xref: /netbsd-src/sys/dev/ic/gem.c (revision 10ad5ffa714ce1a679dcc9dd8159648df2d67b5a)
1 /*	$NetBSD: gem.c,v 1.85 2009/07/27 18:10:53 dyoung Exp $ */
2 
3 /*
4  *
5  * Copyright (C) 2001 Eduardo Horvath.
6  * Copyright (c) 2001-2003 Thomas Moestl
7  * All rights reserved.
8  *
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  */
32 
33 /*
34  * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
35  * See `GEM Gigabit Ethernet ASIC Specification'
36  *   http://www.sun.com/processors/manuals/ge.pdf
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.85 2009/07/27 18:10:53 dyoung Exp $");
41 
42 #include "opt_inet.h"
43 #include "bpfilter.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/callout.h>
48 #include <sys/mbuf.h>
49 #include <sys/syslog.h>
50 #include <sys/malloc.h>
51 #include <sys/kernel.h>
52 #include <sys/socket.h>
53 #include <sys/ioctl.h>
54 #include <sys/errno.h>
55 #include <sys/device.h>
56 
57 #include <machine/endian.h>
58 
59 #include <uvm/uvm_extern.h>
60 
61 #include <net/if.h>
62 #include <net/if_dl.h>
63 #include <net/if_media.h>
64 #include <net/if_ether.h>
65 
66 #ifdef INET
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/in_var.h>
70 #include <netinet/ip.h>
71 #include <netinet/tcp.h>
72 #include <netinet/udp.h>
73 #endif
74 
75 #if NBPFILTER > 0
76 #include <net/bpf.h>
77 #endif
78 
79 #include <sys/bus.h>
80 #include <sys/intr.h>
81 
82 #include <dev/mii/mii.h>
83 #include <dev/mii/miivar.h>
84 #include <dev/mii/mii_bitbang.h>
85 
86 #include <dev/ic/gemreg.h>
87 #include <dev/ic/gemvar.h>
88 
89 #define TRIES	10000
90 
91 static void	gem_inten(struct gem_softc *);
92 static void	gem_start(struct ifnet *);
93 static void	gem_stop(struct ifnet *, int);
94 int		gem_ioctl(struct ifnet *, u_long, void *);
95 void		gem_tick(void *);
96 void		gem_watchdog(struct ifnet *);
97 void		gem_pcs_start(struct gem_softc *sc);
98 void		gem_pcs_stop(struct gem_softc *sc, int);
99 int		gem_init(struct ifnet *);
100 void		gem_init_regs(struct gem_softc *sc);
101 static int	gem_ringsize(int sz);
102 static int	gem_meminit(struct gem_softc *);
103 void		gem_mifinit(struct gem_softc *);
104 static int	gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
105 		    u_int32_t, u_int32_t);
106 void		gem_reset(struct gem_softc *);
107 int		gem_reset_rx(struct gem_softc *sc);
108 static void	gem_reset_rxdma(struct gem_softc *sc);
109 static void	gem_rx_common(struct gem_softc *sc);
110 int		gem_reset_tx(struct gem_softc *sc);
111 int		gem_disable_rx(struct gem_softc *sc);
112 int		gem_disable_tx(struct gem_softc *sc);
113 static void	gem_rxdrain(struct gem_softc *sc);
114 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
115 void		gem_setladrf(struct gem_softc *);
116 
117 /* MII methods & callbacks */
118 static int	gem_mii_readreg(device_t, int, int);
119 static void	gem_mii_writereg(device_t, int, int, int);
120 static void	gem_mii_statchg(device_t);
121 
122 static int	gem_ifflags_cb(struct ethercom *);
123 
124 void		gem_statuschange(struct gem_softc *);
125 
126 int		gem_ser_mediachange(struct ifnet *);
127 void		gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
128 
129 static void	gem_partial_detach(struct gem_softc *, enum gem_attach_stage);
130 
131 struct mbuf	*gem_get(struct gem_softc *, int, int);
132 int		gem_put(struct gem_softc *, int, struct mbuf *);
133 void		gem_read(struct gem_softc *, int, int);
134 int		gem_pint(struct gem_softc *);
135 int		gem_eint(struct gem_softc *, u_int);
136 int		gem_rint(struct gem_softc *);
137 int		gem_tint(struct gem_softc *);
138 void		gem_power(int, void *);
139 
140 #ifdef GEM_DEBUG
141 static void gem_txsoft_print(const struct gem_softc *, int, int);
142 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
143 				printf x
144 #else
145 #define	DPRINTF(sc, x)	/* nothing */
146 #endif
147 
148 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
149 
150 int
151 gem_detach(struct gem_softc *sc, int flags)
152 {
153 	char *nullbuf;
154 	int i, rc;
155 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
156 
157 	nullbuf =
158 	    (char *)sc->sc_control_data + sizeof(struct gem_control_data);
159 
160 	/*
161 	 * Free any resources we've allocated during the attach.
162 	 * Do this in reverse order and fall through.
163 	 */
164 	switch (sc->sc_att_stage) {
165 	case GEM_ATT_BACKEND_2:
166 	case GEM_ATT_BACKEND_1:
167 	case GEM_ATT_FINISHED:
168 		gem_stop(&sc->sc_ethercom.ec_if, 1);
169 
170 #ifdef GEM_COUNTERS
171 		for (i = __arraycount(sc->sc_ev_rxhist); --i >= 0; )
172 			evcnt_detach(&sc->sc_ev_rxhist[i]);
173 		evcnt_detach(&sc->sc_ev_rxnobuf);
174 		evcnt_detach(&sc->sc_ev_rxfull);
175 		evcnt_detach(&sc->sc_ev_rxint);
176 		evcnt_detach(&sc->sc_ev_txint);
177 #endif
178 		evcnt_detach(&sc->sc_ev_intr);
179 
180 		callout_destroy(&sc->sc_tick_ch);
181 #if NRND > 0
182 		rnd_detach_source(&sc->rnd_source);
183 #endif
184 		ether_ifdetach(ifp);
185 		if_detach(ifp);
186 		ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
187 		/*FALLTHROUGH*/
188 	case GEM_ATT_MII:
189 		sc->sc_att_stage = GEM_ATT_MII;
190 		if ((rc = config_detach_children(sc->sc_dev, flags)) != 0)
191 			return rc;
192 		/*FALLTHROUGH*/
193 	case GEM_ATT_7:
194 		for (i = 0; i < GEM_NRXDESC; i++) {
195 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
196 				bus_dmamap_destroy(sc->sc_dmatag,
197 				    sc->sc_rxsoft[i].rxs_dmamap);
198 		}
199 		/*FALLTHROUGH*/
200 	case GEM_ATT_6:
201 		for (i = 0; i < GEM_TXQUEUELEN; i++) {
202 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
203 				bus_dmamap_destroy(sc->sc_dmatag,
204 				    sc->sc_txsoft[i].txs_dmamap);
205 		}
206 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
207 		/*FALLTHROUGH*/
208 	case GEM_ATT_5:
209 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
210 		/*FALLTHROUGH*/
211 	case GEM_ATT_4:
212 		bus_dmamem_unmap(sc->sc_dmatag, nullbuf, ETHER_MIN_TX);
213 		/*FALLTHROUGH*/
214 	case GEM_ATT_3:
215 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
216 		/*FALLTHROUGH*/
217 	case GEM_ATT_2:
218 		bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
219 		    sizeof(struct gem_control_data));
220 		/*FALLTHROUGH*/
221 	case GEM_ATT_1:
222 		bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
223 		/*FALLTHROUGH*/
224 	case GEM_ATT_0:
225 		sc->sc_att_stage = GEM_ATT_0;
226 		/*FALLTHROUGH*/
227 	case GEM_ATT_BACKEND_0:
228 		break;
229 	}
230 	return 0;
231 }
232 
233 static void
234 gem_partial_detach(struct gem_softc *sc, enum gem_attach_stage stage)
235 {
236 	cfattach_t ca = device_cfattach(sc->sc_dev);
237 
238 	sc->sc_att_stage = stage;
239 	(*ca->ca_detach)(sc->sc_dev, 0);
240 }
241 
242 /*
243  * gem_attach:
244  *
245  *	Attach a Gem interface to the system.
246  */
247 void
248 gem_attach(struct gem_softc *sc, const uint8_t *enaddr)
249 {
250 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
251 	struct mii_data *mii = &sc->sc_mii;
252 	bus_space_tag_t t = sc->sc_bustag;
253 	bus_space_handle_t h = sc->sc_h1;
254 	struct ifmedia_entry *ifm;
255 	int i, error;
256 	u_int32_t v;
257 	char *nullbuf;
258 
259 	/* Make sure the chip is stopped. */
260 	ifp->if_softc = sc;
261 	gem_reset(sc);
262 
263 	/*
264 	 * Allocate the control data structures, and create and load the
265 	 * DMA map for it. gem_control_data is 9216 bytes, we have space for
266 	 * the padding buffer in the bus_dmamem_alloc()'d memory.
267 	 */
268 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
269 	    sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
270 	    0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
271 		aprint_error_dev(sc->sc_dev,
272 		   "unable to allocate control data, error = %d\n",
273 		    error);
274 		gem_partial_detach(sc, GEM_ATT_0);
275 		return;
276 	}
277 
278 	/* XXX should map this in with correct endianness */
279 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
280 	    sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
281 	    BUS_DMA_COHERENT)) != 0) {
282 		aprint_error_dev(sc->sc_dev,
283 		    "unable to map control data, error = %d\n", error);
284 		gem_partial_detach(sc, GEM_ATT_1);
285 		return;
286 	}
287 
288 	nullbuf =
289 	    (char *)sc->sc_control_data + sizeof(struct gem_control_data);
290 
291 	if ((error = bus_dmamap_create(sc->sc_dmatag,
292 	    sizeof(struct gem_control_data), 1,
293 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
294 		aprint_error_dev(sc->sc_dev,
295 		    "unable to create control data DMA map, error = %d\n",
296 		    error);
297 		gem_partial_detach(sc, GEM_ATT_2);
298 		return;
299 	}
300 
301 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
302 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
303 	    0)) != 0) {
304 		aprint_error_dev(sc->sc_dev,
305 		    "unable to load control data DMA map, error = %d\n",
306 		    error);
307 		gem_partial_detach(sc, GEM_ATT_3);
308 		return;
309 	}
310 
311 	memset(nullbuf, 0, ETHER_MIN_TX);
312 	if ((error = bus_dmamap_create(sc->sc_dmatag,
313 	    ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
314 		aprint_error_dev(sc->sc_dev,
315 		    "unable to create padding DMA map, error = %d\n", error);
316 		gem_partial_detach(sc, GEM_ATT_4);
317 		return;
318 	}
319 
320 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
321 	    nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
322 		aprint_error_dev(sc->sc_dev,
323 		    "unable to load padding DMA map, error = %d\n", error);
324 		gem_partial_detach(sc, GEM_ATT_5);
325 		return;
326 	}
327 
328 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
329 	    BUS_DMASYNC_PREWRITE);
330 
331 	/*
332 	 * Initialize the transmit job descriptors.
333 	 */
334 	SIMPLEQ_INIT(&sc->sc_txfreeq);
335 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
336 
337 	/*
338 	 * Create the transmit buffer DMA maps.
339 	 */
340 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
341 		struct gem_txsoft *txs;
342 
343 		txs = &sc->sc_txsoft[i];
344 		txs->txs_mbuf = NULL;
345 		if ((error = bus_dmamap_create(sc->sc_dmatag,
346 		    ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
347 		    ETHER_MAX_LEN_JUMBO, 0, 0,
348 		    &txs->txs_dmamap)) != 0) {
349 			aprint_error_dev(sc->sc_dev,
350 			    "unable to create tx DMA map %d, error = %d\n",
351 			    i, error);
352 			gem_partial_detach(sc, GEM_ATT_6);
353 			return;
354 		}
355 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
356 	}
357 
358 	/*
359 	 * Create the receive buffer DMA maps.
360 	 */
361 	for (i = 0; i < GEM_NRXDESC; i++) {
362 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
363 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
364 			aprint_error_dev(sc->sc_dev,
365 			    "unable to create rx DMA map %d, error = %d\n",
366 			    i, error);
367 			gem_partial_detach(sc, GEM_ATT_7);
368 			return;
369 		}
370 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
371 	}
372 
373 	/* Initialize ifmedia structures and MII info */
374 	mii->mii_ifp = ifp;
375 	mii->mii_readreg = gem_mii_readreg;
376 	mii->mii_writereg = gem_mii_writereg;
377 	mii->mii_statchg = gem_mii_statchg;
378 
379 	sc->sc_ethercom.ec_mii = mii;
380 
381 	/*
382 	 * Initialization based  on `GEM Gigabit Ethernet ASIC Specification'
383 	 * Section 3.2.1 `Initialization Sequence'.
384 	 * However, we can't assume SERDES or Serialink if neither
385 	 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
386 	 * being set, as both are set on Sun X1141A (with SERDES).  So,
387 	 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
388 	 * Also, for Apple variants with 2 PHY's, we prefer the external
389 	 * PHY over the internal PHY.
390 	 */
391 	gem_mifinit(sc);
392 
393 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
394 		ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
395 		    ether_mediastatus);
396 		mii_attach(sc->sc_dev, mii, 0xffffffff,
397 		    MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
398 		if (LIST_EMPTY(&mii->mii_phys)) {
399 				/* No PHY attached */
400 				aprint_error_dev(sc->sc_dev,
401 				    "PHY probe failed\n");
402 				gem_partial_detach(sc, GEM_ATT_MII);
403 				return;
404 		} else {
405 			struct mii_softc *child;
406 
407 			/*
408 			 * Walk along the list of attached MII devices and
409 			 * establish an `MII instance' to `PHY number'
410 			 * mapping.
411 			 */
412 			LIST_FOREACH(child, &mii->mii_phys, mii_list) {
413 				/*
414 				 * Note: we support just one PHY: the internal
415 				 * or external MII is already selected for us
416 				 * by the GEM_MIF_CONFIG  register.
417 				 */
418 				if (child->mii_phy > 1 || child->mii_inst > 0) {
419 					aprint_error_dev(sc->sc_dev,
420 					    "cannot accommodate MII device"
421 					    " %s at PHY %d, instance %d\n",
422 					       device_xname(child->mii_dev),
423 					       child->mii_phy, child->mii_inst);
424 					continue;
425 				}
426 				sc->sc_phys[child->mii_inst] = child->mii_phy;
427 			}
428 
429 			/*
430 			 * Now select and activate the PHY we will use.
431 			 *
432 			 * The order of preference is External (MDI1),
433 			 * then Internal (MDI0),
434 			 */
435 			if (sc->sc_phys[1]) {
436 #ifdef GEM_DEBUG
437 				aprint_debug_dev(sc->sc_dev,
438 				    "using external PHY\n");
439 #endif
440 				sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
441 			} else {
442 #ifdef GEM_DEBUG
443 				aprint_debug_dev(sc->sc_dev,
444 				    "using internal PHY\n");
445 				sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
446 #endif
447 			}
448 			bus_space_write_4(t, h, GEM_MIF_CONFIG,
449 			    sc->sc_mif_config);
450 			if (sc->sc_variant != GEM_SUN_ERI)
451 				bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
452 				    GEM_MII_DATAPATH_MII);
453 
454 			/*
455 			 * XXX - we can really do the following ONLY if the
456 			 * PHY indeed has the auto negotiation capability!!
457 			 */
458 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
459 		}
460 	} else {
461 		ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
462 		    gem_ser_mediastatus);
463 		/* SERDES or Serialink */
464 		if (sc->sc_flags & GEM_SERDES) {
465 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
466 			    GEM_MII_DATAPATH_SERDES);
467 		} else {
468 			sc->sc_flags |= GEM_SERIAL;
469 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
470 			    GEM_MII_DATAPATH_SERIAL);
471 		}
472 
473 		aprint_normal_dev(sc->sc_dev, "using external PCS %s: ",
474 		    sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
475 
476 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0, NULL);
477 		/* Check for FDX and HDX capabilities */
478 		sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
479 		if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
480 			ifmedia_add(&sc->sc_mii.mii_media,
481 			    IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_FDX, 0, NULL);
482 			aprint_normal("1000baseSX-FDX, ");
483 		}
484 		if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
485 			ifmedia_add(&sc->sc_mii.mii_media,
486 			    IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_HDX, 0, NULL);
487 			aprint_normal("1000baseSX-HDX, ");
488 		}
489 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
490 		sc->sc_mii_media = IFM_AUTO;
491 		aprint_normal("auto\n");
492 
493 		gem_pcs_stop(sc, 1);
494 	}
495 
496 	/*
497 	 * From this point forward, the attachment cannot fail.  A failure
498 	 * before this point releases all resources that may have been
499 	 * allocated.
500 	 */
501 
502 	/* Announce ourselves. */
503 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s",
504 	    ether_sprintf(enaddr));
505 
506 	/* Get RX FIFO size */
507 	sc->sc_rxfifosize = 64 *
508 	    bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
509 	aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
510 
511 	/* Get TX FIFO size */
512 	v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
513 	aprint_normal(", %uKB TX fifo\n", v / 16);
514 
515 	/* Initialize ifnet structure. */
516 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
517 	ifp->if_softc = sc;
518 	ifp->if_flags =
519 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
520 	sc->sc_if_flags = ifp->if_flags;
521 #if 0
522 	/*
523 	 * The GEM hardware supports basic TCP checksum offloading only.
524 	 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
525 	 * have bugs in the receive checksum, so don't enable it for now.
526 	 */
527 	if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
528 	    (GEM_IS_APPLE(sc) &&
529 	    (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
530 		ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
531 #endif
532 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
533 	ifp->if_start = gem_start;
534 	ifp->if_ioctl = gem_ioctl;
535 	ifp->if_watchdog = gem_watchdog;
536 	ifp->if_stop = gem_stop;
537 	ifp->if_init = gem_init;
538 	IFQ_SET_READY(&ifp->if_snd);
539 
540 	/*
541 	 * If we support GigE media, we support jumbo frames too.
542 	 * Unless we are Apple.
543 	 */
544 	TAILQ_FOREACH(ifm, &sc->sc_mii.mii_media.ifm_list, ifm_list) {
545 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
546 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
547 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
548 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
549 			if (!GEM_IS_APPLE(sc))
550 				sc->sc_ethercom.ec_capabilities
551 				    |= ETHERCAP_JUMBO_MTU;
552 			sc->sc_flags |= GEM_GIGABIT;
553 			break;
554 		}
555 	}
556 
557 	/* claim 802.1q capability */
558 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
559 
560 	/* Attach the interface. */
561 	if_attach(ifp);
562 	ether_ifattach(ifp, enaddr);
563 	ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
564 
565 #if NRND > 0
566 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
567 			  RND_TYPE_NET, 0);
568 #endif
569 
570 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
571 	    NULL, device_xname(sc->sc_dev), "interrupts");
572 #ifdef GEM_COUNTERS
573 	evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
574 	    &sc->sc_ev_intr, device_xname(sc->sc_dev), "tx interrupts");
575 	evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
576 	    &sc->sc_ev_intr, device_xname(sc->sc_dev), "rx interrupts");
577 	evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
578 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx ring full");
579 	evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
580 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx malloc failure");
581 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
582 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 0desc");
583 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
584 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 1desc");
585 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
586 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 2desc");
587 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
588 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 3desc");
589 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
590 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >3desc");
591 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
592 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >7desc");
593 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
594 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >15desc");
595 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
596 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >31desc");
597 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
598 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >63desc");
599 #endif
600 
601 	callout_init(&sc->sc_tick_ch, 0);
602 
603 	sc->sc_att_stage = GEM_ATT_FINISHED;
604 
605 	return;
606 }
607 
608 void
609 gem_tick(void *arg)
610 {
611 	struct gem_softc *sc = arg;
612 	int s;
613 
614 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
615 		/*
616 		 * We have to reset everything if we failed to get a
617 		 * PCS interrupt.  Restarting the callout is handled
618 		 * in gem_pcs_start().
619 		 */
620 		gem_init(&sc->sc_ethercom.ec_if);
621 	} else {
622 		s = splnet();
623 		mii_tick(&sc->sc_mii);
624 		splx(s);
625 		callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
626 	}
627 }
628 
629 static int
630 gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, u_int32_t clr, u_int32_t set)
631 {
632 	int i;
633 	u_int32_t reg;
634 
635 	for (i = TRIES; i--; DELAY(100)) {
636 		reg = bus_space_read_4(sc->sc_bustag, h, r);
637 		if ((reg & clr) == 0 && (reg & set) == set)
638 			return (1);
639 	}
640 	return (0);
641 }
642 
643 void
644 gem_reset(struct gem_softc *sc)
645 {
646 	bus_space_tag_t t = sc->sc_bustag;
647 	bus_space_handle_t h = sc->sc_h2;
648 	int s;
649 
650 	s = splnet();
651 	DPRINTF(sc, ("%s: gem_reset\n", device_xname(sc->sc_dev)));
652 	gem_reset_rx(sc);
653 	gem_reset_tx(sc);
654 
655 	/* Do a full reset */
656 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
657 	if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
658 		aprint_error_dev(sc->sc_dev, "cannot reset device\n");
659 	splx(s);
660 }
661 
662 
663 /*
664  * gem_rxdrain:
665  *
666  *	Drain the receive queue.
667  */
668 static void
669 gem_rxdrain(struct gem_softc *sc)
670 {
671 	struct gem_rxsoft *rxs;
672 	int i;
673 
674 	for (i = 0; i < GEM_NRXDESC; i++) {
675 		rxs = &sc->sc_rxsoft[i];
676 		if (rxs->rxs_mbuf != NULL) {
677 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
678 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
679 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
680 			m_freem(rxs->rxs_mbuf);
681 			rxs->rxs_mbuf = NULL;
682 		}
683 	}
684 }
685 
686 /*
687  * Reset the whole thing.
688  */
689 static void
690 gem_stop(struct ifnet *ifp, int disable)
691 {
692 	struct gem_softc *sc = ifp->if_softc;
693 	struct gem_txsoft *txs;
694 
695 	DPRINTF(sc, ("%s: gem_stop\n", device_xname(sc->sc_dev)));
696 
697 	callout_stop(&sc->sc_tick_ch);
698 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
699 		gem_pcs_stop(sc, disable);
700 	else
701 		mii_down(&sc->sc_mii);
702 
703 	/* XXX - Should we reset these instead? */
704 	gem_disable_tx(sc);
705 	gem_disable_rx(sc);
706 
707 	/*
708 	 * Release any queued transmit buffers.
709 	 */
710 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
711 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
712 		if (txs->txs_mbuf != NULL) {
713 			bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
714 			    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
715 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
716 			m_freem(txs->txs_mbuf);
717 			txs->txs_mbuf = NULL;
718 		}
719 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
720 	}
721 
722 	/*
723 	 * Mark the interface down and cancel the watchdog timer.
724 	 */
725 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
726 	sc->sc_if_flags = ifp->if_flags;
727 	ifp->if_timer = 0;
728 
729 	if (disable)
730 		gem_rxdrain(sc);
731 }
732 
733 
734 /*
735  * Reset the receiver
736  */
737 int
738 gem_reset_rx(struct gem_softc *sc)
739 {
740 	bus_space_tag_t t = sc->sc_bustag;
741 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
742 
743 	/*
744 	 * Resetting while DMA is in progress can cause a bus hang, so we
745 	 * disable DMA first.
746 	 */
747 	gem_disable_rx(sc);
748 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
749 	bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
750 	/* Wait till it finishes */
751 	if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
752 		aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
753 
754 	/* Finally, reset the ERX */
755 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
756 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
757 	/* Wait till it finishes */
758 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
759 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
760 		return (1);
761 	}
762 	return (0);
763 }
764 
765 
766 /*
767  * Reset the receiver DMA engine.
768  *
769  * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
770  * etc in order to reset the receiver DMA engine only and not do a full
771  * reset which amongst others also downs the link and clears the FIFOs.
772  */
773 static void
774 gem_reset_rxdma(struct gem_softc *sc)
775 {
776 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
777 	bus_space_tag_t t = sc->sc_bustag;
778 	bus_space_handle_t h = sc->sc_h1;
779 	int i;
780 
781 	if (gem_reset_rx(sc) != 0) {
782 		gem_init(ifp);
783 		return;
784 	}
785 	for (i = 0; i < GEM_NRXDESC; i++)
786 		if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
787 			GEM_UPDATE_RXDESC(sc, i);
788 	sc->sc_rxptr = 0;
789 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
790 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
791 
792 	/* Reprogram Descriptor Ring Base Addresses */
793 	/* NOTE: we use only 32-bit DMA addresses here. */
794 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
795 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
796 
797 	/* Redo ERX Configuration */
798 	gem_rx_common(sc);
799 
800 	/* Give the reciever a swift kick */
801 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
802 }
803 
804 /*
805  * Common RX configuration for gem_init() and gem_reset_rxdma().
806  */
807 static void
808 gem_rx_common(struct gem_softc *sc)
809 {
810 	bus_space_tag_t t = sc->sc_bustag;
811 	bus_space_handle_t h = sc->sc_h1;
812 	u_int32_t v;
813 
814 	/* Encode Receive Descriptor ring size: four possible values */
815 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
816 
817 	/* Set receive h/w checksum offset */
818 #ifdef INET
819 	v |= (ETHER_HDR_LEN + sizeof(struct ip) +
820 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
821 	    ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
822 #endif
823 
824 	/* Enable RX DMA */
825 	bus_space_write_4(t, h, GEM_RX_CONFIG,
826 	    v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
827 	    (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
828 
829 	/*
830 	 * The following value is for an OFF Threshold of about 3/4 full
831 	 * and an ON Threshold of 1/4 full.
832 	 */
833 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
834 	    (3 * sc->sc_rxfifosize / 256) |
835 	    ((sc->sc_rxfifosize / 256) << 12));
836 	bus_space_write_4(t, h, GEM_RX_BLANKING,
837 	    (6 << GEM_RX_BLANKING_TIME_SHIFT) | 6);
838 }
839 
840 /*
841  * Reset the transmitter
842  */
843 int
844 gem_reset_tx(struct gem_softc *sc)
845 {
846 	bus_space_tag_t t = sc->sc_bustag;
847 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
848 
849 	/*
850 	 * Resetting while DMA is in progress can cause a bus hang, so we
851 	 * disable DMA first.
852 	 */
853 	gem_disable_tx(sc);
854 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
855 	bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
856 	/* Wait till it finishes */
857 	if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
858 		aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
859 	/* Wait 5ms extra. */
860 	delay(5000);
861 
862 	/* Finally, reset the ETX */
863 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
864 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
865 	/* Wait till it finishes */
866 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
867 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
868 		return (1);
869 	}
870 	return (0);
871 }
872 
873 /*
874  * disable receiver.
875  */
876 int
877 gem_disable_rx(struct gem_softc *sc)
878 {
879 	bus_space_tag_t t = sc->sc_bustag;
880 	bus_space_handle_t h = sc->sc_h1;
881 	u_int32_t cfg;
882 
883 	/* Flip the enable bit */
884 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
885 	cfg &= ~GEM_MAC_RX_ENABLE;
886 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
887 	bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
888 	/* Wait for it to finish */
889 	return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
890 }
891 
892 /*
893  * disable transmitter.
894  */
895 int
896 gem_disable_tx(struct gem_softc *sc)
897 {
898 	bus_space_tag_t t = sc->sc_bustag;
899 	bus_space_handle_t h = sc->sc_h1;
900 	u_int32_t cfg;
901 
902 	/* Flip the enable bit */
903 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
904 	cfg &= ~GEM_MAC_TX_ENABLE;
905 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
906 	bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
907 	/* Wait for it to finish */
908 	return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
909 }
910 
911 /*
912  * Initialize interface.
913  */
914 int
915 gem_meminit(struct gem_softc *sc)
916 {
917 	struct gem_rxsoft *rxs;
918 	int i, error;
919 
920 	/*
921 	 * Initialize the transmit descriptor ring.
922 	 */
923 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
924 	for (i = 0; i < GEM_NTXDESC; i++) {
925 		sc->sc_txdescs[i].gd_flags = 0;
926 		sc->sc_txdescs[i].gd_addr = 0;
927 	}
928 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
929 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
930 	sc->sc_txfree = GEM_NTXDESC-1;
931 	sc->sc_txnext = 0;
932 	sc->sc_txwin = 0;
933 
934 	/*
935 	 * Initialize the receive descriptor and receive job
936 	 * descriptor rings.
937 	 */
938 	for (i = 0; i < GEM_NRXDESC; i++) {
939 		rxs = &sc->sc_rxsoft[i];
940 		if (rxs->rxs_mbuf == NULL) {
941 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
942 				aprint_error_dev(sc->sc_dev,
943 				    "unable to allocate or map rx "
944 				    "buffer %d, error = %d\n",
945 				    i, error);
946 				/*
947 				 * XXX Should attempt to run with fewer receive
948 				 * XXX buffers instead of just failing.
949 				 */
950 				gem_rxdrain(sc);
951 				return (1);
952 			}
953 		} else
954 			GEM_INIT_RXDESC(sc, i);
955 	}
956 	sc->sc_rxptr = 0;
957 	sc->sc_meminited = 1;
958 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
959 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
960 
961 	return (0);
962 }
963 
964 static int
965 gem_ringsize(int sz)
966 {
967 	switch (sz) {
968 	case 32:
969 		return GEM_RING_SZ_32;
970 	case 64:
971 		return GEM_RING_SZ_64;
972 	case 128:
973 		return GEM_RING_SZ_128;
974 	case 256:
975 		return GEM_RING_SZ_256;
976 	case 512:
977 		return GEM_RING_SZ_512;
978 	case 1024:
979 		return GEM_RING_SZ_1024;
980 	case 2048:
981 		return GEM_RING_SZ_2048;
982 	case 4096:
983 		return GEM_RING_SZ_4096;
984 	case 8192:
985 		return GEM_RING_SZ_8192;
986 	default:
987 		printf("gem: invalid Receive Descriptor ring size %d\n", sz);
988 		return GEM_RING_SZ_32;
989 	}
990 }
991 
992 
993 /*
994  * Start PCS
995  */
996 void
997 gem_pcs_start(struct gem_softc *sc)
998 {
999 	bus_space_tag_t t = sc->sc_bustag;
1000 	bus_space_handle_t h = sc->sc_h1;
1001 	uint32_t v;
1002 
1003 #ifdef GEM_DEBUG
1004 	aprint_debug_dev(sc->sc_dev, "gem_pcs_start()\n");
1005 #endif
1006 
1007 	/*
1008 	 * Set up.  We must disable the MII before modifying the
1009 	 * GEM_MII_ANAR register
1010 	 */
1011 	if (sc->sc_flags & GEM_SERDES) {
1012 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1013 		    GEM_MII_DATAPATH_SERDES);
1014 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1015 		    GEM_MII_SLINK_LOOPBACK);
1016 	} else {
1017 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1018 		    GEM_MII_DATAPATH_SERIAL);
1019 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
1020 	}
1021 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1022 	v = bus_space_read_4(t, h, GEM_MII_ANAR);
1023 	v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
1024 	if (sc->sc_mii_media == IFM_AUTO)
1025 		v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
1026 	else if (sc->sc_mii_media == IFM_FDX) {
1027 		v |= GEM_MII_ANEG_FUL_DUPLX;
1028 		v &= ~GEM_MII_ANEG_HLF_DUPLX;
1029 	} else if (sc->sc_mii_media == IFM_HDX) {
1030 		v &= ~GEM_MII_ANEG_FUL_DUPLX;
1031 		v |= GEM_MII_ANEG_HLF_DUPLX;
1032 	}
1033 
1034 	/* Configure link. */
1035 	bus_space_write_4(t, h, GEM_MII_ANAR, v);
1036 	bus_space_write_4(t, h, GEM_MII_CONTROL,
1037 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1038 	bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
1039 	gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
1040 
1041 	/* Start the 10 second timer */
1042 	callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
1043 }
1044 
1045 /*
1046  * Stop PCS
1047  */
1048 void
1049 gem_pcs_stop(struct gem_softc *sc, int disable)
1050 {
1051 	bus_space_tag_t t = sc->sc_bustag;
1052 	bus_space_handle_t h = sc->sc_h1;
1053 
1054 #ifdef GEM_DEBUG
1055 	aprint_debug_dev(sc->sc_dev, "gem_pcs_stop()\n");
1056 #endif
1057 
1058 	/* Tell link partner that we're going away */
1059 	bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
1060 
1061 	/*
1062 	 * Disable PCS MII.  The documentation suggests that setting
1063 	 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
1064 	 * negotiation will shut down the link.  However, it appears
1065 	 * that we also need to unset the datapath mode.
1066 	 */
1067 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1068 	bus_space_write_4(t, h, GEM_MII_CONTROL,
1069 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1070 	bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
1071 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1072 
1073 	if (disable) {
1074 		if (sc->sc_flags & GEM_SERDES)
1075 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1076 				GEM_MII_SLINK_POWER_OFF);
1077 		else
1078 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1079 			    GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
1080 	}
1081 
1082 	sc->sc_flags &= ~GEM_LINK;
1083 	sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
1084 	sc->sc_mii.mii_media_status = IFM_AVALID;
1085 }
1086 
1087 
1088 /*
1089  * Initialization of interface; set up initialization block
1090  * and transmit/receive descriptor rings.
1091  */
1092 int
1093 gem_init(struct ifnet *ifp)
1094 {
1095 	struct gem_softc *sc = ifp->if_softc;
1096 	bus_space_tag_t t = sc->sc_bustag;
1097 	bus_space_handle_t h = sc->sc_h1;
1098 	int rc = 0, s;
1099 	u_int max_frame_size;
1100 	u_int32_t v;
1101 
1102 	s = splnet();
1103 
1104 	DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(sc->sc_dev)));
1105 	/*
1106 	 * Initialization sequence. The numbered steps below correspond
1107 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1108 	 * Channel Engine manual (part of the PCIO manual).
1109 	 * See also the STP2002-STQ document from Sun Microsystems.
1110 	 */
1111 
1112 	/* step 1 & 2. Reset the Ethernet Channel */
1113 	gem_stop(ifp, 0);
1114 	gem_reset(sc);
1115 	DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(sc->sc_dev)));
1116 
1117 	/* Re-initialize the MIF */
1118 	gem_mifinit(sc);
1119 
1120 	/* Set up correct datapath for non-SERDES/Serialink */
1121 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1122 	    sc->sc_variant != GEM_SUN_ERI)
1123 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1124 		    GEM_MII_DATAPATH_MII);
1125 
1126 	/* Call MI reset function if any */
1127 	if (sc->sc_hwreset)
1128 		(*sc->sc_hwreset)(sc);
1129 
1130 	/* step 3. Setup data structures in host memory */
1131 	if (gem_meminit(sc) != 0)
1132 		return 1;
1133 
1134 	/* step 4. TX MAC registers & counters */
1135 	gem_init_regs(sc);
1136 	max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
1137 	max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
1138 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1139 		max_frame_size += ETHER_VLAN_ENCAP_LEN;
1140 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1141 	    max_frame_size|/* burst size */(0x2000<<16));
1142 
1143 	/* step 5. RX MAC registers & counters */
1144 	gem_setladrf(sc);
1145 
1146 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
1147 	/* NOTE: we use only 32-bit DMA addresses here. */
1148 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
1149 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
1150 
1151 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
1152 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
1153 
1154 	/* step 8. Global Configuration & Interrupt Mask */
1155 	gem_inten(sc);
1156 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
1157 			GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
1158 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
1159 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
1160 	    GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
1161 
1162 	/* step 9. ETX Configuration: use mostly default values */
1163 
1164 	/* Enable TX DMA */
1165 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
1166 	bus_space_write_4(t, h, GEM_TX_CONFIG,
1167 		v|GEM_TX_CONFIG_TXDMA_EN|
1168 		((0x4FF<<10)&GEM_TX_CONFIG_TXFIFO_TH));
1169 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
1170 
1171 	/* step 10. ERX Configuration */
1172 	gem_rx_common(sc);
1173 
1174 	/* step 11. Configure Media */
1175 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1176 	    (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
1177 		goto out;
1178 
1179 	/* step 12. RX_MAC Configuration Register */
1180 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1181 	v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
1182 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1183 
1184 	/* step 14. Issue Transmit Pending command */
1185 
1186 	/* Call MI initialization function if any */
1187 	if (sc->sc_hwinit)
1188 		(*sc->sc_hwinit)(sc);
1189 
1190 
1191 	/* step 15.  Give the reciever a swift kick */
1192 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
1193 
1194 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1195 		/* Configure PCS */
1196 		gem_pcs_start(sc);
1197 	else
1198 		/* Start the one second timer. */
1199 		callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
1200 
1201 	sc->sc_flags &= ~GEM_LINK;
1202 	ifp->if_flags |= IFF_RUNNING;
1203 	ifp->if_flags &= ~IFF_OACTIVE;
1204 	ifp->if_timer = 0;
1205 	sc->sc_if_flags = ifp->if_flags;
1206 out:
1207 	splx(s);
1208 
1209 	return (0);
1210 }
1211 
1212 void
1213 gem_init_regs(struct gem_softc *sc)
1214 {
1215 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1216 	bus_space_tag_t t = sc->sc_bustag;
1217 	bus_space_handle_t h = sc->sc_h1;
1218 	const u_char *laddr = CLLADDR(ifp->if_sadl);
1219 	u_int32_t v;
1220 
1221 	/* These regs are not cleared on reset */
1222 	if (!sc->sc_inited) {
1223 
1224 		/* Load recommended values */
1225 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
1226 		bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
1227 		bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
1228 
1229 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1230 		/* Max frame and max burst size */
1231 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1232 		    ETHER_MAX_LEN | (0x2000<<16));
1233 
1234 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
1235 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
1236 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1237 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1238 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1239 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1240 
1241 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
1242 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1243 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1244 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1245 
1246 		/* MAC control addr set to 01:80:c2:00:00:01 */
1247 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1248 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1249 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1250 
1251 		/* MAC filter addr set to 0:0:0:0:0:0 */
1252 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1253 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1254 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1255 
1256 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1257 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1258 
1259 		sc->sc_inited = 1;
1260 	}
1261 
1262 	/* Counters need to be zeroed */
1263 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1264 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1265 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1266 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1267 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1268 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1269 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1270 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1271 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1272 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1273 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1274 
1275 	/* Set XOFF PAUSE time. */
1276 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1277 
1278 	/*
1279 	 * Set the internal arbitration to "infinite" bursts of the
1280 	 * maximum length of 31 * 64 bytes so DMA transfers aren't
1281 	 * split up in cache line size chunks. This greatly improves
1282 	 * especially RX performance.
1283 	 * Enable silicon bug workarounds for the Apple variants.
1284 	 */
1285 	bus_space_write_4(t, h, GEM_CONFIG,
1286 	    GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
1287 	    ((sc->sc_flags & GEM_PCI) ?
1288 	    GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
1289 	    GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
1290 
1291 	/*
1292 	 * Set the station address.
1293 	 */
1294 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1295 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1296 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1297 
1298 	/*
1299 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
1300 	 */
1301 	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1302 	v = GEM_MAC_XIF_TX_MII_ENA;
1303 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)  {
1304 		if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1305 			v |= GEM_MAC_XIF_FDPLX_LED;
1306 				if (sc->sc_flags & GEM_GIGABIT)
1307 					v |= GEM_MAC_XIF_GMII_MODE;
1308 		}
1309 	} else {
1310 		v |= GEM_MAC_XIF_GMII_MODE;
1311 	}
1312 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1313 }
1314 
1315 #ifdef GEM_DEBUG
1316 static void
1317 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
1318 {
1319 	int i;
1320 
1321 	for (i = firstdesc;; i = GEM_NEXTTX(i)) {
1322 		printf("descriptor %d:\t", i);
1323 		printf("gd_flags:   0x%016" PRIx64 "\t",
1324 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1325 		printf("gd_addr: 0x%016" PRIx64 "\n",
1326 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1327 		if (i == lastdesc)
1328 			break;
1329 	}
1330 }
1331 #endif
1332 
1333 static void
1334 gem_start(struct ifnet *ifp)
1335 {
1336 	struct gem_softc *sc = ifp->if_softc;
1337 	struct mbuf *m0, *m;
1338 	struct gem_txsoft *txs;
1339 	bus_dmamap_t dmamap;
1340 	int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
1341 	uint64_t flags = 0;
1342 
1343 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1344 		return;
1345 
1346 	/*
1347 	 * Remember the previous number of free descriptors and
1348 	 * the first descriptor we'll use.
1349 	 */
1350 	ofree = sc->sc_txfree;
1351 	firsttx = sc->sc_txnext;
1352 
1353 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1354 	    device_xname(sc->sc_dev), ofree, firsttx));
1355 
1356 	/*
1357 	 * Loop through the send queue, setting up transmit descriptors
1358 	 * until we drain the queue, or use up all available transmit
1359 	 * descriptors.
1360 	 */
1361 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1362 	    sc->sc_txfree != 0) {
1363 		/*
1364 		 * Grab a packet off the queue.
1365 		 */
1366 		IFQ_POLL(&ifp->if_snd, m0);
1367 		if (m0 == NULL)
1368 			break;
1369 		m = NULL;
1370 
1371 		dmamap = txs->txs_dmamap;
1372 
1373 		/*
1374 		 * Load the DMA map.  If this fails, the packet either
1375 		 * didn't fit in the alloted number of segments, or we were
1376 		 * short on resources.  In this case, we'll copy and try
1377 		 * again.
1378 		 */
1379 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1380 		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
1381 		      (m0->m_pkthdr.len < ETHER_MIN_TX &&
1382 		       dmamap->dm_nsegs == GEM_NTXSEGS)) {
1383 			if (m0->m_pkthdr.len > MCLBYTES) {
1384 				aprint_error_dev(sc->sc_dev,
1385 				    "unable to allocate jumbo Tx cluster\n");
1386 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1387 				m_freem(m0);
1388 				continue;
1389 			}
1390 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1391 			if (m == NULL) {
1392 				aprint_error_dev(sc->sc_dev,
1393 				    "unable to allocate Tx mbuf\n");
1394 				break;
1395 			}
1396 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1397 			if (m0->m_pkthdr.len > MHLEN) {
1398 				MCLGET(m, M_DONTWAIT);
1399 				if ((m->m_flags & M_EXT) == 0) {
1400 					aprint_error_dev(sc->sc_dev,
1401 					    "unable to allocate Tx cluster\n");
1402 					m_freem(m);
1403 					break;
1404 				}
1405 			}
1406 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1407 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1408 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1409 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1410 			if (error) {
1411 				aprint_error_dev(sc->sc_dev,
1412 				    "unable to load Tx buffer, error = %d\n",
1413 				    error);
1414 				break;
1415 			}
1416 		}
1417 
1418 		/*
1419 		 * Ensure we have enough descriptors free to describe
1420 		 * the packet.
1421 		 */
1422 		if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1423 		     (sc->sc_txfree - 1) : sc->sc_txfree)) {
1424 			/*
1425 			 * Not enough free descriptors to transmit this
1426 			 * packet.  We haven't committed to anything yet,
1427 			 * so just unload the DMA map, put the packet
1428 			 * back on the queue, and punt.  Notify the upper
1429 			 * layer that there are no more slots left.
1430 			 *
1431 			 * XXX We could allocate an mbuf and copy, but
1432 			 * XXX it is worth it?
1433 			 */
1434 			ifp->if_flags |= IFF_OACTIVE;
1435 			sc->sc_if_flags = ifp->if_flags;
1436 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
1437 			if (m != NULL)
1438 				m_freem(m);
1439 			break;
1440 		}
1441 
1442 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1443 		if (m != NULL) {
1444 			m_freem(m0);
1445 			m0 = m;
1446 		}
1447 
1448 		/*
1449 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1450 		 */
1451 
1452 		/* Sync the DMA map. */
1453 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1454 		    BUS_DMASYNC_PREWRITE);
1455 
1456 		/*
1457 		 * Initialize the transmit descriptors.
1458 		 */
1459 		for (nexttx = sc->sc_txnext, seg = 0;
1460 		     seg < dmamap->dm_nsegs;
1461 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
1462 
1463 			/*
1464 			 * If this is the first descriptor we're
1465 			 * enqueueing, set the start of packet flag,
1466 			 * and the checksum stuff if we want the hardware
1467 			 * to do it.
1468 			 */
1469 			sc->sc_txdescs[nexttx].gd_addr =
1470 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1471 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1472 			if (nexttx == firsttx) {
1473 				flags |= GEM_TD_START_OF_PACKET;
1474 				if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1475 					sc->sc_txwin = 0;
1476 					flags |= GEM_TD_INTERRUPT_ME;
1477 				}
1478 
1479 #ifdef INET
1480 				/* h/w checksum */
1481 				if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
1482 				    m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1483 					struct ether_header *eh;
1484 					uint16_t offset, start;
1485 
1486 					eh = mtod(m0, struct ether_header *);
1487 					switch (ntohs(eh->ether_type)) {
1488 					case ETHERTYPE_IP:
1489 						start = ETHER_HDR_LEN;
1490 						break;
1491 					case ETHERTYPE_VLAN:
1492 						start = ETHER_HDR_LEN +
1493 							ETHER_VLAN_ENCAP_LEN;
1494 						break;
1495 					default:
1496 						/* unsupported, drop it */
1497 						m_free(m0);
1498 						continue;
1499 					}
1500 					start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1501 					offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1502 					flags |= (start <<
1503 						  GEM_TD_CXSUM_STARTSHFT) |
1504 						 (offset <<
1505 						  GEM_TD_CXSUM_STUFFSHFT) |
1506 						 GEM_TD_CXSUM_ENABLE;
1507 				}
1508 #endif
1509 			}
1510 			if (seg == dmamap->dm_nsegs - 1) {
1511 				flags |= GEM_TD_END_OF_PACKET;
1512 			} else {
1513 				/* last flag set outside of loop */
1514 				sc->sc_txdescs[nexttx].gd_flags =
1515 					GEM_DMA_WRITE(sc, flags);
1516 			}
1517 			lasttx = nexttx;
1518 		}
1519 		if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1520 			/* add padding buffer at end of chain */
1521 			flags &= ~GEM_TD_END_OF_PACKET;
1522 			sc->sc_txdescs[lasttx].gd_flags =
1523 			    GEM_DMA_WRITE(sc, flags);
1524 
1525 			sc->sc_txdescs[nexttx].gd_addr =
1526 			    GEM_DMA_WRITE(sc,
1527 			    sc->sc_nulldmamap->dm_segs[0].ds_addr);
1528 			flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1529 			    GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1530 			lasttx = nexttx;
1531 			nexttx = GEM_NEXTTX(nexttx);
1532 			seg++;
1533 		}
1534 		sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1535 
1536 		KASSERT(lasttx != -1);
1537 
1538 		/*
1539 		 * Store a pointer to the packet so we can free it later,
1540 		 * and remember what txdirty will be once the packet is
1541 		 * done.
1542 		 */
1543 		txs->txs_mbuf = m0;
1544 		txs->txs_firstdesc = sc->sc_txnext;
1545 		txs->txs_lastdesc = lasttx;
1546 		txs->txs_ndescs = seg;
1547 
1548 #ifdef GEM_DEBUG
1549 		if (ifp->if_flags & IFF_DEBUG) {
1550 			printf("     gem_start %p transmit chain:\n", txs);
1551 			gem_txsoft_print(sc, txs->txs_firstdesc,
1552 			    txs->txs_lastdesc);
1553 		}
1554 #endif
1555 
1556 		/* Sync the descriptors we're using. */
1557 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1558 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1559 
1560 		/* Advance the tx pointer. */
1561 		sc->sc_txfree -= txs->txs_ndescs;
1562 		sc->sc_txnext = nexttx;
1563 
1564 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1565 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1566 
1567 #if NBPFILTER > 0
1568 		/*
1569 		 * Pass the packet to any BPF listeners.
1570 		 */
1571 		if (ifp->if_bpf)
1572 			bpf_mtap(ifp->if_bpf, m0);
1573 #endif /* NBPFILTER > 0 */
1574 	}
1575 
1576 	if (txs == NULL || sc->sc_txfree == 0) {
1577 		/* No more slots left; notify upper layer. */
1578 		ifp->if_flags |= IFF_OACTIVE;
1579 		sc->sc_if_flags = ifp->if_flags;
1580 	}
1581 
1582 	if (sc->sc_txfree != ofree) {
1583 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1584 		    device_xname(sc->sc_dev), lasttx, firsttx));
1585 		/*
1586 		 * The entire packet chain is set up.
1587 		 * Kick the transmitter.
1588 		 */
1589 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1590 			device_xname(sc->sc_dev), nexttx));
1591 		bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
1592 			sc->sc_txnext);
1593 
1594 		/* Set a watchdog timer in case the chip flakes out. */
1595 		ifp->if_timer = 5;
1596 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1597 			device_xname(sc->sc_dev), ifp->if_timer));
1598 	}
1599 }
1600 
1601 /*
1602  * Transmit interrupt.
1603  */
1604 int
1605 gem_tint(struct gem_softc *sc)
1606 {
1607 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1608 	bus_space_tag_t t = sc->sc_bustag;
1609 	bus_space_handle_t mac = sc->sc_h1;
1610 	struct gem_txsoft *txs;
1611 	int txlast;
1612 	int progress = 0;
1613 	u_int32_t v;
1614 
1615 	DPRINTF(sc, ("%s: gem_tint\n", device_xname(sc->sc_dev)));
1616 
1617 	/* Unload collision counters ... */
1618 	v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1619 	    bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1620 	ifp->if_collisions += v +
1621 	    bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1622 	    bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT);
1623 	ifp->if_oerrors += v;
1624 
1625 	/* ... then clear the hardware counters. */
1626 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1627 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1628 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1629 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1630 
1631 	/*
1632 	 * Go through our Tx list and free mbufs for those
1633 	 * frames that have been transmitted.
1634 	 */
1635 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1636 		/*
1637 		 * In theory, we could harvest some descriptors before
1638 		 * the ring is empty, but that's a bit complicated.
1639 		 *
1640 		 * GEM_TX_COMPLETION points to the last descriptor
1641 		 * processed +1.
1642 		 *
1643 		 * Let's assume that the NIC writes back to the Tx
1644 		 * descriptors before it updates the completion
1645 		 * register.  If the NIC has posted writes to the
1646 		 * Tx descriptors, PCI ordering requires that the
1647 		 * posted writes flush to RAM before the register-read
1648 		 * finishes.  So let's read the completion register,
1649 		 * before syncing the descriptors, so that we
1650 		 * examine Tx descriptors that are at least as
1651 		 * current as the completion register.
1652 		 */
1653 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1654 		DPRINTF(sc,
1655 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1656 				txs->txs_lastdesc, txlast));
1657 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1658 			if (txlast >= txs->txs_firstdesc &&
1659 			    txlast <= txs->txs_lastdesc)
1660 				break;
1661 		} else if (txlast >= txs->txs_firstdesc ||
1662 			   txlast <= txs->txs_lastdesc)
1663 			break;
1664 
1665 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1666 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1667 
1668 #ifdef GEM_DEBUG	/* XXX DMA synchronization? */
1669 		if (ifp->if_flags & IFF_DEBUG) {
1670 			printf("    txsoft %p transmit chain:\n", txs);
1671 			gem_txsoft_print(sc, txs->txs_firstdesc,
1672 			    txs->txs_lastdesc);
1673 		}
1674 #endif
1675 
1676 
1677 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1678 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1679 
1680 		sc->sc_txfree += txs->txs_ndescs;
1681 
1682 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1683 		    0, txs->txs_dmamap->dm_mapsize,
1684 		    BUS_DMASYNC_POSTWRITE);
1685 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1686 		if (txs->txs_mbuf != NULL) {
1687 			m_freem(txs->txs_mbuf);
1688 			txs->txs_mbuf = NULL;
1689 		}
1690 
1691 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1692 
1693 		ifp->if_opackets++;
1694 		progress = 1;
1695 	}
1696 
1697 #if 0
1698 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1699 		"GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
1700 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
1701 		((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1702 			GEM_TX_DATA_PTR_HI) << 32) |
1703 			     bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1704 			GEM_TX_DATA_PTR_LO),
1705 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
1706 #endif
1707 
1708 	if (progress) {
1709 		if (sc->sc_txfree == GEM_NTXDESC - 1)
1710 			sc->sc_txwin = 0;
1711 
1712 		/* Freed some descriptors, so reset IFF_OACTIVE and restart. */
1713 		ifp->if_flags &= ~IFF_OACTIVE;
1714 		sc->sc_if_flags = ifp->if_flags;
1715 		ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
1716 		gem_start(ifp);
1717 	}
1718 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1719 		device_xname(sc->sc_dev), ifp->if_timer));
1720 
1721 	return (1);
1722 }
1723 
1724 /*
1725  * Receive interrupt.
1726  */
1727 int
1728 gem_rint(struct gem_softc *sc)
1729 {
1730 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1731 	bus_space_tag_t t = sc->sc_bustag;
1732 	bus_space_handle_t h = sc->sc_h1;
1733 	struct gem_rxsoft *rxs;
1734 	struct mbuf *m;
1735 	u_int64_t rxstat;
1736 	u_int32_t rxcomp;
1737 	int i, len, progress = 0;
1738 
1739 	DPRINTF(sc, ("%s: gem_rint\n", device_xname(sc->sc_dev)));
1740 
1741 	/*
1742 	 * Ignore spurious interrupt that sometimes occurs before
1743 	 * we are set up when we network boot.
1744 	 */
1745 	if (!sc->sc_meminited)
1746 		return 1;
1747 
1748 	/*
1749 	 * Read the completion register once.  This limits
1750 	 * how long the following loop can execute.
1751 	 */
1752 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1753 
1754 	/*
1755 	 * XXX Read the lastrx only once at the top for speed.
1756 	 */
1757 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1758 		sc->sc_rxptr, rxcomp));
1759 
1760 	/*
1761 	 * Go into the loop at least once.
1762 	 */
1763 	for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1764 	     i = GEM_NEXTRX(i)) {
1765 		rxs = &sc->sc_rxsoft[i];
1766 
1767 		GEM_CDRXSYNC(sc, i,
1768 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1769 
1770 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1771 
1772 		if (rxstat & GEM_RD_OWN) {
1773 			GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1774 			/*
1775 			 * We have processed all of the receive buffers.
1776 			 */
1777 			break;
1778 		}
1779 
1780 		progress++;
1781 		ifp->if_ipackets++;
1782 
1783 		if (rxstat & GEM_RD_BAD_CRC) {
1784 			ifp->if_ierrors++;
1785 			aprint_error_dev(sc->sc_dev,
1786 			    "receive error: CRC error\n");
1787 			GEM_INIT_RXDESC(sc, i);
1788 			continue;
1789 		}
1790 
1791 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1792 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1793 #ifdef GEM_DEBUG
1794 		if (ifp->if_flags & IFF_DEBUG) {
1795 			printf("    rxsoft %p descriptor %d: ", rxs, i);
1796 			printf("gd_flags: 0x%016llx\t", (long long)
1797 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1798 			printf("gd_addr: 0x%016llx\n", (long long)
1799 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1800 		}
1801 #endif
1802 
1803 		/* No errors; receive the packet. */
1804 		len = GEM_RD_BUFLEN(rxstat);
1805 
1806 		/*
1807 		 * Allocate a new mbuf cluster.  If that fails, we are
1808 		 * out of memory, and must drop the packet and recycle
1809 		 * the buffer that's already attached to this descriptor.
1810 		 */
1811 		m = rxs->rxs_mbuf;
1812 		if (gem_add_rxbuf(sc, i) != 0) {
1813 			GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1814 			ifp->if_ierrors++;
1815 			GEM_INIT_RXDESC(sc, i);
1816 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1817 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1818 			continue;
1819 		}
1820 		m->m_data += 2; /* We're already off by two */
1821 
1822 		m->m_pkthdr.rcvif = ifp;
1823 		m->m_pkthdr.len = m->m_len = len;
1824 
1825 #if NBPFILTER > 0
1826 		/*
1827 		 * Pass this up to any BPF listeners, but only
1828 		 * pass it up the stack if it's for us.
1829 		 */
1830 		if (ifp->if_bpf)
1831 			bpf_mtap(ifp->if_bpf, m);
1832 #endif /* NBPFILTER > 0 */
1833 
1834 #ifdef INET
1835 		/* hardware checksum */
1836 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1837 			struct ether_header *eh;
1838 			struct ip *ip;
1839 			int32_t hlen, pktlen;
1840 
1841 			if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1842 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1843 					 ETHER_VLAN_ENCAP_LEN;
1844 				eh = (struct ether_header *) (mtod(m, char *) +
1845 					ETHER_VLAN_ENCAP_LEN);
1846 			} else {
1847 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1848 				eh = mtod(m, struct ether_header *);
1849 			}
1850 			if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1851 				goto swcsum;
1852 			ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
1853 
1854 			/* IPv4 only */
1855 			if (ip->ip_v != IPVERSION)
1856 				goto swcsum;
1857 
1858 			hlen = ip->ip_hl << 2;
1859 			if (hlen < sizeof(struct ip))
1860 				goto swcsum;
1861 
1862 			/*
1863 			 * bail if too short, has random trailing garbage,
1864 			 * truncated, fragment, or has ethernet pad.
1865 			 */
1866 			if ((ntohs(ip->ip_len) < hlen) ||
1867 			    (ntohs(ip->ip_len) != pktlen) ||
1868 			    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1869 				goto swcsum;
1870 
1871 			switch (ip->ip_p) {
1872 			case IPPROTO_TCP:
1873 				if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1874 					goto swcsum;
1875 				if (pktlen < (hlen + sizeof(struct tcphdr)))
1876 					goto swcsum;
1877 				m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1878 				break;
1879 			case IPPROTO_UDP:
1880 				/* FALLTHROUGH */
1881 			default:
1882 				goto swcsum;
1883 			}
1884 
1885 			/* the uncomplemented sum is expected */
1886 			m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1887 
1888 			/* if the pkt had ip options, we have to deduct them */
1889 			if (hlen > sizeof(struct ip)) {
1890 				uint16_t *opts;
1891 				uint32_t optsum, temp;
1892 
1893 				optsum = 0;
1894 				temp = hlen - sizeof(struct ip);
1895 				opts = (uint16_t *) ((char *) ip +
1896 					sizeof(struct ip));
1897 
1898 				while (temp > 1) {
1899 					optsum += ntohs(*opts++);
1900 					temp -= 2;
1901 				}
1902 				while (optsum >> 16)
1903 					optsum = (optsum >> 16) +
1904 						 (optsum & 0xffff);
1905 
1906 				/* Deduct ip opts sum from hwsum. */
1907 				m->m_pkthdr.csum_data += (uint16_t)~optsum;
1908 
1909 				while (m->m_pkthdr.csum_data >> 16)
1910 					m->m_pkthdr.csum_data =
1911 						(m->m_pkthdr.csum_data >> 16) +
1912 						(m->m_pkthdr.csum_data &
1913 						 0xffff);
1914 			}
1915 
1916 			m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1917 						  M_CSUM_NO_PSEUDOHDR;
1918 		} else
1919 swcsum:
1920 			m->m_pkthdr.csum_flags = 0;
1921 #endif
1922 		/* Pass it on. */
1923 		(*ifp->if_input)(ifp, m);
1924 	}
1925 
1926 	if (progress) {
1927 		/* Update the receive pointer. */
1928 		if (i == sc->sc_rxptr) {
1929 			GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1930 #ifdef GEM_DEBUG
1931 			if (ifp->if_flags & IFF_DEBUG)
1932 				printf("%s: rint: ring wrap\n",
1933 				    device_xname(sc->sc_dev));
1934 #endif
1935 		}
1936 		sc->sc_rxptr = i;
1937 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1938 	}
1939 #ifdef GEM_COUNTERS
1940 	if (progress <= 4) {
1941 		GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1942 	} else if (progress < 32) {
1943 		if (progress < 16)
1944 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1945 		else
1946 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1947 
1948 	} else {
1949 		if (progress < 64)
1950 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1951 		else
1952 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1953 	}
1954 #endif
1955 
1956 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1957 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1958 
1959 	/* Read error counters ... */
1960 	ifp->if_ierrors +=
1961 	    bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
1962 	    bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
1963 	    bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
1964 	    bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL);
1965 
1966 	/* ... then clear the hardware counters. */
1967 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1968 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1969 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1970 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1971 
1972 	return (1);
1973 }
1974 
1975 
1976 /*
1977  * gem_add_rxbuf:
1978  *
1979  *	Add a receive buffer to the indicated descriptor.
1980  */
1981 int
1982 gem_add_rxbuf(struct gem_softc *sc, int idx)
1983 {
1984 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1985 	struct mbuf *m;
1986 	int error;
1987 
1988 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1989 	if (m == NULL)
1990 		return (ENOBUFS);
1991 
1992 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1993 	MCLGET(m, M_DONTWAIT);
1994 	if ((m->m_flags & M_EXT) == 0) {
1995 		m_freem(m);
1996 		return (ENOBUFS);
1997 	}
1998 
1999 #ifdef GEM_DEBUG
2000 /* bzero the packet to check DMA */
2001 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
2002 #endif
2003 
2004 	if (rxs->rxs_mbuf != NULL)
2005 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
2006 
2007 	rxs->rxs_mbuf = m;
2008 
2009 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
2010 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2011 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2012 	if (error) {
2013 		aprint_error_dev(sc->sc_dev,
2014 		    "can't load rx DMA map %d, error = %d\n", idx, error);
2015 		panic("gem_add_rxbuf");	/* XXX */
2016 	}
2017 
2018 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
2019 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2020 
2021 	GEM_INIT_RXDESC(sc, idx);
2022 
2023 	return (0);
2024 }
2025 
2026 
2027 int
2028 gem_eint(struct gem_softc *sc, u_int status)
2029 {
2030 	char bits[128];
2031 	u_int32_t r, v;
2032 
2033 	if ((status & GEM_INTR_MIF) != 0) {
2034 		printf("%s: XXXlink status changed\n", device_xname(sc->sc_dev));
2035 		return (1);
2036 	}
2037 
2038 	if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
2039 		gem_reset_rxdma(sc);
2040 		return (1);
2041 	}
2042 
2043 	if (status & GEM_INTR_BERR) {
2044 		if (sc->sc_flags & GEM_PCI)
2045 			r = GEM_ERROR_STATUS;
2046 		else
2047 			r = GEM_SBUS_ERROR_STATUS;
2048 		bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2049 		v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2050 		aprint_error_dev(sc->sc_dev, "bus error interrupt: 0x%02x\n",
2051 		    v);
2052 		return (1);
2053 	}
2054 	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2055 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
2056 
2057 	return (1);
2058 }
2059 
2060 
2061 /*
2062  * PCS interrupts.
2063  * We should receive these when the link status changes, but sometimes
2064  * we don't receive them for link up.  We compensate for this in the
2065  * gem_tick() callout.
2066  */
2067 int
2068 gem_pint(struct gem_softc *sc)
2069 {
2070 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2071 	bus_space_tag_t t = sc->sc_bustag;
2072 	bus_space_handle_t h = sc->sc_h1;
2073 	u_int32_t v, v2;
2074 
2075 	/*
2076 	 * Clear the PCS interrupt from GEM_STATUS.  The PCS register is
2077 	 * latched, so we have to read it twice.  There is only one bit in
2078 	 * use, so the value is meaningless.
2079 	 */
2080 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2081 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2082 
2083 	if ((ifp->if_flags & IFF_UP) == 0)
2084 		return 1;
2085 
2086 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
2087 		return 1;
2088 
2089 	v = bus_space_read_4(t, h, GEM_MII_STATUS);
2090 	/* If we see remote fault, our link partner is probably going away */
2091 	if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
2092 		gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
2093 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
2094 	/* Otherwise, we may need to wait after auto-negotiation completes */
2095 	} else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
2096 	    GEM_MII_STATUS_ANEG_CPT) {
2097 		gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
2098 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
2099 	}
2100 	if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
2101 		if (sc->sc_flags & GEM_LINK) {
2102 			return 1;
2103 		}
2104 		callout_stop(&sc->sc_tick_ch);
2105 		v = bus_space_read_4(t, h, GEM_MII_ANAR);
2106 		v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
2107 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
2108 		sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
2109 		v &= v2;
2110 		if (v & GEM_MII_ANEG_FUL_DUPLX) {
2111 			sc->sc_mii.mii_media_active |= IFM_FDX;
2112 #ifdef GEM_DEBUG
2113 			aprint_debug_dev(sc->sc_dev, "link up: full duplex\n");
2114 #endif
2115 		} else if (v & GEM_MII_ANEG_HLF_DUPLX) {
2116 			sc->sc_mii.mii_media_active |= IFM_HDX;
2117 #ifdef GEM_DEBUG
2118 			aprint_debug_dev(sc->sc_dev, "link up: half duplex\n");
2119 #endif
2120 		} else {
2121 #ifdef GEM_DEBUG
2122 			aprint_debug_dev(sc->sc_dev, "duplex mismatch\n");
2123 #endif
2124 		}
2125 		gem_statuschange(sc);
2126 	} else {
2127 		if ((sc->sc_flags & GEM_LINK) == 0) {
2128 			return 1;
2129 		}
2130 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
2131 		sc->sc_mii.mii_media_status = IFM_AVALID;
2132 #ifdef GEM_DEBUG
2133 			aprint_debug_dev(sc->sc_dev, "link down\n");
2134 #endif
2135 		gem_statuschange(sc);
2136 
2137 		/* Start the 10 second timer */
2138 		callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
2139 	}
2140 	return 1;
2141 }
2142 
2143 
2144 
2145 int
2146 gem_intr(void *v)
2147 {
2148 	struct gem_softc *sc = v;
2149 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2150 	bus_space_tag_t t = sc->sc_bustag;
2151 	bus_space_handle_t h = sc->sc_h1;
2152 	u_int32_t status;
2153 	int r = 0;
2154 #ifdef GEM_DEBUG
2155 	char bits[128];
2156 #endif
2157 
2158 	/* XXX We should probably mask out interrupts until we're done */
2159 
2160 	sc->sc_ev_intr.ev_count++;
2161 
2162 	status = bus_space_read_4(t, h, GEM_STATUS);
2163 #ifdef GEM_DEBUG
2164 	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2165 #endif
2166 	DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
2167 		device_xname(sc->sc_dev), (status >> 19), bits));
2168 
2169 
2170 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
2171 		r |= gem_eint(sc, status);
2172 
2173 	/* We don't bother with GEM_INTR_TX_DONE */
2174 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
2175 		GEM_COUNTER_INCR(sc, sc_ev_txint);
2176 		r |= gem_tint(sc);
2177 	}
2178 
2179 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
2180 		GEM_COUNTER_INCR(sc, sc_ev_rxint);
2181 		r |= gem_rint(sc);
2182 	}
2183 
2184 	/* We should eventually do more than just print out error stats. */
2185 	if (status & GEM_INTR_TX_MAC) {
2186 		int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
2187 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
2188 			printf("%s: MAC tx fault, status %x\n",
2189 			    device_xname(sc->sc_dev), txstat);
2190 		if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
2191 			gem_init(ifp);
2192 	}
2193 	if (status & GEM_INTR_RX_MAC) {
2194 		int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
2195 		/*
2196 		 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
2197 		 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
2198 		 * silicon bug so handle them silently. Moreover, it's
2199 		 * likely that the receiver has hung so we reset it.
2200 		 */
2201 		if (rxstat & GEM_MAC_RX_OVERFLOW) {
2202 			ifp->if_ierrors++;
2203 			gem_reset_rxdma(sc);
2204 		} else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
2205 			printf("%s: MAC rx fault, status 0x%02x\n",
2206 			    device_xname(sc->sc_dev), rxstat);
2207 	}
2208 	if (status & GEM_INTR_PCS) {
2209 		r |= gem_pint(sc);
2210 	}
2211 
2212 /* Do we need to do anything with these?
2213 	if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
2214 		status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
2215 		if ((status2 & GEM_MAC_PAUSED) != 0)
2216 			aprintf_debug_dev(sc->sc_dev, "PAUSE received (%d slots)\n",
2217 			    GEM_MAC_PAUSE_TIME(status2));
2218 		if ((status2 & GEM_MAC_PAUSE) != 0)
2219 			aprintf_debug_dev(sc->sc_dev, "transited to PAUSE state\n");
2220 		if ((status2 & GEM_MAC_RESUME) != 0)
2221 			aprintf_debug_dev(sc->sc_dev, "transited to non-PAUSE state\n");
2222 	}
2223 	if ((status & GEM_INTR_MIF) != 0)
2224 		aprintf_debug_dev(sc->sc_dev, "MIF interrupt\n");
2225 */
2226 #if NRND > 0
2227 	rnd_add_uint32(&sc->rnd_source, status);
2228 #endif
2229 	return (r);
2230 }
2231 
2232 
2233 void
2234 gem_watchdog(struct ifnet *ifp)
2235 {
2236 	struct gem_softc *sc = ifp->if_softc;
2237 
2238 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
2239 		"GEM_MAC_RX_CONFIG %x\n",
2240 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
2241 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
2242 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
2243 
2244 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
2245 	++ifp->if_oerrors;
2246 
2247 	/* Try to get more packets going. */
2248 	gem_start(ifp);
2249 }
2250 
2251 /*
2252  * Initialize the MII Management Interface
2253  */
2254 void
2255 gem_mifinit(struct gem_softc *sc)
2256 {
2257 	bus_space_tag_t t = sc->sc_bustag;
2258 	bus_space_handle_t mif = sc->sc_h1;
2259 
2260 	/* Configure the MIF in frame mode */
2261 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
2262 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
2263 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
2264 }
2265 
2266 /*
2267  * MII interface
2268  *
2269  * The GEM MII interface supports at least three different operating modes:
2270  *
2271  * Bitbang mode is implemented using data, clock and output enable registers.
2272  *
2273  * Frame mode is implemented by loading a complete frame into the frame
2274  * register and polling the valid bit for completion.
2275  *
2276  * Polling mode uses the frame register but completion is indicated by
2277  * an interrupt.
2278  *
2279  */
2280 static int
2281 gem_mii_readreg(device_t self, int phy, int reg)
2282 {
2283 	struct gem_softc *sc = device_private(self);
2284 	bus_space_tag_t t = sc->sc_bustag;
2285 	bus_space_handle_t mif = sc->sc_h1;
2286 	int n;
2287 	u_int32_t v;
2288 
2289 #ifdef GEM_DEBUG1
2290 	if (sc->sc_debug)
2291 		printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
2292 #endif
2293 
2294 	/* Construct the frame command */
2295 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
2296 		GEM_MIF_FRAME_READ;
2297 
2298 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2299 	for (n = 0; n < 100; n++) {
2300 		DELAY(1);
2301 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2302 		if (v & GEM_MIF_FRAME_TA0)
2303 			return (v & GEM_MIF_FRAME_DATA);
2304 	}
2305 
2306 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
2307 	return (0);
2308 }
2309 
2310 static void
2311 gem_mii_writereg(device_t self, int phy, int reg, int val)
2312 {
2313 	struct gem_softc *sc = device_private(self);
2314 	bus_space_tag_t t = sc->sc_bustag;
2315 	bus_space_handle_t mif = sc->sc_h1;
2316 	int n;
2317 	u_int32_t v;
2318 
2319 #ifdef GEM_DEBUG1
2320 	if (sc->sc_debug)
2321 		printf("gem_mii_writereg: PHY %d reg %d val %x\n",
2322 			phy, reg, val);
2323 #endif
2324 
2325 	/* Construct the frame command */
2326 	v = GEM_MIF_FRAME_WRITE			|
2327 	    (phy << GEM_MIF_PHY_SHIFT)		|
2328 	    (reg << GEM_MIF_REG_SHIFT)		|
2329 	    (val & GEM_MIF_FRAME_DATA);
2330 
2331 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2332 	for (n = 0; n < 100; n++) {
2333 		DELAY(1);
2334 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2335 		if (v & GEM_MIF_FRAME_TA0)
2336 			return;
2337 	}
2338 
2339 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
2340 }
2341 
2342 static void
2343 gem_mii_statchg(device_t self)
2344 {
2345 	struct gem_softc *sc = device_private(self);
2346 #ifdef GEM_DEBUG
2347 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
2348 #endif
2349 
2350 #ifdef GEM_DEBUG
2351 	if (sc->sc_debug)
2352 		printf("gem_mii_statchg: status change: phy = %d\n",
2353 			sc->sc_phys[instance]);
2354 #endif
2355 	gem_statuschange(sc);
2356 }
2357 
2358 /*
2359  * Common status change for gem_mii_statchg() and gem_pint()
2360  */
2361 void
2362 gem_statuschange(struct gem_softc* sc)
2363 {
2364 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2365 	bus_space_tag_t t = sc->sc_bustag;
2366 	bus_space_handle_t mac = sc->sc_h1;
2367 	int gigabit;
2368 	u_int32_t rxcfg, txcfg, v;
2369 
2370 	if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
2371 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
2372 		sc->sc_flags |= GEM_LINK;
2373 	else
2374 		sc->sc_flags &= ~GEM_LINK;
2375 
2376 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2377 		gigabit = 1;
2378 	else
2379 		gigabit = 0;
2380 
2381 	/*
2382 	 * The configuration done here corresponds to the steps F) and
2383 	 * G) and as far as enabling of RX and TX MAC goes also step H)
2384 	 * of the initialization sequence outlined in section 3.2.1 of
2385 	 * the GEM Gigabit Ethernet ASIC Specification.
2386 	 */
2387 
2388 	rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
2389 	rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
2390 	txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
2391 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2392 		txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
2393 	else if (gigabit) {
2394 		rxcfg |= GEM_MAC_RX_CARR_EXTEND;
2395 		txcfg |= GEM_MAC_RX_CARR_EXTEND;
2396 	}
2397 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
2398 	bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
2399 	    BUS_SPACE_BARRIER_WRITE);
2400 	if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
2401 		aprint_normal_dev(sc->sc_dev, "cannot disable TX MAC\n");
2402 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
2403 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
2404 	bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
2405 	    BUS_SPACE_BARRIER_WRITE);
2406 	if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
2407 		aprint_normal_dev(sc->sc_dev, "cannot disable RX MAC\n");
2408 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
2409 
2410 	v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
2411 	    ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
2412 	bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
2413 
2414 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
2415 	    gigabit != 0)
2416 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2417 		    GEM_MAC_SLOT_TIME_CARR_EXTEND);
2418 	else
2419 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2420 		    GEM_MAC_SLOT_TIME_NORMAL);
2421 
2422 	/* XIF Configuration */
2423 	if (sc->sc_flags & GEM_LINK)
2424 		v = GEM_MAC_XIF_LINK_LED;
2425 	else
2426 		v = 0;
2427 	v |= GEM_MAC_XIF_TX_MII_ENA;
2428 
2429 	/* If an external transceiver is connected, enable its MII drivers */
2430 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
2431 	if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
2432 		if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
2433 			/* External MII needs echo disable if half duplex. */
2434 			if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) &
2435 			    IFM_FDX) != 0)
2436 				/* turn on full duplex LED */
2437 				v |= GEM_MAC_XIF_FDPLX_LED;
2438 			else
2439 				/* half duplex -- disable echo */
2440 				v |= GEM_MAC_XIF_ECHO_DISABL;
2441 			if (gigabit)
2442 				v |= GEM_MAC_XIF_GMII_MODE;
2443 			else
2444 				v &= ~GEM_MAC_XIF_GMII_MODE;
2445 		} else
2446 			/* Internal MII needs buf enable */
2447 			v |= GEM_MAC_XIF_MII_BUF_ENA;
2448 	} else {
2449 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2450 			v |= GEM_MAC_XIF_FDPLX_LED;
2451 		v |= GEM_MAC_XIF_GMII_MODE;
2452 	}
2453 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
2454 
2455 	if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2456 	    (sc->sc_flags & GEM_LINK) != 0) {
2457 		bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
2458 		    txcfg | GEM_MAC_TX_ENABLE);
2459 		bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
2460 		    rxcfg | GEM_MAC_RX_ENABLE);
2461 	}
2462 }
2463 
2464 int
2465 gem_ser_mediachange(struct ifnet *ifp)
2466 {
2467 	struct gem_softc *sc = ifp->if_softc;
2468 	u_int s, t;
2469 
2470 	if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
2471 		return EINVAL;
2472 
2473 	s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
2474 	if (s == IFM_AUTO) {
2475 		if (sc->sc_mii_media != s) {
2476 #ifdef GEM_DEBUG
2477 			aprint_debug_dev(sc->sc_dev, "setting media to auto\n");
2478 #endif
2479 			sc->sc_mii_media = s;
2480 			if (ifp->if_flags & IFF_UP) {
2481 				gem_pcs_stop(sc, 0);
2482 				gem_pcs_start(sc);
2483 			}
2484 		}
2485 		return 0;
2486 	}
2487 	if (s == IFM_1000_SX) {
2488 		t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media);
2489 		if (t == IFM_FDX || t == IFM_HDX) {
2490 			if (sc->sc_mii_media != t) {
2491 				sc->sc_mii_media = t;
2492 #ifdef GEM_DEBUG
2493 				aprint_debug_dev(sc->sc_dev,
2494 				    "setting media to 1000baseSX-%s\n",
2495 				    t == IFM_FDX ? "FDX" : "HDX");
2496 #endif
2497 				if (ifp->if_flags & IFF_UP) {
2498 					gem_pcs_stop(sc, 0);
2499 					gem_pcs_start(sc);
2500 				}
2501 			}
2502 			return 0;
2503 		}
2504 	}
2505 	return EINVAL;
2506 }
2507 
2508 void
2509 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2510 {
2511 	struct gem_softc *sc = ifp->if_softc;
2512 
2513 	if ((ifp->if_flags & IFF_UP) == 0)
2514 		return;
2515 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
2516 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
2517 }
2518 
2519 static int
2520 gem_ifflags_cb(struct ethercom *ec)
2521 {
2522 	struct ifnet *ifp = &ec->ec_if;
2523 	struct gem_softc *sc = ifp->if_softc;
2524 	int change = ifp->if_flags ^ sc->sc_if_flags;
2525 
2526 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
2527 		return ENETRESET;
2528 	else if ((change & IFF_PROMISC) != 0)
2529 		gem_setladrf(sc);
2530 	return 0;
2531 }
2532 
2533 /*
2534  * Process an ioctl request.
2535  */
2536 int
2537 gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
2538 {
2539 	struct gem_softc *sc = ifp->if_softc;
2540 	int s, error = 0;
2541 
2542 	s = splnet();
2543 
2544 	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2545 		error = 0;
2546 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2547 			;
2548 		else if (ifp->if_flags & IFF_RUNNING) {
2549 			/*
2550 			 * Multicast list has changed; set the hardware filter
2551 			 * accordingly.
2552 			 */
2553 			gem_setladrf(sc);
2554 		}
2555 	}
2556 
2557 	/* Try to get things going again */
2558 	if (ifp->if_flags & IFF_UP)
2559 		gem_start(ifp);
2560 	splx(s);
2561 	return (error);
2562 }
2563 
2564 static void
2565 gem_inten(struct gem_softc *sc)
2566 {
2567 	bus_space_tag_t t = sc->sc_bustag;
2568 	bus_space_handle_t h = sc->sc_h1;
2569 	uint32_t v;
2570 
2571 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
2572 		v = GEM_INTR_PCS;
2573 	else
2574 		v = GEM_INTR_MIF;
2575 	bus_space_write_4(t, h, GEM_INTMASK,
2576 		      ~(GEM_INTR_TX_INTME |
2577 			GEM_INTR_TX_EMPTY |
2578 			GEM_INTR_TX_MAC |
2579 			GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF|
2580 			GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL|
2581 			GEM_INTR_BERR | v));
2582 }
2583 
2584 bool
2585 gem_resume(device_t self PMF_FN_ARGS)
2586 {
2587 	struct gem_softc *sc = device_private(self);
2588 
2589 	gem_inten(sc);
2590 
2591 	return true;
2592 }
2593 
2594 bool
2595 gem_suspend(device_t self PMF_FN_ARGS)
2596 {
2597 	struct gem_softc *sc = device_private(self);
2598 	bus_space_tag_t t = sc->sc_bustag;
2599 	bus_space_handle_t h = sc->sc_h1;
2600 
2601 	bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
2602 
2603 	return true;
2604 }
2605 
2606 bool
2607 gem_shutdown(device_t self, int howto)
2608 {
2609 	struct gem_softc *sc = device_private(self);
2610 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2611 
2612 	gem_stop(ifp, 1);
2613 
2614 	return true;
2615 }
2616 
2617 /*
2618  * Set up the logical address filter.
2619  */
2620 void
2621 gem_setladrf(struct gem_softc *sc)
2622 {
2623 	struct ethercom *ec = &sc->sc_ethercom;
2624 	struct ifnet *ifp = &ec->ec_if;
2625 	struct ether_multi *enm;
2626 	struct ether_multistep step;
2627 	bus_space_tag_t t = sc->sc_bustag;
2628 	bus_space_handle_t h = sc->sc_h1;
2629 	u_int32_t crc;
2630 	u_int32_t hash[16];
2631 	u_int32_t v;
2632 	int i;
2633 
2634 	/* Get current RX configuration */
2635 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2636 
2637 	/*
2638 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2639 	 * and hash filter.  Depending on the case, the right bit will be
2640 	 * enabled.
2641 	 */
2642 	v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
2643 	    GEM_MAC_RX_PROMISC_GRP);
2644 
2645 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
2646 		/* Turn on promiscuous mode */
2647 		v |= GEM_MAC_RX_PROMISCUOUS;
2648 		ifp->if_flags |= IFF_ALLMULTI;
2649 		goto chipit;
2650 	}
2651 
2652 	/*
2653 	 * Set up multicast address filter by passing all multicast addresses
2654 	 * through a crc generator, and then using the high order 8 bits as an
2655 	 * index into the 256 bit logical address filter.  The high order 4
2656 	 * bits selects the word, while the other 4 bits select the bit within
2657 	 * the word (where bit 0 is the MSB).
2658 	 */
2659 
2660 	/* Clear hash table */
2661 	memset(hash, 0, sizeof(hash));
2662 
2663 	ETHER_FIRST_MULTI(step, ec, enm);
2664 	while (enm != NULL) {
2665 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2666 			/*
2667 			 * We must listen to a range of multicast addresses.
2668 			 * For now, just accept all multicasts, rather than
2669 			 * trying to set only those filter bits needed to match
2670 			 * the range.  (At this time, the only use of address
2671 			 * ranges is for IP multicast routing, for which the
2672 			 * range is big enough to require all bits set.)
2673 			 * XXX should use the address filters for this
2674 			 */
2675 			ifp->if_flags |= IFF_ALLMULTI;
2676 			v |= GEM_MAC_RX_PROMISC_GRP;
2677 			goto chipit;
2678 		}
2679 
2680 		/* Get the LE CRC32 of the address */
2681 		crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2682 
2683 		/* Just want the 8 most significant bits. */
2684 		crc >>= 24;
2685 
2686 		/* Set the corresponding bit in the filter. */
2687 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
2688 
2689 		ETHER_NEXT_MULTI(step, enm);
2690 	}
2691 
2692 	v |= GEM_MAC_RX_HASH_FILTER;
2693 	ifp->if_flags &= ~IFF_ALLMULTI;
2694 
2695 	/* Now load the hash table into the chip (if we are using it) */
2696 	for (i = 0; i < 16; i++) {
2697 		bus_space_write_4(t, h,
2698 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2699 		    hash[i]);
2700 	}
2701 
2702 chipit:
2703 	sc->sc_if_flags = ifp->if_flags;
2704 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2705 }
2706