xref: /netbsd-src/sys/dev/ic/gem.c (revision 181254a7b1bdde6873432bffef2d2decc4b5c22f)
1 /*	$NetBSD: gem.c,v 1.131 2020/07/15 01:42:27 msaitoh Exp $ */
2 
3 /*
4  *
5  * Copyright (C) 2001 Eduardo Horvath.
6  * Copyright (c) 2001-2003 Thomas Moestl
7  * All rights reserved.
8  *
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  */
32 
33 /*
34  * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
35  * See `GEM Gigabit Ethernet ASIC Specification'
36  *   http://www.sun.com/processors/manuals/ge.pdf
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.131 2020/07/15 01:42:27 msaitoh Exp $");
41 
42 #include "opt_inet.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/callout.h>
47 #include <sys/mbuf.h>
48 #include <sys/syslog.h>
49 #include <sys/malloc.h>
50 #include <sys/kernel.h>
51 #include <sys/socket.h>
52 #include <sys/ioctl.h>
53 #include <sys/errno.h>
54 #include <sys/device.h>
55 
56 #include <machine/endian.h>
57 
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_ether.h>
62 
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/tcp.h>
69 #include <netinet/udp.h>
70 #endif
71 
72 #include <net/bpf.h>
73 
74 #include <sys/bus.h>
75 #include <sys/intr.h>
76 
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79 #include <dev/mii/mii_bitbang.h>
80 
81 #include <dev/ic/gemreg.h>
82 #include <dev/ic/gemvar.h>
83 
84 #define TRIES	10000
85 
86 static void	gem_inten(struct gem_softc *);
87 static void	gem_start(struct ifnet *);
88 static void	gem_stop(struct ifnet *, int);
89 int		gem_ioctl(struct ifnet *, u_long, void *);
90 void		gem_tick(void *);
91 void		gem_watchdog(struct ifnet *);
92 void		gem_rx_watchdog(void *);
93 void		gem_pcs_start(struct gem_softc *sc);
94 void		gem_pcs_stop(struct gem_softc *sc, int);
95 int		gem_init(struct ifnet *);
96 void		gem_init_regs(struct gem_softc *sc);
97 static int	gem_ringsize(int sz);
98 static int	gem_meminit(struct gem_softc *);
99 void		gem_mifinit(struct gem_softc *);
100 static int	gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
101 		    uint32_t, uint32_t);
102 void		gem_reset(struct gem_softc *);
103 int		gem_reset_rx(struct gem_softc *sc);
104 static void	gem_reset_rxdma(struct gem_softc *sc);
105 static void	gem_rx_common(struct gem_softc *sc);
106 int		gem_reset_tx(struct gem_softc *sc);
107 int		gem_disable_rx(struct gem_softc *sc);
108 int		gem_disable_tx(struct gem_softc *sc);
109 static void	gem_rxdrain(struct gem_softc *sc);
110 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
111 void		gem_setladrf(struct gem_softc *);
112 
113 /* MII methods & callbacks */
114 static int	gem_mii_readreg(device_t, int, int, uint16_t *);
115 static int	gem_mii_writereg(device_t, int, int, uint16_t);
116 static void	gem_mii_statchg(struct ifnet *);
117 
118 static int	gem_ifflags_cb(struct ethercom *);
119 
120 void		gem_statuschange(struct gem_softc *);
121 
122 int		gem_ser_mediachange(struct ifnet *);
123 void		gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
124 
125 static void	gem_partial_detach(struct gem_softc *, enum gem_attach_stage);
126 
127 struct mbuf	*gem_get(struct gem_softc *, int, int);
128 int		gem_put(struct gem_softc *, int, struct mbuf *);
129 void		gem_read(struct gem_softc *, int, int);
130 int		gem_pint(struct gem_softc *);
131 int		gem_eint(struct gem_softc *, u_int);
132 int		gem_rint(struct gem_softc *);
133 int		gem_tint(struct gem_softc *);
134 void		gem_power(int, void *);
135 
136 #ifdef GEM_DEBUG
137 static void gem_txsoft_print(const struct gem_softc *, int, int);
138 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
139 				printf x
140 #else
141 #define	DPRINTF(sc, x)	/* nothing */
142 #endif
143 
144 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
145 
146 int
147 gem_detach(struct gem_softc *sc, int flags)
148 {
149 	int i;
150 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
151 	bus_space_tag_t t = sc->sc_bustag;
152 	bus_space_handle_t h = sc->sc_h1;
153 
154 	/*
155 	 * Free any resources we've allocated during the attach.
156 	 * Do this in reverse order and fall through.
157 	 */
158 	switch (sc->sc_att_stage) {
159 	case GEM_ATT_BACKEND_2:
160 	case GEM_ATT_BACKEND_1:
161 	case GEM_ATT_FINISHED:
162 		bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
163 		gem_stop(&sc->sc_ethercom.ec_if, 1);
164 
165 #ifdef GEM_COUNTERS
166 		for (i = __arraycount(sc->sc_ev_rxhist); --i >= 0; )
167 			evcnt_detach(&sc->sc_ev_rxhist[i]);
168 		evcnt_detach(&sc->sc_ev_rxnobuf);
169 		evcnt_detach(&sc->sc_ev_rxfull);
170 		evcnt_detach(&sc->sc_ev_rxint);
171 		evcnt_detach(&sc->sc_ev_txint);
172 #endif
173 		evcnt_detach(&sc->sc_ev_intr);
174 
175 		rnd_detach_source(&sc->rnd_source);
176 		ether_ifdetach(ifp);
177 		if_detach(ifp);
178 		ifmedia_fini(&sc->sc_mii.mii_media);
179 
180 		callout_destroy(&sc->sc_tick_ch);
181 		callout_destroy(&sc->sc_rx_watchdog);
182 
183 		/*FALLTHROUGH*/
184 	case GEM_ATT_MII:
185 		sc->sc_att_stage = GEM_ATT_MII;
186 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
187 		/*FALLTHROUGH*/
188 	case GEM_ATT_7:
189 		for (i = 0; i < GEM_NRXDESC; i++) {
190 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
191 				bus_dmamap_destroy(sc->sc_dmatag,
192 				    sc->sc_rxsoft[i].rxs_dmamap);
193 		}
194 		/*FALLTHROUGH*/
195 	case GEM_ATT_6:
196 		for (i = 0; i < GEM_TXQUEUELEN; i++) {
197 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
198 				bus_dmamap_destroy(sc->sc_dmatag,
199 				    sc->sc_txsoft[i].txs_dmamap);
200 		}
201 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
202 		/*FALLTHROUGH*/
203 	case GEM_ATT_5:
204 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_nulldmamap);
205 		/*FALLTHROUGH*/
206 	case GEM_ATT_4:
207 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
208 		/*FALLTHROUGH*/
209 	case GEM_ATT_3:
210 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
211 		/*FALLTHROUGH*/
212 	case GEM_ATT_2:
213 		bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
214 		    sizeof(struct gem_control_data));
215 		/*FALLTHROUGH*/
216 	case GEM_ATT_1:
217 		bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
218 		/*FALLTHROUGH*/
219 	case GEM_ATT_0:
220 		sc->sc_att_stage = GEM_ATT_0;
221 		/*FALLTHROUGH*/
222 	case GEM_ATT_BACKEND_0:
223 		break;
224 	}
225 	return 0;
226 }
227 
228 static void
229 gem_partial_detach(struct gem_softc *sc, enum gem_attach_stage stage)
230 {
231 	cfattach_t ca = device_cfattach(sc->sc_dev);
232 
233 	sc->sc_att_stage = stage;
234 	(*ca->ca_detach)(sc->sc_dev, 0);
235 }
236 
237 /*
238  * gem_attach:
239  *
240  *	Attach a Gem interface to the system.
241  */
242 void
243 gem_attach(struct gem_softc *sc, const uint8_t *enaddr)
244 {
245 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
246 	struct mii_data *mii = &sc->sc_mii;
247 	bus_space_tag_t t = sc->sc_bustag;
248 	bus_space_handle_t h = sc->sc_h1;
249 	struct ifmedia_entry *ife;
250 	int i, error, phyaddr;
251 	uint32_t v;
252 	char *nullbuf;
253 
254 	/* Make sure the chip is stopped. */
255 	ifp->if_softc = sc;
256 	gem_reset(sc);
257 
258 	/*
259 	 * Allocate the control data structures, and create and load the
260 	 * DMA map for it. gem_control_data is 9216 bytes, we have space for
261 	 * the padding buffer in the bus_dmamem_alloc()'d memory.
262 	 */
263 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
264 	    sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
265 	    0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
266 		aprint_error_dev(sc->sc_dev,
267 		   "unable to allocate control data, error = %d\n",
268 		    error);
269 		gem_partial_detach(sc, GEM_ATT_0);
270 		return;
271 	}
272 
273 	/* XXX should map this in with correct endianness */
274 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
275 	    sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
276 	    BUS_DMA_COHERENT)) != 0) {
277 		aprint_error_dev(sc->sc_dev,
278 		    "unable to map control data, error = %d\n", error);
279 		gem_partial_detach(sc, GEM_ATT_1);
280 		return;
281 	}
282 
283 	nullbuf =
284 	    (char *)sc->sc_control_data + sizeof(struct gem_control_data);
285 
286 	if ((error = bus_dmamap_create(sc->sc_dmatag,
287 	    sizeof(struct gem_control_data), 1,
288 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
289 		aprint_error_dev(sc->sc_dev,
290 		    "unable to create control data DMA map, error = %d\n",
291 		    error);
292 		gem_partial_detach(sc, GEM_ATT_2);
293 		return;
294 	}
295 
296 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
297 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
298 	    0)) != 0) {
299 		aprint_error_dev(sc->sc_dev,
300 		    "unable to load control data DMA map, error = %d\n",
301 		    error);
302 		gem_partial_detach(sc, GEM_ATT_3);
303 		return;
304 	}
305 
306 	memset(nullbuf, 0, ETHER_MIN_TX);
307 	if ((error = bus_dmamap_create(sc->sc_dmatag,
308 	    ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
309 		aprint_error_dev(sc->sc_dev,
310 		    "unable to create padding DMA map, error = %d\n", error);
311 		gem_partial_detach(sc, GEM_ATT_4);
312 		return;
313 	}
314 
315 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
316 	    nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
317 		aprint_error_dev(sc->sc_dev,
318 		    "unable to load padding DMA map, error = %d\n", error);
319 		gem_partial_detach(sc, GEM_ATT_5);
320 		return;
321 	}
322 
323 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
324 	    BUS_DMASYNC_PREWRITE);
325 
326 	/*
327 	 * Initialize the transmit job descriptors.
328 	 */
329 	SIMPLEQ_INIT(&sc->sc_txfreeq);
330 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
331 
332 	/*
333 	 * Create the transmit buffer DMA maps.
334 	 */
335 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
336 		struct gem_txsoft *txs;
337 
338 		txs = &sc->sc_txsoft[i];
339 		txs->txs_mbuf = NULL;
340 		if ((error = bus_dmamap_create(sc->sc_dmatag,
341 		    ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
342 		    ETHER_MAX_LEN_JUMBO, 0, 0,
343 		    &txs->txs_dmamap)) != 0) {
344 			aprint_error_dev(sc->sc_dev,
345 			    "unable to create tx DMA map %d, error = %d\n",
346 			    i, error);
347 			gem_partial_detach(sc, GEM_ATT_6);
348 			return;
349 		}
350 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
351 	}
352 
353 	/*
354 	 * Create the receive buffer DMA maps.
355 	 */
356 	for (i = 0; i < GEM_NRXDESC; i++) {
357 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
358 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
359 			aprint_error_dev(sc->sc_dev,
360 			    "unable to create rx DMA map %d, error = %d\n",
361 			    i, error);
362 			gem_partial_detach(sc, GEM_ATT_7);
363 			return;
364 		}
365 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
366 	}
367 
368 	/* Initialize ifmedia structures and MII info */
369 	mii->mii_ifp = ifp;
370 	mii->mii_readreg = gem_mii_readreg;
371 	mii->mii_writereg = gem_mii_writereg;
372 	mii->mii_statchg = gem_mii_statchg;
373 
374 	sc->sc_ethercom.ec_mii = mii;
375 
376 	/*
377 	 * Initialization based  on `GEM Gigabit Ethernet ASIC Specification'
378 	 * Section 3.2.1 `Initialization Sequence'.
379 	 * However, we can't assume SERDES or Serialink if neither
380 	 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
381 	 * being set, as both are set on Sun X1141A (with SERDES).  So,
382 	 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
383 	 * Also, for variants that report 2 PHY's, we prefer the external
384 	 * PHY over the internal PHY, so we look for that first.
385 	 */
386 	gem_mifinit(sc);
387 
388 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
389 		ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
390 		    ether_mediastatus);
391 		/* Look for external PHY */
392 		if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
393 			sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
394 			bus_space_write_4(t, h, GEM_MIF_CONFIG,
395 			    sc->sc_mif_config);
396 			switch (sc->sc_variant) {
397 			case GEM_SUN_ERI:
398 				phyaddr = GEM_PHYAD_EXTERNAL;
399 				break;
400 			default:
401 				phyaddr = MII_PHY_ANY;
402 				break;
403 			}
404 			mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
405 			    MII_OFFSET_ANY, MIIF_FORCEANEG);
406 		}
407 #ifdef GEM_DEBUG
408 		  else
409 			aprint_debug_dev(sc->sc_dev, "using external PHY\n");
410 #endif
411 		/* Look for internal PHY if no external PHY was found */
412 		if (LIST_EMPTY(&mii->mii_phys) &&
413 		    ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI0) ||
414 		     (sc->sc_variant == GEM_APPLE_K2_GMAC))) {
415 			sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
416 			bus_space_write_4(t, h, GEM_MIF_CONFIG,
417 			    sc->sc_mif_config);
418 			switch (sc->sc_variant) {
419 			case GEM_SUN_ERI:
420 			case GEM_APPLE_K2_GMAC:
421 				phyaddr = GEM_PHYAD_INTERNAL;
422 				break;
423 			case GEM_APPLE_GMAC:
424 				phyaddr = GEM_PHYAD_EXTERNAL;
425 				break;
426 			default:
427 				phyaddr = MII_PHY_ANY;
428 				break;
429 			}
430 			mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
431 			    MII_OFFSET_ANY, MIIF_FORCEANEG);
432 #ifdef GEM_DEBUG
433 			if (!LIST_EMPTY(&mii->mii_phys))
434 				aprint_debug_dev(sc->sc_dev,
435 				    "using internal PHY\n");
436 #endif
437 		}
438 		if (LIST_EMPTY(&mii->mii_phys)) {
439 				/* No PHY attached */
440 				aprint_error_dev(sc->sc_dev,
441 				    "PHY probe failed\n");
442 				gem_partial_detach(sc, GEM_ATT_MII);
443 				return;
444 		} else {
445 			struct mii_softc *child;
446 
447 			/*
448 			 * Walk along the list of attached MII devices and
449 			 * establish an `MII instance' to `PHY number'
450 			 * mapping.
451 			 */
452 			LIST_FOREACH(child, &mii->mii_phys, mii_list) {
453 				/*
454 				 * Note: we support just one PHY: the internal
455 				 * or external MII is already selected for us
456 				 * by the GEM_MIF_CONFIG  register.
457 				 */
458 				if (child->mii_phy > 1 || child->mii_inst > 0) {
459 					aprint_error_dev(sc->sc_dev,
460 					    "cannot accommodate MII device"
461 					    " %s at PHY %d, instance %d\n",
462 					       device_xname(child->mii_dev),
463 					       child->mii_phy, child->mii_inst);
464 					continue;
465 				}
466 				sc->sc_phys[child->mii_inst] = child->mii_phy;
467 			}
468 
469 			if (sc->sc_variant != GEM_SUN_ERI)
470 				bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
471 				    GEM_MII_DATAPATH_MII);
472 
473 			/*
474 			 * XXX - we can really do the following ONLY if the
475 			 * PHY indeed has the auto negotiation capability!!
476 			 */
477 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
478 		}
479 	} else {
480 		ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
481 		    gem_ser_mediastatus);
482 		/* SERDES or Serialink */
483 		if (sc->sc_flags & GEM_SERDES) {
484 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
485 			    GEM_MII_DATAPATH_SERDES);
486 		} else {
487 			sc->sc_flags |= GEM_SERIAL;
488 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
489 			    GEM_MII_DATAPATH_SERIAL);
490 		}
491 
492 		aprint_normal_dev(sc->sc_dev, "using external PCS %s: ",
493 		    sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
494 
495 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_AUTO, 0, NULL);
496 		/* Check for FDX and HDX capabilities */
497 		sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
498 		if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
499 			ifmedia_add(&mii->mii_media, IFM_ETHER |
500 			    IFM_1000_SX | IFM_MANUAL | IFM_FDX, 0, NULL);
501 			aprint_normal("1000baseSX-FDX, ");
502 		}
503 		if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
504 			ifmedia_add(&mii->mii_media, IFM_ETHER |
505 			    IFM_1000_SX | IFM_MANUAL | IFM_HDX, 0, NULL);
506 			aprint_normal("1000baseSX-HDX, ");
507 		}
508 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
509 		sc->sc_mii_media = IFM_AUTO;
510 		aprint_normal("auto\n");
511 
512 		gem_pcs_stop(sc, 1);
513 	}
514 
515 	/*
516 	 * From this point forward, the attachment cannot fail.  A failure
517 	 * before this point releases all resources that may have been
518 	 * allocated.
519 	 */
520 
521 	/* Announce ourselves. */
522 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s",
523 	    ether_sprintf(enaddr));
524 
525 	/* Get RX FIFO size */
526 	sc->sc_rxfifosize = 64 *
527 	    bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
528 	aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
529 
530 	/* Get TX FIFO size */
531 	v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
532 	aprint_normal(", %uKB TX fifo\n", v / 16);
533 
534 	/* Initialize ifnet structure. */
535 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
536 	ifp->if_softc = sc;
537 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
538 	sc->sc_if_flags = ifp->if_flags;
539 #if 0
540 	/*
541 	 * The GEM hardware supports basic TCP checksum offloading only.
542 	 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
543 	 * have bugs in the receive checksum, so don't enable it for now.
544 	 */
545 	if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
546 	    (GEM_IS_APPLE(sc) &&
547 	    (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
548 		ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
549 #endif
550 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
551 	ifp->if_start = gem_start;
552 	ifp->if_ioctl = gem_ioctl;
553 	ifp->if_watchdog = gem_watchdog;
554 	ifp->if_stop = gem_stop;
555 	ifp->if_init = gem_init;
556 	IFQ_SET_READY(&ifp->if_snd);
557 
558 	/*
559 	 * If we support GigE media, we support jumbo frames too.
560 	 * Unless we are Apple.
561 	 */
562 	TAILQ_FOREACH(ife, &mii->mii_media.ifm_list, ifm_list) {
563 		if (IFM_SUBTYPE(ife->ifm_media) == IFM_1000_T ||
564 		    IFM_SUBTYPE(ife->ifm_media) == IFM_1000_SX ||
565 		    IFM_SUBTYPE(ife->ifm_media) == IFM_1000_LX ||
566 		    IFM_SUBTYPE(ife->ifm_media) == IFM_1000_CX) {
567 			if (!GEM_IS_APPLE(sc))
568 				sc->sc_ethercom.ec_capabilities
569 				    |= ETHERCAP_JUMBO_MTU;
570 			sc->sc_flags |= GEM_GIGABIT;
571 			break;
572 		}
573 	}
574 
575 	/* claim 802.1q capability */
576 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
577 
578 	/* Attach the interface. */
579 	if_attach(ifp);
580 	if_deferred_start_init(ifp, NULL);
581 	ether_ifattach(ifp, enaddr);
582 	ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
583 
584 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
585 			  RND_TYPE_NET, RND_FLAG_DEFAULT);
586 
587 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
588 	    NULL, device_xname(sc->sc_dev), "interrupts");
589 #ifdef GEM_COUNTERS
590 	evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
591 	    &sc->sc_ev_intr, device_xname(sc->sc_dev), "tx interrupts");
592 	evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
593 	    &sc->sc_ev_intr, device_xname(sc->sc_dev), "rx interrupts");
594 	evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
595 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx ring full");
596 	evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
597 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx malloc failure");
598 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
599 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 0desc");
600 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
601 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 1desc");
602 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
603 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 2desc");
604 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
605 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 3desc");
606 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
607 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >3desc");
608 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
609 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >7desc");
610 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
611 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >15desc");
612 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
613 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >31desc");
614 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
615 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >63desc");
616 #endif
617 
618 	callout_init(&sc->sc_tick_ch, 0);
619 	callout_setfunc(&sc->sc_tick_ch, gem_tick, sc);
620 
621 	callout_init(&sc->sc_rx_watchdog, 0);
622 	callout_setfunc(&sc->sc_rx_watchdog, gem_rx_watchdog, sc);
623 
624 	sc->sc_att_stage = GEM_ATT_FINISHED;
625 
626 	return;
627 }
628 
629 void
630 gem_tick(void *arg)
631 {
632 	struct gem_softc *sc = arg;
633 	int s;
634 
635 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
636 		/*
637 		 * We have to reset everything if we failed to get a
638 		 * PCS interrupt.  Restarting the callout is handled
639 		 * in gem_pcs_start().
640 		 */
641 		gem_init(&sc->sc_ethercom.ec_if);
642 	} else {
643 		s = splnet();
644 		mii_tick(&sc->sc_mii);
645 		splx(s);
646 		callout_schedule(&sc->sc_tick_ch, hz);
647 	}
648 }
649 
650 static int
651 gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, uint32_t clr,
652     uint32_t set)
653 {
654 	int i;
655 	uint32_t reg;
656 
657 	for (i = TRIES; i--; DELAY(100)) {
658 		reg = bus_space_read_4(sc->sc_bustag, h, r);
659 		if ((reg & clr) == 0 && (reg & set) == set)
660 			return (1);
661 	}
662 	return (0);
663 }
664 
665 void
666 gem_reset(struct gem_softc *sc)
667 {
668 	bus_space_tag_t t = sc->sc_bustag;
669 	bus_space_handle_t h = sc->sc_h2;
670 	int s;
671 
672 	s = splnet();
673 	DPRINTF(sc, ("%s: gem_reset\n", device_xname(sc->sc_dev)));
674 	gem_reset_rx(sc);
675 	gem_reset_tx(sc);
676 
677 	/* Do a full reset */
678 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX);
679 	if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
680 		aprint_error_dev(sc->sc_dev, "cannot reset device\n");
681 	splx(s);
682 }
683 
684 
685 /*
686  * gem_rxdrain:
687  *
688  *	Drain the receive queue.
689  */
690 static void
691 gem_rxdrain(struct gem_softc *sc)
692 {
693 	struct gem_rxsoft *rxs;
694 	int i;
695 
696 	for (i = 0; i < GEM_NRXDESC; i++) {
697 		rxs = &sc->sc_rxsoft[i];
698 		if (rxs->rxs_mbuf != NULL) {
699 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
700 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
701 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
702 			m_freem(rxs->rxs_mbuf);
703 			rxs->rxs_mbuf = NULL;
704 		}
705 	}
706 }
707 
708 /*
709  * Reset the whole thing.
710  */
711 static void
712 gem_stop(struct ifnet *ifp, int disable)
713 {
714 	struct gem_softc *sc = ifp->if_softc;
715 	struct gem_txsoft *txs;
716 
717 	DPRINTF(sc, ("%s: gem_stop\n", device_xname(sc->sc_dev)));
718 
719 	callout_halt(&sc->sc_tick_ch, NULL);
720 	callout_halt(&sc->sc_rx_watchdog, NULL);
721 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
722 		gem_pcs_stop(sc, disable);
723 	else
724 		mii_down(&sc->sc_mii);
725 
726 	/* XXX - Should we reset these instead? */
727 	gem_disable_tx(sc);
728 	gem_disable_rx(sc);
729 
730 	/*
731 	 * Release any queued transmit buffers.
732 	 */
733 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
734 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
735 		if (txs->txs_mbuf != NULL) {
736 			bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
737 			    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
738 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
739 			m_freem(txs->txs_mbuf);
740 			txs->txs_mbuf = NULL;
741 		}
742 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
743 	}
744 
745 	/*
746 	 * Mark the interface down and cancel the watchdog timer.
747 	 */
748 	ifp->if_flags &= ~IFF_RUNNING;
749 	sc->sc_if_flags = ifp->if_flags;
750 	ifp->if_timer = 0;
751 
752 	if (disable)
753 		gem_rxdrain(sc);
754 }
755 
756 
757 /*
758  * Reset the receiver
759  */
760 int
761 gem_reset_rx(struct gem_softc *sc)
762 {
763 	bus_space_tag_t t = sc->sc_bustag;
764 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
765 
766 	/*
767 	 * Resetting while DMA is in progress can cause a bus hang, so we
768 	 * disable DMA first.
769 	 */
770 	gem_disable_rx(sc);
771 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
772 	bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
773 	/* Wait till it finishes */
774 	if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
775 		aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
776 	/* Wait 5ms extra. */
777 	delay(5000);
778 
779 	/* Finally, reset the ERX */
780 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
781 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
782 	/* Wait till it finishes */
783 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
784 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
785 		return (1);
786 	}
787 	return (0);
788 }
789 
790 
791 /*
792  * Reset the receiver DMA engine.
793  *
794  * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
795  * etc in order to reset the receiver DMA engine only and not do a full
796  * reset which amongst others also downs the link and clears the FIFOs.
797  */
798 static void
799 gem_reset_rxdma(struct gem_softc *sc)
800 {
801 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
802 	bus_space_tag_t t = sc->sc_bustag;
803 	bus_space_handle_t h = sc->sc_h1;
804 	int i;
805 
806 	if (gem_reset_rx(sc) != 0) {
807 		gem_init(ifp);
808 		return;
809 	}
810 	for (i = 0; i < GEM_NRXDESC; i++)
811 		if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
812 			GEM_UPDATE_RXDESC(sc, i);
813 	sc->sc_rxptr = 0;
814 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
815 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
816 
817 	/* Reprogram Descriptor Ring Base Addresses */
818 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI,
819 	    ((uint64_t)GEM_CDRXADDR(sc, 0)) >> 32);
820 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
821 
822 	/* Redo ERX Configuration */
823 	gem_rx_common(sc);
824 
825 	/* Give the receiver a swift kick */
826 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
827 }
828 
829 /*
830  * Common RX configuration for gem_init() and gem_reset_rxdma().
831  */
832 static void
833 gem_rx_common(struct gem_softc *sc)
834 {
835 	bus_space_tag_t t = sc->sc_bustag;
836 	bus_space_handle_t h = sc->sc_h1;
837 	uint32_t v;
838 
839 	/* Encode Receive Descriptor ring size: four possible values */
840 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
841 
842 	/* Set receive h/w checksum offset */
843 #ifdef INET
844 	v |= (ETHER_HDR_LEN + sizeof(struct ip) +
845 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
846 	    ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
847 #endif
848 
849 	/* Enable RX DMA */
850 	bus_space_write_4(t, h, GEM_RX_CONFIG,
851 	    v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
852 	    (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
853 
854 	/*
855 	 * The following value is for an OFF Threshold of about 3/4 full
856 	 * and an ON Threshold of 1/4 full.
857 	 */
858 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
859 	    (3 * sc->sc_rxfifosize / 256) |
860 	    ((sc->sc_rxfifosize / 256) << 12));
861 	bus_space_write_4(t, h, GEM_RX_BLANKING,
862 	    (6 << GEM_RX_BLANKING_TIME_SHIFT) | 8);
863 }
864 
865 /*
866  * Reset the transmitter
867  */
868 int
869 gem_reset_tx(struct gem_softc *sc)
870 {
871 	bus_space_tag_t t = sc->sc_bustag;
872 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
873 
874 	/*
875 	 * Resetting while DMA is in progress can cause a bus hang, so we
876 	 * disable DMA first.
877 	 */
878 	gem_disable_tx(sc);
879 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
880 	bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
881 	/* Wait till it finishes */
882 	if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
883 		aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
884 	/* Wait 5ms extra. */
885 	delay(5000);
886 
887 	/* Finally, reset the ETX */
888 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
889 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
890 	/* Wait till it finishes */
891 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
892 		aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
893 		return (1);
894 	}
895 	return (0);
896 }
897 
898 /*
899  * disable receiver.
900  */
901 int
902 gem_disable_rx(struct gem_softc *sc)
903 {
904 	bus_space_tag_t t = sc->sc_bustag;
905 	bus_space_handle_t h = sc->sc_h1;
906 	uint32_t cfg;
907 
908 	/* Flip the enable bit */
909 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
910 	cfg &= ~GEM_MAC_RX_ENABLE;
911 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
912 	bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
913 	/* Wait for it to finish */
914 	return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
915 }
916 
917 /*
918  * disable transmitter.
919  */
920 int
921 gem_disable_tx(struct gem_softc *sc)
922 {
923 	bus_space_tag_t t = sc->sc_bustag;
924 	bus_space_handle_t h = sc->sc_h1;
925 	uint32_t cfg;
926 
927 	/* Flip the enable bit */
928 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
929 	cfg &= ~GEM_MAC_TX_ENABLE;
930 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
931 	bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
932 	/* Wait for it to finish */
933 	return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
934 }
935 
936 /*
937  * Initialize interface.
938  */
939 int
940 gem_meminit(struct gem_softc *sc)
941 {
942 	struct gem_rxsoft *rxs;
943 	int i, error;
944 
945 	/*
946 	 * Initialize the transmit descriptor ring.
947 	 */
948 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
949 	for (i = 0; i < GEM_NTXDESC; i++) {
950 		sc->sc_txdescs[i].gd_flags = 0;
951 		sc->sc_txdescs[i].gd_addr = 0;
952 	}
953 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
954 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
955 	sc->sc_txfree = GEM_NTXDESC-1;
956 	sc->sc_txnext = 0;
957 	sc->sc_txwin = 0;
958 
959 	/*
960 	 * Initialize the receive descriptor and receive job
961 	 * descriptor rings.
962 	 */
963 	for (i = 0; i < GEM_NRXDESC; i++) {
964 		rxs = &sc->sc_rxsoft[i];
965 		if (rxs->rxs_mbuf == NULL) {
966 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
967 				aprint_error_dev(sc->sc_dev,
968 				    "unable to allocate or map rx "
969 				    "buffer %d, error = %d\n",
970 				    i, error);
971 				/*
972 				 * XXX Should attempt to run with fewer receive
973 				 * XXX buffers instead of just failing.
974 				 */
975 				gem_rxdrain(sc);
976 				return (1);
977 			}
978 		} else
979 			GEM_INIT_RXDESC(sc, i);
980 	}
981 	sc->sc_rxptr = 0;
982 	sc->sc_meminited = 1;
983 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
984 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
985 
986 	return (0);
987 }
988 
989 static int
990 gem_ringsize(int sz)
991 {
992 	switch (sz) {
993 	case 32:
994 		return GEM_RING_SZ_32;
995 	case 64:
996 		return GEM_RING_SZ_64;
997 	case 128:
998 		return GEM_RING_SZ_128;
999 	case 256:
1000 		return GEM_RING_SZ_256;
1001 	case 512:
1002 		return GEM_RING_SZ_512;
1003 	case 1024:
1004 		return GEM_RING_SZ_1024;
1005 	case 2048:
1006 		return GEM_RING_SZ_2048;
1007 	case 4096:
1008 		return GEM_RING_SZ_4096;
1009 	case 8192:
1010 		return GEM_RING_SZ_8192;
1011 	default:
1012 		printf("gem: invalid Receive Descriptor ring size %d\n", sz);
1013 		return GEM_RING_SZ_32;
1014 	}
1015 }
1016 
1017 
1018 /*
1019  * Start PCS
1020  */
1021 void
1022 gem_pcs_start(struct gem_softc *sc)
1023 {
1024 	bus_space_tag_t t = sc->sc_bustag;
1025 	bus_space_handle_t h = sc->sc_h1;
1026 	uint32_t v;
1027 
1028 #ifdef GEM_DEBUG
1029 	aprint_debug_dev(sc->sc_dev, "gem_pcs_start()\n");
1030 #endif
1031 
1032 	/*
1033 	 * Set up.  We must disable the MII before modifying the
1034 	 * GEM_MII_ANAR register
1035 	 */
1036 	if (sc->sc_flags & GEM_SERDES) {
1037 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1038 		    GEM_MII_DATAPATH_SERDES);
1039 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1040 		    GEM_MII_SLINK_LOOPBACK);
1041 	} else {
1042 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1043 		    GEM_MII_DATAPATH_SERIAL);
1044 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
1045 	}
1046 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1047 	v = bus_space_read_4(t, h, GEM_MII_ANAR);
1048 	v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
1049 	if (IFM_SUBTYPE(sc->sc_mii_media) == IFM_AUTO)
1050 		v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
1051 	else if ((IFM_OPTIONS(sc->sc_mii_media) & IFM_FDX) != 0) {
1052 		v |= GEM_MII_ANEG_FUL_DUPLX;
1053 		v &= ~GEM_MII_ANEG_HLF_DUPLX;
1054 	} else if ((IFM_OPTIONS(sc->sc_mii_media) & IFM_HDX) != 0) {
1055 		v &= ~GEM_MII_ANEG_FUL_DUPLX;
1056 		v |= GEM_MII_ANEG_HLF_DUPLX;
1057 	}
1058 
1059 	/* Configure link. */
1060 	bus_space_write_4(t, h, GEM_MII_ANAR, v);
1061 	bus_space_write_4(t, h, GEM_MII_CONTROL,
1062 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1063 	bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
1064 	gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
1065 
1066 	/* Start the 10 second timer */
1067 	callout_schedule(&sc->sc_tick_ch, hz * 10);
1068 }
1069 
1070 /*
1071  * Stop PCS
1072  */
1073 void
1074 gem_pcs_stop(struct gem_softc *sc, int disable)
1075 {
1076 	bus_space_tag_t t = sc->sc_bustag;
1077 	bus_space_handle_t h = sc->sc_h1;
1078 
1079 #ifdef GEM_DEBUG
1080 	aprint_debug_dev(sc->sc_dev, "gem_pcs_stop()\n");
1081 #endif
1082 
1083 	/* Tell link partner that we're going away */
1084 	bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
1085 
1086 	/*
1087 	 * Disable PCS MII.  The documentation suggests that setting
1088 	 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
1089 	 * negotiation will shut down the link.  However, it appears
1090 	 * that we also need to unset the datapath mode.
1091 	 */
1092 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1093 	bus_space_write_4(t, h, GEM_MII_CONTROL,
1094 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1095 	bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
1096 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1097 
1098 	if (disable) {
1099 		if (sc->sc_flags & GEM_SERDES)
1100 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1101 				GEM_MII_SLINK_POWER_OFF);
1102 		else
1103 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1104 			    GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
1105 	}
1106 
1107 	sc->sc_flags &= ~GEM_LINK;
1108 	sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
1109 	sc->sc_mii.mii_media_status = IFM_AVALID;
1110 }
1111 
1112 
1113 /*
1114  * Initialization of interface; set up initialization block
1115  * and transmit/receive descriptor rings.
1116  */
1117 int
1118 gem_init(struct ifnet *ifp)
1119 {
1120 	struct gem_softc *sc = ifp->if_softc;
1121 	bus_space_tag_t t = sc->sc_bustag;
1122 	bus_space_handle_t h = sc->sc_h1;
1123 	int rc = 0, s;
1124 	u_int max_frame_size;
1125 	uint32_t v;
1126 
1127 	s = splnet();
1128 
1129 	DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(sc->sc_dev)));
1130 	/*
1131 	 * Initialization sequence. The numbered steps below correspond
1132 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1133 	 * Channel Engine manual (part of the PCIO manual).
1134 	 * See also the STP2002-STQ document from Sun Microsystems.
1135 	 */
1136 
1137 	/* step 1 & 2. Reset the Ethernet Channel */
1138 	gem_stop(ifp, 0);
1139 	gem_reset(sc);
1140 	DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(sc->sc_dev)));
1141 
1142 	/* Re-initialize the MIF */
1143 	gem_mifinit(sc);
1144 
1145 	/* Set up correct datapath for non-SERDES/Serialink */
1146 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1147 	    sc->sc_variant != GEM_SUN_ERI)
1148 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1149 		    GEM_MII_DATAPATH_MII);
1150 
1151 	/* Call MI reset function if any */
1152 	if (sc->sc_hwreset)
1153 		(*sc->sc_hwreset)(sc);
1154 
1155 	/* step 3. Setup data structures in host memory */
1156 	if (gem_meminit(sc) != 0) {
1157 		splx(s);
1158 		return 1;
1159 	}
1160 
1161 	/* step 4. TX MAC registers & counters */
1162 	gem_init_regs(sc);
1163 	max_frame_size = uimax(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
1164 	max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
1165 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1166 		max_frame_size += ETHER_VLAN_ENCAP_LEN;
1167 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1168 	    max_frame_size|/* burst size */(0x2000<<16));
1169 
1170 	/* step 5. RX MAC registers & counters */
1171 	gem_setladrf(sc);
1172 
1173 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
1174 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI,
1175 	    ((uint64_t)GEM_CDTXADDR(sc, 0)) >> 32);
1176 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
1177 
1178 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI,
1179 	    ((uint64_t)GEM_CDRXADDR(sc, 0)) >> 32);
1180 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
1181 
1182 	/* step 8. Global Configuration & Interrupt Mask */
1183 	gem_inten(sc);
1184 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
1185 			GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
1186 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
1187 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
1188 	    GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
1189 
1190 	/* step 9. ETX Configuration: use mostly default values */
1191 
1192 	/* Enable TX DMA */
1193 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
1194 	bus_space_write_4(t, h, GEM_TX_CONFIG,
1195 	    v | GEM_TX_CONFIG_TXDMA_EN |
1196 	    (((sc->sc_flags & GEM_GIGABIT ? 0x4FF : 0x100) << 10) &
1197 	    GEM_TX_CONFIG_TXFIFO_TH));
1198 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
1199 
1200 	/* step 10. ERX Configuration */
1201 	gem_rx_common(sc);
1202 
1203 	/* step 11. Configure Media */
1204 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1205 	    (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
1206 		goto out;
1207 
1208 	/* step 12. RX_MAC Configuration Register */
1209 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1210 	v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
1211 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1212 
1213 	/* step 14. Issue Transmit Pending command */
1214 
1215 	/* Call MI initialization function if any */
1216 	if (sc->sc_hwinit)
1217 		(*sc->sc_hwinit)(sc);
1218 
1219 	/* step 15.  Give the receiver a swift kick */
1220 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
1221 
1222 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1223 		/* Configure PCS */
1224 		gem_pcs_start(sc);
1225 	else
1226 		/* Start the one second timer. */
1227 		callout_schedule(&sc->sc_tick_ch, hz);
1228 
1229 	sc->sc_flags &= ~GEM_LINK;
1230 	ifp->if_flags |= IFF_RUNNING;
1231 	ifp->if_timer = 0;
1232 	sc->sc_if_flags = ifp->if_flags;
1233 out:
1234 	splx(s);
1235 
1236 	return (0);
1237 }
1238 
1239 void
1240 gem_init_regs(struct gem_softc *sc)
1241 {
1242 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1243 	bus_space_tag_t t = sc->sc_bustag;
1244 	bus_space_handle_t h = sc->sc_h1;
1245 	const u_char *laddr = CLLADDR(ifp->if_sadl);
1246 	uint32_t v;
1247 
1248 	/* These regs are not cleared on reset */
1249 	if (!sc->sc_inited) {
1250 
1251 		/* Load recommended values */
1252 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
1253 		bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
1254 		bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
1255 
1256 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1257 		/* Max frame and max burst size */
1258 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1259 		    ETHER_MAX_LEN | (0x2000<<16));
1260 
1261 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
1262 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
1263 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1264 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1265 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1266 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1267 
1268 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
1269 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1270 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1271 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1272 
1273 		/* MAC control addr set to 01:80:c2:00:00:01 */
1274 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1275 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1276 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1277 
1278 		/* MAC filter addr set to 0:0:0:0:0:0 */
1279 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1280 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1281 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1282 
1283 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1284 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1285 
1286 		sc->sc_inited = 1;
1287 	}
1288 
1289 	/* Counters need to be zeroed */
1290 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1291 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1292 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1293 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1294 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1295 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1296 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1297 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1298 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1299 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1300 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1301 
1302 	/* Set XOFF PAUSE time. */
1303 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1304 
1305 	/*
1306 	 * Set the internal arbitration to "infinite" bursts of the
1307 	 * maximum length of 31 * 64 bytes so DMA transfers aren't
1308 	 * split up in cache line size chunks. This greatly improves
1309 	 * especially RX performance.
1310 	 * Enable silicon bug workarounds for the Apple variants.
1311 	 */
1312 	bus_space_write_4(t, h, GEM_CONFIG,
1313 	    GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
1314 	    ((sc->sc_flags & GEM_PCI) ?
1315 	    GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
1316 	    GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
1317 
1318 	/*
1319 	 * Set the station address.
1320 	 */
1321 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1322 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1323 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1324 
1325 	/*
1326 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
1327 	 */
1328 	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1329 	v = GEM_MAC_XIF_TX_MII_ENA;
1330 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
1331 		if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1332 			v |= GEM_MAC_XIF_FDPLX_LED;
1333 				if (sc->sc_flags & GEM_GIGABIT)
1334 					v |= GEM_MAC_XIF_GMII_MODE;
1335 		}
1336 	} else {
1337 		v |= GEM_MAC_XIF_GMII_MODE;
1338 	}
1339 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1340 }
1341 
1342 #ifdef GEM_DEBUG
1343 static void
1344 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
1345 {
1346 	int i;
1347 
1348 	for (i = firstdesc;; i = GEM_NEXTTX(i)) {
1349 		printf("descriptor %d:\t", i);
1350 		printf("gd_flags:   0x%016" PRIx64 "\t",
1351 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1352 		printf("gd_addr: 0x%016" PRIx64 "\n",
1353 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1354 		if (i == lastdesc)
1355 			break;
1356 	}
1357 }
1358 #endif
1359 
1360 static void
1361 gem_start(struct ifnet *ifp)
1362 {
1363 	struct gem_softc *sc = ifp->if_softc;
1364 	struct mbuf *m0, *m;
1365 	struct gem_txsoft *txs;
1366 	bus_dmamap_t dmamap;
1367 	int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
1368 #ifdef GEM_DEBUG
1369 	int otxnext;
1370 #endif
1371 	uint64_t flags = 0;
1372 
1373 	if ((ifp->if_flags & IFF_RUNNING) != IFF_RUNNING)
1374 		return;
1375 
1376 	/*
1377 	 * Remember the previous number of free descriptors and
1378 	 * the first descriptor we'll use.
1379 	 */
1380 	ofree = sc->sc_txfree;
1381 #ifdef GEM_DEBUG
1382 	otxnext = sc->sc_txnext;
1383 #endif
1384 
1385 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1386 	    device_xname(sc->sc_dev), ofree, otxnext));
1387 
1388 	/*
1389 	 * Loop through the send queue, setting up transmit descriptors
1390 	 * until we drain the queue, or use up all available transmit
1391 	 * descriptors.
1392 	 */
1393 #ifdef INET
1394 next:
1395 #endif
1396 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1397 	    sc->sc_txfree != 0) {
1398 		/*
1399 		 * Grab a packet off the queue.
1400 		 */
1401 		IFQ_POLL(&ifp->if_snd, m0);
1402 		if (m0 == NULL)
1403 			break;
1404 		m = NULL;
1405 
1406 		dmamap = txs->txs_dmamap;
1407 
1408 		/*
1409 		 * Load the DMA map.  If this fails, the packet either
1410 		 * didn't fit in the alloted number of segments, or we were
1411 		 * short on resources.  In this case, we'll copy and try
1412 		 * again.
1413 		 */
1414 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1415 		      BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0 ||
1416 		      (m0->m_pkthdr.len < ETHER_MIN_TX &&
1417 		       dmamap->dm_nsegs == GEM_NTXSEGS)) {
1418 			if (m0->m_pkthdr.len > MCLBYTES) {
1419 				aprint_error_dev(sc->sc_dev,
1420 				    "unable to allocate jumbo Tx cluster\n");
1421 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1422 				m_freem(m0);
1423 				continue;
1424 			}
1425 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1426 			if (m == NULL) {
1427 				aprint_error_dev(sc->sc_dev,
1428 				    "unable to allocate Tx mbuf\n");
1429 				break;
1430 			}
1431 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1432 			if (m0->m_pkthdr.len > MHLEN) {
1433 				MCLGET(m, M_DONTWAIT);
1434 				if ((m->m_flags & M_EXT) == 0) {
1435 					aprint_error_dev(sc->sc_dev,
1436 					    "unable to allocate Tx cluster\n");
1437 					m_freem(m);
1438 					break;
1439 				}
1440 			}
1441 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1442 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1443 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1444 			    m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1445 			if (error) {
1446 				aprint_error_dev(sc->sc_dev,
1447 				    "unable to load Tx buffer, error = %d\n",
1448 				    error);
1449 				break;
1450 			}
1451 		}
1452 
1453 		/*
1454 		 * Ensure we have enough descriptors free to describe
1455 		 * the packet.
1456 		 */
1457 		if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1458 		     (sc->sc_txfree - 1) : sc->sc_txfree)) {
1459 			/*
1460 			 * Not enough free descriptors to transmit this
1461 			 * packet.
1462 			 */
1463 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
1464 			if (m != NULL)
1465 				m_freem(m);
1466 			break;
1467 		}
1468 
1469 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1470 		if (m != NULL) {
1471 			m_freem(m0);
1472 			m0 = m;
1473 		}
1474 
1475 		/*
1476 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1477 		 */
1478 
1479 		/* Sync the DMA map. */
1480 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1481 		    BUS_DMASYNC_PREWRITE);
1482 
1483 		/*
1484 		 * Initialize the transmit descriptors.
1485 		 */
1486 		firsttx = sc->sc_txnext;
1487 		for (nexttx = firsttx, seg = 0;
1488 		     seg < dmamap->dm_nsegs;
1489 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
1490 
1491 			/*
1492 			 * If this is the first descriptor we're
1493 			 * enqueueing, set the start of packet flag,
1494 			 * and the checksum stuff if we want the hardware
1495 			 * to do it.
1496 			 */
1497 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1498 			if (nexttx == firsttx) {
1499 				flags |= GEM_TD_START_OF_PACKET;
1500 #ifdef INET
1501 				/* h/w checksum */
1502 				if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
1503 				    m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1504 					struct ether_header *eh;
1505 					uint16_t offset, start;
1506 
1507 					eh = mtod(m0, struct ether_header *);
1508 					switch (ntohs(eh->ether_type)) {
1509 					case ETHERTYPE_IP:
1510 						start = ETHER_HDR_LEN;
1511 						break;
1512 					case ETHERTYPE_VLAN:
1513 						start = ETHER_HDR_LEN +
1514 							ETHER_VLAN_ENCAP_LEN;
1515 						break;
1516 					default:
1517 						/* unsupported, drop it */
1518 						bus_dmamap_unload(sc->sc_dmatag,
1519 							dmamap);
1520 						m_freem(m0);
1521 						goto next;
1522 					}
1523 					start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1524 					offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1525 					flags |= (start <<
1526 						  GEM_TD_CXSUM_STARTSHFT) |
1527 						 (offset <<
1528 						  GEM_TD_CXSUM_STUFFSHFT) |
1529 						 GEM_TD_CXSUM_ENABLE;
1530 				}
1531 #endif
1532 				if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1533 					sc->sc_txwin = 0;
1534 					flags |= GEM_TD_INTERRUPT_ME;
1535 				}
1536 			}
1537 			sc->sc_txdescs[nexttx].gd_addr =
1538 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1539 			if (seg == dmamap->dm_nsegs - 1) {
1540 				flags |= GEM_TD_END_OF_PACKET;
1541 			} else {
1542 				/* last flag set outside of loop */
1543 				sc->sc_txdescs[nexttx].gd_flags =
1544 					GEM_DMA_WRITE(sc, flags);
1545 			}
1546 			lasttx = nexttx;
1547 		}
1548 		if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1549 			/* add padding buffer at end of chain */
1550 			flags &= ~GEM_TD_END_OF_PACKET;
1551 			sc->sc_txdescs[lasttx].gd_flags =
1552 			    GEM_DMA_WRITE(sc, flags);
1553 
1554 			sc->sc_txdescs[nexttx].gd_addr =
1555 			    GEM_DMA_WRITE(sc,
1556 			    sc->sc_nulldmamap->dm_segs[0].ds_addr);
1557 			flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1558 			    GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1559 			lasttx = nexttx;
1560 			nexttx = GEM_NEXTTX(nexttx);
1561 			seg++;
1562 		}
1563 		sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1564 
1565 		KASSERT(lasttx != -1);
1566 
1567 		/*
1568 		 * Store a pointer to the packet so we can free it later,
1569 		 * and remember what txdirty will be once the packet is
1570 		 * done.
1571 		 */
1572 		txs->txs_mbuf = m0;
1573 		txs->txs_firstdesc = sc->sc_txnext;
1574 		txs->txs_lastdesc = lasttx;
1575 		txs->txs_ndescs = seg;
1576 
1577 #ifdef GEM_DEBUG
1578 		if (ifp->if_flags & IFF_DEBUG) {
1579 			printf("     gem_start %p transmit chain:\n", txs);
1580 			gem_txsoft_print(sc, txs->txs_firstdesc,
1581 			    txs->txs_lastdesc);
1582 		}
1583 #endif
1584 
1585 		/* Sync the descriptors we're using. */
1586 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1587 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1588 
1589 		/* Advance the tx pointer. */
1590 		sc->sc_txfree -= txs->txs_ndescs;
1591 		sc->sc_txnext = nexttx;
1592 
1593 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1594 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1595 
1596 		/*
1597 		 * Pass the packet to any BPF listeners.
1598 		 */
1599 		bpf_mtap(ifp, m0, BPF_D_OUT);
1600 	}
1601 
1602 	if (sc->sc_txfree != ofree) {
1603 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1604 		    device_xname(sc->sc_dev), lasttx, otxnext));
1605 		/*
1606 		 * The entire packet chain is set up.
1607 		 * Kick the transmitter.
1608 		 */
1609 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1610 			device_xname(sc->sc_dev), nexttx));
1611 		bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
1612 			sc->sc_txnext);
1613 
1614 		/* Set a watchdog timer in case the chip flakes out. */
1615 		ifp->if_timer = 5;
1616 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1617 			device_xname(sc->sc_dev), ifp->if_timer));
1618 	}
1619 }
1620 
1621 /*
1622  * Transmit interrupt.
1623  */
1624 int
1625 gem_tint(struct gem_softc *sc)
1626 {
1627 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1628 	bus_space_tag_t t = sc->sc_bustag;
1629 	bus_space_handle_t mac = sc->sc_h1;
1630 	struct gem_txsoft *txs;
1631 	int txlast;
1632 	int progress = 0;
1633 	uint32_t v;
1634 
1635 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1636 
1637 	DPRINTF(sc, ("%s: gem_tint\n", device_xname(sc->sc_dev)));
1638 
1639 	/* Unload collision counters ... */
1640 	v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1641 	    bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1642 	if_statadd_ref(nsr, if_collisions, v +
1643 	    bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1644 	    bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT));
1645 	if_statadd_ref(nsr, if_oerrors, v);
1646 
1647 	/* ... then clear the hardware counters. */
1648 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1649 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1650 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1651 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1652 
1653 	/*
1654 	 * Go through our Tx list and free mbufs for those
1655 	 * frames that have been transmitted.
1656 	 */
1657 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1658 		/*
1659 		 * In theory, we could harvest some descriptors before
1660 		 * the ring is empty, but that's a bit complicated.
1661 		 *
1662 		 * GEM_TX_COMPLETION points to the last descriptor
1663 		 * processed +1.
1664 		 *
1665 		 * Let's assume that the NIC writes back to the Tx
1666 		 * descriptors before it updates the completion
1667 		 * register.  If the NIC has posted writes to the
1668 		 * Tx descriptors, PCI ordering requires that the
1669 		 * posted writes flush to RAM before the register-read
1670 		 * finishes.  So let's read the completion register,
1671 		 * before syncing the descriptors, so that we
1672 		 * examine Tx descriptors that are at least as
1673 		 * current as the completion register.
1674 		 */
1675 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1676 		DPRINTF(sc,
1677 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1678 				txs->txs_lastdesc, txlast));
1679 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1680 			if (txlast >= txs->txs_firstdesc &&
1681 			    txlast <= txs->txs_lastdesc)
1682 				break;
1683 		} else if (txlast >= txs->txs_firstdesc ||
1684 			   txlast <= txs->txs_lastdesc)
1685 			break;
1686 
1687 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1688 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1689 
1690 #ifdef GEM_DEBUG	/* XXX DMA synchronization? */
1691 		if (ifp->if_flags & IFF_DEBUG) {
1692 			printf("    txsoft %p transmit chain:\n", txs);
1693 			gem_txsoft_print(sc, txs->txs_firstdesc,
1694 			    txs->txs_lastdesc);
1695 		}
1696 #endif
1697 
1698 
1699 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1700 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1701 
1702 		sc->sc_txfree += txs->txs_ndescs;
1703 
1704 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1705 		    0, txs->txs_dmamap->dm_mapsize,
1706 		    BUS_DMASYNC_POSTWRITE);
1707 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1708 		if (txs->txs_mbuf != NULL) {
1709 			m_freem(txs->txs_mbuf);
1710 			txs->txs_mbuf = NULL;
1711 		}
1712 
1713 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1714 
1715 		if_statinc_ref(nsr, if_opackets);
1716 		progress = 1;
1717 	}
1718 
1719 	IF_STAT_PUTREF(ifp);
1720 
1721 #if 0
1722 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1723 		"GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
1724 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
1725 		((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1726 			GEM_TX_DATA_PTR_HI) << 32) |
1727 			     bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1728 			GEM_TX_DATA_PTR_LO),
1729 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
1730 #endif
1731 
1732 	if (progress) {
1733 		if (sc->sc_txfree == GEM_NTXDESC - 1)
1734 			sc->sc_txwin = 0;
1735 
1736 		ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
1737 		if_schedule_deferred_start(ifp);
1738 	}
1739 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1740 		device_xname(sc->sc_dev), ifp->if_timer));
1741 
1742 	return (1);
1743 }
1744 
1745 /*
1746  * Receive interrupt.
1747  */
1748 int
1749 gem_rint(struct gem_softc *sc)
1750 {
1751 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1752 	bus_space_tag_t t = sc->sc_bustag;
1753 	bus_space_handle_t h = sc->sc_h1;
1754 	struct gem_rxsoft *rxs;
1755 	struct mbuf *m;
1756 	uint64_t rxstat;
1757 	uint32_t rxcomp;
1758 	int i, len, progress = 0;
1759 
1760 	DPRINTF(sc, ("%s: gem_rint\n", device_xname(sc->sc_dev)));
1761 
1762 	/*
1763 	 * Ignore spurious interrupt that sometimes occurs before
1764 	 * we are set up when we network boot.
1765 	 */
1766 	if (!sc->sc_meminited)
1767 		return 1;
1768 
1769 	/*
1770 	 * Read the completion register once.  This limits
1771 	 * how long the following loop can execute.
1772 	 */
1773 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1774 
1775 	/*
1776 	 * XXX Read the lastrx only once at the top for speed.
1777 	 */
1778 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1779 		sc->sc_rxptr, rxcomp));
1780 
1781 	/*
1782 	 * Go into the loop at least once.
1783 	 */
1784 	for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1785 	     i = GEM_NEXTRX(i)) {
1786 		rxs = &sc->sc_rxsoft[i];
1787 
1788 		GEM_CDRXSYNC(sc, i,
1789 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1790 
1791 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1792 
1793 		if (rxstat & GEM_RD_OWN) {
1794 			GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1795 			/*
1796 			 * We have processed all of the receive buffers.
1797 			 */
1798 			break;
1799 		}
1800 
1801 		progress++;
1802 
1803 		if (rxstat & GEM_RD_BAD_CRC) {
1804 			if_statinc(ifp, if_ierrors);
1805 			aprint_error_dev(sc->sc_dev,
1806 			    "receive error: CRC error\n");
1807 			GEM_INIT_RXDESC(sc, i);
1808 			continue;
1809 		}
1810 
1811 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1812 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1813 #ifdef GEM_DEBUG
1814 		if (ifp->if_flags & IFF_DEBUG) {
1815 			printf("    rxsoft %p descriptor %d: ", rxs, i);
1816 			printf("gd_flags: 0x%016llx\t", (long long)
1817 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1818 			printf("gd_addr: 0x%016llx\n", (long long)
1819 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1820 		}
1821 #endif
1822 
1823 		/* No errors; receive the packet. */
1824 		len = GEM_RD_BUFLEN(rxstat);
1825 
1826 		/*
1827 		 * Allocate a new mbuf cluster.  If that fails, we are
1828 		 * out of memory, and must drop the packet and recycle
1829 		 * the buffer that's already attached to this descriptor.
1830 		 */
1831 		m = rxs->rxs_mbuf;
1832 		if (gem_add_rxbuf(sc, i) != 0) {
1833 			GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1834 			if_statinc(ifp, if_ierrors);
1835 			aprint_error_dev(sc->sc_dev,
1836 			    "receive error: RX no buffer space\n");
1837 			GEM_INIT_RXDESC(sc, i);
1838 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1839 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1840 			continue;
1841 		}
1842 		m->m_data += 2; /* We're already off by two */
1843 
1844 		m_set_rcvif(m, ifp);
1845 		m->m_pkthdr.len = m->m_len = len;
1846 
1847 #ifdef INET
1848 		/* hardware checksum */
1849 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1850 			struct ether_header *eh;
1851 			struct ip *ip;
1852 			int32_t hlen, pktlen;
1853 
1854 			if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1855 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1856 					 ETHER_VLAN_ENCAP_LEN;
1857 				eh = (struct ether_header *) (mtod(m, char *) +
1858 					ETHER_VLAN_ENCAP_LEN);
1859 			} else {
1860 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1861 				eh = mtod(m, struct ether_header *);
1862 			}
1863 			if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1864 				goto swcsum;
1865 			ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
1866 
1867 			/* IPv4 only */
1868 			if (ip->ip_v != IPVERSION)
1869 				goto swcsum;
1870 
1871 			hlen = ip->ip_hl << 2;
1872 			if (hlen < sizeof(struct ip))
1873 				goto swcsum;
1874 
1875 			/*
1876 			 * bail if too short, has random trailing garbage,
1877 			 * truncated, fragment, or has ethernet pad.
1878 			 */
1879 			if ((ntohs(ip->ip_len) < hlen) ||
1880 			    (ntohs(ip->ip_len) != pktlen) ||
1881 			    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1882 				goto swcsum;
1883 
1884 			switch (ip->ip_p) {
1885 			case IPPROTO_TCP:
1886 				if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1887 					goto swcsum;
1888 				if (pktlen < (hlen + sizeof(struct tcphdr)))
1889 					goto swcsum;
1890 				m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1891 				break;
1892 			case IPPROTO_UDP:
1893 				/* FALLTHROUGH */
1894 			default:
1895 				goto swcsum;
1896 			}
1897 
1898 			/* the uncomplemented sum is expected */
1899 			m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1900 
1901 			/* if the pkt had ip options, we have to deduct them */
1902 			if (hlen > sizeof(struct ip)) {
1903 				uint16_t *opts;
1904 				uint32_t optsum, temp;
1905 
1906 				optsum = 0;
1907 				temp = hlen - sizeof(struct ip);
1908 				opts = (uint16_t *) ((char *) ip +
1909 					sizeof(struct ip));
1910 
1911 				while (temp > 1) {
1912 					optsum += ntohs(*opts++);
1913 					temp -= 2;
1914 				}
1915 				while (optsum >> 16)
1916 					optsum = (optsum >> 16) +
1917 						 (optsum & 0xffff);
1918 
1919 				/* Deduct ip opts sum from hwsum. */
1920 				m->m_pkthdr.csum_data += (uint16_t)~optsum;
1921 
1922 				while (m->m_pkthdr.csum_data >> 16)
1923 					m->m_pkthdr.csum_data =
1924 						(m->m_pkthdr.csum_data >> 16) +
1925 						(m->m_pkthdr.csum_data &
1926 						 0xffff);
1927 			}
1928 
1929 			m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1930 						  M_CSUM_NO_PSEUDOHDR;
1931 		} else
1932 swcsum:
1933 			m->m_pkthdr.csum_flags = 0;
1934 #endif
1935 		/* Pass it on. */
1936 		if_percpuq_enqueue(ifp->if_percpuq, m);
1937 	}
1938 
1939 	if (progress) {
1940 		/* Update the receive pointer. */
1941 		if (i == sc->sc_rxptr) {
1942 			GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1943 #ifdef GEM_DEBUG
1944 			if (ifp->if_flags & IFF_DEBUG)
1945 				printf("%s: rint: ring wrap\n",
1946 				    device_xname(sc->sc_dev));
1947 #endif
1948 		}
1949 		sc->sc_rxptr = i;
1950 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1951 	}
1952 #ifdef GEM_COUNTERS
1953 	if (progress <= 4) {
1954 		GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1955 	} else if (progress < 32) {
1956 		if (progress < 16)
1957 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1958 		else
1959 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1960 
1961 	} else {
1962 		if (progress < 64)
1963 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1964 		else
1965 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1966 	}
1967 #endif
1968 
1969 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1970 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1971 
1972 	/* Read error counters ... */
1973 	if_statadd(ifp, if_ierrors,
1974 	    bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
1975 	    bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
1976 	    bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
1977 	    bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL));
1978 
1979 	/* ... then clear the hardware counters. */
1980 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1981 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1982 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1983 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1984 
1985 	return (1);
1986 }
1987 
1988 
1989 /*
1990  * gem_add_rxbuf:
1991  *
1992  *	Add a receive buffer to the indicated descriptor.
1993  */
1994 int
1995 gem_add_rxbuf(struct gem_softc *sc, int idx)
1996 {
1997 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1998 	struct mbuf *m;
1999 	int error;
2000 
2001 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2002 	if (m == NULL)
2003 		return (ENOBUFS);
2004 
2005 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2006 	MCLGET(m, M_DONTWAIT);
2007 	if ((m->m_flags & M_EXT) == 0) {
2008 		m_freem(m);
2009 		return (ENOBUFS);
2010 	}
2011 
2012 #ifdef GEM_DEBUG
2013 /* bzero the packet to check DMA */
2014 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
2015 #endif
2016 
2017 	if (rxs->rxs_mbuf != NULL)
2018 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
2019 
2020 	rxs->rxs_mbuf = m;
2021 
2022 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
2023 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2024 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
2025 	if (error) {
2026 		aprint_error_dev(sc->sc_dev,
2027 		    "can't load rx DMA map %d, error = %d\n", idx, error);
2028 		panic("gem_add_rxbuf");	/* XXX */
2029 	}
2030 
2031 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
2032 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2033 
2034 	GEM_INIT_RXDESC(sc, idx);
2035 
2036 	return (0);
2037 }
2038 
2039 
2040 int
2041 gem_eint(struct gem_softc *sc, u_int status)
2042 {
2043 	char bits[128];
2044 	uint32_t r, v;
2045 
2046 	if ((status & GEM_INTR_MIF) != 0) {
2047 		printf("%s: XXXlink status changed\n", device_xname(sc->sc_dev));
2048 		return (1);
2049 	}
2050 
2051 	if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
2052 		gem_reset_rxdma(sc);
2053 		return (1);
2054 	}
2055 
2056 	if (status & GEM_INTR_BERR) {
2057 		if (sc->sc_flags & GEM_PCI)
2058 			r = GEM_ERROR_STATUS;
2059 		else
2060 			r = GEM_SBUS_ERROR_STATUS;
2061 		bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2062 		v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2063 		aprint_error_dev(sc->sc_dev, "bus error interrupt: 0x%02x\n",
2064 		    v);
2065 		return (1);
2066 	}
2067 	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2068 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
2069 
2070 	return (1);
2071 }
2072 
2073 
2074 /*
2075  * PCS interrupts.
2076  * We should receive these when the link status changes, but sometimes
2077  * we don't receive them for link up.  We compensate for this in the
2078  * gem_tick() callout.
2079  */
2080 int
2081 gem_pint(struct gem_softc *sc)
2082 {
2083 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2084 	bus_space_tag_t t = sc->sc_bustag;
2085 	bus_space_handle_t h = sc->sc_h1;
2086 	uint32_t v, v2;
2087 
2088 	/*
2089 	 * Clear the PCS interrupt from GEM_STATUS.  The PCS register is
2090 	 * latched, so we have to read it twice.  There is only one bit in
2091 	 * use, so the value is meaningless.
2092 	 */
2093 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2094 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2095 
2096 	if ((ifp->if_flags & IFF_UP) == 0)
2097 		return 1;
2098 
2099 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
2100 		return 1;
2101 
2102 	v = bus_space_read_4(t, h, GEM_MII_STATUS);
2103 	/* If we see remote fault, our link partner is probably going away */
2104 	if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
2105 		gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
2106 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
2107 	/* Otherwise, we may need to wait after auto-negotiation completes */
2108 	} else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
2109 	    GEM_MII_STATUS_ANEG_CPT) {
2110 		gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
2111 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
2112 	}
2113 	if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
2114 		if (sc->sc_flags & GEM_LINK) {
2115 			return 1;
2116 		}
2117 		callout_stop(&sc->sc_tick_ch);
2118 		v = bus_space_read_4(t, h, GEM_MII_ANAR);
2119 		v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
2120 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
2121 		sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
2122 		v &= v2;
2123 		if (v & GEM_MII_ANEG_FUL_DUPLX) {
2124 			sc->sc_mii.mii_media_active |= IFM_FDX;
2125 #ifdef GEM_DEBUG
2126 			aprint_debug_dev(sc->sc_dev, "link up: full duplex\n");
2127 #endif
2128 		} else if (v & GEM_MII_ANEG_HLF_DUPLX) {
2129 			sc->sc_mii.mii_media_active |= IFM_HDX;
2130 #ifdef GEM_DEBUG
2131 			aprint_debug_dev(sc->sc_dev, "link up: half duplex\n");
2132 #endif
2133 		} else {
2134 #ifdef GEM_DEBUG
2135 			aprint_debug_dev(sc->sc_dev, "duplex mismatch\n");
2136 #endif
2137 		}
2138 		gem_statuschange(sc);
2139 	} else {
2140 		if ((sc->sc_flags & GEM_LINK) == 0) {
2141 			return 1;
2142 		}
2143 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
2144 		sc->sc_mii.mii_media_status = IFM_AVALID;
2145 #ifdef GEM_DEBUG
2146 			aprint_debug_dev(sc->sc_dev, "link down\n");
2147 #endif
2148 		gem_statuschange(sc);
2149 
2150 		/* Start the 10 second timer */
2151 		callout_schedule(&sc->sc_tick_ch, hz * 10);
2152 	}
2153 	return 1;
2154 }
2155 
2156 
2157 
2158 int
2159 gem_intr(void *v)
2160 {
2161 	struct gem_softc *sc = v;
2162 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2163 	bus_space_tag_t t = sc->sc_bustag;
2164 	bus_space_handle_t h = sc->sc_h1;
2165 	uint32_t status;
2166 	int r = 0;
2167 #ifdef GEM_DEBUG
2168 	char bits[128];
2169 #endif
2170 
2171 	/* XXX We should probably mask out interrupts until we're done */
2172 
2173 	sc->sc_ev_intr.ev_count++;
2174 
2175 	status = bus_space_read_4(t, h, GEM_STATUS);
2176 #ifdef GEM_DEBUG
2177 	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2178 #endif
2179 	DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
2180 		device_xname(sc->sc_dev), (status >> 19), bits));
2181 
2182 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
2183 		r |= gem_eint(sc, status);
2184 
2185 	/* We don't bother with GEM_INTR_TX_DONE */
2186 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
2187 		GEM_COUNTER_INCR(sc, sc_ev_txint);
2188 		r |= gem_tint(sc);
2189 	}
2190 
2191 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
2192 		GEM_COUNTER_INCR(sc, sc_ev_rxint);
2193 		r |= gem_rint(sc);
2194 	}
2195 
2196 	/* We should eventually do more than just print out error stats. */
2197 	if (status & GEM_INTR_TX_MAC) {
2198 		int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
2199 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
2200 			printf("%s: MAC tx fault, status %x\n",
2201 			    device_xname(sc->sc_dev), txstat);
2202 		if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
2203 			gem_init(ifp);
2204 	}
2205 	if (status & GEM_INTR_RX_MAC) {
2206 		int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
2207 		/*
2208 		 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
2209 		 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
2210 		 * silicon bug so handle them silently.  So if we detect
2211 		 * an RX FIFO overflow, we fire off a timer, and check
2212 		 * whether we're still making progress by looking at the
2213 		 * RX FIFO write and read pointers.
2214 		 */
2215 		if (rxstat & GEM_MAC_RX_OVERFLOW) {
2216 			if_statinc(ifp, if_ierrors);
2217 			aprint_error_dev(sc->sc_dev,
2218 			    "receive error: RX overflow sc->rxptr %d, complete %d\n", sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION));
2219 			sc->sc_rx_fifo_wr_ptr =
2220 				bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2221 			sc->sc_rx_fifo_rd_ptr =
2222 				bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2223 			callout_schedule(&sc->sc_rx_watchdog, 400);
2224 		} else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
2225 			printf("%s: MAC rx fault, status 0x%02x\n",
2226 			    device_xname(sc->sc_dev), rxstat);
2227 	}
2228 	if (status & GEM_INTR_PCS) {
2229 		r |= gem_pint(sc);
2230 	}
2231 
2232 /* Do we need to do anything with these?
2233 	if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
2234 		status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
2235 		if ((status2 & GEM_MAC_PAUSED) != 0)
2236 			aprintf_debug_dev(sc->sc_dev, "PAUSE received (%d slots)\n",
2237 			    GEM_MAC_PAUSE_TIME(status2));
2238 		if ((status2 & GEM_MAC_PAUSE) != 0)
2239 			aprintf_debug_dev(sc->sc_dev, "transited to PAUSE state\n");
2240 		if ((status2 & GEM_MAC_RESUME) != 0)
2241 			aprintf_debug_dev(sc->sc_dev, "transited to non-PAUSE state\n");
2242 	}
2243 	if ((status & GEM_INTR_MIF) != 0)
2244 		aprintf_debug_dev(sc->sc_dev, "MIF interrupt\n");
2245 */
2246 	rnd_add_uint32(&sc->rnd_source, status);
2247 	return (r);
2248 }
2249 
2250 void
2251 gem_rx_watchdog(void *arg)
2252 {
2253 	struct gem_softc *sc = arg;
2254 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2255 	bus_space_tag_t t = sc->sc_bustag;
2256 	bus_space_handle_t h = sc->sc_h1;
2257 	uint32_t rx_fifo_wr_ptr;
2258 	uint32_t rx_fifo_rd_ptr;
2259 	uint32_t state;
2260 
2261 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
2262 		aprint_error_dev(sc->sc_dev, "receiver not running\n");
2263 		return;
2264 	}
2265 
2266 	rx_fifo_wr_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2267 	rx_fifo_rd_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2268 	state = bus_space_read_4(t, h, GEM_MAC_MAC_STATE);
2269 	if ((state & GEM_MAC_STATE_OVERFLOW) == GEM_MAC_STATE_OVERFLOW &&
2270 	    ((rx_fifo_wr_ptr == rx_fifo_rd_ptr) ||
2271 	     ((sc->sc_rx_fifo_wr_ptr == rx_fifo_wr_ptr) &&
2272 	      (sc->sc_rx_fifo_rd_ptr == rx_fifo_rd_ptr))))
2273 	{
2274 		/*
2275 		 * The RX state machine is still in overflow state and
2276 		 * the RX FIFO write and read pointers seem to be
2277 		 * stuck.  Whack the chip over the head to get things
2278 		 * going again.
2279 		 */
2280 		aprint_error_dev(sc->sc_dev,
2281 		    "receiver stuck in overflow, resetting\n");
2282 		gem_init(ifp);
2283 	} else {
2284 		if ((state & GEM_MAC_STATE_OVERFLOW) != GEM_MAC_STATE_OVERFLOW) {
2285 			aprint_error_dev(sc->sc_dev,
2286 				"rx_watchdog: not in overflow state: 0x%x\n",
2287 				state);
2288 		}
2289 		if (rx_fifo_wr_ptr != rx_fifo_rd_ptr) {
2290 			aprint_error_dev(sc->sc_dev,
2291 				"rx_watchdog: wr & rd ptr different\n");
2292 		}
2293 		if (sc->sc_rx_fifo_wr_ptr != rx_fifo_wr_ptr) {
2294 			aprint_error_dev(sc->sc_dev,
2295 				"rx_watchdog: wr pointer != saved\n");
2296 		}
2297 		if (sc->sc_rx_fifo_rd_ptr != rx_fifo_rd_ptr) {
2298 			aprint_error_dev(sc->sc_dev,
2299 				"rx_watchdog: rd pointer != saved\n");
2300 		}
2301 		aprint_error_dev(sc->sc_dev, "resetting anyway\n");
2302 		gem_init(ifp);
2303 	}
2304 }
2305 
2306 void
2307 gem_watchdog(struct ifnet *ifp)
2308 {
2309 	struct gem_softc *sc = ifp->if_softc;
2310 
2311 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
2312 		"GEM_MAC_RX_CONFIG %x\n",
2313 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
2314 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
2315 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
2316 
2317 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
2318 	if_statinc(ifp, if_oerrors);
2319 
2320 	/* Try to get more packets going. */
2321 	gem_init(ifp);
2322 	gem_start(ifp);
2323 }
2324 
2325 /*
2326  * Initialize the MII Management Interface
2327  */
2328 void
2329 gem_mifinit(struct gem_softc *sc)
2330 {
2331 	bus_space_tag_t t = sc->sc_bustag;
2332 	bus_space_handle_t mif = sc->sc_h1;
2333 
2334 	/* Configure the MIF in frame mode */
2335 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
2336 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
2337 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
2338 }
2339 
2340 /*
2341  * MII interface
2342  *
2343  * The GEM MII interface supports at least three different operating modes:
2344  *
2345  * Bitbang mode is implemented using data, clock and output enable registers.
2346  *
2347  * Frame mode is implemented by loading a complete frame into the frame
2348  * register and polling the valid bit for completion.
2349  *
2350  * Polling mode uses the frame register but completion is indicated by
2351  * an interrupt.
2352  *
2353  */
2354 static int
2355 gem_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
2356 {
2357 	struct gem_softc *sc = device_private(self);
2358 	bus_space_tag_t t = sc->sc_bustag;
2359 	bus_space_handle_t mif = sc->sc_h1;
2360 	int n;
2361 	uint32_t v;
2362 
2363 #ifdef GEM_DEBUG1
2364 	if (sc->sc_debug)
2365 		printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
2366 #endif
2367 
2368 	/* Construct the frame command */
2369 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
2370 		GEM_MIF_FRAME_READ;
2371 
2372 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2373 	for (n = 0; n < 100; n++) {
2374 		DELAY(1);
2375 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2376 		if (v & GEM_MIF_FRAME_TA0) {
2377 			*val = v & GEM_MIF_FRAME_DATA;
2378 			return 0;
2379 		}
2380 	}
2381 
2382 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
2383 	return ETIMEDOUT;
2384 }
2385 
2386 static int
2387 gem_mii_writereg(device_t self, int phy, int reg, uint16_t val)
2388 {
2389 	struct gem_softc *sc = device_private(self);
2390 	bus_space_tag_t t = sc->sc_bustag;
2391 	bus_space_handle_t mif = sc->sc_h1;
2392 	int n;
2393 	uint32_t v;
2394 
2395 #ifdef GEM_DEBUG1
2396 	if (sc->sc_debug)
2397 		printf("gem_mii_writereg: PHY %d reg %d val %x\n",
2398 			phy, reg, val);
2399 #endif
2400 
2401 	/* Construct the frame command */
2402 	v = GEM_MIF_FRAME_WRITE			|
2403 	    (phy << GEM_MIF_PHY_SHIFT)		|
2404 	    (reg << GEM_MIF_REG_SHIFT)		|
2405 	    (val & GEM_MIF_FRAME_DATA);
2406 
2407 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2408 	for (n = 0; n < 100; n++) {
2409 		DELAY(1);
2410 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2411 		if (v & GEM_MIF_FRAME_TA0)
2412 			return 0;
2413 	}
2414 
2415 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
2416 	return ETIMEDOUT;
2417 }
2418 
2419 static void
2420 gem_mii_statchg(struct ifnet *ifp)
2421 {
2422 	struct gem_softc *sc = ifp->if_softc;
2423 #ifdef GEM_DEBUG
2424 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
2425 #endif
2426 
2427 #ifdef GEM_DEBUG
2428 	if (sc->sc_debug)
2429 		printf("gem_mii_statchg: status change: phy = %d\n",
2430 			sc->sc_phys[instance]);
2431 #endif
2432 	gem_statuschange(sc);
2433 }
2434 
2435 /*
2436  * Common status change for gem_mii_statchg() and gem_pint()
2437  */
2438 void
2439 gem_statuschange(struct gem_softc* sc)
2440 {
2441 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2442 	bus_space_tag_t t = sc->sc_bustag;
2443 	bus_space_handle_t mac = sc->sc_h1;
2444 	int gigabit;
2445 	uint32_t rxcfg, txcfg, v;
2446 
2447 	if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
2448 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
2449 		sc->sc_flags |= GEM_LINK;
2450 	else
2451 		sc->sc_flags &= ~GEM_LINK;
2452 
2453 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2454 		gigabit = 1;
2455 	else
2456 		gigabit = 0;
2457 
2458 	/*
2459 	 * The configuration done here corresponds to the steps F) and
2460 	 * G) and as far as enabling of RX and TX MAC goes also step H)
2461 	 * of the initialization sequence outlined in section 3.2.1 of
2462 	 * the GEM Gigabit Ethernet ASIC Specification.
2463 	 */
2464 
2465 	rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
2466 	rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
2467 	txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
2468 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2469 		txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
2470 	else if (gigabit) {
2471 		rxcfg |= GEM_MAC_RX_CARR_EXTEND;
2472 		txcfg |= GEM_MAC_RX_CARR_EXTEND;
2473 	}
2474 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
2475 	bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
2476 	    BUS_SPACE_BARRIER_WRITE);
2477 	if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
2478 		aprint_normal_dev(sc->sc_dev, "cannot disable TX MAC\n");
2479 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
2480 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
2481 	bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
2482 	    BUS_SPACE_BARRIER_WRITE);
2483 	if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
2484 		aprint_normal_dev(sc->sc_dev, "cannot disable RX MAC\n");
2485 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
2486 
2487 	v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
2488 	    ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
2489 	bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
2490 
2491 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
2492 	    gigabit != 0)
2493 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2494 		    GEM_MAC_SLOT_TIME_CARR_EXTEND);
2495 	else
2496 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2497 		    GEM_MAC_SLOT_TIME_NORMAL);
2498 
2499 	/* XIF Configuration */
2500 	if (sc->sc_flags & GEM_LINK)
2501 		v = GEM_MAC_XIF_LINK_LED;
2502 	else
2503 		v = 0;
2504 	v |= GEM_MAC_XIF_TX_MII_ENA;
2505 
2506 	/* If an external transceiver is connected, enable its MII drivers */
2507 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
2508 	if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
2509 		if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
2510 			if (gigabit)
2511 				v |= GEM_MAC_XIF_GMII_MODE;
2512 			else
2513 				v &= ~GEM_MAC_XIF_GMII_MODE;
2514 		} else
2515 			/* Internal MII needs buf enable */
2516 			v |= GEM_MAC_XIF_MII_BUF_ENA;
2517 		/* MII needs echo disable if half duplex. */
2518 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2519 			/* turn on full duplex LED */
2520 			v |= GEM_MAC_XIF_FDPLX_LED;
2521 		else
2522 			/* half duplex -- disable echo */
2523 			v |= GEM_MAC_XIF_ECHO_DISABL;
2524 	} else {
2525 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2526 			v |= GEM_MAC_XIF_FDPLX_LED;
2527 		v |= GEM_MAC_XIF_GMII_MODE;
2528 	}
2529 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
2530 
2531 	if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2532 	    (sc->sc_flags & GEM_LINK) != 0) {
2533 		bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
2534 		    txcfg | GEM_MAC_TX_ENABLE);
2535 		bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
2536 		    rxcfg | GEM_MAC_RX_ENABLE);
2537 	}
2538 }
2539 
2540 int
2541 gem_ser_mediachange(struct ifnet *ifp)
2542 {
2543 	struct gem_softc *sc = ifp->if_softc;
2544 	u_int s, t;
2545 
2546 	if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
2547 		return EINVAL;
2548 
2549 	s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
2550 	if (s == IFM_AUTO) {
2551 		if (sc->sc_mii_media != s) {
2552 #ifdef GEM_DEBUG
2553 			aprint_debug_dev(sc->sc_dev, "setting media to auto\n");
2554 #endif
2555 			sc->sc_mii_media = s;
2556 			if (ifp->if_flags & IFF_UP) {
2557 				gem_pcs_stop(sc, 0);
2558 				gem_pcs_start(sc);
2559 			}
2560 		}
2561 		return 0;
2562 	}
2563 	if (s == IFM_1000_SX) {
2564 		t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media)
2565 		    & (IFM_FDX | IFM_HDX);
2566 		if ((sc->sc_mii_media & (IFM_FDX | IFM_HDX)) != t) {
2567 			sc->sc_mii_media &= ~(IFM_FDX | IFM_HDX);
2568 			sc->sc_mii_media |= t;
2569 #ifdef GEM_DEBUG
2570 			aprint_debug_dev(sc->sc_dev,
2571 			    "setting media to 1000baseSX-%s\n",
2572 			    t == IFM_FDX ? "FDX" : "HDX");
2573 #endif
2574 			if (ifp->if_flags & IFF_UP) {
2575 				gem_pcs_stop(sc, 0);
2576 				gem_pcs_start(sc);
2577 			}
2578 		}
2579 		return 0;
2580 	}
2581 	return EINVAL;
2582 }
2583 
2584 void
2585 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2586 {
2587 	struct gem_softc *sc = ifp->if_softc;
2588 
2589 	if ((ifp->if_flags & IFF_UP) == 0)
2590 		return;
2591 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
2592 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
2593 }
2594 
2595 static int
2596 gem_ifflags_cb(struct ethercom *ec)
2597 {
2598 	struct ifnet *ifp = &ec->ec_if;
2599 	struct gem_softc *sc = ifp->if_softc;
2600 	u_short change = ifp->if_flags ^ sc->sc_if_flags;
2601 
2602 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
2603 		return ENETRESET;
2604 	else if ((change & IFF_PROMISC) != 0)
2605 		gem_setladrf(sc);
2606 	return 0;
2607 }
2608 
2609 /*
2610  * Process an ioctl request.
2611  */
2612 int
2613 gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
2614 {
2615 	struct gem_softc *sc = ifp->if_softc;
2616 	int s, error = 0;
2617 
2618 	s = splnet();
2619 
2620 	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2621 		error = 0;
2622 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2623 			;
2624 		else if (ifp->if_flags & IFF_RUNNING) {
2625 			/*
2626 			 * Multicast list has changed; set the hardware filter
2627 			 * accordingly.
2628 			 */
2629 			gem_setladrf(sc);
2630 		}
2631 	}
2632 
2633 	/* Try to get things going again */
2634 	if (ifp->if_flags & IFF_UP)
2635 		gem_start(ifp);
2636 	splx(s);
2637 	return (error);
2638 }
2639 
2640 static void
2641 gem_inten(struct gem_softc *sc)
2642 {
2643 	bus_space_tag_t t = sc->sc_bustag;
2644 	bus_space_handle_t h = sc->sc_h1;
2645 	uint32_t v;
2646 
2647 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
2648 		v = GEM_INTR_PCS;
2649 	else
2650 		v = GEM_INTR_MIF;
2651 	bus_space_write_4(t, h, GEM_INTMASK,
2652 		      ~(GEM_INTR_TX_INTME |
2653 			GEM_INTR_TX_EMPTY |
2654 			GEM_INTR_TX_MAC |
2655 			GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF |
2656 			GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL |
2657 			GEM_INTR_BERR | v));
2658 }
2659 
2660 bool
2661 gem_resume(device_t self, const pmf_qual_t *qual)
2662 {
2663 	struct gem_softc *sc = device_private(self);
2664 
2665 	gem_inten(sc);
2666 
2667 	return true;
2668 }
2669 
2670 bool
2671 gem_suspend(device_t self, const pmf_qual_t *qual)
2672 {
2673 	struct gem_softc *sc = device_private(self);
2674 	bus_space_tag_t t = sc->sc_bustag;
2675 	bus_space_handle_t h = sc->sc_h1;
2676 
2677 	bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
2678 
2679 	return true;
2680 }
2681 
2682 bool
2683 gem_shutdown(device_t self, int howto)
2684 {
2685 	struct gem_softc *sc = device_private(self);
2686 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2687 
2688 	gem_stop(ifp, 1);
2689 
2690 	return true;
2691 }
2692 
2693 /*
2694  * Set up the logical address filter.
2695  */
2696 void
2697 gem_setladrf(struct gem_softc *sc)
2698 {
2699 	struct ethercom *ec = &sc->sc_ethercom;
2700 	struct ifnet *ifp = &ec->ec_if;
2701 	struct ether_multi *enm;
2702 	struct ether_multistep step;
2703 	bus_space_tag_t t = sc->sc_bustag;
2704 	bus_space_handle_t h = sc->sc_h1;
2705 	uint32_t crc;
2706 	uint32_t hash[16];
2707 	uint32_t v;
2708 	int i;
2709 
2710 	/* Get current RX configuration */
2711 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2712 
2713 	/*
2714 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2715 	 * and hash filter.  Depending on the case, the right bit will be
2716 	 * enabled.
2717 	 */
2718 	v &= ~(GEM_MAC_RX_PROMISCUOUS | GEM_MAC_RX_HASH_FILTER |
2719 	    GEM_MAC_RX_PROMISC_GRP);
2720 
2721 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
2722 		/* Turn on promiscuous mode */
2723 		v |= GEM_MAC_RX_PROMISCUOUS;
2724 		ifp->if_flags |= IFF_ALLMULTI;
2725 		goto chipit;
2726 	}
2727 
2728 	/*
2729 	 * Set up multicast address filter by passing all multicast addresses
2730 	 * through a crc generator, and then using the high order 8 bits as an
2731 	 * index into the 256 bit logical address filter.  The high order 4
2732 	 * bits selects the word, while the other 4 bits select the bit within
2733 	 * the word (where bit 0 is the MSB).
2734 	 */
2735 
2736 	/* Clear hash table */
2737 	memset(hash, 0, sizeof(hash));
2738 
2739 	ETHER_LOCK(ec);
2740 	ETHER_FIRST_MULTI(step, ec, enm);
2741 	while (enm != NULL) {
2742 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2743 			/*
2744 			 * We must listen to a range of multicast addresses.
2745 			 * For now, just accept all multicasts, rather than
2746 			 * trying to set only those filter bits needed to match
2747 			 * the range.  (At this time, the only use of address
2748 			 * ranges is for IP multicast routing, for which the
2749 			 * range is big enough to require all bits set.)
2750 			 * XXX should use the address filters for this
2751 			 */
2752 			ifp->if_flags |= IFF_ALLMULTI;
2753 			v |= GEM_MAC_RX_PROMISC_GRP;
2754 			ETHER_UNLOCK(ec);
2755 			goto chipit;
2756 		}
2757 
2758 		/* Get the LE CRC32 of the address */
2759 		crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2760 
2761 		/* Just want the 8 most significant bits. */
2762 		crc >>= 24;
2763 
2764 		/* Set the corresponding bit in the filter. */
2765 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
2766 
2767 		ETHER_NEXT_MULTI(step, enm);
2768 	}
2769 	ETHER_UNLOCK(ec);
2770 
2771 	v |= GEM_MAC_RX_HASH_FILTER;
2772 	ifp->if_flags &= ~IFF_ALLMULTI;
2773 
2774 	/* Now load the hash table into the chip (if we are using it) */
2775 	for (i = 0; i < 16; i++) {
2776 		bus_space_write_4(t, h,
2777 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2778 		    hash[i]);
2779 	}
2780 
2781 chipit:
2782 	sc->sc_if_flags = ifp->if_flags;
2783 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2784 }
2785