xref: /netbsd-src/sys/dev/ic/gem.c (revision 04e61f8526dc919e1c004e02c39dea35e7c0f042)
1 /*	$NetBSD: gem.c,v 1.14 2002/05/08 02:12:55 matt Exp $ */
2 
3 /*
4  *
5  * Copyright (C) 2001 Eduardo Horvath.
6  * All rights reserved.
7  *
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  */
31 
32 /*
33  * Driver for Sun GEM ethernet controllers.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.14 2002/05/08 02:12:55 matt Exp $");
38 
39 #include "bpfilter.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/syslog.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/socket.h>
49 #include <sys/ioctl.h>
50 #include <sys/errno.h>
51 #include <sys/device.h>
52 
53 #include <machine/endian.h>
54 
55 #include <uvm/uvm_extern.h>
56 
57 #include <net/if.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_ether.h>
61 
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65 
66 #include <machine/bus.h>
67 #include <machine/intr.h>
68 
69 #include <dev/mii/mii.h>
70 #include <dev/mii/miivar.h>
71 #include <dev/mii/mii_bitbang.h>
72 
73 #include <dev/ic/gemreg.h>
74 #include <dev/ic/gemvar.h>
75 
76 #define TRIES	10000
77 
78 void		gem_start __P((struct ifnet *));
79 void		gem_stop __P((struct ifnet *, int));
80 int		gem_ioctl __P((struct ifnet *, u_long, caddr_t));
81 void		gem_tick __P((void *));
82 void		gem_watchdog __P((struct ifnet *));
83 void		gem_shutdown __P((void *));
84 int		gem_init __P((struct ifnet *));
85 void		gem_init_regs(struct gem_softc *sc);
86 static int	gem_ringsize(int sz);
87 int		gem_meminit __P((struct gem_softc *));
88 void		gem_mifinit __P((struct gem_softc *));
89 void		gem_reset __P((struct gem_softc *));
90 int		gem_reset_rx(struct gem_softc *sc);
91 int		gem_reset_tx(struct gem_softc *sc);
92 int		gem_disable_rx(struct gem_softc *sc);
93 int		gem_disable_tx(struct gem_softc *sc);
94 void		gem_rxdrain(struct gem_softc *sc);
95 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
96 void		gem_setladrf __P((struct gem_softc *));
97 
98 /* MII methods & callbacks */
99 static int	gem_mii_readreg __P((struct device *, int, int));
100 static void	gem_mii_writereg __P((struct device *, int, int, int));
101 static void	gem_mii_statchg __P((struct device *));
102 
103 int		gem_mediachange __P((struct ifnet *));
104 void		gem_mediastatus __P((struct ifnet *, struct ifmediareq *));
105 
106 struct mbuf	*gem_get __P((struct gem_softc *, int, int));
107 int		gem_put __P((struct gem_softc *, int, struct mbuf *));
108 void		gem_read __P((struct gem_softc *, int, int));
109 int		gem_eint __P((struct gem_softc *, u_int));
110 int		gem_rint __P((struct gem_softc *));
111 int		gem_tint __P((struct gem_softc *));
112 void		gem_power __P((int, void *));
113 
114 #ifdef GEM_DEBUG
115 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
116 				printf x
117 #else
118 #define	DPRINTF(sc, x)	/* nothing */
119 #endif
120 
121 
122 /*
123  * gem_attach:
124  *
125  *	Attach a Gem interface to the system.
126  */
127 void
128 gem_attach(sc, enaddr)
129 	struct gem_softc *sc;
130 	const uint8_t *enaddr;
131 {
132 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
133 	struct mii_data *mii = &sc->sc_mii;
134 	struct mii_softc *child;
135 	int i, error;
136 
137 	/* Make sure the chip is stopped. */
138 	ifp->if_softc = sc;
139 	gem_reset(sc);
140 
141 	/*
142 	 * Allocate the control data structures, and create and load the
143 	 * DMA map for it.
144 	 */
145 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
146 	    sizeof(struct gem_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
147 	    1, &sc->sc_cdnseg, 0)) != 0) {
148 		printf("%s: unable to allocate control data, error = %d\n",
149 		    sc->sc_dev.dv_xname, error);
150 		goto fail_0;
151 	}
152 
153 /* XXX should map this in with correct endianness */
154 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
155 	    sizeof(struct gem_control_data), (caddr_t *)&sc->sc_control_data,
156 	    BUS_DMA_COHERENT)) != 0) {
157 		printf("%s: unable to map control data, error = %d\n",
158 		    sc->sc_dev.dv_xname, error);
159 		goto fail_1;
160 	}
161 
162 	if ((error = bus_dmamap_create(sc->sc_dmatag,
163 	    sizeof(struct gem_control_data), 1,
164 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
165 		printf("%s: unable to create control data DMA map, "
166 		    "error = %d\n", sc->sc_dev.dv_xname, error);
167 		goto fail_2;
168 	}
169 
170 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
171 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
172 	    0)) != 0) {
173 		printf("%s: unable to load control data DMA map, error = %d\n",
174 		    sc->sc_dev.dv_xname, error);
175 		goto fail_3;
176 	}
177 
178 	/*
179 	 * Initialize the transmit job descriptors.
180 	 */
181 	SIMPLEQ_INIT(&sc->sc_txfreeq);
182 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
183 
184 	/*
185 	 * Create the transmit buffer DMA maps.
186 	 */
187 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
188 		struct gem_txsoft *txs;
189 
190 		txs = &sc->sc_txsoft[i];
191 		txs->txs_mbuf = NULL;
192 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
193 		    GEM_NTXSEGS, MCLBYTES, 0, 0,
194 		    &txs->txs_dmamap)) != 0) {
195 			printf("%s: unable to create tx DMA map %d, "
196 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
197 			goto fail_4;
198 		}
199 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
200 	}
201 
202 	/*
203 	 * Create the receive buffer DMA maps.
204 	 */
205 	for (i = 0; i < GEM_NRXDESC; i++) {
206 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
207 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
208 			printf("%s: unable to create rx DMA map %d, "
209 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
210 			goto fail_5;
211 		}
212 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
213 	}
214 
215 	/*
216 	 * From this point forward, the attachment cannot fail.  A failure
217 	 * before this point releases all resources that may have been
218 	 * allocated.
219 	 */
220 
221 	/* Announce ourselves. */
222 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
223 	    ether_sprintf(enaddr));
224 
225 	/* Initialize ifnet structure. */
226 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
227 	ifp->if_softc = sc;
228 	ifp->if_flags =
229 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
230 	ifp->if_start = gem_start;
231 	ifp->if_ioctl = gem_ioctl;
232 	ifp->if_watchdog = gem_watchdog;
233 	ifp->if_stop = gem_stop;
234 	ifp->if_init = gem_init;
235 	IFQ_SET_READY(&ifp->if_snd);
236 
237 	/* Initialize ifmedia structures and MII info */
238 	mii->mii_ifp = ifp;
239 	mii->mii_readreg = gem_mii_readreg;
240 	mii->mii_writereg = gem_mii_writereg;
241 	mii->mii_statchg = gem_mii_statchg;
242 
243 	ifmedia_init(&mii->mii_media, 0, gem_mediachange, gem_mediastatus);
244 
245 	gem_mifinit(sc);
246 
247 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
248 			MII_PHY_ANY, MII_OFFSET_ANY, 0);
249 
250 	child = LIST_FIRST(&mii->mii_phys);
251 	if (child == NULL) {
252 		/* No PHY attached */
253 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
254 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
255 	} else {
256 		/*
257 		 * Walk along the list of attached MII devices and
258 		 * establish an `MII instance' to `phy number'
259 		 * mapping. We'll use this mapping in media change
260 		 * requests to determine which phy to use to program
261 		 * the MIF configuration register.
262 		 */
263 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
264 			/*
265 			 * Note: we support just two PHYs: the built-in
266 			 * internal device and an external on the MII
267 			 * connector.
268 			 */
269 			if (child->mii_phy > 1 || child->mii_inst > 1) {
270 				printf("%s: cannot accomodate MII device %s"
271 				       " at phy %d, instance %d\n",
272 				       sc->sc_dev.dv_xname,
273 				       child->mii_dev.dv_xname,
274 				       child->mii_phy, child->mii_inst);
275 				continue;
276 			}
277 
278 			sc->sc_phys[child->mii_inst] = child->mii_phy;
279 		}
280 
281 		/*
282 		 * Now select and activate the PHY we will use.
283 		 *
284 		 * The order of preference is External (MDI1),
285 		 * Internal (MDI0), Serial Link (no MII).
286 		 */
287 		if (sc->sc_phys[1]) {
288 #ifdef DEBUG
289 			printf("using external phy\n");
290 #endif
291 			sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
292 		} else {
293 #ifdef DEBUG
294 			printf("using internal phy\n");
295 #endif
296 			sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
297 		}
298 		bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG,
299 			sc->sc_mif_config);
300 
301 		/*
302 		 * XXX - we can really do the following ONLY if the
303 		 * phy indeed has the auto negotiation capability!!
304 		 */
305 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
306 	}
307 
308 	/* claim 802.1q capability */
309 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
310 
311 	/* Attach the interface. */
312 	if_attach(ifp);
313 	ether_ifattach(ifp, enaddr);
314 
315 	sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
316 	if (sc->sc_sh == NULL)
317 		panic("gem_config: can't establish shutdownhook");
318 
319 #if NRND > 0
320 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
321 			  RND_TYPE_NET, 0);
322 #endif
323 
324 
325 #if notyet
326 	/*
327 	 * Add a suspend hook to make sure we come back up after a
328 	 * resume.
329 	 */
330 	sc->sc_powerhook = powerhook_establish(gem_power, sc);
331 	if (sc->sc_powerhook == NULL)
332 		printf("%s: WARNING: unable to establish power hook\n",
333 		    sc->sc_dev.dv_xname);
334 #endif
335 
336 	callout_init(&sc->sc_tick_ch);
337 	return;
338 
339 	/*
340 	 * Free any resources we've allocated during the failed attach
341 	 * attempt.  Do this in reverse order and fall through.
342 	 */
343  fail_5:
344 	for (i = 0; i < GEM_NRXDESC; i++) {
345 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
346 			bus_dmamap_destroy(sc->sc_dmatag,
347 			    sc->sc_rxsoft[i].rxs_dmamap);
348 	}
349  fail_4:
350 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
351 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
352 			bus_dmamap_destroy(sc->sc_dmatag,
353 			    sc->sc_txsoft[i].txs_dmamap);
354 	}
355 	bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
356  fail_3:
357 	bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
358  fail_2:
359 	bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sc_control_data,
360 	    sizeof(struct gem_control_data));
361  fail_1:
362 	bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
363  fail_0:
364 	return;
365 }
366 
367 
368 void
369 gem_tick(arg)
370 	void *arg;
371 {
372 	struct gem_softc *sc = arg;
373 	int s;
374 
375 	s = splnet();
376 	mii_tick(&sc->sc_mii);
377 	splx(s);
378 
379 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
380 
381 }
382 
383 void
384 gem_reset(sc)
385 	struct gem_softc *sc;
386 {
387 	bus_space_tag_t t = sc->sc_bustag;
388 	bus_space_handle_t h = sc->sc_h;
389 	int i;
390 	int s;
391 
392 	s = splnet();
393 	DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
394 	gem_reset_rx(sc);
395 	gem_reset_tx(sc);
396 
397 	/* Do a full reset */
398 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
399 	for (i=TRIES; i--; delay(100))
400 		if ((bus_space_read_4(t, h, GEM_RESET) &
401 			(GEM_RESET_RX|GEM_RESET_TX)) == 0)
402 			break;
403 	if ((bus_space_read_4(t, h, GEM_RESET) &
404 		(GEM_RESET_RX|GEM_RESET_TX)) != 0) {
405 		printf("%s: cannot reset device\n",
406 			sc->sc_dev.dv_xname);
407 	}
408 	splx(s);
409 }
410 
411 
412 /*
413  * gem_rxdrain:
414  *
415  *	Drain the receive queue.
416  */
417 void
418 gem_rxdrain(struct gem_softc *sc)
419 {
420 	struct gem_rxsoft *rxs;
421 	int i;
422 
423 	for (i = 0; i < GEM_NRXDESC; i++) {
424 		rxs = &sc->sc_rxsoft[i];
425 		if (rxs->rxs_mbuf != NULL) {
426 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
427 			m_freem(rxs->rxs_mbuf);
428 			rxs->rxs_mbuf = NULL;
429 		}
430 	}
431 }
432 
433 /*
434  * Reset the whole thing.
435  */
436 void
437 gem_stop(struct ifnet *ifp, int disable)
438 {
439 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
440 	struct gem_txsoft *txs;
441 
442 	DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
443 
444 	callout_stop(&sc->sc_tick_ch);
445 	mii_down(&sc->sc_mii);
446 
447 	/* XXX - Should we reset these instead? */
448 	gem_disable_rx(sc);
449 	gem_disable_rx(sc);
450 
451 	/*
452 	 * Release any queued transmit buffers.
453 	 */
454 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
455 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
456 		if (txs->txs_mbuf != NULL) {
457 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
458 			m_freem(txs->txs_mbuf);
459 			txs->txs_mbuf = NULL;
460 		}
461 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
462 	}
463 
464 	if (disable) {
465 		gem_rxdrain(sc);
466 	}
467 
468 	/*
469 	 * Mark the interface down and cancel the watchdog timer.
470 	 */
471 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
472 	ifp->if_timer = 0;
473 }
474 
475 
476 /*
477  * Reset the receiver
478  */
479 int
480 gem_reset_rx(struct gem_softc *sc)
481 {
482 	bus_space_tag_t t = sc->sc_bustag;
483 	bus_space_handle_t h = sc->sc_h;
484 	int i;
485 
486 
487 	/*
488 	 * Resetting while DMA is in progress can cause a bus hang, so we
489 	 * disable DMA first.
490 	 */
491 	gem_disable_rx(sc);
492 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
493 	/* Wait till it finishes */
494 	for (i=TRIES; i--; delay(100))
495 		if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) == 0)
496 			break;
497 	if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) != 0)
498 		printf("%s: cannot disable read dma\n",
499 			sc->sc_dev.dv_xname);
500 
501 	/* Wait 5ms extra. */
502 	delay(5000);
503 
504 	/* Finally, reset the ERX */
505 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX);
506 	/* Wait till it finishes */
507 	for (i=TRIES; i--; delay(100))
508 		if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) == 0)
509 			break;
510 	if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) != 0) {
511 		printf("%s: cannot reset receiver\n",
512 			sc->sc_dev.dv_xname);
513 		return (1);
514 	}
515 	return (0);
516 }
517 
518 
519 /*
520  * Reset the transmitter
521  */
522 int
523 gem_reset_tx(struct gem_softc *sc)
524 {
525 	bus_space_tag_t t = sc->sc_bustag;
526 	bus_space_handle_t h = sc->sc_h;
527 	int i;
528 
529 	/*
530 	 * Resetting while DMA is in progress can cause a bus hang, so we
531 	 * disable DMA first.
532 	 */
533 	gem_disable_tx(sc);
534 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
535 	/* Wait till it finishes */
536 	for (i=TRIES; i--; delay(100))
537 		if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) == 0)
538 			break;
539 	if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) != 0)
540 		printf("%s: cannot disable read dma\n",
541 			sc->sc_dev.dv_xname);
542 
543 	/* Wait 5ms extra. */
544 	delay(5000);
545 
546 	/* Finally, reset the ETX */
547 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX);
548 	/* Wait till it finishes */
549 	for (i=TRIES; i--; delay(100))
550 		if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) == 0)
551 			break;
552 	if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) != 0) {
553 		printf("%s: cannot reset receiver\n",
554 			sc->sc_dev.dv_xname);
555 		return (1);
556 	}
557 	return (0);
558 }
559 
560 /*
561  * disable receiver.
562  */
563 int
564 gem_disable_rx(struct gem_softc *sc)
565 {
566 	bus_space_tag_t t = sc->sc_bustag;
567 	bus_space_handle_t h = sc->sc_h;
568 	int i;
569 	u_int32_t cfg;
570 
571 	/* Flip the enable bit */
572 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
573 	cfg &= ~GEM_MAC_RX_ENABLE;
574 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
575 
576 	/* Wait for it to finish */
577 	for (i=TRIES; i--; delay(100))
578 		if ((bus_space_read_4(t, h, GEM_MAC_RX_CONFIG) &
579 			GEM_MAC_RX_ENABLE) == 0)
580 			return (0);
581 	return (1);
582 }
583 
584 /*
585  * disable transmitter.
586  */
587 int
588 gem_disable_tx(struct gem_softc *sc)
589 {
590 	bus_space_tag_t t = sc->sc_bustag;
591 	bus_space_handle_t h = sc->sc_h;
592 	int i;
593 	u_int32_t cfg;
594 
595 	/* Flip the enable bit */
596 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
597 	cfg &= ~GEM_MAC_TX_ENABLE;
598 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
599 
600 	/* Wait for it to finish */
601 	for (i=TRIES; i--; delay(100))
602 		if ((bus_space_read_4(t, h, GEM_MAC_TX_CONFIG) &
603 			GEM_MAC_TX_ENABLE) == 0)
604 			return (0);
605 	return (1);
606 }
607 
608 /*
609  * Initialize interface.
610  */
611 int
612 gem_meminit(struct gem_softc *sc)
613 {
614 	struct gem_rxsoft *rxs;
615 	int i, error;
616 
617 	/*
618 	 * Initialize the transmit descriptor ring.
619 	 */
620 	memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
621 	for (i = 0; i < GEM_NTXDESC; i++) {
622 		sc->sc_txdescs[i].gd_flags = 0;
623 		sc->sc_txdescs[i].gd_addr = 0;
624 	}
625 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
626 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
627 	sc->sc_txfree = GEM_NTXDESC-1;
628 	sc->sc_txnext = 0;
629 	sc->sc_txwin = 0;
630 
631 	/*
632 	 * Initialize the receive descriptor and receive job
633 	 * descriptor rings.
634 	 */
635 	for (i = 0; i < GEM_NRXDESC; i++) {
636 		rxs = &sc->sc_rxsoft[i];
637 		if (rxs->rxs_mbuf == NULL) {
638 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
639 				printf("%s: unable to allocate or map rx "
640 				    "buffer %d, error = %d\n",
641 				    sc->sc_dev.dv_xname, i, error);
642 				/*
643 				 * XXX Should attempt to run with fewer receive
644 				 * XXX buffers instead of just failing.
645 				 */
646 				gem_rxdrain(sc);
647 				return (1);
648 			}
649 		} else
650 			GEM_INIT_RXDESC(sc, i);
651 	}
652 	sc->sc_rxptr = 0;
653 
654 	return (0);
655 }
656 
657 static int
658 gem_ringsize(int sz)
659 {
660 	int v;
661 
662 	switch (sz) {
663 	case 32:
664 		v = GEM_RING_SZ_32;
665 		break;
666 	case 64:
667 		v = GEM_RING_SZ_64;
668 		break;
669 	case 128:
670 		v = GEM_RING_SZ_128;
671 		break;
672 	case 256:
673 		v = GEM_RING_SZ_256;
674 		break;
675 	case 512:
676 		v = GEM_RING_SZ_512;
677 		break;
678 	case 1024:
679 		v = GEM_RING_SZ_1024;
680 		break;
681 	case 2048:
682 		v = GEM_RING_SZ_2048;
683 		break;
684 	case 4096:
685 		v = GEM_RING_SZ_4096;
686 		break;
687 	case 8192:
688 		v = GEM_RING_SZ_8192;
689 		break;
690 	default:
691 		printf("gem: invalid Receive Descriptor ring size\n");
692 		break;
693 	}
694 	return (v);
695 }
696 
697 /*
698  * Initialization of interface; set up initialization block
699  * and transmit/receive descriptor rings.
700  */
701 int
702 gem_init(struct ifnet *ifp)
703 {
704 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
705 	bus_space_tag_t t = sc->sc_bustag;
706 	bus_space_handle_t h = sc->sc_h;
707 	int s;
708 	u_int32_t v;
709 
710 	s = splnet();
711 
712 	DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
713 	/*
714 	 * Initialization sequence. The numbered steps below correspond
715 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
716 	 * Channel Engine manual (part of the PCIO manual).
717 	 * See also the STP2002-STQ document from Sun Microsystems.
718 	 */
719 
720 	/* step 1 & 2. Reset the Ethernet Channel */
721 	gem_stop(ifp, 0);
722 	gem_reset(sc);
723 	DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
724 
725 	/* Re-initialize the MIF */
726 	gem_mifinit(sc);
727 
728 	/* Call MI reset function if any */
729 	if (sc->sc_hwreset)
730 		(*sc->sc_hwreset)(sc);
731 
732 	/* step 3. Setup data structures in host memory */
733 	gem_meminit(sc);
734 
735 	/* step 4. TX MAC registers & counters */
736 	gem_init_regs(sc);
737 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
738 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
739 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN  + sizeof(struct ether_header):
740             ETHER_MAX_LEN + sizeof(struct ether_header)) | (0x2000<<16));
741 
742 	/* step 5. RX MAC registers & counters */
743 	gem_setladrf(sc);
744 
745 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
746 	/* NOTE: we use only 32-bit DMA addresses here. */
747 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
748 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
749 
750 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
751 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
752 
753 	/* step 8. Global Configuration & Interrupt Mask */
754 	bus_space_write_4(t, h, GEM_INTMASK,
755 		      ~(GEM_INTR_TX_INTME|
756 			GEM_INTR_TX_EMPTY|
757 			GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
758 			GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
759 			GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
760 			GEM_INTR_BERR));
761 	bus_space_write_4(t, h, GEM_MAC_RX_MASK, 0); /* XXXX */
762 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
763 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
764 
765 	/* step 9. ETX Configuration: use mostly default values */
766 
767 	/* Enable DMA */
768 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
769 	bus_space_write_4(t, h, GEM_TX_CONFIG,
770 		v|GEM_TX_CONFIG_TXDMA_EN|
771 		((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
772 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
773 
774 	/* step 10. ERX Configuration */
775 
776 	/* Encode Receive Descriptor ring size: four possible values */
777 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
778 
779 	/* Enable DMA */
780 	bus_space_write_4(t, h, GEM_RX_CONFIG,
781 		v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
782 		(2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN|
783 		(0<<GEM_RX_CONFIG_CXM_START_SHFT));
784 	/*
785 	 * The following value is for an OFF Threshold of about 15.5 Kbytes
786 	 * and an ON Threshold of 4K bytes.
787 	 */
788 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH, 0xf8 | (0x40 << 12));
789 	bus_space_write_4(t, h, GEM_RX_BLANKING, (2<<12)|6);
790 
791 	/* step 11. Configure Media */
792 	gem_mii_statchg(&sc->sc_dev);
793 
794 /* XXXX Serial link needs a whole different setup. */
795 
796 
797 	/* step 12. RX_MAC Configuration Register */
798 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
799 	v |= GEM_MAC_RX_ENABLE;
800 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
801 
802 	/* step 14. Issue Transmit Pending command */
803 
804 	/* Call MI initialization function if any */
805 	if (sc->sc_hwinit)
806 		(*sc->sc_hwinit)(sc);
807 
808 
809 	/* step 15.  Give the reciever a swift kick */
810 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
811 
812 	/* Start the one second timer. */
813 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
814 
815 	ifp->if_flags |= IFF_RUNNING;
816 	ifp->if_flags &= ~IFF_OACTIVE;
817 	ifp->if_timer = 0;
818 	splx(s);
819 
820 	return (0);
821 }
822 
823 void
824 gem_init_regs(struct gem_softc *sc)
825 {
826 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
827 	bus_space_tag_t t = sc->sc_bustag;
828 	bus_space_handle_t h = sc->sc_h;
829 	const u_char *laddr = LLADDR(ifp->if_sadl);
830 
831 	/* These regs are not cleared on reset */
832 	if (!sc->sc_inited) {
833 
834 		/* Wooo.  Magic values. */
835 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
836 		bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
837 		bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
838 
839 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
840 		/* Max frame and max burst size */
841 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
842 			(ifp->if_mtu+18) | (0x2000<<16)/* Burst size */);
843 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
844 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
845 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
846 		/* Dunno.... */
847 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
848 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
849 			((laddr[5]<<8)|laddr[4])&0x3ff);
850 
851 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
852 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
853 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
854 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
855 
856 		/* MAC control addr set to 01:80:c2:00:00:01 */
857 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
858 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
859 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
860 
861 		/* MAC filter addr set to 0:0:0:0:0:0 */
862 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
863 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
864 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
865 
866 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
867 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
868 
869 		sc->sc_inited = 1;
870 	}
871 
872 	/* Counters need to be zeroed */
873 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
874 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
875 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
876 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
877 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
878 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
879 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
880 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
881 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
882 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
883 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
884 
885 	/* Un-pause stuff */
886 #if 0
887 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
888 #else
889 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
890 #endif
891 
892 	/*
893 	 * Set the station address.
894 	 */
895 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
896 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
897 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
898 
899 }
900 
901 
902 
903 void
904 gem_start(ifp)
905 	struct ifnet *ifp;
906 {
907 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
908 	struct mbuf *m0, *m;
909 	struct gem_txsoft *txs, *last_txs;
910 	bus_dmamap_t dmamap;
911 	int error, firsttx, nexttx, lasttx, ofree, seg;
912 
913 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
914 		return;
915 
916 	/*
917 	 * Remember the previous number of free descriptors and
918 	 * the first descriptor we'll use.
919 	 */
920 	ofree = sc->sc_txfree;
921 	firsttx = sc->sc_txnext;
922 
923 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
924 	    sc->sc_dev.dv_xname, ofree, firsttx));
925 
926 	/*
927 	 * Loop through the send queue, setting up transmit descriptors
928 	 * until we drain the queue, or use up all available transmit
929 	 * descriptors.
930 	 */
931 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
932 	       sc->sc_txfree != 0) {
933 		/*
934 		 * Grab a packet off the queue.
935 		 */
936 		IFQ_POLL(&ifp->if_snd, m0);
937 		if (m0 == NULL)
938 			break;
939 		m = NULL;
940 
941 		dmamap = txs->txs_dmamap;
942 
943 		/*
944 		 * Load the DMA map.  If this fails, the packet either
945 		 * didn't fit in the alloted number of segments, or we were
946 		 * short on resources.  In this case, we'll copy and try
947 		 * again.
948 		 */
949 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
950 		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
951 			MGETHDR(m, M_DONTWAIT, MT_DATA);
952 			if (m == NULL) {
953 				printf("%s: unable to allocate Tx mbuf\n",
954 				    sc->sc_dev.dv_xname);
955 				break;
956 			}
957 			if (m0->m_pkthdr.len > MHLEN) {
958 				MCLGET(m, M_DONTWAIT);
959 				if ((m->m_flags & M_EXT) == 0) {
960 					printf("%s: unable to allocate Tx "
961 					    "cluster\n", sc->sc_dev.dv_xname);
962 					m_freem(m);
963 					break;
964 				}
965 			}
966 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
967 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
968 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
969 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
970 			if (error) {
971 				printf("%s: unable to load Tx buffer, "
972 				    "error = %d\n", sc->sc_dev.dv_xname, error);
973 				break;
974 			}
975 		}
976 
977 		/*
978 		 * Ensure we have enough descriptors free to describe
979 		 * the packet.
980 		 */
981 		if (dmamap->dm_nsegs > sc->sc_txfree) {
982 			/*
983 			 * Not enough free descriptors to transmit this
984 			 * packet.  We haven't committed to anything yet,
985 			 * so just unload the DMA map, put the packet
986 			 * back on the queue, and punt.  Notify the upper
987 			 * layer that there are no more slots left.
988 			 *
989 			 * XXX We could allocate an mbuf and copy, but
990 			 * XXX it is worth it?
991 			 */
992 			ifp->if_flags |= IFF_OACTIVE;
993 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
994 			if (m != NULL)
995 				m_freem(m);
996 			break;
997 		}
998 
999 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1000 		if (m != NULL) {
1001 			m_freem(m0);
1002 			m0 = m;
1003 		}
1004 
1005 		/*
1006 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1007 		 */
1008 
1009 		/* Sync the DMA map. */
1010 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1011 		    BUS_DMASYNC_PREWRITE);
1012 
1013 		/*
1014 		 * Initialize the transmit descriptors.
1015 		 */
1016 		for (nexttx = sc->sc_txnext, seg = 0;
1017 		     seg < dmamap->dm_nsegs;
1018 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
1019 			uint64_t flags;
1020 
1021 			/*
1022 			 * If this is the first descriptor we're
1023 			 * enqueueing, set the start of packet flag,
1024 			 * and the checksum stuff if we want the hardware
1025 			 * to do it.
1026 			 */
1027 			sc->sc_txdescs[nexttx].gd_addr =
1028 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1029 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1030 			if (nexttx == firsttx) {
1031 				flags |= GEM_TD_START_OF_PACKET;
1032 				if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1033 					sc->sc_txwin = 0;
1034 					flags |= GEM_TD_INTERRUPT_ME;
1035 				}
1036 			}
1037 			if (seg == dmamap->dm_nsegs - 1) {
1038 				flags |= GEM_TD_END_OF_PACKET;
1039 			}
1040 			sc->sc_txdescs[nexttx].gd_flags =
1041 				GEM_DMA_WRITE(sc, flags);
1042 			lasttx = nexttx;
1043 		}
1044 
1045 #ifdef GEM_DEBUG
1046 		if (ifp->if_flags & IFF_DEBUG) {
1047 			printf("     gem_start %p transmit chain:\n", txs);
1048 			for (seg = sc->sc_txnext;; seg = GEM_NEXTTX(seg)) {
1049 				printf("descriptor %d:\t", seg);
1050 				printf("gd_flags:   0x%016llx\t", (long long)
1051 					GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_flags));
1052 				printf("gd_addr: 0x%016llx\n", (long long)
1053 					GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_addr));
1054 				if (seg == lasttx)
1055 					break;
1056 			}
1057 		}
1058 #endif
1059 
1060 		/* Sync the descriptors we're using. */
1061 		GEM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1062 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1063 
1064 		/*
1065 		 * Store a pointer to the packet so we can free it later,
1066 		 * and remember what txdirty will be once the packet is
1067 		 * done.
1068 		 */
1069 		txs->txs_mbuf = m0;
1070 		txs->txs_firstdesc = sc->sc_txnext;
1071 		txs->txs_lastdesc = lasttx;
1072 		txs->txs_ndescs = dmamap->dm_nsegs;
1073 
1074 		/* Advance the tx pointer. */
1075 		sc->sc_txfree -= dmamap->dm_nsegs;
1076 		sc->sc_txnext = nexttx;
1077 
1078 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
1079 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1080 
1081 		last_txs = txs;
1082 
1083 #if NBPFILTER > 0
1084 		/*
1085 		 * Pass the packet to any BPF listeners.
1086 		 */
1087 		if (ifp->if_bpf)
1088 			bpf_mtap(ifp->if_bpf, m0);
1089 #endif /* NBPFILTER > 0 */
1090 	}
1091 
1092 	if (txs == NULL || sc->sc_txfree == 0) {
1093 		/* No more slots left; notify upper layer. */
1094 		ifp->if_flags |= IFF_OACTIVE;
1095 	}
1096 
1097 	if (sc->sc_txfree != ofree) {
1098 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1099 		    sc->sc_dev.dv_xname, lasttx, firsttx));
1100 		/*
1101 		 * The entire packet chain is set up.
1102 		 * Kick the transmitter.
1103 		 */
1104 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1105 			sc->sc_dev.dv_xname, nexttx));
1106 		bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK,
1107 			sc->sc_txnext);
1108 
1109 		/* Set a watchdog timer in case the chip flakes out. */
1110 		ifp->if_timer = 5;
1111 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1112 			sc->sc_dev.dv_xname, ifp->if_timer));
1113 	}
1114 }
1115 
1116 /*
1117  * Transmit interrupt.
1118  */
1119 int
1120 gem_tint(sc)
1121 	struct gem_softc *sc;
1122 {
1123 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1124 	bus_space_tag_t t = sc->sc_bustag;
1125 	bus_space_handle_t mac = sc->sc_h;
1126 	struct gem_txsoft *txs;
1127 	int txlast;
1128 	int progress = 0;
1129 
1130 
1131 	DPRINTF(sc, ("%s: gem_tint\n", sc->sc_dev.dv_xname));
1132 
1133 	/*
1134 	 * Unload collision counters
1135 	 */
1136 	ifp->if_collisions +=
1137 		bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1138 		bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
1139 		bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1140 		bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1141 
1142 	/*
1143 	 * then clear the hardware counters.
1144 	 */
1145 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1146 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1147 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1148 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1149 
1150 	/*
1151 	 * Go through our Tx list and free mbufs for those
1152 	 * frames that have been transmitted.
1153 	 */
1154 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1155 		GEM_CDTXSYNC(sc, txs->txs_lastdesc,
1156 		    txs->txs_ndescs,
1157 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1158 
1159 #ifdef GEM_DEBUG
1160 		if (ifp->if_flags & IFF_DEBUG) {
1161 			int i;
1162 			printf("    txsoft %p transmit chain:\n", txs);
1163 			for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
1164 				printf("descriptor %d: ", i);
1165 				printf("gd_flags: 0x%016llx\t", (long long)
1166 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1167 				printf("gd_addr: 0x%016llx\n", (long long)
1168 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1169 				if (i == txs->txs_lastdesc)
1170 					break;
1171 			}
1172 		}
1173 #endif
1174 
1175 		/*
1176 		 * In theory, we could harveast some descriptors before
1177 		 * the ring is empty, but that's a bit complicated.
1178 		 *
1179 		 * GEM_TX_COMPLETION points to the last descriptor
1180 		 * processed +1.
1181 		 */
1182 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1183 		DPRINTF(sc,
1184 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1185 				txs->txs_lastdesc, txlast));
1186 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1187 			if ((txlast >= txs->txs_firstdesc) &&
1188 				(txlast <= txs->txs_lastdesc))
1189 				break;
1190 		} else {
1191 			/* Ick -- this command wraps */
1192 			if ((txlast >= txs->txs_firstdesc) ||
1193 				(txlast <= txs->txs_lastdesc))
1194 				break;
1195 		}
1196 
1197 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1198 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1199 
1200 		sc->sc_txfree += txs->txs_ndescs;
1201 
1202 		if (txs->txs_mbuf == NULL) {
1203 #ifdef DIAGNOSTIC
1204 				panic("gem_txintr: null mbuf");
1205 #endif
1206 		}
1207 
1208 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1209 		    0, txs->txs_dmamap->dm_mapsize,
1210 		    BUS_DMASYNC_POSTWRITE);
1211 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1212 		m_freem(txs->txs_mbuf);
1213 		txs->txs_mbuf = NULL;
1214 
1215 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1216 
1217 		ifp->if_opackets++;
1218 		progress = 1;
1219 	}
1220 
1221 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1222 		"GEM_TX_DATA_PTR %llx "
1223 		"GEM_TX_COMPLETION %x\n",
1224 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
1225 		((long long) bus_space_read_4(sc->sc_bustag, sc->sc_h,
1226 			GEM_TX_DATA_PTR_HI) << 32) |
1227 			     bus_space_read_4(sc->sc_bustag, sc->sc_h,
1228 			GEM_TX_DATA_PTR_LO),
1229 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION)));
1230 
1231 	if (progress) {
1232 		if (sc->sc_txfree == GEM_NTXDESC - 1)
1233 			sc->sc_txwin = 0;
1234 
1235 		ifp->if_flags &= ~IFF_OACTIVE;
1236 		gem_start(ifp);
1237 
1238 		if (SIMPLEQ_FIRST(&sc->sc_txdirtyq) == NULL)
1239 			ifp->if_timer = 0;
1240 	}
1241 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1242 		sc->sc_dev.dv_xname, ifp->if_timer));
1243 
1244 	return (1);
1245 }
1246 
1247 /*
1248  * Receive interrupt.
1249  */
1250 int
1251 gem_rint(sc)
1252 	struct gem_softc *sc;
1253 {
1254 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1255 	bus_space_tag_t t = sc->sc_bustag;
1256 	bus_space_handle_t h = sc->sc_h;
1257 	struct ether_header *eh;
1258 	struct gem_rxsoft *rxs;
1259 	struct mbuf *m;
1260 	u_int64_t rxstat;
1261 	int i, len;
1262 
1263 	DPRINTF(sc, ("%s: gem_rint\n", sc->sc_dev.dv_xname));
1264 	/*
1265 	 * XXXX Read the lastrx only once at the top for speed.
1266 	 */
1267 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1268 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1269 	for (i = sc->sc_rxptr; i != bus_space_read_4(t, h, GEM_RX_COMPLETION);
1270 	     i = GEM_NEXTRX(i)) {
1271 		rxs = &sc->sc_rxsoft[i];
1272 
1273 		GEM_CDRXSYNC(sc, i,
1274 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1275 
1276 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1277 
1278 		if (rxstat & GEM_RD_OWN) {
1279 			printf("gem_rint: completed descriptor "
1280 				"still owned %d\n", i);
1281 			/*
1282 			 * We have processed all of the receive buffers.
1283 			 */
1284 			break;
1285 		}
1286 
1287 		if (rxstat & GEM_RD_BAD_CRC) {
1288 			printf("%s: receive error: CRC error\n",
1289 				sc->sc_dev.dv_xname);
1290 			GEM_INIT_RXDESC(sc, i);
1291 			continue;
1292 		}
1293 
1294 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1295 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1296 #ifdef GEM_DEBUG
1297 		if (ifp->if_flags & IFF_DEBUG) {
1298 			printf("    rxsoft %p descriptor %d: ", rxs, i);
1299 			printf("gd_flags: 0x%016llx\t", (long long)
1300 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1301 			printf("gd_addr: 0x%016llx\n", (long long)
1302 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1303 		}
1304 #endif
1305 
1306 		/*
1307 		 * No errors; receive the packet.  Note the Gem
1308 		 * includes the CRC with every packet.
1309 		 */
1310 		len = GEM_RD_BUFLEN(rxstat);
1311 
1312 		/*
1313 		 * Allocate a new mbuf cluster.  If that fails, we are
1314 		 * out of memory, and must drop the packet and recycle
1315 		 * the buffer that's already attached to this descriptor.
1316 		 */
1317 		m = rxs->rxs_mbuf;
1318 		if (gem_add_rxbuf(sc, i) != 0) {
1319 			ifp->if_ierrors++;
1320 			GEM_INIT_RXDESC(sc, i);
1321 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1322 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1323 			continue;
1324 		}
1325 		m->m_data += 2; /* We're already off by two */
1326 
1327 		ifp->if_ipackets++;
1328 		eh = mtod(m, struct ether_header *);
1329 		m->m_flags |= M_HASFCS;
1330 		m->m_pkthdr.rcvif = ifp;
1331 		m->m_pkthdr.len = m->m_len = len;
1332 
1333 #if NBPFILTER > 0
1334 		/*
1335 		 * Pass this up to any BPF listeners, but only
1336 		 * pass it up the stack if its for us.
1337 		 */
1338 		if (ifp->if_bpf)
1339 			bpf_mtap(ifp->if_bpf, m);
1340 #endif /* NPBFILTER > 0 */
1341 
1342 		/* Pass it on. */
1343 		(*ifp->if_input)(ifp, m);
1344 	}
1345 
1346 	/* Update the receive pointer. */
1347 	sc->sc_rxptr = i;
1348 	bus_space_write_4(t, h, GEM_RX_KICK, i);
1349 
1350 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1351 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1352 
1353 	return (1);
1354 }
1355 
1356 
1357 /*
1358  * gem_add_rxbuf:
1359  *
1360  *	Add a receive buffer to the indicated descriptor.
1361  */
1362 int
1363 gem_add_rxbuf(struct gem_softc *sc, int idx)
1364 {
1365 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1366 	struct mbuf *m;
1367 	int error;
1368 
1369 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1370 	if (m == NULL)
1371 		return (ENOBUFS);
1372 
1373 	MCLGET(m, M_DONTWAIT);
1374 	if ((m->m_flags & M_EXT) == 0) {
1375 		m_freem(m);
1376 		return (ENOBUFS);
1377 	}
1378 
1379 #ifdef GEM_DEBUG
1380 /* bzero the packet to check dma */
1381 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
1382 #endif
1383 
1384 	if (rxs->rxs_mbuf != NULL)
1385 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
1386 
1387 	rxs->rxs_mbuf = m;
1388 
1389 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
1390 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1391 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1392 	if (error) {
1393 		printf("%s: can't load rx DMA map %d, error = %d\n",
1394 		    sc->sc_dev.dv_xname, idx, error);
1395 		panic("gem_add_rxbuf");	/* XXX */
1396 	}
1397 
1398 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1399 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1400 
1401 	GEM_INIT_RXDESC(sc, idx);
1402 
1403 	return (0);
1404 }
1405 
1406 
1407 int
1408 gem_eint(sc, status)
1409 	struct gem_softc *sc;
1410 	u_int status;
1411 {
1412 	char bits[128];
1413 
1414 	if ((status & GEM_INTR_MIF) != 0) {
1415 		printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
1416 		return (1);
1417 	}
1418 
1419 	printf("%s: status=%s\n", sc->sc_dev.dv_xname,
1420 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
1421 	return (1);
1422 }
1423 
1424 
1425 int
1426 gem_intr(v)
1427 	void *v;
1428 {
1429 	struct gem_softc *sc = (struct gem_softc *)v;
1430 	bus_space_tag_t t = sc->sc_bustag;
1431 	bus_space_handle_t seb = sc->sc_h;
1432 	u_int32_t status;
1433 	int r = 0;
1434 #ifdef GEM_DEBUG
1435 	char bits[128];
1436 #endif
1437 
1438 	status = bus_space_read_4(t, seb, GEM_STATUS);
1439 	DPRINTF(sc, ("%s: gem_intr: cplt %xstatus %s\n",
1440 		sc->sc_dev.dv_xname, (status>>19),
1441 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
1442 
1443 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
1444 		r |= gem_eint(sc, status);
1445 
1446 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0)
1447 		r |= gem_tint(sc);
1448 
1449 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0)
1450 		r |= gem_rint(sc);
1451 
1452 	/* We should eventually do more than just print out error stats. */
1453 	if (status & GEM_INTR_TX_MAC) {
1454 		int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
1455 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
1456 			printf("%s: MAC tx fault, status %x\n",
1457 			    sc->sc_dev.dv_xname, txstat);
1458 	}
1459 	if (status & GEM_INTR_RX_MAC) {
1460 		int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
1461 		if (rxstat & ~GEM_MAC_RX_DONE)
1462 			printf("%s: MAC rx fault, status %x\n",
1463 			    sc->sc_dev.dv_xname, rxstat);
1464 	}
1465 	return (r);
1466 }
1467 
1468 
1469 void
1470 gem_watchdog(ifp)
1471 	struct ifnet *ifp;
1472 {
1473 	struct gem_softc *sc = ifp->if_softc;
1474 
1475 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
1476 		"GEM_MAC_RX_CONFIG %x\n",
1477 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
1478 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
1479 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG)));
1480 
1481 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1482 	++ifp->if_oerrors;
1483 
1484 	/* Try to get more packets going. */
1485 	gem_start(ifp);
1486 }
1487 
1488 /*
1489  * Initialize the MII Management Interface
1490  */
1491 void
1492 gem_mifinit(sc)
1493 	struct gem_softc *sc;
1494 {
1495 	bus_space_tag_t t = sc->sc_bustag;
1496 	bus_space_handle_t mif = sc->sc_h;
1497 
1498 	/* Configure the MIF in frame mode */
1499 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1500 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
1501 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
1502 }
1503 
1504 /*
1505  * MII interface
1506  *
1507  * The GEM MII interface supports at least three different operating modes:
1508  *
1509  * Bitbang mode is implemented using data, clock and output enable registers.
1510  *
1511  * Frame mode is implemented by loading a complete frame into the frame
1512  * register and polling the valid bit for completion.
1513  *
1514  * Polling mode uses the frame register but completion is indicated by
1515  * an interrupt.
1516  *
1517  */
1518 static int
1519 gem_mii_readreg(self, phy, reg)
1520 	struct device *self;
1521 	int phy, reg;
1522 {
1523 	struct gem_softc *sc = (void *)self;
1524 	bus_space_tag_t t = sc->sc_bustag;
1525 	bus_space_handle_t mif = sc->sc_h;
1526 	int n;
1527 	u_int32_t v;
1528 
1529 #ifdef GEM_DEBUG1
1530 	if (sc->sc_debug)
1531 		printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
1532 #endif
1533 
1534 #if 0
1535 	/* Select the desired PHY in the MIF configuration register */
1536 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1537 	/* Clear PHY select bit */
1538 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
1539 	if (phy == GEM_PHYAD_EXTERNAL)
1540 		/* Set PHY select bit to get at external device */
1541 		v |= GEM_MIF_CONFIG_PHY_SEL;
1542 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1543 #endif
1544 
1545 	/* Construct the frame command */
1546 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
1547 		GEM_MIF_FRAME_READ;
1548 
1549 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1550 	for (n = 0; n < 100; n++) {
1551 		DELAY(1);
1552 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1553 		if (v & GEM_MIF_FRAME_TA0)
1554 			return (v & GEM_MIF_FRAME_DATA);
1555 	}
1556 
1557 	printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1558 	return (0);
1559 }
1560 
1561 static void
1562 gem_mii_writereg(self, phy, reg, val)
1563 	struct device *self;
1564 	int phy, reg, val;
1565 {
1566 	struct gem_softc *sc = (void *)self;
1567 	bus_space_tag_t t = sc->sc_bustag;
1568 	bus_space_handle_t mif = sc->sc_h;
1569 	int n;
1570 	u_int32_t v;
1571 
1572 #ifdef GEM_DEBUG1
1573 	if (sc->sc_debug)
1574 		printf("gem_mii_writereg: phy %d reg %d val %x\n",
1575 			phy, reg, val);
1576 #endif
1577 
1578 #if 0
1579 	/* Select the desired PHY in the MIF configuration register */
1580 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1581 	/* Clear PHY select bit */
1582 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
1583 	if (phy == GEM_PHYAD_EXTERNAL)
1584 		/* Set PHY select bit to get at external device */
1585 		v |= GEM_MIF_CONFIG_PHY_SEL;
1586 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1587 #endif
1588 	/* Construct the frame command */
1589 	v = GEM_MIF_FRAME_WRITE			|
1590 	    (phy << GEM_MIF_PHY_SHIFT)		|
1591 	    (reg << GEM_MIF_REG_SHIFT)		|
1592 	    (val & GEM_MIF_FRAME_DATA);
1593 
1594 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1595 	for (n = 0; n < 100; n++) {
1596 		DELAY(1);
1597 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1598 		if (v & GEM_MIF_FRAME_TA0)
1599 			return;
1600 	}
1601 
1602 	printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1603 }
1604 
1605 static void
1606 gem_mii_statchg(dev)
1607 	struct device *dev;
1608 {
1609 	struct gem_softc *sc = (void *)dev;
1610 #ifdef GEM_DEBUG
1611 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1612 #endif
1613 	bus_space_tag_t t = sc->sc_bustag;
1614 	bus_space_handle_t mac = sc->sc_h;
1615 	u_int32_t v;
1616 
1617 #ifdef GEM_DEBUG
1618 	if (sc->sc_debug)
1619 		printf("gem_mii_statchg: status change: phy = %d\n",
1620 			sc->sc_phys[instance];);
1621 #endif
1622 
1623 
1624 	/* Set tx full duplex options */
1625 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
1626 	delay(10000); /* reg must be cleared and delay before changing. */
1627 	v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
1628 		GEM_MAC_TX_ENABLE;
1629 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1630 		v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
1631 	}
1632 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
1633 
1634 	/* XIF Configuration */
1635  /* We should really calculate all this rather than rely on defaults */
1636 	v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
1637 	v = GEM_MAC_XIF_LINK_LED;
1638 	v |= GEM_MAC_XIF_TX_MII_ENA;
1639 	/* If an external transceiver is connected, enable its MII drivers */
1640 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
1641 	if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
1642 		/* External MII needs echo disable if half duplex. */
1643 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1644 			/* turn on full duplex LED */
1645 			v |= GEM_MAC_XIF_FDPLX_LED;
1646  			else
1647 	 			/* half duplex -- disable echo */
1648 		 		v |= GEM_MAC_XIF_ECHO_DISABL;
1649 		if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
1650 			v |= GEM_MAC_XIF_GMII_MODE;
1651 		else
1652 			v &= ~GEM_MAC_XIF_GMII_MODE;
1653 	} else
1654 		/* Internal MII needs buf enable */
1655 		v |= GEM_MAC_XIF_MII_BUF_ENA;
1656 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
1657 }
1658 
1659 int
1660 gem_mediachange(ifp)
1661 	struct ifnet *ifp;
1662 {
1663 	struct gem_softc *sc = ifp->if_softc;
1664 
1665 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1666 		return (EINVAL);
1667 
1668 	return (mii_mediachg(&sc->sc_mii));
1669 }
1670 
1671 void
1672 gem_mediastatus(ifp, ifmr)
1673 	struct ifnet *ifp;
1674 	struct ifmediareq *ifmr;
1675 {
1676 	struct gem_softc *sc = ifp->if_softc;
1677 
1678 	if ((ifp->if_flags & IFF_UP) == 0)
1679 		return;
1680 
1681 	mii_pollstat(&sc->sc_mii);
1682 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1683 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1684 }
1685 
1686 int gem_ioctldebug = 0;
1687 /*
1688  * Process an ioctl request.
1689  */
1690 int
1691 gem_ioctl(ifp, cmd, data)
1692 	struct ifnet *ifp;
1693 	u_long cmd;
1694 	caddr_t data;
1695 {
1696 	struct gem_softc *sc = ifp->if_softc;
1697 	struct ifreq *ifr = (struct ifreq *)data;
1698 	int s, error = 0;
1699 
1700 
1701 	switch (cmd) {
1702 	case SIOCGIFMEDIA:
1703 	case SIOCSIFMEDIA:
1704 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1705 		break;
1706 
1707 	default:
1708 		error = ether_ioctl(ifp, cmd, data);
1709 		if (error == ENETRESET) {
1710 			/*
1711 			 * Multicast list has changed; set the hardware filter
1712 			 * accordingly.
1713 			 */
1714 if (gem_ioctldebug) printf("reset1\n");
1715 			gem_init(ifp);
1716 			delay(50000);
1717 			error = 0;
1718 		}
1719 		break;
1720 	}
1721 
1722 	/* Try to get things going again */
1723 	if (ifp->if_flags & IFF_UP) {
1724 if (gem_ioctldebug) printf("start\n");
1725 		gem_start(ifp);
1726 	}
1727 	splx(s);
1728 	return (error);
1729 }
1730 
1731 
1732 void
1733 gem_shutdown(arg)
1734 	void *arg;
1735 {
1736 	struct gem_softc *sc = (struct gem_softc *)arg;
1737 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1738 
1739 	gem_stop(ifp, 1);
1740 }
1741 
1742 /*
1743  * Set up the logical address filter.
1744  */
1745 void
1746 gem_setladrf(sc)
1747 	struct gem_softc *sc;
1748 {
1749 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1750 	struct ether_multi *enm;
1751 	struct ether_multistep step;
1752 	struct ethercom *ec = &sc->sc_ethercom;
1753 	bus_space_tag_t t = sc->sc_bustag;
1754 	bus_space_handle_t h = sc->sc_h;
1755 	u_char *cp;
1756 	u_int32_t crc;
1757 	u_int32_t hash[16];
1758 	u_int32_t v;
1759 	int len;
1760 
1761 	/* Clear hash table */
1762 	memset(hash, 0, sizeof(hash));
1763 
1764 	/* Get current RX configuration */
1765 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1766 
1767 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
1768 		/* Turn on promiscuous mode; turn off the hash filter */
1769 		v |= GEM_MAC_RX_PROMISCUOUS;
1770 		v &= ~GEM_MAC_RX_HASH_FILTER;
1771 		ifp->if_flags |= IFF_ALLMULTI;
1772 		goto chipit;
1773 	}
1774 
1775 	/* Turn off promiscuous mode; turn on the hash filter */
1776 	v &= ~GEM_MAC_RX_PROMISCUOUS;
1777 	v |= GEM_MAC_RX_HASH_FILTER;
1778 
1779 	/*
1780 	 * Set up multicast address filter by passing all multicast addresses
1781 	 * through a crc generator, and then using the high order 6 bits as an
1782 	 * index into the 256 bit logical address filter.  The high order bit
1783 	 * selects the word, while the rest of the bits select the bit within
1784 	 * the word.
1785 	 */
1786 
1787 	ETHER_FIRST_MULTI(step, ec, enm);
1788 	while (enm != NULL) {
1789 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1790 			/*
1791 			 * We must listen to a range of multicast addresses.
1792 			 * For now, just accept all multicasts, rather than
1793 			 * trying to set only those filter bits needed to match
1794 			 * the range.  (At this time, the only use of address
1795 			 * ranges is for IP multicast routing, for which the
1796 			 * range is big enough to require all bits set.)
1797 			 */
1798 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1799 			ifp->if_flags |= IFF_ALLMULTI;
1800 			goto chipit;
1801 		}
1802 
1803 		cp = enm->enm_addrlo;
1804 		crc = 0xffffffff;
1805 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1806 			int octet = *cp++;
1807 			int i;
1808 
1809 #define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
1810 			for (i = 0; i < 8; i++) {
1811 				if ((crc & 1) ^ (octet & 1)) {
1812 					crc >>= 1;
1813 					crc ^= MC_POLY_LE;
1814 				} else {
1815 					crc >>= 1;
1816 				}
1817 				octet >>= 1;
1818 			}
1819 		}
1820 		/* Just want the 8 most significant bits. */
1821 		crc >>= 24;
1822 
1823 		/* Set the corresponding bit in the filter. */
1824 		hash[crc >> 4] |= 1 << (crc & 0xf);
1825 
1826 		ETHER_NEXT_MULTI(step, enm);
1827 	}
1828 
1829 	ifp->if_flags &= ~IFF_ALLMULTI;
1830 
1831 chipit:
1832 	/* Now load the hash table into the chip */
1833 	bus_space_write_4(t, h, GEM_MAC_HASH0, hash[0]);
1834 	bus_space_write_4(t, h, GEM_MAC_HASH1, hash[1]);
1835 	bus_space_write_4(t, h, GEM_MAC_HASH2, hash[2]);
1836 	bus_space_write_4(t, h, GEM_MAC_HASH3, hash[3]);
1837 	bus_space_write_4(t, h, GEM_MAC_HASH4, hash[4]);
1838 	bus_space_write_4(t, h, GEM_MAC_HASH5, hash[5]);
1839 	bus_space_write_4(t, h, GEM_MAC_HASH6, hash[6]);
1840 	bus_space_write_4(t, h, GEM_MAC_HASH7, hash[7]);
1841 	bus_space_write_4(t, h, GEM_MAC_HASH8, hash[8]);
1842 	bus_space_write_4(t, h, GEM_MAC_HASH9, hash[9]);
1843 	bus_space_write_4(t, h, GEM_MAC_HASH10, hash[10]);
1844 	bus_space_write_4(t, h, GEM_MAC_HASH11, hash[11]);
1845 	bus_space_write_4(t, h, GEM_MAC_HASH12, hash[12]);
1846 	bus_space_write_4(t, h, GEM_MAC_HASH13, hash[13]);
1847 	bus_space_write_4(t, h, GEM_MAC_HASH14, hash[14]);
1848 	bus_space_write_4(t, h, GEM_MAC_HASH15, hash[15]);
1849 
1850 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1851 }
1852 
1853 #if notyet
1854 
1855 /*
1856  * gem_power:
1857  *
1858  *	Power management (suspend/resume) hook.
1859  */
1860 void
1861 gem_power(why, arg)
1862 	int why;
1863 	void *arg;
1864 {
1865 	struct gem_softc *sc = arg;
1866 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1867 	int s;
1868 
1869 	s = splnet();
1870 	switch (why) {
1871 	case PWR_SUSPEND:
1872 	case PWR_STANDBY:
1873 		gem_stop(ifp, 1);
1874 		if (sc->sc_power != NULL)
1875 			(*sc->sc_power)(sc, why);
1876 		break;
1877 	case PWR_RESUME:
1878 		if (ifp->if_flags & IFF_UP) {
1879 			if (sc->sc_power != NULL)
1880 				(*sc->sc_power)(sc, why);
1881 			gem_init(ifp);
1882 		}
1883 		break;
1884 	case PWR_SOFTSUSPEND:
1885 	case PWR_SOFTSTANDBY:
1886 	case PWR_SOFTRESUME:
1887 		break;
1888 	}
1889 	splx(s);
1890 }
1891 #endif
1892