 4 2732 * bits selects the word, while the other 4 bits select the bit within 2733 * the word (where bit 0 is the MSB). 2734 */ 2735 2736 /* Clear hash table */ 2737 memset(hash, 0, sizeof(hash)); 2738 2739 ETHER_LOCK(ec); 2740 ETHER_FIRST_MULTI(step, ec, enm); 2741 while (enm != NULL) { 2742 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 2743 /* 2744 * We must listen to a range of multicast addresses. 2745 * For now, just accept all multicasts, rather than 2746 * trying to set only those filter bits needed to match 2747 * the range. (At this time, the only use of address 2748 * ranges is for IP multicast routing, for which the 2749 * range is big enough to require all bits set.) 2750 * XXX should use the address filters for this 2751 */ 2752 ifp->if_flags |= IFF_ALLMULTI; 2753 v |= GEM_MAC_RX_PROMISC_GRP; 2754 ETHER_UNLOCK(ec); 2755 goto chipit; 2756 } 2757 2758 /* Get the LE CRC32 of the address */ 2759 crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo)); 2760 2761 /* Just want the 8 most significant bits. */ 2762 crc >>= 24; 2763 2764 /* Set the corresponding bit in the filter. */ 2765 hash[crc >> 4] |= 1 << (15 - (crc & 15)); 2766 2767 ETHER_NEXT_MULTI(step, enm); 2768 } 2769 ETHER_UNLOCK(ec); 2770 2771 v |= GEM_MAC_RX_HASH_FILTER; 2772 ifp->if_flags &= ~IFF_ALLMULTI; 2773 2774 /* Now load the hash table into the chip (if we are using it) */ 2775 for (i = 0; i < 16; i++) { 2776 bus_space_write_4(t, h, 2777 GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0), 2778 hash[i]); 2779 } 2780 2781 chipit: 2782 sc->sc_if_flags = ifp->if_flags; 2783 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v); 2784 } 2785