xref: /netbsd-src/sys/dev/ic/elinkxl.c (revision ce2c90c7c172d95d2402a5b3d96d8f8e6d138a21)
1 /*	$NetBSD: elinkxl.c,v 1.89 2006/09/24 03:53:08 jmcneill Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Frank van der Linden.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: elinkxl.c,v 1.89 2006/09/24 03:53:08 jmcneill Exp $");
41 
42 #include "bpfilter.h"
43 #include "rnd.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/callout.h>
48 #include <sys/kernel.h>
49 #include <sys/mbuf.h>
50 #include <sys/socket.h>
51 #include <sys/ioctl.h>
52 #include <sys/errno.h>
53 #include <sys/syslog.h>
54 #include <sys/select.h>
55 #include <sys/device.h>
56 #if NRND > 0
57 #include <sys/rnd.h>
58 #endif
59 
60 #include <uvm/uvm_extern.h>
61 
62 #include <net/if.h>
63 #include <net/if_dl.h>
64 #include <net/if_ether.h>
65 #include <net/if_media.h>
66 
67 #if NBPFILTER > 0
68 #include <net/bpf.h>
69 #include <net/bpfdesc.h>
70 #endif
71 
72 #include <machine/cpu.h>
73 #include <machine/bus.h>
74 #include <machine/intr.h>
75 #include <machine/endian.h>
76 
77 #include <dev/mii/miivar.h>
78 #include <dev/mii/mii.h>
79 #include <dev/mii/mii_bitbang.h>
80 
81 #include <dev/ic/elink3reg.h>
82 /* #include <dev/ic/elink3var.h> */
83 #include <dev/ic/elinkxlreg.h>
84 #include <dev/ic/elinkxlvar.h>
85 
86 #ifdef DEBUG
87 int exdebug = 0;
88 #endif
89 
90 /* ifmedia callbacks */
91 int ex_media_chg(struct ifnet *ifp);
92 void ex_media_stat(struct ifnet *ifp, struct ifmediareq *req);
93 
94 void ex_probe_media(struct ex_softc *);
95 void ex_set_filter(struct ex_softc *);
96 void ex_set_media(struct ex_softc *);
97 void ex_set_xcvr(struct ex_softc *, u_int16_t);
98 struct mbuf *ex_get(struct ex_softc *, int);
99 u_int16_t ex_read_eeprom(struct ex_softc *, int);
100 int ex_init(struct ifnet *);
101 void ex_read(struct ex_softc *);
102 void ex_reset(struct ex_softc *);
103 void ex_set_mc(struct ex_softc *);
104 void ex_getstats(struct ex_softc *);
105 void ex_printstats(struct ex_softc *);
106 void ex_tick(void *);
107 
108 void ex_power(int, void *);
109 
110 static int ex_eeprom_busy(struct ex_softc *);
111 static int ex_add_rxbuf(struct ex_softc *, struct ex_rxdesc *);
112 static void ex_init_txdescs(struct ex_softc *);
113 
114 static void ex_shutdown(void *);
115 static void ex_start(struct ifnet *);
116 static void ex_txstat(struct ex_softc *);
117 
118 int ex_mii_readreg(struct device *, int, int);
119 void ex_mii_writereg(struct device *, int, int, int);
120 void ex_mii_statchg(struct device *);
121 
122 void ex_probemedia(struct ex_softc *);
123 
124 /*
125  * Structure to map media-present bits in boards to ifmedia codes and
126  * printable media names.  Used for table-driven ifmedia initialization.
127  */
128 struct ex_media {
129 	int	exm_mpbit;		/* media present bit */
130 	const char *exm_name;		/* name of medium */
131 	int	exm_ifmedia;		/* ifmedia word for medium */
132 	int	exm_epmedia;		/* ELINKMEDIA_* constant */
133 };
134 
135 /*
136  * Media table for 3c90x chips.  Note that chips with MII have no
137  * `native' media.
138  */
139 struct ex_media ex_native_media[] = {
140 	{ ELINK_PCI_10BASE_T,	"10baseT",	IFM_ETHER|IFM_10_T,
141 	  ELINKMEDIA_10BASE_T },
142 	{ ELINK_PCI_10BASE_T,	"10baseT-FDX",	IFM_ETHER|IFM_10_T|IFM_FDX,
143 	  ELINKMEDIA_10BASE_T },
144 	{ ELINK_PCI_AUI,	"10base5",	IFM_ETHER|IFM_10_5,
145 	  ELINKMEDIA_AUI },
146 	{ ELINK_PCI_BNC,	"10base2",	IFM_ETHER|IFM_10_2,
147 	  ELINKMEDIA_10BASE_2 },
148 	{ ELINK_PCI_100BASE_TX,	"100baseTX",	IFM_ETHER|IFM_100_TX,
149 	  ELINKMEDIA_100BASE_TX },
150 	{ ELINK_PCI_100BASE_TX,	"100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
151 	  ELINKMEDIA_100BASE_TX },
152 	{ ELINK_PCI_100BASE_FX,	"100baseFX",	IFM_ETHER|IFM_100_FX,
153 	  ELINKMEDIA_100BASE_FX },
154 	{ ELINK_PCI_100BASE_MII,"manual",	IFM_ETHER|IFM_MANUAL,
155 	  ELINKMEDIA_MII },
156 	{ ELINK_PCI_100BASE_T4,	"100baseT4",	IFM_ETHER|IFM_100_T4,
157 	  ELINKMEDIA_100BASE_T4 },
158 	{ 0,			NULL,		0,
159 	  0 },
160 };
161 
162 /*
163  * MII bit-bang glue.
164  */
165 u_int32_t ex_mii_bitbang_read(struct device *);
166 void ex_mii_bitbang_write(struct device *, u_int32_t);
167 
168 const struct mii_bitbang_ops ex_mii_bitbang_ops = {
169 	ex_mii_bitbang_read,
170 	ex_mii_bitbang_write,
171 	{
172 		ELINK_PHY_DATA,		/* MII_BIT_MDO */
173 		ELINK_PHY_DATA,		/* MII_BIT_MDI */
174 		ELINK_PHY_CLK,		/* MII_BIT_MDC */
175 		ELINK_PHY_DIR,		/* MII_BIT_DIR_HOST_PHY */
176 		0,			/* MII_BIT_DIR_PHY_HOST */
177 	}
178 };
179 
180 /*
181  * Back-end attach and configure.
182  */
183 void
184 ex_config(sc)
185 	struct ex_softc *sc;
186 {
187 	struct ifnet *ifp;
188 	u_int16_t val;
189 	u_int8_t macaddr[ETHER_ADDR_LEN] = {0};
190 	bus_space_tag_t iot = sc->sc_iot;
191 	bus_space_handle_t ioh = sc->sc_ioh;
192 	int i, error, attach_stage;
193 
194 	callout_init(&sc->ex_mii_callout);
195 
196 	ex_reset(sc);
197 
198 	val = ex_read_eeprom(sc, EEPROM_OEM_ADDR0);
199 	macaddr[0] = val >> 8;
200 	macaddr[1] = val & 0xff;
201 	val = ex_read_eeprom(sc, EEPROM_OEM_ADDR1);
202 	macaddr[2] = val >> 8;
203 	macaddr[3] = val & 0xff;
204 	val = ex_read_eeprom(sc, EEPROM_OEM_ADDR2);
205 	macaddr[4] = val >> 8;
206 	macaddr[5] = val & 0xff;
207 
208 	aprint_normal("%s: MAC address %s\n", sc->sc_dev.dv_xname,
209 	    ether_sprintf(macaddr));
210 
211 	if (sc->ex_conf & (EX_CONF_INV_LED_POLARITY|EX_CONF_PHY_POWER)) {
212 		GO_WINDOW(2);
213 		val = bus_space_read_2(iot, ioh, ELINK_W2_RESET_OPTIONS);
214 		if (sc->ex_conf & EX_CONF_INV_LED_POLARITY)
215 			val |= ELINK_RESET_OPT_LEDPOLAR;
216 		if (sc->ex_conf & EX_CONF_PHY_POWER)
217 			val |= ELINK_RESET_OPT_PHYPOWER;
218 		bus_space_write_2(iot, ioh, ELINK_W2_RESET_OPTIONS, val);
219 	}
220 	if (sc->ex_conf & EX_CONF_NO_XCVR_PWR) {
221 		GO_WINDOW(0);
222 		bus_space_write_2(iot, ioh, ELINK_W0_MFG_ID,
223 		    EX_XCVR_PWR_MAGICBITS);
224 	}
225 
226 	attach_stage = 0;
227 
228 	/*
229 	 * Allocate the upload descriptors, and create and load the DMA
230 	 * map for them.
231 	 */
232 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
233 	    EX_NUPD * sizeof (struct ex_upd), PAGE_SIZE, 0, &sc->sc_useg, 1,
234             &sc->sc_urseg, BUS_DMA_NOWAIT)) != 0) {
235 		aprint_error(
236 		    "%s: can't allocate upload descriptors, error = %d\n",
237 		    sc->sc_dev.dv_xname, error);
238 		goto fail;
239 	}
240 
241 	attach_stage = 1;
242 
243 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg,
244 	    EX_NUPD * sizeof (struct ex_upd), (caddr_t *)&sc->sc_upd,
245 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
246 		aprint_error("%s: can't map upload descriptors, error = %d\n",
247 		    sc->sc_dev.dv_xname, error);
248 		goto fail;
249 	}
250 
251 	attach_stage = 2;
252 
253 	if ((error = bus_dmamap_create(sc->sc_dmat,
254 	    EX_NUPD * sizeof (struct ex_upd), 1,
255 	    EX_NUPD * sizeof (struct ex_upd), 0, BUS_DMA_NOWAIT,
256 	    &sc->sc_upd_dmamap)) != 0) {
257 		aprint_error(
258 		    "%s: can't create upload desc. DMA map, error = %d\n",
259 		    sc->sc_dev.dv_xname, error);
260 		goto fail;
261 	}
262 
263 	attach_stage = 3;
264 
265 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_upd_dmamap,
266 	    sc->sc_upd, EX_NUPD * sizeof (struct ex_upd), NULL,
267 	    BUS_DMA_NOWAIT)) != 0) {
268 		aprint_error(
269 		    "%s: can't load upload desc. DMA map, error = %d\n",
270 		    sc->sc_dev.dv_xname, error);
271 		goto fail;
272 	}
273 
274 	attach_stage = 4;
275 
276 	/*
277 	 * Allocate the download descriptors, and create and load the DMA
278 	 * map for them.
279 	 */
280 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
281 	    EX_NDPD * sizeof (struct ex_dpd), PAGE_SIZE, 0, &sc->sc_dseg, 1,
282 	    &sc->sc_drseg, BUS_DMA_NOWAIT)) != 0) {
283 		aprint_error(
284 		    "%s: can't allocate download descriptors, error = %d\n",
285 		    sc->sc_dev.dv_xname, error);
286 		goto fail;
287 	}
288 
289 	attach_stage = 5;
290 
291 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg,
292 	    EX_NDPD * sizeof (struct ex_dpd), (caddr_t *)&sc->sc_dpd,
293 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
294 		aprint_error("%s: can't map download descriptors, error = %d\n",
295 		    sc->sc_dev.dv_xname, error);
296 		goto fail;
297 	}
298 	memset(sc->sc_dpd, 0, EX_NDPD * sizeof (struct ex_dpd));
299 
300 	attach_stage = 6;
301 
302 	if ((error = bus_dmamap_create(sc->sc_dmat,
303 	    EX_NDPD * sizeof (struct ex_dpd), 1,
304 	    EX_NDPD * sizeof (struct ex_dpd), 0, BUS_DMA_NOWAIT,
305 	    &sc->sc_dpd_dmamap)) != 0) {
306 		aprint_error(
307 		    "%s: can't create download desc. DMA map, error = %d\n",
308 		    sc->sc_dev.dv_xname, error);
309 		goto fail;
310 	}
311 
312 	attach_stage = 7;
313 
314 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dpd_dmamap,
315 	    sc->sc_dpd, EX_NDPD * sizeof (struct ex_dpd), NULL,
316 	    BUS_DMA_NOWAIT)) != 0) {
317 		aprint_error(
318 		    "%s: can't load download desc. DMA map, error = %d\n",
319 		    sc->sc_dev.dv_xname, error);
320 		goto fail;
321 	}
322 
323 	attach_stage = 8;
324 
325 
326 	/*
327 	 * Create the transmit buffer DMA maps.
328 	 */
329 	for (i = 0; i < EX_NDPD; i++) {
330 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
331 		    EX_NTFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
332 		    &sc->sc_tx_dmamaps[i])) != 0) {
333 			aprint_error(
334 			    "%s: can't create tx DMA map %d, error = %d\n",
335 			    sc->sc_dev.dv_xname, i, error);
336 			goto fail;
337 		}
338 	}
339 
340 	attach_stage = 9;
341 
342 	/*
343 	 * Create the receive buffer DMA maps.
344 	 */
345 	for (i = 0; i < EX_NUPD; i++) {
346 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
347 		    EX_NRFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
348 		    &sc->sc_rx_dmamaps[i])) != 0) {
349 			aprint_error(
350 			    "%s: can't create rx DMA map %d, error = %d\n",
351 			    sc->sc_dev.dv_xname, i, error);
352 			goto fail;
353 		}
354 	}
355 
356 	attach_stage = 10;
357 
358 	/*
359 	 * Create ring of upload descriptors, only once. The DMA engine
360 	 * will loop over this when receiving packets, stalling if it
361 	 * hits an UPD with a finished receive.
362 	 */
363 	for (i = 0; i < EX_NUPD; i++) {
364 		sc->sc_rxdescs[i].rx_dmamap = sc->sc_rx_dmamaps[i];
365 		sc->sc_rxdescs[i].rx_upd = &sc->sc_upd[i];
366 		sc->sc_upd[i].upd_frags[0].fr_len =
367 		    htole32((MCLBYTES - 2) | EX_FR_LAST);
368 		if (ex_add_rxbuf(sc, &sc->sc_rxdescs[i]) != 0) {
369 			aprint_error("%s: can't allocate or map rx buffers\n",
370 			    sc->sc_dev.dv_xname);
371 			goto fail;
372 		}
373 	}
374 
375 	bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap, 0,
376 	    EX_NUPD * sizeof (struct ex_upd),
377 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
378 
379 	ex_init_txdescs(sc);
380 
381 	attach_stage = 11;
382 
383 
384 	GO_WINDOW(3);
385 	val = bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
386 	if (val & ELINK_MEDIACAP_MII)
387 		sc->ex_conf |= EX_CONF_MII;
388 
389 	ifp = &sc->sc_ethercom.ec_if;
390 
391 	/*
392 	 * Initialize our media structures and MII info.  We'll
393 	 * probe the MII if we discover that we have one.
394 	 */
395 	sc->ex_mii.mii_ifp = ifp;
396 	sc->ex_mii.mii_readreg = ex_mii_readreg;
397 	sc->ex_mii.mii_writereg = ex_mii_writereg;
398 	sc->ex_mii.mii_statchg = ex_mii_statchg;
399 	ifmedia_init(&sc->ex_mii.mii_media, IFM_IMASK, ex_media_chg,
400 	    ex_media_stat);
401 
402 	if (sc->ex_conf & EX_CONF_MII) {
403 		/*
404 		 * Find PHY, extract media information from it.
405 		 * First, select the right transceiver.
406 		 */
407 		ex_set_xcvr(sc, val);
408 
409 		mii_attach(&sc->sc_dev, &sc->ex_mii, 0xffffffff,
410 		    MII_PHY_ANY, MII_OFFSET_ANY, 0);
411 		if (LIST_FIRST(&sc->ex_mii.mii_phys) == NULL) {
412 			ifmedia_add(&sc->ex_mii.mii_media, IFM_ETHER|IFM_NONE,
413 			    0, NULL);
414 			ifmedia_set(&sc->ex_mii.mii_media, IFM_ETHER|IFM_NONE);
415 		} else {
416 			ifmedia_set(&sc->ex_mii.mii_media, IFM_ETHER|IFM_AUTO);
417 		}
418 	} else
419 		ex_probemedia(sc);
420 
421 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
422 	ifp->if_softc = sc;
423 	ifp->if_start = ex_start;
424 	ifp->if_ioctl = ex_ioctl;
425 	ifp->if_watchdog = ex_watchdog;
426 	ifp->if_init = ex_init;
427 	ifp->if_stop = ex_stop;
428 	ifp->if_flags =
429 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
430 	sc->sc_if_flags = ifp->if_flags;
431 	IFQ_SET_READY(&ifp->if_snd);
432 
433 	/*
434 	 * We can support 802.1Q VLAN-sized frames.
435 	 */
436 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
437 
438 	/*
439 	 * The 3c90xB has hardware IPv4/TCPv4/UDPv4 checksum support.
440 	 */
441 	if (sc->ex_conf & EX_CONF_90XB)
442 		sc->sc_ethercom.ec_if.if_capabilities |=
443 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
444 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
445 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
446 
447 	if_attach(ifp);
448 	ether_ifattach(ifp, macaddr);
449 
450 	GO_WINDOW(1);
451 
452 	sc->tx_start_thresh = 20;
453 	sc->tx_succ_ok = 0;
454 
455 	/* TODO: set queues to 0 */
456 
457 #if NRND > 0
458 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
459 			  RND_TYPE_NET, 0);
460 #endif
461 
462 	/*  Establish callback to reset card when we reboot. */
463 	sc->sc_sdhook = shutdownhook_establish(ex_shutdown, sc);
464 	if (sc->sc_sdhook == NULL)
465 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
466 			sc->sc_dev.dv_xname);
467 
468 	/* Add a suspend hook to make sure we come back up after a resume. */
469 	sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
470 	    ex_power, sc);
471 	if (sc->sc_powerhook == NULL)
472 		aprint_error("%s: WARNING: unable to establish power hook\n",
473 			sc->sc_dev.dv_xname);
474 
475 	/* The attach is successful. */
476 	sc->ex_flags |= EX_FLAGS_ATTACHED;
477 	return;
478 
479  fail:
480 	/*
481 	 * Free any resources we've allocated during the failed attach
482 	 * attempt.  Do this in reverse order and fall though.
483 	 */
484 	switch (attach_stage) {
485 	case 11:
486 	    {
487 		struct ex_rxdesc *rxd;
488 
489 		for (i = 0; i < EX_NUPD; i++) {
490 			rxd = &sc->sc_rxdescs[i];
491 			if (rxd->rx_mbhead != NULL) {
492 				bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
493 				m_freem(rxd->rx_mbhead);
494 			}
495 		}
496 	    }
497 		/* FALLTHROUGH */
498 
499 	case 10:
500 		for (i = 0; i < EX_NUPD; i++)
501 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
502 		/* FALLTHROUGH */
503 
504 	case 9:
505 		for (i = 0; i < EX_NDPD; i++)
506 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
507 		/* FALLTHROUGH */
508 	case 8:
509 		bus_dmamap_unload(sc->sc_dmat, sc->sc_dpd_dmamap);
510 		/* FALLTHROUGH */
511 
512 	case 7:
513 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_dpd_dmamap);
514 		/* FALLTHROUGH */
515 
516 	case 6:
517 		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_dpd,
518 		    EX_NDPD * sizeof (struct ex_dpd));
519 		/* FALLTHROUGH */
520 
521 	case 5:
522 		bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg);
523 		break;
524 
525 	case 4:
526 		bus_dmamap_unload(sc->sc_dmat, sc->sc_upd_dmamap);
527 		/* FALLTHROUGH */
528 
529 	case 3:
530 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_upd_dmamap);
531 		/* FALLTHROUGH */
532 
533 	case 2:
534 		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_upd,
535 		    EX_NUPD * sizeof (struct ex_upd));
536 		/* FALLTHROUGH */
537 
538 	case 1:
539 		bus_dmamem_free(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg);
540 		break;
541 	}
542 
543 }
544 
545 /*
546  * Find the media present on non-MII chips.
547  */
548 void
549 ex_probemedia(sc)
550 	struct ex_softc *sc;
551 {
552 	bus_space_tag_t iot = sc->sc_iot;
553 	bus_space_handle_t ioh = sc->sc_ioh;
554 	struct ifmedia *ifm = &sc->ex_mii.mii_media;
555 	struct ex_media *exm;
556 	u_int16_t config1, reset_options, default_media;
557 	int defmedia = 0;
558 	const char *sep = "", *defmedianame = NULL;
559 
560 	GO_WINDOW(3);
561 	config1 = bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2);
562 	reset_options = bus_space_read_1(iot, ioh, ELINK_W3_RESET_OPTIONS);
563 	GO_WINDOW(0);
564 
565 	default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
566 
567 	aprint_normal("%s: ", sc->sc_dev.dv_xname);
568 
569 	/* Sanity check that there are any media! */
570 	if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
571 		aprint_error("no media present!\n");
572 		ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
573 		ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
574 		return;
575 	}
576 
577 #define	PRINT(str)	aprint_normal("%s%s", sep, str); sep = ", "
578 
579 	for (exm = ex_native_media; exm->exm_name != NULL; exm++) {
580 		if (reset_options & exm->exm_mpbit) {
581 			/*
582 			 * Default media is a little complicated.  We
583 			 * support full-duplex which uses the same
584 			 * reset options bit.
585 			 *
586 			 * XXX Check EEPROM for default to FDX?
587 			 */
588 			if (exm->exm_epmedia == default_media) {
589 				if ((exm->exm_ifmedia & IFM_FDX) == 0) {
590 					defmedia = exm->exm_ifmedia;
591 					defmedianame = exm->exm_name;
592 				}
593 			} else if (defmedia == 0) {
594 				defmedia = exm->exm_ifmedia;
595 				defmedianame = exm->exm_name;
596 			}
597 			ifmedia_add(ifm, exm->exm_ifmedia, exm->exm_epmedia,
598 			    NULL);
599 			PRINT(exm->exm_name);
600 		}
601 	}
602 
603 #undef PRINT
604 
605 #ifdef DIAGNOSTIC
606 	if (defmedia == 0)
607 		panic("ex_probemedia: impossible");
608 #endif
609 
610 	aprint_normal(", default %s\n", defmedianame);
611 	ifmedia_set(ifm, defmedia);
612 }
613 
614 /*
615  * Bring device up.
616  */
617 int
618 ex_init(ifp)
619 	struct ifnet *ifp;
620 {
621 	struct ex_softc *sc = ifp->if_softc;
622 	bus_space_tag_t iot = sc->sc_iot;
623 	bus_space_handle_t ioh = sc->sc_ioh;
624 	int i;
625 	int error = 0;
626 
627 	if ((error = ex_enable(sc)) != 0)
628 		goto out;
629 
630 	ex_waitcmd(sc);
631 	ex_stop(ifp, 0);
632 
633 	/*
634 	 * Set the station address and clear the station mask. The latter
635 	 * is needed for 90x cards, 0 is the default for 90xB cards.
636 	 */
637 	GO_WINDOW(2);
638 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
639 		bus_space_write_1(iot, ioh, ELINK_W2_ADDR_0 + i,
640 		    LLADDR(ifp->if_sadl)[i]);
641 		bus_space_write_1(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
642 	}
643 
644 	GO_WINDOW(3);
645 
646 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_RESET);
647 	ex_waitcmd(sc);
648 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_RESET);
649 	ex_waitcmd(sc);
650 
651 	/*
652 	 * Disable reclaim threshold for 90xB, set free threshold to
653 	 * 6 * 256 = 1536 for 90x.
654 	 */
655 	if (sc->ex_conf & EX_CONF_90XB)
656 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
657 		    ELINK_TXRECLTHRESH | 255);
658 	else
659 		bus_space_write_1(iot, ioh, ELINK_TXFREETHRESH, 6);
660 
661 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
662 	    SET_RX_EARLY_THRESH | ELINK_THRESH_DISABLE);
663 
664 	bus_space_write_4(iot, ioh, ELINK_DMACTRL,
665 	    bus_space_read_4(iot, ioh, ELINK_DMACTRL) | ELINK_DMAC_UPRXEAREN);
666 
667 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
668 	    SET_RD_0_MASK | XL_WATCHED_INTERRUPTS);
669 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
670 	    SET_INTR_MASK | XL_WATCHED_INTERRUPTS);
671 
672 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
673 	if (sc->intr_ack)
674 	    (* sc->intr_ack)(sc);
675 	ex_set_media(sc);
676 	ex_set_mc(sc);
677 
678 
679 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STATS_ENABLE);
680 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
681 	bus_space_write_4(iot, ioh, ELINK_UPLISTPTR, sc->sc_upddma);
682 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
683 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_UPUNSTALL);
684 
685 	if (sc->ex_conf & (EX_CONF_PHY_POWER | EX_CONF_INV_LED_POLARITY)) {
686 		u_int16_t cbcard_config;
687 
688 		GO_WINDOW(2);
689 		cbcard_config = bus_space_read_2(sc->sc_iot, sc->sc_ioh, 0x0c);
690 		if (sc->ex_conf & EX_CONF_PHY_POWER) {
691 			cbcard_config |= 0x4000; /* turn on PHY power */
692 		}
693 		if (sc->ex_conf & EX_CONF_INV_LED_POLARITY) {
694 			cbcard_config |= 0x0010; /* invert LED polarity */
695 		}
696 		bus_space_write_2(sc->sc_iot, sc->sc_ioh, 0x0c, cbcard_config);
697 
698 		GO_WINDOW(3);
699 	}
700 
701 	ifp->if_flags |= IFF_RUNNING;
702 	ifp->if_flags &= ~IFF_OACTIVE;
703 	ex_start(ifp);
704 	sc->sc_if_flags = ifp->if_flags;
705 
706 	GO_WINDOW(1);
707 
708 	callout_reset(&sc->ex_mii_callout, hz, ex_tick, sc);
709 
710  out:
711 	if (error) {
712 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
713 		ifp->if_timer = 0;
714 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
715 	}
716 	return (error);
717 }
718 
719 #define	MCHASHSIZE		256
720 #define	ex_mchash(addr)		(ether_crc32_be((addr), ETHER_ADDR_LEN) & \
721 				    (MCHASHSIZE - 1))
722 
723 /*
724  * Set multicast receive filter. Also take care of promiscuous mode
725  * here (XXX).
726  */
727 void
728 ex_set_mc(sc)
729 	struct ex_softc *sc;
730 {
731 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
732 	struct ethercom *ec = &sc->sc_ethercom;
733 	struct ether_multi *enm;
734 	struct ether_multistep estep;
735 	int i;
736 	u_int16_t mask = FIL_INDIVIDUAL | FIL_BRDCST;
737 
738 	if (ifp->if_flags & IFF_PROMISC) {
739 		mask |= FIL_PROMISC;
740 		goto allmulti;
741 	}
742 
743 	ETHER_FIRST_MULTI(estep, ec, enm);
744 	if (enm == NULL)
745 		goto nomulti;
746 
747 	if ((sc->ex_conf & EX_CONF_90XB) == 0)
748 		/* No multicast hash filtering. */
749 		goto allmulti;
750 
751 	for (i = 0; i < MCHASHSIZE; i++)
752 		bus_space_write_2(sc->sc_iot, sc->sc_ioh,
753 		    ELINK_COMMAND, ELINK_CLEARHASHFILBIT | i);
754 
755 	do {
756 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
757 		    ETHER_ADDR_LEN) != 0)
758 			goto allmulti;
759 
760 		i = ex_mchash(enm->enm_addrlo);
761 		bus_space_write_2(sc->sc_iot, sc->sc_ioh,
762 		    ELINK_COMMAND, ELINK_SETHASHFILBIT | i);
763 		ETHER_NEXT_MULTI(estep, enm);
764 	} while (enm != NULL);
765 	mask |= FIL_MULTIHASH;
766 
767 nomulti:
768 	ifp->if_flags &= ~IFF_ALLMULTI;
769 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
770 	    SET_RX_FILTER | mask);
771 	return;
772 
773 allmulti:
774 	ifp->if_flags |= IFF_ALLMULTI;
775 	mask |= FIL_MULTICAST;
776 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
777 	    SET_RX_FILTER | mask);
778 }
779 
780 
781 static void
782 ex_txstat(sc)
783 	struct ex_softc *sc;
784 {
785 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
786 	bus_space_tag_t iot = sc->sc_iot;
787 	bus_space_handle_t ioh = sc->sc_ioh;
788 	int i;
789 
790 	/*
791 	 * We need to read+write TX_STATUS until we get a 0 status
792 	 * in order to turn off the interrupt flag.
793 	 * ELINK_TXSTATUS is in the upper byte of 2 with ELINK_TIMER
794 	 * XXX: Big Endian? Can we assume that TXSTATUS will be the
795 	 * upper byte?
796 	 */
797 	while ((i = bus_space_read_2(iot, ioh, ELINK_TIMER)) & TXS_COMPLETE) {
798 		bus_space_write_2(iot, ioh, ELINK_TIMER, 0x0);
799 
800 		if (i & TXS_JABBER) {
801 			++sc->sc_ethercom.ec_if.if_oerrors;
802 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
803 				printf("%s: jabber (%x)\n",
804 				       sc->sc_dev.dv_xname, i);
805 			ex_init(ifp);
806 			/* TODO: be more subtle here */
807 		} else if (i & TXS_UNDERRUN) {
808 			++sc->sc_ethercom.ec_if.if_oerrors;
809 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
810 				printf("%s: fifo underrun (%x) @%d\n",
811 				       sc->sc_dev.dv_xname, i,
812 				       sc->tx_start_thresh);
813 			if (sc->tx_succ_ok < 100)
814 				    sc->tx_start_thresh = min(ETHER_MAX_LEN,
815 					    sc->tx_start_thresh + 20);
816 			sc->tx_succ_ok = 0;
817 			ex_init(ifp);
818 			/* TODO: be more subtle here */
819 		} else if (i & TXS_MAX_COLLISION) {
820 			++sc->sc_ethercom.ec_if.if_oerrors;
821 			++sc->sc_ethercom.ec_if.if_collisions;
822 			bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
823 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
824 		} else if (sc->tx_succ_ok < 100)
825 			sc->tx_succ_ok++;
826 	}
827 }
828 
829 int
830 ex_media_chg(ifp)
831 	struct ifnet *ifp;
832 {
833 
834 	if (ifp->if_flags & IFF_UP)
835 		ex_init(ifp);
836 	return 0;
837 }
838 
839 void
840 ex_set_xcvr(sc, media)
841 	struct ex_softc *sc;
842 	const u_int16_t media;
843 {
844 	bus_space_tag_t iot = sc->sc_iot;
845 	bus_space_handle_t ioh = sc->sc_ioh;
846 	u_int32_t icfg;
847 
848 	/*
849 	 * We're already in Window 3
850 	 */
851 	icfg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
852 	icfg &= ~(CONFIG_XCVR_SEL << 16);
853 	if (media & (ELINK_MEDIACAP_MII | ELINK_MEDIACAP_100BASET4))
854 		icfg |= ELINKMEDIA_MII << (CONFIG_XCVR_SEL_SHIFT + 16);
855 	if (media & ELINK_MEDIACAP_100BASETX)
856 		icfg |= ELINKMEDIA_AUTO << (CONFIG_XCVR_SEL_SHIFT + 16);
857 	if (media & ELINK_MEDIACAP_100BASEFX)
858 		icfg |= ELINKMEDIA_100BASE_FX
859 			<< (CONFIG_XCVR_SEL_SHIFT + 16);
860 	bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, icfg);
861 }
862 
863 void
864 ex_set_media(sc)
865 	struct ex_softc *sc;
866 {
867 	bus_space_tag_t iot = sc->sc_iot;
868 	bus_space_handle_t ioh = sc->sc_ioh;
869 	u_int32_t configreg;
870 
871 	if (((sc->ex_conf & EX_CONF_MII) &&
872 	    (sc->ex_mii.mii_media_active & IFM_FDX))
873 	    || (!(sc->ex_conf & EX_CONF_MII) &&
874 	    (sc->ex_mii.mii_media.ifm_media & IFM_FDX))) {
875 		bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL,
876 		    MAC_CONTROL_FDX);
877 	} else {
878 		bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, 0);
879 	}
880 
881 	/*
882 	 * If the device has MII, select it, and then tell the
883 	 * PHY which media to use.
884 	 */
885 	if (sc->ex_conf & EX_CONF_MII) {
886 		u_int16_t val;
887 
888 		GO_WINDOW(3);
889 		val = bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
890 		ex_set_xcvr(sc, val);
891 		mii_mediachg(&sc->ex_mii);
892 		return;
893 	}
894 
895 	GO_WINDOW(4);
896 	bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0);
897 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
898 	delay(800);
899 
900 	/*
901 	 * Now turn on the selected media/transceiver.
902 	 */
903 	switch (IFM_SUBTYPE(sc->ex_mii.mii_media.ifm_cur->ifm_media)) {
904 	case IFM_10_T:
905 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
906 		    JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
907 		break;
908 
909 	case IFM_10_2:
910 		bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
911 		DELAY(800);
912 		break;
913 
914 	case IFM_100_TX:
915 	case IFM_100_FX:
916 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
917 		    LINKBEAT_ENABLE);
918 		DELAY(800);
919 		break;
920 
921 	case IFM_10_5:
922 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
923 		    SQE_ENABLE);
924 		DELAY(800);
925 		break;
926 
927 	case IFM_MANUAL:
928 		break;
929 
930 	case IFM_NONE:
931 		return;
932 
933 	default:
934 		panic("ex_set_media: impossible");
935 	}
936 
937 	GO_WINDOW(3);
938 	configreg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
939 
940 	configreg &= ~(CONFIG_MEDIAMASK << 16);
941 	configreg |= (sc->ex_mii.mii_media.ifm_cur->ifm_data <<
942 	    (CONFIG_MEDIAMASK_SHIFT + 16));
943 
944 	bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, configreg);
945 }
946 
947 /*
948  * Get currently-selected media from card.
949  * (if_media callback, may be called before interface is brought up).
950  */
951 void
952 ex_media_stat(ifp, req)
953 	struct ifnet *ifp;
954 	struct ifmediareq *req;
955 {
956 	struct ex_softc *sc = ifp->if_softc;
957 	u_int16_t help;
958 
959 	if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == (IFF_UP|IFF_RUNNING)) {
960 		if (sc->ex_conf & EX_CONF_MII) {
961 			mii_pollstat(&sc->ex_mii);
962 			req->ifm_status = sc->ex_mii.mii_media_status;
963 			req->ifm_active = sc->ex_mii.mii_media_active;
964 		} else {
965 			GO_WINDOW(4);
966 			req->ifm_status = IFM_AVALID;
967 			req->ifm_active =
968 			    sc->ex_mii.mii_media.ifm_cur->ifm_media;
969 			help = bus_space_read_2(sc->sc_iot, sc->sc_ioh,
970 						ELINK_W4_MEDIA_TYPE);
971 			if (help & LINKBEAT_DETECT)
972 				req->ifm_status |= IFM_ACTIVE;
973 			GO_WINDOW(1);
974 		}
975 	}
976 }
977 
978 
979 
980 /*
981  * Start outputting on the interface.
982  */
983 static void
984 ex_start(ifp)
985 	struct ifnet *ifp;
986 {
987 	struct ex_softc *sc = ifp->if_softc;
988 	bus_space_tag_t iot = sc->sc_iot;
989 	bus_space_handle_t ioh = sc->sc_ioh;
990 	volatile struct ex_fraghdr *fr = NULL;
991 	volatile struct ex_dpd *dpd = NULL, *prevdpd = NULL;
992 	struct ex_txdesc *txp;
993 	struct mbuf *mb_head;
994 	bus_dmamap_t dmamap;
995 	int offset, totlen, segment, error;
996 	u_int32_t csum_flags;
997 
998 	if (sc->tx_head || sc->tx_free == NULL)
999 		return;
1000 
1001 	txp = NULL;
1002 
1003 	/*
1004 	 * We're finished if there is nothing more to add to the list or if
1005 	 * we're all filled up with buffers to transmit.
1006 	 */
1007 	while (sc->tx_free != NULL) {
1008 		/*
1009 		 * Grab a packet to transmit.
1010 		 */
1011 		IFQ_DEQUEUE(&ifp->if_snd, mb_head);
1012 		if (mb_head == NULL)
1013 			break;
1014 
1015 		/*
1016 		 * Get pointer to next available tx desc.
1017 		 */
1018 		txp = sc->tx_free;
1019 		dmamap = txp->tx_dmamap;
1020 
1021 		/*
1022 		 * Go through each of the mbufs in the chain and initialize
1023 		 * the transmit buffer descriptors with the physical address
1024 		 * and size of the mbuf.
1025 		 */
1026  reload:
1027 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1028 		    mb_head, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1029 		switch (error) {
1030 		case 0:
1031 			/* Success. */
1032 			break;
1033 
1034 		case EFBIG:
1035 		    {
1036 			struct mbuf *mn;
1037 
1038 			/*
1039 			 * We ran out of segments.  We have to recopy this
1040 			 * mbuf chain first.  Bail out if we can't get the
1041 			 * new buffers.
1042 			 */
1043 			printf("%s: too many segments, ", sc->sc_dev.dv_xname);
1044 
1045 			MGETHDR(mn, M_DONTWAIT, MT_DATA);
1046 			if (mn == NULL) {
1047 				m_freem(mb_head);
1048 				printf("aborting\n");
1049 				goto out;
1050 			}
1051 			if (mb_head->m_pkthdr.len > MHLEN) {
1052 				MCLGET(mn, M_DONTWAIT);
1053 				if ((mn->m_flags & M_EXT) == 0) {
1054 					m_freem(mn);
1055 					m_freem(mb_head);
1056 					printf("aborting\n");
1057 					goto out;
1058 				}
1059 			}
1060 			m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1061 			    mtod(mn, caddr_t));
1062 			mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1063 			m_freem(mb_head);
1064 			mb_head = mn;
1065 			printf("retrying\n");
1066 			goto reload;
1067 		    }
1068 
1069 		default:
1070 			/*
1071 			 * Some other problem; report it.
1072 			 */
1073 			printf("%s: can't load mbuf chain, error = %d\n",
1074 			    sc->sc_dev.dv_xname, error);
1075 			m_freem(mb_head);
1076 			goto out;
1077 		}
1078 
1079 		/*
1080 		 * remove our tx desc from freelist.
1081 		 */
1082 		sc->tx_free = txp->tx_next;
1083 		txp->tx_next = NULL;
1084 
1085 		fr = &txp->tx_dpd->dpd_frags[0];
1086 		totlen = 0;
1087 		for (segment = 0; segment < dmamap->dm_nsegs; segment++, fr++) {
1088 			fr->fr_addr = htole32(dmamap->dm_segs[segment].ds_addr);
1089 			fr->fr_len = htole32(dmamap->dm_segs[segment].ds_len);
1090 			totlen += dmamap->dm_segs[segment].ds_len;
1091 		}
1092 		fr--;
1093 		fr->fr_len |= htole32(EX_FR_LAST);
1094 		txp->tx_mbhead = mb_head;
1095 
1096 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1097 		    BUS_DMASYNC_PREWRITE);
1098 
1099 		dpd = txp->tx_dpd;
1100 		dpd->dpd_nextptr = 0;
1101 		dpd->dpd_fsh = htole32(totlen);
1102 
1103 		/* Byte-swap constants so compiler can optimize. */
1104 
1105 		if (sc->ex_conf & EX_CONF_90XB) {
1106 			csum_flags = 0;
1107 
1108 			if (mb_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
1109 				csum_flags |= htole32(EX_DPD_IPCKSUM);
1110 
1111 			if (mb_head->m_pkthdr.csum_flags & M_CSUM_TCPv4)
1112 				csum_flags |= htole32(EX_DPD_TCPCKSUM);
1113 			else if (mb_head->m_pkthdr.csum_flags & M_CSUM_UDPv4)
1114 				csum_flags |= htole32(EX_DPD_UDPCKSUM);
1115 
1116 			dpd->dpd_fsh |= csum_flags;
1117 		} else {
1118 			KDASSERT((mb_head->m_pkthdr.csum_flags &
1119 			    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) == 0);
1120 		}
1121 
1122 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1123 		    ((const char *)(intptr_t)dpd - (const char *)sc->sc_dpd),
1124 		    sizeof (struct ex_dpd),
1125 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1126 
1127 		/*
1128 		 * No need to stall the download engine, we know it's
1129 		 * not busy right now.
1130 		 *
1131 		 * Fix up pointers in both the "soft" tx and the physical
1132 		 * tx list.
1133 		 */
1134 		if (sc->tx_head != NULL) {
1135 			prevdpd = sc->tx_tail->tx_dpd;
1136 			offset = ((const char *)(intptr_t)prevdpd - (const char *)sc->sc_dpd);
1137 			bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1138 			    offset, sizeof (struct ex_dpd),
1139 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1140 			prevdpd->dpd_nextptr = htole32(DPD_DMADDR(sc, txp));
1141 			bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1142 			    offset, sizeof (struct ex_dpd),
1143 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1144 			sc->tx_tail->tx_next = txp;
1145 			sc->tx_tail = txp;
1146 		} else {
1147 			sc->tx_tail = sc->tx_head = txp;
1148 		}
1149 
1150 #if NBPFILTER > 0
1151 		/*
1152 		 * Pass packet to bpf if there is a listener.
1153 		 */
1154 		if (ifp->if_bpf)
1155 			bpf_mtap(ifp->if_bpf, mb_head);
1156 #endif
1157 	}
1158  out:
1159 	if (sc->tx_head) {
1160 		sc->tx_tail->tx_dpd->dpd_fsh |= htole32(EX_DPD_DNIND);
1161 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1162 		    ((caddr_t)sc->tx_tail->tx_dpd - (caddr_t)sc->sc_dpd),
1163 		    sizeof (struct ex_dpd),
1164 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1165 		ifp->if_flags |= IFF_OACTIVE;
1166 		bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_DNUNSTALL);
1167 		bus_space_write_4(iot, ioh, ELINK_DNLISTPTR,
1168 		    DPD_DMADDR(sc, sc->tx_head));
1169 
1170 		/* trigger watchdog */
1171 		ifp->if_timer = 5;
1172 	}
1173 }
1174 
1175 
1176 int
1177 ex_intr(arg)
1178 	void *arg;
1179 {
1180 	struct ex_softc *sc = arg;
1181 	bus_space_tag_t iot = sc->sc_iot;
1182 	bus_space_handle_t ioh = sc->sc_ioh;
1183 	u_int16_t stat;
1184 	int ret = 0;
1185 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1186 
1187 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
1188 	    !device_is_active(&sc->sc_dev))
1189 		return (0);
1190 
1191 	for (;;) {
1192 		stat = bus_space_read_2(iot, ioh, ELINK_STATUS);
1193 
1194 		if ((stat & XL_WATCHED_INTERRUPTS) == 0) {
1195 			if ((stat & INTR_LATCH) == 0) {
1196 #if 0
1197 				printf("%s: intr latch cleared\n",
1198 				       sc->sc_dev.dv_xname);
1199 #endif
1200 				break;
1201 			}
1202 		}
1203 
1204 		ret = 1;
1205 
1206 		/*
1207 		 * Acknowledge interrupts.
1208 		 */
1209 		bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
1210 		    (stat & (XL_WATCHED_INTERRUPTS | INTR_LATCH)));
1211 		if (sc->intr_ack)
1212 			(*sc->intr_ack)(sc);
1213 
1214 		if (stat & HOST_ERROR) {
1215 			printf("%s: adapter failure (%x)\n",
1216 			    sc->sc_dev.dv_xname, stat);
1217 			ex_reset(sc);
1218 			ex_init(ifp);
1219 			return 1;
1220 		}
1221 		if (stat & TX_COMPLETE) {
1222 			ex_txstat(sc);
1223 		}
1224 		if (stat & UPD_STATS) {
1225 			ex_getstats(sc);
1226 		}
1227 		if (stat & DN_COMPLETE) {
1228 			struct ex_txdesc *txp, *ptxp = NULL;
1229 			bus_dmamap_t txmap;
1230 
1231 			/* reset watchdog timer, was set in ex_start() */
1232 			ifp->if_timer = 0;
1233 
1234 			for (txp = sc->tx_head; txp != NULL;
1235 			    txp = txp->tx_next) {
1236 				bus_dmamap_sync(sc->sc_dmat,
1237 				    sc->sc_dpd_dmamap,
1238 				    (caddr_t)txp->tx_dpd - (caddr_t)sc->sc_dpd,
1239 				    sizeof (struct ex_dpd),
1240 				    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1241 				if (txp->tx_mbhead != NULL) {
1242 					txmap = txp->tx_dmamap;
1243 					bus_dmamap_sync(sc->sc_dmat, txmap,
1244 					    0, txmap->dm_mapsize,
1245 					    BUS_DMASYNC_POSTWRITE);
1246 					bus_dmamap_unload(sc->sc_dmat, txmap);
1247 					m_freem(txp->tx_mbhead);
1248 					txp->tx_mbhead = NULL;
1249 				}
1250 				ptxp = txp;
1251 			}
1252 
1253 			/*
1254 			 * Move finished tx buffers back to the tx free list.
1255 			 */
1256 			if (sc->tx_free) {
1257 				sc->tx_ftail->tx_next = sc->tx_head;
1258 				sc->tx_ftail = ptxp;
1259 			} else
1260 				sc->tx_ftail = sc->tx_free = sc->tx_head;
1261 
1262 			sc->tx_head = sc->tx_tail = NULL;
1263 			ifp->if_flags &= ~IFF_OACTIVE;
1264 		}
1265 
1266 		if (stat & UP_COMPLETE) {
1267 			struct ex_rxdesc *rxd;
1268 			struct mbuf *m;
1269 			struct ex_upd *upd;
1270 			bus_dmamap_t rxmap;
1271 			u_int32_t pktstat;
1272 
1273  rcvloop:
1274 			rxd = sc->rx_head;
1275 			rxmap = rxd->rx_dmamap;
1276 			m = rxd->rx_mbhead;
1277 			upd = rxd->rx_upd;
1278 
1279 			bus_dmamap_sync(sc->sc_dmat, rxmap, 0,
1280 			    rxmap->dm_mapsize,
1281 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1282 			bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1283 			    ((caddr_t)upd - (caddr_t)sc->sc_upd),
1284 			    sizeof (struct ex_upd),
1285 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1286 			pktstat = le32toh(upd->upd_pktstatus);
1287 
1288 			if (pktstat & EX_UPD_COMPLETE) {
1289 				/*
1290 				 * Remove first packet from the chain.
1291 				 */
1292 				sc->rx_head = rxd->rx_next;
1293 				rxd->rx_next = NULL;
1294 
1295 				/*
1296 				 * Add a new buffer to the receive chain.
1297 				 * If this fails, the old buffer is recycled
1298 				 * instead.
1299 				 */
1300 				if (ex_add_rxbuf(sc, rxd) == 0) {
1301 					u_int16_t total_len;
1302 
1303 					if (pktstat &
1304 					    ((sc->sc_ethercom.ec_capenable &
1305 					    ETHERCAP_VLAN_MTU) ?
1306 					    EX_UPD_ERR_VLAN : EX_UPD_ERR)) {
1307 						ifp->if_ierrors++;
1308 						m_freem(m);
1309 						goto rcvloop;
1310 					}
1311 
1312 					total_len = pktstat & EX_UPD_PKTLENMASK;
1313 					if (total_len <
1314 					    sizeof(struct ether_header)) {
1315 						m_freem(m);
1316 						goto rcvloop;
1317 					}
1318 					m->m_pkthdr.rcvif = ifp;
1319 					m->m_pkthdr.len = m->m_len = total_len;
1320 #if NBPFILTER > 0
1321 					if (ifp->if_bpf)
1322 						bpf_mtap(ifp->if_bpf, m);
1323 #endif
1324 		/*
1325 		 * Set the incoming checksum information for the packet.
1326 		 */
1327 		if ((sc->ex_conf & EX_CONF_90XB) != 0 &&
1328 		    (pktstat & EX_UPD_IPCHECKED) != 0) {
1329 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1330 			if (pktstat & EX_UPD_IPCKSUMERR)
1331 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1332 			if (pktstat & EX_UPD_TCPCHECKED) {
1333 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1334 				if (pktstat & EX_UPD_TCPCKSUMERR)
1335 					m->m_pkthdr.csum_flags |=
1336 					    M_CSUM_TCP_UDP_BAD;
1337 			} else if (pktstat & EX_UPD_UDPCHECKED) {
1338 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1339 				if (pktstat & EX_UPD_UDPCKSUMERR)
1340 					m->m_pkthdr.csum_flags |=
1341 					    M_CSUM_TCP_UDP_BAD;
1342 			}
1343 		}
1344 					(*ifp->if_input)(ifp, m);
1345 				}
1346 				goto rcvloop;
1347 			}
1348 			/*
1349 			 * Just in case we filled up all UPDs and the DMA engine
1350 			 * stalled. We could be more subtle about this.
1351 			 */
1352 			if (bus_space_read_4(iot, ioh, ELINK_UPLISTPTR) == 0) {
1353 				printf("%s: uplistptr was 0\n",
1354 				       sc->sc_dev.dv_xname);
1355 				ex_init(ifp);
1356 			} else if (bus_space_read_4(iot, ioh, ELINK_UPPKTSTATUS)
1357 				   & 0x2000) {
1358 				printf("%s: receive stalled\n",
1359 				       sc->sc_dev.dv_xname);
1360 				bus_space_write_2(iot, ioh, ELINK_COMMAND,
1361 						  ELINK_UPUNSTALL);
1362 			}
1363 		}
1364 
1365 #if NRND > 0
1366 		if (stat)
1367 			rnd_add_uint32(&sc->rnd_source, stat);
1368 #endif
1369 	}
1370 
1371 	/* no more interrupts */
1372 	if (ret && IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1373 		ex_start(ifp);
1374 	return ret;
1375 }
1376 
1377 int
1378 ex_ioctl(ifp, cmd, data)
1379 	struct ifnet *ifp;
1380 	u_long cmd;
1381 	caddr_t data;
1382 {
1383 	struct ex_softc *sc = ifp->if_softc;
1384 	struct ifreq *ifr = (struct ifreq *)data;
1385 	int s, error;
1386 
1387 	s = splnet();
1388 
1389 	switch (cmd) {
1390 	case SIOCSIFMEDIA:
1391 	case SIOCGIFMEDIA:
1392 		error = ifmedia_ioctl(ifp, ifr, &sc->ex_mii.mii_media, cmd);
1393 		break;
1394 	case SIOCSIFFLAGS:
1395 		/* If the interface is up and running, only modify the receive
1396 		 * filter when setting promiscuous or debug mode.  Otherwise
1397 		 * fall through to ether_ioctl, which will reset the chip.
1398 		 */
1399 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
1400 		if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
1401 		    == (IFF_UP|IFF_RUNNING))
1402 		    && ((ifp->if_flags & (~RESETIGN))
1403 		    == (sc->sc_if_flags & (~RESETIGN)))) {
1404 			ex_set_mc(sc);
1405 			error = 0;
1406 			break;
1407 #undef RESETIGN
1408 		}
1409 		/* FALLTHROUGH */
1410 	default:
1411 		error = ether_ioctl(ifp, cmd, data);
1412 		if (error == ENETRESET) {
1413 			/*
1414 			 * Multicast list has changed; set the hardware filter
1415 			 * accordingly.
1416 			 */
1417 			if (ifp->if_flags & IFF_RUNNING)
1418 				ex_set_mc(sc);
1419 			error = 0;
1420 		}
1421 		break;
1422 	}
1423 
1424 	sc->sc_if_flags = ifp->if_flags;
1425 	splx(s);
1426 	return (error);
1427 }
1428 
1429 void
1430 ex_getstats(sc)
1431 	struct ex_softc *sc;
1432 {
1433 	bus_space_handle_t ioh = sc->sc_ioh;
1434 	bus_space_tag_t iot = sc->sc_iot;
1435 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1436 	u_int8_t upperok;
1437 
1438 	GO_WINDOW(6);
1439 	upperok = bus_space_read_1(iot, ioh, UPPER_FRAMES_OK);
1440 	ifp->if_ipackets += bus_space_read_1(iot, ioh, RX_FRAMES_OK);
1441 	ifp->if_ipackets += (upperok & 0x03) << 8;
1442 	ifp->if_opackets += bus_space_read_1(iot, ioh, TX_FRAMES_OK);
1443 	ifp->if_opackets += (upperok & 0x30) << 4;
1444 	ifp->if_ierrors += bus_space_read_1(iot, ioh, RX_OVERRUNS);
1445 	ifp->if_collisions += bus_space_read_1(iot, ioh, TX_COLLISIONS);
1446 	/*
1447 	 * There seems to be no way to get the exact number of collisions,
1448 	 * this is the number that occurred at the very least.
1449 	 */
1450 	ifp->if_collisions += 2 * bus_space_read_1(iot, ioh,
1451 	    TX_AFTER_X_COLLISIONS);
1452 	/*
1453 	 * Interface byte counts are counted by ether_input() and
1454 	 * ether_output(), so don't accumulate them here.  Just
1455 	 * read the NIC counters so they don't generate overflow interrupts.
1456 	 * Upper byte counters are latched from reading the totals, so
1457 	 * they don't need to be read if we don't need their values.
1458 	 */
1459 	(void)bus_space_read_2(iot, ioh, RX_TOTAL_OK);
1460 	(void)bus_space_read_2(iot, ioh, TX_TOTAL_OK);
1461 
1462 	/*
1463 	 * Clear the following to avoid stats overflow interrupts
1464 	 */
1465 	(void)bus_space_read_1(iot, ioh, TX_DEFERRALS);
1466 	(void)bus_space_read_1(iot, ioh, TX_AFTER_1_COLLISION);
1467 	(void)bus_space_read_1(iot, ioh, TX_NO_SQE);
1468 	(void)bus_space_read_1(iot, ioh, TX_CD_LOST);
1469 	GO_WINDOW(4);
1470 	(void)bus_space_read_1(iot, ioh, ELINK_W4_BADSSD);
1471 	GO_WINDOW(1);
1472 }
1473 
1474 void
1475 ex_printstats(sc)
1476 	struct ex_softc *sc;
1477 {
1478 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1479 
1480 	ex_getstats(sc);
1481 	printf("in %llu out %llu ierror %llu oerror %llu ibytes %llu obytes "
1482 	    "%llu\n", (unsigned long long)ifp->if_ipackets,
1483 	    (unsigned long long)ifp->if_opackets,
1484 	    (unsigned long long)ifp->if_ierrors,
1485 	    (unsigned long long)ifp->if_oerrors,
1486 	    (unsigned long long)ifp->if_ibytes,
1487 	    (unsigned long long)ifp->if_obytes);
1488 }
1489 
1490 void
1491 ex_tick(arg)
1492 	void *arg;
1493 {
1494 	struct ex_softc *sc = arg;
1495 	int s;
1496 
1497 	if (!device_is_active(&sc->sc_dev))
1498 		return;
1499 
1500 	s = splnet();
1501 
1502 	if (sc->ex_conf & EX_CONF_MII)
1503 		mii_tick(&sc->ex_mii);
1504 
1505 	if (!(bus_space_read_2((sc)->sc_iot, (sc)->sc_ioh, ELINK_STATUS)
1506 	    & COMMAND_IN_PROGRESS))
1507 		ex_getstats(sc);
1508 
1509 	splx(s);
1510 
1511 	callout_reset(&sc->ex_mii_callout, hz, ex_tick, sc);
1512 }
1513 
1514 void
1515 ex_reset(sc)
1516 	struct ex_softc *sc;
1517 {
1518 	u_int16_t val = GLOBAL_RESET;
1519 
1520 	if (sc->ex_conf & EX_CONF_RESETHACK)
1521 		val |= 0x10;
1522 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND, val);
1523 	/*
1524 	 * XXX apparently the command in progress bit can't be trusted
1525 	 * during a reset, so we just always wait this long. Fortunately
1526 	 * we normally only reset the chip during autoconfig.
1527 	 */
1528 	delay(100000);
1529 	ex_waitcmd(sc);
1530 }
1531 
1532 void
1533 ex_watchdog(ifp)
1534 	struct ifnet *ifp;
1535 {
1536 	struct ex_softc *sc = ifp->if_softc;
1537 
1538 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1539 	++sc->sc_ethercom.ec_if.if_oerrors;
1540 
1541 	ex_reset(sc);
1542 	ex_init(ifp);
1543 }
1544 
1545 void
1546 ex_stop(ifp, disable)
1547 	struct ifnet *ifp;
1548 	int disable;
1549 {
1550 	struct ex_softc *sc = ifp->if_softc;
1551 	bus_space_tag_t iot = sc->sc_iot;
1552 	bus_space_handle_t ioh = sc->sc_ioh;
1553 	struct ex_txdesc *tx;
1554 	struct ex_rxdesc *rx;
1555 	int i;
1556 
1557 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
1558 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
1559 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
1560 
1561 	for (tx = sc->tx_head ; tx != NULL; tx = tx->tx_next) {
1562 		if (tx->tx_mbhead == NULL)
1563 			continue;
1564 		m_freem(tx->tx_mbhead);
1565 		tx->tx_mbhead = NULL;
1566 		bus_dmamap_unload(sc->sc_dmat, tx->tx_dmamap);
1567 		tx->tx_dpd->dpd_fsh = tx->tx_dpd->dpd_nextptr = 0;
1568 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1569 		    ((caddr_t)tx->tx_dpd - (caddr_t)sc->sc_dpd),
1570 		    sizeof (struct ex_dpd),
1571 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1572 	}
1573 	sc->tx_tail = sc->tx_head = NULL;
1574 	ex_init_txdescs(sc);
1575 
1576 	sc->rx_tail = sc->rx_head = 0;
1577 	for (i = 0; i < EX_NUPD; i++) {
1578 		rx = &sc->sc_rxdescs[i];
1579 		if (rx->rx_mbhead != NULL) {
1580 			bus_dmamap_unload(sc->sc_dmat, rx->rx_dmamap);
1581 			m_freem(rx->rx_mbhead);
1582 			rx->rx_mbhead = NULL;
1583 		}
1584 		ex_add_rxbuf(sc, rx);
1585 	}
1586 
1587 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | INTR_LATCH);
1588 
1589 	callout_stop(&sc->ex_mii_callout);
1590 	if (sc->ex_conf & EX_CONF_MII)
1591 		mii_down(&sc->ex_mii);
1592 
1593 	if (disable)
1594 		ex_disable(sc);
1595 
1596 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1597 	sc->sc_if_flags = ifp->if_flags;
1598 	ifp->if_timer = 0;
1599 }
1600 
1601 static void
1602 ex_init_txdescs(sc)
1603 	struct ex_softc *sc;
1604 {
1605 	int i;
1606 
1607 	for (i = 0; i < EX_NDPD; i++) {
1608 		sc->sc_txdescs[i].tx_dmamap = sc->sc_tx_dmamaps[i];
1609 		sc->sc_txdescs[i].tx_dpd = &sc->sc_dpd[i];
1610 		if (i < EX_NDPD - 1)
1611 			sc->sc_txdescs[i].tx_next = &sc->sc_txdescs[i + 1];
1612 		else
1613 			sc->sc_txdescs[i].tx_next = NULL;
1614 	}
1615 	sc->tx_free = &sc->sc_txdescs[0];
1616 	sc->tx_ftail = &sc->sc_txdescs[EX_NDPD-1];
1617 }
1618 
1619 
1620 int
1621 ex_activate(self, act)
1622 	struct device *self;
1623 	enum devact act;
1624 {
1625 	struct ex_softc *sc = (void *) self;
1626 	int s, error = 0;
1627 
1628 	s = splnet();
1629 	switch (act) {
1630 	case DVACT_ACTIVATE:
1631 		error = EOPNOTSUPP;
1632 		break;
1633 
1634 	case DVACT_DEACTIVATE:
1635 		if (sc->ex_conf & EX_CONF_MII)
1636 			mii_activate(&sc->ex_mii, act, MII_PHY_ANY,
1637 			    MII_OFFSET_ANY);
1638 		if_deactivate(&sc->sc_ethercom.ec_if);
1639 		break;
1640 	}
1641 	splx(s);
1642 
1643 	return (error);
1644 }
1645 
1646 int
1647 ex_detach(sc)
1648 	struct ex_softc *sc;
1649 {
1650 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1651 	struct ex_rxdesc *rxd;
1652 	int i;
1653 
1654 	/* Succeed now if there's no work to do. */
1655 	if ((sc->ex_flags & EX_FLAGS_ATTACHED) == 0)
1656 		return (0);
1657 
1658 	/* Unhook our tick handler. */
1659 	callout_stop(&sc->ex_mii_callout);
1660 
1661 	if (sc->ex_conf & EX_CONF_MII) {
1662 		/* Detach all PHYs */
1663 		mii_detach(&sc->ex_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1664 	}
1665 
1666 	/* Delete all remaining media. */
1667 	ifmedia_delete_instance(&sc->ex_mii.mii_media, IFM_INST_ANY);
1668 
1669 #if NRND > 0
1670 	rnd_detach_source(&sc->rnd_source);
1671 #endif
1672 	ether_ifdetach(ifp);
1673 	if_detach(ifp);
1674 
1675 	for (i = 0; i < EX_NUPD; i++) {
1676 		rxd = &sc->sc_rxdescs[i];
1677 		if (rxd->rx_mbhead != NULL) {
1678 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1679 			m_freem(rxd->rx_mbhead);
1680 			rxd->rx_mbhead = NULL;
1681 		}
1682 	}
1683 	for (i = 0; i < EX_NUPD; i++)
1684 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
1685 	for (i = 0; i < EX_NDPD; i++)
1686 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
1687 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dpd_dmamap);
1688 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dpd_dmamap);
1689 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_dpd,
1690 	    EX_NDPD * sizeof (struct ex_dpd));
1691 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg);
1692 	bus_dmamap_unload(sc->sc_dmat, sc->sc_upd_dmamap);
1693 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_upd_dmamap);
1694 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_upd,
1695 	    EX_NUPD * sizeof (struct ex_upd));
1696 	bus_dmamem_free(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg);
1697 
1698 	shutdownhook_disestablish(sc->sc_sdhook);
1699 	powerhook_disestablish(sc->sc_powerhook);
1700 
1701 	return (0);
1702 }
1703 
1704 /*
1705  * Before reboots, reset card completely.
1706  */
1707 static void
1708 ex_shutdown(arg)
1709 	void *arg;
1710 {
1711 	struct ex_softc *sc = arg;
1712 
1713 	ex_stop(&sc->sc_ethercom.ec_if, 1);
1714 	/*
1715 	 * Make sure the interface is powered up when we reboot,
1716 	 * otherwise firmware on some systems gets really confused.
1717 	 */
1718 	(void) ex_enable(sc);
1719 }
1720 
1721 /*
1722  * Read EEPROM data.
1723  * XXX what to do if EEPROM doesn't unbusy?
1724  */
1725 u_int16_t
1726 ex_read_eeprom(sc, offset)
1727 	struct ex_softc *sc;
1728 	int offset;
1729 {
1730 	bus_space_tag_t iot = sc->sc_iot;
1731 	bus_space_handle_t ioh = sc->sc_ioh;
1732 	u_int16_t data = 0, cmd = READ_EEPROM;
1733 	int off;
1734 
1735 	off = sc->ex_conf & EX_CONF_EEPROM_OFF ? 0x30 : 0;
1736 	cmd = sc->ex_conf & EX_CONF_EEPROM_8BIT ? READ_EEPROM8 : READ_EEPROM;
1737 
1738 	GO_WINDOW(0);
1739 	if (ex_eeprom_busy(sc))
1740 		goto out;
1741 	bus_space_write_2(iot, ioh, ELINK_W0_EEPROM_COMMAND,
1742 	    cmd | (off + (offset & 0x3f)));
1743 	if (ex_eeprom_busy(sc))
1744 		goto out;
1745 	data = bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_DATA);
1746 out:
1747 	return data;
1748 }
1749 
1750 static int
1751 ex_eeprom_busy(sc)
1752 	struct ex_softc *sc;
1753 {
1754 	bus_space_tag_t iot = sc->sc_iot;
1755 	bus_space_handle_t ioh = sc->sc_ioh;
1756 	int i = 100;
1757 
1758 	while (i--) {
1759 		if (!(bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_COMMAND) &
1760 		    EEPROM_BUSY))
1761 			return 0;
1762 		delay(100);
1763 	}
1764 	printf("\n%s: eeprom stays busy.\n", sc->sc_dev.dv_xname);
1765 	return (1);
1766 }
1767 
1768 /*
1769  * Create a new rx buffer and add it to the 'soft' rx list.
1770  */
1771 static int
1772 ex_add_rxbuf(sc, rxd)
1773 	struct ex_softc *sc;
1774 	struct ex_rxdesc *rxd;
1775 {
1776 	struct mbuf *m, *oldm;
1777 	bus_dmamap_t rxmap;
1778 	int error, rval = 0;
1779 
1780 	oldm = rxd->rx_mbhead;
1781 	rxmap = rxd->rx_dmamap;
1782 
1783 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1784 	if (m != NULL) {
1785 		MCLGET(m, M_DONTWAIT);
1786 		if ((m->m_flags & M_EXT) == 0) {
1787 			m_freem(m);
1788 			if (oldm == NULL)
1789 				return 1;
1790 			m = oldm;
1791 			MRESETDATA(m);
1792 			rval = 1;
1793 		}
1794 	} else {
1795 		if (oldm == NULL)
1796 			return 1;
1797 		m = oldm;
1798 		MRESETDATA(m);
1799 		rval = 1;
1800 	}
1801 
1802 	/*
1803 	 * Setup the DMA map for this receive buffer.
1804 	 */
1805 	if (m != oldm) {
1806 		if (oldm != NULL)
1807 			bus_dmamap_unload(sc->sc_dmat, rxmap);
1808 		error = bus_dmamap_load(sc->sc_dmat, rxmap,
1809 		    m->m_ext.ext_buf, MCLBYTES, NULL,
1810 		    BUS_DMA_READ|BUS_DMA_NOWAIT);
1811 		if (error) {
1812 			printf("%s: can't load rx buffer, error = %d\n",
1813 			    sc->sc_dev.dv_xname, error);
1814 			panic("ex_add_rxbuf");	/* XXX */
1815 		}
1816 	}
1817 
1818 	/*
1819 	 * Align for data after 14 byte header.
1820 	 */
1821 	m->m_data += 2;
1822 
1823 	rxd->rx_mbhead = m;
1824 	rxd->rx_upd->upd_pktstatus = htole32(MCLBYTES - 2);
1825 	rxd->rx_upd->upd_frags[0].fr_addr =
1826 	    htole32(rxmap->dm_segs[0].ds_addr + 2);
1827 	rxd->rx_upd->upd_nextptr = 0;
1828 
1829 	/*
1830 	 * Attach it to the end of the list.
1831 	 */
1832 	if (sc->rx_head != NULL) {
1833 		sc->rx_tail->rx_next = rxd;
1834 		sc->rx_tail->rx_upd->upd_nextptr = htole32(sc->sc_upddma +
1835 		    ((caddr_t)rxd->rx_upd - (caddr_t)sc->sc_upd));
1836 		bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1837 		    (caddr_t)sc->rx_tail->rx_upd - (caddr_t)sc->sc_upd,
1838 		    sizeof (struct ex_upd),
1839 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1840 	} else {
1841 		sc->rx_head = rxd;
1842 	}
1843 	sc->rx_tail = rxd;
1844 
1845 	bus_dmamap_sync(sc->sc_dmat, rxmap, 0, rxmap->dm_mapsize,
1846 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1847 	bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1848 	    ((caddr_t)rxd->rx_upd - (caddr_t)sc->sc_upd),
1849 	    sizeof (struct ex_upd), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1850 	return (rval);
1851 }
1852 
1853 u_int32_t
1854 ex_mii_bitbang_read(self)
1855 	struct device *self;
1856 {
1857 	struct ex_softc *sc = (void *) self;
1858 
1859 	/* We're already in Window 4. */
1860 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_PHYSMGMT));
1861 }
1862 
1863 void
1864 ex_mii_bitbang_write(self, val)
1865 	struct device *self;
1866 	u_int32_t val;
1867 {
1868 	struct ex_softc *sc = (void *) self;
1869 
1870 	/* We're already in Window 4. */
1871 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_PHYSMGMT, val);
1872 }
1873 
1874 int
1875 ex_mii_readreg(v, phy, reg)
1876 	struct device *v;
1877 	int phy, reg;
1878 {
1879 	struct ex_softc *sc = (struct ex_softc *)v;
1880 	int val;
1881 
1882 	if ((sc->ex_conf & EX_CONF_INTPHY) && phy != ELINK_INTPHY_ID)
1883 		return 0;
1884 
1885 	GO_WINDOW(4);
1886 
1887 	val = mii_bitbang_readreg(v, &ex_mii_bitbang_ops, phy, reg);
1888 
1889 	GO_WINDOW(1);
1890 
1891 	return (val);
1892 }
1893 
1894 void
1895 ex_mii_writereg(v, phy, reg, data)
1896         struct device *v;
1897         int phy;
1898         int reg;
1899         int data;
1900 {
1901 	struct ex_softc *sc = (struct ex_softc *)v;
1902 
1903 	GO_WINDOW(4);
1904 
1905 	mii_bitbang_writereg(v, &ex_mii_bitbang_ops, phy, reg, data);
1906 
1907 	GO_WINDOW(1);
1908 }
1909 
1910 void
1911 ex_mii_statchg(v)
1912 	struct device *v;
1913 {
1914 	struct ex_softc *sc = (struct ex_softc *)v;
1915 	bus_space_tag_t iot = sc->sc_iot;
1916 	bus_space_handle_t ioh = sc->sc_ioh;
1917 	int mctl;
1918 
1919 	GO_WINDOW(3);
1920 	mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
1921 	if (sc->ex_mii.mii_media_active & IFM_FDX)
1922 		mctl |= MAC_CONTROL_FDX;
1923 	else
1924 		mctl &= ~MAC_CONTROL_FDX;
1925 	bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
1926 	GO_WINDOW(1);   /* back to operating window */
1927 }
1928 
1929 int
1930 ex_enable(sc)
1931 	struct ex_softc *sc;
1932 {
1933 	if (sc->enabled == 0 && sc->enable != NULL) {
1934 		if ((*sc->enable)(sc) != 0) {
1935 			printf("%s: de/vice enable failed\n",
1936 				sc->sc_dev.dv_xname);
1937 			return (EIO);
1938 		}
1939 		sc->enabled = 1;
1940 	}
1941 	return (0);
1942 }
1943 
1944 void
1945 ex_disable(sc)
1946 	struct ex_softc *sc;
1947 {
1948 	if (sc->enabled == 1 && sc->disable != NULL) {
1949 		(*sc->disable)(sc);
1950 		sc->enabled = 0;
1951 	}
1952 }
1953 
1954 void
1955 ex_power(why, arg)
1956 	int why;
1957 	void *arg;
1958 {
1959 	struct ex_softc *sc = (void *)arg;
1960 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1961 	int s;
1962 
1963 	s = splnet();
1964 	switch (why) {
1965 	case PWR_SUSPEND:
1966 	case PWR_STANDBY:
1967 		ex_stop(ifp, 0);
1968 		if (sc->power != NULL)
1969 			(*sc->power)(sc, why);
1970 		break;
1971 	case PWR_RESUME:
1972 		if (ifp->if_flags & IFF_UP) {
1973 			if (sc->power != NULL)
1974 				(*sc->power)(sc, why);
1975 			ex_init(ifp);
1976 		}
1977 		break;
1978 	case PWR_SOFTSUSPEND:
1979 	case PWR_SOFTSTANDBY:
1980 	case PWR_SOFTRESUME:
1981 		break;
1982 	}
1983 	splx(s);
1984 }
1985